Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 1 | //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #include "llvm/Analysis/LazyCallGraph.h" |
Chandler Carruth | 11b3f60 | 2016-09-04 08:34:31 +0000 | [diff] [blame] | 11 | #include "llvm/ADT/ScopeExit.h" |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 12 | #include "llvm/ADT/Sequence.h" |
Chandler Carruth | 18eadd92 | 2014-04-18 10:50:32 +0000 | [diff] [blame] | 13 | #include "llvm/ADT/STLExtras.h" |
Chandler Carruth | 86f0bdf | 2016-12-09 00:46:44 +0000 | [diff] [blame] | 14 | #include "llvm/ADT/ScopeExit.h" |
Chandler Carruth | 219b89b | 2014-03-04 11:01:28 +0000 | [diff] [blame] | 15 | #include "llvm/IR/CallSite.h" |
Chandler Carruth | 7da14f1 | 2014-03-06 03:23:41 +0000 | [diff] [blame] | 16 | #include "llvm/IR/InstVisitor.h" |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 17 | #include "llvm/IR/Instructions.h" |
| 18 | #include "llvm/IR/PassManager.h" |
Chandler Carruth | 99b756d | 2014-04-21 05:04:24 +0000 | [diff] [blame] | 19 | #include "llvm/Support/Debug.h" |
Sean Silva | 7cb3066 | 2016-06-18 09:17:32 +0000 | [diff] [blame] | 20 | #include "llvm/Support/GraphWriter.h" |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 21 | |
| 22 | using namespace llvm; |
| 23 | |
Chandler Carruth | f1221bd | 2014-04-22 02:48:03 +0000 | [diff] [blame] | 24 | #define DEBUG_TYPE "lcg" |
| 25 | |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 26 | static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 27 | DenseMap<Function *, int> &EdgeIndexMap, Function &F, |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 28 | LazyCallGraph::Edge::Kind EK) { |
Chandler Carruth | 86f0bdf | 2016-12-09 00:46:44 +0000 | [diff] [blame] | 29 | if (!EdgeIndexMap.insert({&F, Edges.size()}).second) |
| 30 | return; |
| 31 | |
| 32 | DEBUG(dbgs() << " Added callable function: " << F.getName() << "\n"); |
| 33 | Edges.emplace_back(LazyCallGraph::Edge(F, EK)); |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 34 | } |
| 35 | |
Chandler Carruth | 18eadd92 | 2014-04-18 10:50:32 +0000 | [diff] [blame] | 36 | LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) |
| 37 | : G(&G), F(F), DFSNumber(0), LowLink(0) { |
Chandler Carruth | 99b756d | 2014-04-21 05:04:24 +0000 | [diff] [blame] | 38 | DEBUG(dbgs() << " Adding functions called by '" << F.getName() |
| 39 | << "' to the graph.\n"); |
| 40 | |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 41 | SmallVector<Constant *, 16> Worklist; |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 42 | SmallPtrSet<Function *, 4> Callees; |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 43 | SmallPtrSet<Constant *, 16> Visited; |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 44 | |
| 45 | // Find all the potential call graph edges in this function. We track both |
| 46 | // actual call edges and indirect references to functions. The direct calls |
| 47 | // are trivially added, but to accumulate the latter we walk the instructions |
| 48 | // and add every operand which is a constant to the worklist to process |
| 49 | // afterward. |
Chandler Carruth | 86f0bdf | 2016-12-09 00:46:44 +0000 | [diff] [blame] | 50 | // |
| 51 | // Note that we consider *any* function with a definition to be a viable |
| 52 | // edge. Even if the function's definition is subject to replacement by |
| 53 | // some other module (say, a weak definition) there may still be |
| 54 | // optimizations which essentially speculate based on the definition and |
| 55 | // a way to check that the specific definition is in fact the one being |
| 56 | // used. For example, this could be done by moving the weak definition to |
| 57 | // a strong (internal) definition and making the weak definition be an |
| 58 | // alias. Then a test of the address of the weak function against the new |
| 59 | // strong definition's address would be an effective way to determine the |
| 60 | // safety of optimizing a direct call edge. |
Chandler Carruth | b9e2f8c | 2014-03-09 12:20:34 +0000 | [diff] [blame] | 61 | for (BasicBlock &BB : F) |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 62 | for (Instruction &I : BB) { |
| 63 | if (auto CS = CallSite(&I)) |
| 64 | if (Function *Callee = CS.getCalledFunction()) |
Chandler Carruth | 86f0bdf | 2016-12-09 00:46:44 +0000 | [diff] [blame] | 65 | if (!Callee->isDeclaration()) |
| 66 | if (Callees.insert(Callee).second) { |
| 67 | Visited.insert(Callee); |
| 68 | addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call); |
| 69 | } |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 70 | |
Chandler Carruth | b9e2f8c | 2014-03-09 12:20:34 +0000 | [diff] [blame] | 71 | for (Value *Op : I.operand_values()) |
Chandler Carruth | 1583e99 | 2014-03-03 10:42:58 +0000 | [diff] [blame] | 72 | if (Constant *C = dyn_cast<Constant>(Op)) |
David Blaikie | 70573dc | 2014-11-19 07:49:26 +0000 | [diff] [blame] | 73 | if (Visited.insert(C).second) |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 74 | Worklist.push_back(C); |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 75 | } |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 76 | |
| 77 | // We've collected all the constant (and thus potentially function or |
| 78 | // function containing) operands to all of the instructions in the function. |
| 79 | // Process them (recursively) collecting every function found. |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame] | 80 | visitReferences(Worklist, Visited, [&](Function &F) { |
| 81 | addEdge(Edges, EdgeIndexMap, F, LazyCallGraph::Edge::Ref); |
| 82 | }); |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 83 | } |
| 84 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 85 | void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) { |
| 86 | if (Node *N = G->lookup(Target)) |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 87 | return insertEdgeInternal(*N, EK); |
Chandler Carruth | 5217c94 | 2014-04-30 10:48:36 +0000 | [diff] [blame] | 88 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 89 | EdgeIndexMap.insert({&Target, Edges.size()}); |
| 90 | Edges.emplace_back(Target, EK); |
Chandler Carruth | 5217c94 | 2014-04-30 10:48:36 +0000 | [diff] [blame] | 91 | } |
| 92 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 93 | void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) { |
| 94 | EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()}); |
| 95 | Edges.emplace_back(TargetN, EK); |
Chandler Carruth | c00a7ff | 2014-04-28 11:10:23 +0000 | [diff] [blame] | 96 | } |
| 97 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 98 | void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) { |
| 99 | Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK); |
| 100 | } |
| 101 | |
| 102 | void LazyCallGraph::Node::removeEdgeInternal(Function &Target) { |
| 103 | auto IndexMapI = EdgeIndexMap.find(&Target); |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 104 | assert(IndexMapI != EdgeIndexMap.end() && |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 105 | "Target not in the edge set for this caller?"); |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 106 | |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 107 | Edges[IndexMapI->second] = Edge(); |
| 108 | EdgeIndexMap.erase(IndexMapI); |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 109 | } |
| 110 | |
Matthias Braun | 8c209aa | 2017-01-28 02:02:38 +0000 | [diff] [blame] | 111 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 112 | LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { |
Chandler Carruth | dca8340 | 2016-06-27 23:26:08 +0000 | [diff] [blame] | 113 | dbgs() << *this << '\n'; |
| 114 | } |
Matthias Braun | 8c209aa | 2017-01-28 02:02:38 +0000 | [diff] [blame] | 115 | #endif |
Chandler Carruth | dca8340 | 2016-06-27 23:26:08 +0000 | [diff] [blame] | 116 | |
Chandler Carruth | 2174f44 | 2014-04-18 20:44:16 +0000 | [diff] [blame] | 117 | LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { |
Chandler Carruth | 99b756d | 2014-04-21 05:04:24 +0000 | [diff] [blame] | 118 | DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() |
| 119 | << "\n"); |
Chandler Carruth | b9e2f8c | 2014-03-09 12:20:34 +0000 | [diff] [blame] | 120 | for (Function &F : M) |
| 121 | if (!F.isDeclaration() && !F.hasLocalLinkage()) |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 122 | if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) { |
Chandler Carruth | 99b756d | 2014-04-21 05:04:24 +0000 | [diff] [blame] | 123 | DEBUG(dbgs() << " Adding '" << F.getName() |
| 124 | << "' to entry set of the graph.\n"); |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 125 | EntryEdges.emplace_back(F, Edge::Ref); |
Chandler Carruth | 99b756d | 2014-04-21 05:04:24 +0000 | [diff] [blame] | 126 | } |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 127 | |
| 128 | // Now add entry nodes for functions reachable via initializers to globals. |
| 129 | SmallVector<Constant *, 16> Worklist; |
| 130 | SmallPtrSet<Constant *, 16> Visited; |
Chandler Carruth | b9e2f8c | 2014-03-09 12:20:34 +0000 | [diff] [blame] | 131 | for (GlobalVariable &GV : M.globals()) |
| 132 | if (GV.hasInitializer()) |
David Blaikie | 70573dc | 2014-11-19 07:49:26 +0000 | [diff] [blame] | 133 | if (Visited.insert(GV.getInitializer()).second) |
Chandler Carruth | b9e2f8c | 2014-03-09 12:20:34 +0000 | [diff] [blame] | 134 | Worklist.push_back(GV.getInitializer()); |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 135 | |
Chandler Carruth | 99b756d | 2014-04-21 05:04:24 +0000 | [diff] [blame] | 136 | DEBUG(dbgs() << " Adding functions referenced by global initializers to the " |
| 137 | "entry set.\n"); |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame] | 138 | visitReferences(Worklist, Visited, [&](Function &F) { |
| 139 | addEdge(EntryEdges, EntryIndexMap, F, LazyCallGraph::Edge::Ref); |
| 140 | }); |
Chandler Carruth | 18eadd92 | 2014-04-18 10:50:32 +0000 | [diff] [blame] | 141 | |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 142 | for (const Edge &E : EntryEdges) |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 143 | RefSCCEntryNodes.push_back(&E.getFunction()); |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 144 | } |
| 145 | |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 146 | LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) |
Chandler Carruth | 2174f44 | 2014-04-18 20:44:16 +0000 | [diff] [blame] | 147 | : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 148 | EntryEdges(std::move(G.EntryEdges)), |
Chandler Carruth | 0b623ba | 2014-04-23 04:00:17 +0000 | [diff] [blame] | 149 | EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)), |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 150 | SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)), |
Chandler Carruth | 18eadd92 | 2014-04-18 10:50:32 +0000 | [diff] [blame] | 151 | DFSStack(std::move(G.DFSStack)), |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 152 | RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)), |
Chandler Carruth | 2174f44 | 2014-04-18 20:44:16 +0000 | [diff] [blame] | 153 | NextDFSNumber(G.NextDFSNumber) { |
Chandler Carruth | d8d865e | 2014-04-18 11:02:33 +0000 | [diff] [blame] | 154 | updateGraphPtrs(); |
| 155 | } |
| 156 | |
| 157 | LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { |
| 158 | BPA = std::move(G.BPA); |
Chandler Carruth | 2174f44 | 2014-04-18 20:44:16 +0000 | [diff] [blame] | 159 | NodeMap = std::move(G.NodeMap); |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 160 | EntryEdges = std::move(G.EntryEdges); |
Chandler Carruth | 0b623ba | 2014-04-23 04:00:17 +0000 | [diff] [blame] | 161 | EntryIndexMap = std::move(G.EntryIndexMap); |
Chandler Carruth | d8d865e | 2014-04-18 11:02:33 +0000 | [diff] [blame] | 162 | SCCBPA = std::move(G.SCCBPA); |
| 163 | SCCMap = std::move(G.SCCMap); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 164 | LeafRefSCCs = std::move(G.LeafRefSCCs); |
Chandler Carruth | d8d865e | 2014-04-18 11:02:33 +0000 | [diff] [blame] | 165 | DFSStack = std::move(G.DFSStack); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 166 | RefSCCEntryNodes = std::move(G.RefSCCEntryNodes); |
Chandler Carruth | 2174f44 | 2014-04-18 20:44:16 +0000 | [diff] [blame] | 167 | NextDFSNumber = G.NextDFSNumber; |
Chandler Carruth | d8d865e | 2014-04-18 11:02:33 +0000 | [diff] [blame] | 168 | updateGraphPtrs(); |
| 169 | return *this; |
| 170 | } |
| 171 | |
Matthias Braun | 8c209aa | 2017-01-28 02:02:38 +0000 | [diff] [blame] | 172 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 173 | LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { |
Chandler Carruth | dca8340 | 2016-06-27 23:26:08 +0000 | [diff] [blame] | 174 | dbgs() << *this << '\n'; |
| 175 | } |
Matthias Braun | 8c209aa | 2017-01-28 02:02:38 +0000 | [diff] [blame] | 176 | #endif |
Chandler Carruth | dca8340 | 2016-06-27 23:26:08 +0000 | [diff] [blame] | 177 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 178 | #ifndef NDEBUG |
| 179 | void LazyCallGraph::SCC::verify() { |
| 180 | assert(OuterRefSCC && "Can't have a null RefSCC!"); |
| 181 | assert(!Nodes.empty() && "Can't have an empty SCC!"); |
Chandler Carruth | 8f92d6d | 2014-04-26 01:03:46 +0000 | [diff] [blame] | 182 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 183 | for (Node *N : Nodes) { |
| 184 | assert(N && "Can't have a null node!"); |
| 185 | assert(OuterRefSCC->G->lookupSCC(*N) == this && |
| 186 | "Node does not map to this SCC!"); |
| 187 | assert(N->DFSNumber == -1 && |
| 188 | "Must set DFS numbers to -1 when adding a node to an SCC!"); |
| 189 | assert(N->LowLink == -1 && |
| 190 | "Must set low link to -1 when adding a node to an SCC!"); |
| 191 | for (Edge &E : *N) |
| 192 | assert(E.getNode() && "Can't have an edge to a raw function!"); |
| 193 | } |
| 194 | } |
| 195 | #endif |
| 196 | |
Chandler Carruth | bae595b | 2016-11-22 19:23:31 +0000 | [diff] [blame] | 197 | bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { |
| 198 | if (this == &C) |
| 199 | return false; |
| 200 | |
| 201 | for (Node &N : *this) |
| 202 | for (Edge &E : N.calls()) |
| 203 | if (Node *CalleeN = E.getNode()) |
| 204 | if (OuterRefSCC->G->lookupSCC(*CalleeN) == &C) |
| 205 | return true; |
| 206 | |
| 207 | // No edges found. |
| 208 | return false; |
| 209 | } |
| 210 | |
| 211 | bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { |
| 212 | if (this == &TargetC) |
| 213 | return false; |
| 214 | |
| 215 | LazyCallGraph &G = *OuterRefSCC->G; |
| 216 | |
| 217 | // Start with this SCC. |
| 218 | SmallPtrSet<const SCC *, 16> Visited = {this}; |
| 219 | SmallVector<const SCC *, 16> Worklist = {this}; |
| 220 | |
| 221 | // Walk down the graph until we run out of edges or find a path to TargetC. |
| 222 | do { |
| 223 | const SCC &C = *Worklist.pop_back_val(); |
| 224 | for (Node &N : C) |
| 225 | for (Edge &E : N.calls()) { |
| 226 | Node *CalleeN = E.getNode(); |
| 227 | if (!CalleeN) |
| 228 | continue; |
| 229 | SCC *CalleeC = G.lookupSCC(*CalleeN); |
| 230 | if (!CalleeC) |
| 231 | continue; |
| 232 | |
| 233 | // If the callee's SCC is the TargetC, we're done. |
| 234 | if (CalleeC == &TargetC) |
| 235 | return true; |
| 236 | |
| 237 | // If this is the first time we've reached this SCC, put it on the |
| 238 | // worklist to recurse through. |
| 239 | if (Visited.insert(CalleeC).second) |
| 240 | Worklist.push_back(CalleeC); |
| 241 | } |
| 242 | } while (!Worklist.empty()); |
| 243 | |
| 244 | // No paths found. |
| 245 | return false; |
| 246 | } |
| 247 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 248 | LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} |
| 249 | |
Matthias Braun | 8c209aa | 2017-01-28 02:02:38 +0000 | [diff] [blame] | 250 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 251 | LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { |
Chandler Carruth | dca8340 | 2016-06-27 23:26:08 +0000 | [diff] [blame] | 252 | dbgs() << *this << '\n'; |
| 253 | } |
Matthias Braun | 8c209aa | 2017-01-28 02:02:38 +0000 | [diff] [blame] | 254 | #endif |
Chandler Carruth | dca8340 | 2016-06-27 23:26:08 +0000 | [diff] [blame] | 255 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 256 | #ifndef NDEBUG |
| 257 | void LazyCallGraph::RefSCC::verify() { |
| 258 | assert(G && "Can't have a null graph!"); |
| 259 | assert(!SCCs.empty() && "Can't have an empty SCC!"); |
| 260 | |
| 261 | // Verify basic properties of the SCCs. |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame] | 262 | SmallPtrSet<SCC *, 4> SCCSet; |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 263 | for (SCC *C : SCCs) { |
| 264 | assert(C && "Can't have a null SCC!"); |
| 265 | C->verify(); |
| 266 | assert(&C->getOuterRefSCC() == this && |
| 267 | "SCC doesn't think it is inside this RefSCC!"); |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame] | 268 | bool Inserted = SCCSet.insert(C).second; |
| 269 | assert(Inserted && "Found a duplicate SCC!"); |
Chandler Carruth | 23a6c3f | 2016-12-06 10:29:23 +0000 | [diff] [blame] | 270 | auto IndexIt = SCCIndices.find(C); |
| 271 | assert(IndexIt != SCCIndices.end() && |
| 272 | "Found an SCC that doesn't have an index!"); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 273 | } |
| 274 | |
| 275 | // Check that our indices map correctly. |
| 276 | for (auto &SCCIndexPair : SCCIndices) { |
| 277 | SCC *C = SCCIndexPair.first; |
| 278 | int i = SCCIndexPair.second; |
| 279 | assert(C && "Can't have a null SCC in the indices!"); |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame] | 280 | assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 281 | assert(SCCs[i] == C && "Index doesn't point to SCC!"); |
| 282 | } |
| 283 | |
| 284 | // Check that the SCCs are in fact in post-order. |
| 285 | for (int i = 0, Size = SCCs.size(); i < Size; ++i) { |
| 286 | SCC &SourceSCC = *SCCs[i]; |
| 287 | for (Node &N : SourceSCC) |
| 288 | for (Edge &E : N) { |
| 289 | if (!E.isCall()) |
| 290 | continue; |
| 291 | SCC &TargetSCC = *G->lookupSCC(*E.getNode()); |
| 292 | if (&TargetSCC.getOuterRefSCC() == this) { |
| 293 | assert(SCCIndices.find(&TargetSCC)->second <= i && |
| 294 | "Edge between SCCs violates post-order relationship."); |
| 295 | continue; |
| 296 | } |
| 297 | assert(TargetSCC.getOuterRefSCC().Parents.count(this) && |
| 298 | "Edge to a RefSCC missing us in its parent set."); |
| 299 | } |
| 300 | } |
Chandler Carruth | 5205c35 | 2016-12-07 01:42:40 +0000 | [diff] [blame] | 301 | |
| 302 | // Check that our parents are actually parents. |
| 303 | for (RefSCC *ParentRC : Parents) { |
| 304 | assert(ParentRC != this && "Cannot be our own parent!"); |
| 305 | auto HasConnectingEdge = [&] { |
| 306 | for (SCC &C : *ParentRC) |
| 307 | for (Node &N : C) |
| 308 | for (Edge &E : N) |
| 309 | if (G->lookupRefSCC(*E.getNode()) == this) |
| 310 | return true; |
| 311 | return false; |
| 312 | }; |
| 313 | assert(HasConnectingEdge() && "No edge connects the parent to us!"); |
| 314 | } |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 315 | } |
| 316 | #endif |
| 317 | |
| 318 | bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const { |
Chandler Carruth | 4b09674 | 2014-05-01 12:12:42 +0000 | [diff] [blame] | 319 | // Walk up the parents of this SCC and verify that we eventually find C. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 320 | SmallVector<const RefSCC *, 4> AncestorWorklist; |
Chandler Carruth | 4b09674 | 2014-05-01 12:12:42 +0000 | [diff] [blame] | 321 | AncestorWorklist.push_back(this); |
| 322 | do { |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 323 | const RefSCC *AncestorC = AncestorWorklist.pop_back_val(); |
Chandler Carruth | 4b09674 | 2014-05-01 12:12:42 +0000 | [diff] [blame] | 324 | if (AncestorC->isChildOf(C)) |
| 325 | return true; |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 326 | for (const RefSCC *ParentC : AncestorC->Parents) |
Chandler Carruth | 4b09674 | 2014-05-01 12:12:42 +0000 | [diff] [blame] | 327 | AncestorWorklist.push_back(ParentC); |
| 328 | } while (!AncestorWorklist.empty()); |
| 329 | |
| 330 | return false; |
| 331 | } |
| 332 | |
Chandler Carruth | 1f621f0 | 2016-09-04 08:34:24 +0000 | [diff] [blame] | 333 | /// Generic helper that updates a postorder sequence of SCCs for a potentially |
| 334 | /// cycle-introducing edge insertion. |
| 335 | /// |
| 336 | /// A postorder sequence of SCCs of a directed graph has one fundamental |
| 337 | /// property: all deges in the DAG of SCCs point "up" the sequence. That is, |
| 338 | /// all edges in the SCC DAG point to prior SCCs in the sequence. |
| 339 | /// |
| 340 | /// This routine both updates a postorder sequence and uses that sequence to |
| 341 | /// compute the set of SCCs connected into a cycle. It should only be called to |
| 342 | /// insert a "downward" edge which will require changing the sequence to |
| 343 | /// restore it to a postorder. |
| 344 | /// |
| 345 | /// When inserting an edge from an earlier SCC to a later SCC in some postorder |
| 346 | /// sequence, all of the SCCs which may be impacted are in the closed range of |
| 347 | /// those two within the postorder sequence. The algorithm used here to restore |
| 348 | /// the state is as follows: |
| 349 | /// |
| 350 | /// 1) Starting from the source SCC, construct a set of SCCs which reach the |
| 351 | /// source SCC consisting of just the source SCC. Then scan toward the |
| 352 | /// target SCC in postorder and for each SCC, if it has an edge to an SCC |
| 353 | /// in the set, add it to the set. Otherwise, the source SCC is not |
| 354 | /// a successor, move it in the postorder sequence to immediately before |
| 355 | /// the source SCC, shifting the source SCC and all SCCs in the set one |
| 356 | /// position toward the target SCC. Stop scanning after processing the |
| 357 | /// target SCC. |
| 358 | /// 2) If the source SCC is now past the target SCC in the postorder sequence, |
| 359 | /// and thus the new edge will flow toward the start, we are done. |
| 360 | /// 3) Otherwise, starting from the target SCC, walk all edges which reach an |
| 361 | /// SCC between the source and the target, and add them to the set of |
| 362 | /// connected SCCs, then recurse through them. Once a complete set of the |
| 363 | /// SCCs the target connects to is known, hoist the remaining SCCs between |
| 364 | /// the source and the target to be above the target. Note that there is no |
| 365 | /// need to process the source SCC, it is already known to connect. |
| 366 | /// 4) At this point, all of the SCCs in the closed range between the source |
| 367 | /// SCC and the target SCC in the postorder sequence are connected, |
| 368 | /// including the target SCC and the source SCC. Inserting the edge from |
| 369 | /// the source SCC to the target SCC will form a cycle out of precisely |
| 370 | /// these SCCs. Thus we can merge all of the SCCs in this closed range into |
| 371 | /// a single SCC. |
| 372 | /// |
| 373 | /// This process has various important properties: |
| 374 | /// - Only mutates the SCCs when adding the edge actually changes the SCC |
| 375 | /// structure. |
| 376 | /// - Never mutates SCCs which are unaffected by the change. |
| 377 | /// - Updates the postorder sequence to correctly satisfy the postorder |
| 378 | /// constraint after the edge is inserted. |
| 379 | /// - Only reorders SCCs in the closed postorder sequence from the source to |
| 380 | /// the target, so easy to bound how much has changed even in the ordering. |
| 381 | /// - Big-O is the number of edges in the closed postorder range of SCCs from |
| 382 | /// source to target. |
| 383 | /// |
| 384 | /// This helper routine, in addition to updating the postorder sequence itself |
| 385 | /// will also update a map from SCCs to indices within that sequecne. |
| 386 | /// |
| 387 | /// The sequence and the map must operate on pointers to the SCC type. |
| 388 | /// |
| 389 | /// Two callbacks must be provided. The first computes the subset of SCCs in |
| 390 | /// the postorder closed range from the source to the target which connect to |
| 391 | /// the source SCC via some (transitive) set of edges. The second computes the |
| 392 | /// subset of the same range which the target SCC connects to via some |
| 393 | /// (transitive) set of edges. Both callbacks should populate the set argument |
| 394 | /// provided. |
| 395 | template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, |
| 396 | typename ComputeSourceConnectedSetCallableT, |
| 397 | typename ComputeTargetConnectedSetCallableT> |
| 398 | static iterator_range<typename PostorderSequenceT::iterator> |
| 399 | updatePostorderSequenceForEdgeInsertion( |
| 400 | SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, |
| 401 | SCCIndexMapT &SCCIndices, |
| 402 | ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, |
| 403 | ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { |
| 404 | int SourceIdx = SCCIndices[&SourceSCC]; |
| 405 | int TargetIdx = SCCIndices[&TargetSCC]; |
| 406 | assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); |
| 407 | |
| 408 | SmallPtrSet<SCCT *, 4> ConnectedSet; |
| 409 | |
| 410 | // Compute the SCCs which (transitively) reach the source. |
| 411 | ComputeSourceConnectedSet(ConnectedSet); |
| 412 | |
| 413 | // Partition the SCCs in this part of the port-order sequence so only SCCs |
| 414 | // connecting to the source remain between it and the target. This is |
| 415 | // a benign partition as it preserves postorder. |
| 416 | auto SourceI = std::stable_partition( |
| 417 | SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, |
| 418 | [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); |
| 419 | for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) |
| 420 | SCCIndices.find(SCCs[i])->second = i; |
| 421 | |
| 422 | // If the target doesn't connect to the source, then we've corrected the |
| 423 | // post-order and there are no cycles formed. |
| 424 | if (!ConnectedSet.count(&TargetSCC)) { |
| 425 | assert(SourceI > (SCCs.begin() + SourceIdx) && |
| 426 | "Must have moved the source to fix the post-order."); |
| 427 | assert(*std::prev(SourceI) == &TargetSCC && |
| 428 | "Last SCC to move should have bene the target."); |
| 429 | |
| 430 | // Return an empty range at the target SCC indicating there is nothing to |
| 431 | // merge. |
| 432 | return make_range(std::prev(SourceI), std::prev(SourceI)); |
| 433 | } |
| 434 | |
| 435 | assert(SCCs[TargetIdx] == &TargetSCC && |
| 436 | "Should not have moved target if connected!"); |
| 437 | SourceIdx = SourceI - SCCs.begin(); |
| 438 | assert(SCCs[SourceIdx] == &SourceSCC && |
| 439 | "Bad updated index computation for the source SCC!"); |
| 440 | |
| 441 | |
| 442 | // See whether there are any remaining intervening SCCs between the source |
| 443 | // and target. If so we need to make sure they all are reachable form the |
| 444 | // target. |
| 445 | if (SourceIdx + 1 < TargetIdx) { |
| 446 | ConnectedSet.clear(); |
| 447 | ComputeTargetConnectedSet(ConnectedSet); |
| 448 | |
| 449 | // Partition SCCs so that only SCCs reached from the target remain between |
| 450 | // the source and the target. This preserves postorder. |
| 451 | auto TargetI = std::stable_partition( |
| 452 | SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, |
| 453 | [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); |
| 454 | for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) |
| 455 | SCCIndices.find(SCCs[i])->second = i; |
| 456 | TargetIdx = std::prev(TargetI) - SCCs.begin(); |
| 457 | assert(SCCs[TargetIdx] == &TargetSCC && |
| 458 | "Should always end with the target!"); |
| 459 | } |
| 460 | |
| 461 | // At this point, we know that connecting source to target forms a cycle |
| 462 | // because target connects back to source, and we know that all of the SCCs |
| 463 | // between the source and target in the postorder sequence participate in that |
| 464 | // cycle. |
| 465 | return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); |
| 466 | } |
| 467 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 468 | SmallVector<LazyCallGraph::SCC *, 1> |
| 469 | LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) { |
| 470 | assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 471 | SmallVector<SCC *, 1> DeletedSCCs; |
Chandler Carruth | 5217c94 | 2014-04-30 10:48:36 +0000 | [diff] [blame] | 472 | |
Chandler Carruth | 11b3f60 | 2016-09-04 08:34:31 +0000 | [diff] [blame] | 473 | #ifndef NDEBUG |
| 474 | // In a debug build, verify the RefSCC is valid to start with and when this |
| 475 | // routine finishes. |
| 476 | verify(); |
| 477 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
| 478 | #endif |
| 479 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 480 | SCC &SourceSCC = *G->lookupSCC(SourceN); |
| 481 | SCC &TargetSCC = *G->lookupSCC(TargetN); |
| 482 | |
| 483 | // If the two nodes are already part of the same SCC, we're also done as |
| 484 | // we've just added more connectivity. |
| 485 | if (&SourceSCC == &TargetSCC) { |
| 486 | SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 487 | return DeletedSCCs; |
| 488 | } |
| 489 | |
| 490 | // At this point we leverage the postorder list of SCCs to detect when the |
| 491 | // insertion of an edge changes the SCC structure in any way. |
| 492 | // |
| 493 | // First and foremost, we can eliminate the need for any changes when the |
| 494 | // edge is toward the beginning of the postorder sequence because all edges |
| 495 | // flow in that direction already. Thus adding a new one cannot form a cycle. |
| 496 | int SourceIdx = SCCIndices[&SourceSCC]; |
| 497 | int TargetIdx = SCCIndices[&TargetSCC]; |
| 498 | if (TargetIdx < SourceIdx) { |
| 499 | SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 500 | return DeletedSCCs; |
| 501 | } |
| 502 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 503 | // Compute the SCCs which (transitively) reach the source. |
Chandler Carruth | 1f621f0 | 2016-09-04 08:34:24 +0000 | [diff] [blame] | 504 | auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 505 | #ifndef NDEBUG |
Chandler Carruth | 1f621f0 | 2016-09-04 08:34:24 +0000 | [diff] [blame] | 506 | // Check that the RefSCC is still valid before computing this as the |
| 507 | // results will be nonsensical of we've broken its invariants. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 508 | verify(); |
| 509 | #endif |
Chandler Carruth | 1f621f0 | 2016-09-04 08:34:24 +0000 | [diff] [blame] | 510 | ConnectedSet.insert(&SourceSCC); |
| 511 | auto IsConnected = [&](SCC &C) { |
| 512 | for (Node &N : C) |
| 513 | for (Edge &E : N.calls()) { |
| 514 | assert(E.getNode() && "Must have formed a node within an SCC!"); |
| 515 | if (ConnectedSet.count(G->lookupSCC(*E.getNode()))) |
| 516 | return true; |
| 517 | } |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 518 | |
Chandler Carruth | 1f621f0 | 2016-09-04 08:34:24 +0000 | [diff] [blame] | 519 | return false; |
| 520 | }; |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 521 | |
Chandler Carruth | 1f621f0 | 2016-09-04 08:34:24 +0000 | [diff] [blame] | 522 | for (SCC *C : |
| 523 | make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) |
| 524 | if (IsConnected(*C)) |
| 525 | ConnectedSet.insert(C); |
| 526 | }; |
| 527 | |
| 528 | // Use a normal worklist to find which SCCs the target connects to. We still |
| 529 | // bound the search based on the range in the postorder list we care about, |
| 530 | // but because this is forward connectivity we just "recurse" through the |
| 531 | // edges. |
| 532 | auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 533 | #ifndef NDEBUG |
Chandler Carruth | 1f621f0 | 2016-09-04 08:34:24 +0000 | [diff] [blame] | 534 | // Check that the RefSCC is still valid before computing this as the |
| 535 | // results will be nonsensical of we've broken its invariants. |
| 536 | verify(); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 537 | #endif |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 538 | ConnectedSet.insert(&TargetSCC); |
| 539 | SmallVector<SCC *, 4> Worklist; |
| 540 | Worklist.push_back(&TargetSCC); |
| 541 | do { |
| 542 | SCC &C = *Worklist.pop_back_val(); |
| 543 | for (Node &N : C) |
| 544 | for (Edge &E : N) { |
| 545 | assert(E.getNode() && "Must have formed a node within an SCC!"); |
| 546 | if (!E.isCall()) |
| 547 | continue; |
| 548 | SCC &EdgeC = *G->lookupSCC(*E.getNode()); |
| 549 | if (&EdgeC.getOuterRefSCC() != this) |
| 550 | // Not in this RefSCC... |
| 551 | continue; |
| 552 | if (SCCIndices.find(&EdgeC)->second <= SourceIdx) |
| 553 | // Not in the postorder sequence between source and target. |
| 554 | continue; |
| 555 | |
| 556 | if (ConnectedSet.insert(&EdgeC).second) |
| 557 | Worklist.push_back(&EdgeC); |
| 558 | } |
| 559 | } while (!Worklist.empty()); |
Chandler Carruth | 1f621f0 | 2016-09-04 08:34:24 +0000 | [diff] [blame] | 560 | }; |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 561 | |
Chandler Carruth | 1f621f0 | 2016-09-04 08:34:24 +0000 | [diff] [blame] | 562 | // Use a generic helper to update the postorder sequence of SCCs and return |
| 563 | // a range of any SCCs connected into a cycle by inserting this edge. This |
| 564 | // routine will also take care of updating the indices into the postorder |
| 565 | // sequence. |
| 566 | auto MergeRange = updatePostorderSequenceForEdgeInsertion( |
| 567 | SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, |
| 568 | ComputeTargetConnectedSet); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 569 | |
Chandler Carruth | 1f621f0 | 2016-09-04 08:34:24 +0000 | [diff] [blame] | 570 | // If the merge range is empty, then adding the edge didn't actually form any |
| 571 | // new cycles. We're done. |
| 572 | if (MergeRange.begin() == MergeRange.end()) { |
| 573 | // Now that the SCC structure is finalized, flip the kind to call. |
| 574 | SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); |
Chandler Carruth | 1f621f0 | 2016-09-04 08:34:24 +0000 | [diff] [blame] | 575 | return DeletedSCCs; |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 576 | } |
| 577 | |
Chandler Carruth | 1f621f0 | 2016-09-04 08:34:24 +0000 | [diff] [blame] | 578 | #ifndef NDEBUG |
| 579 | // Before merging, check that the RefSCC remains valid after all the |
| 580 | // postorder updates. |
| 581 | verify(); |
| 582 | #endif |
| 583 | |
| 584 | // Otherwise we need to merge all of the SCCs in the cycle into a single |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 585 | // result SCC. |
| 586 | // |
| 587 | // NB: We merge into the target because all of these functions were already |
| 588 | // reachable from the target, meaning any SCC-wide properties deduced about it |
| 589 | // other than the set of functions within it will not have changed. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 590 | for (SCC *C : MergeRange) { |
| 591 | assert(C != &TargetSCC && |
| 592 | "We merge *into* the target and shouldn't process it here!"); |
| 593 | SCCIndices.erase(C); |
| 594 | TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); |
| 595 | for (Node *N : C->Nodes) |
| 596 | G->SCCMap[N] = &TargetSCC; |
| 597 | C->clear(); |
| 598 | DeletedSCCs.push_back(C); |
| 599 | } |
| 600 | |
| 601 | // Erase the merged SCCs from the list and update the indices of the |
| 602 | // remaining SCCs. |
| 603 | int IndexOffset = MergeRange.end() - MergeRange.begin(); |
| 604 | auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); |
| 605 | for (SCC *C : make_range(EraseEnd, SCCs.end())) |
| 606 | SCCIndices[C] -= IndexOffset; |
| 607 | |
| 608 | // Now that the SCC structure is finalized, flip the kind to call. |
| 609 | SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); |
| 610 | |
Chandler Carruth | 11b3f60 | 2016-09-04 08:34:31 +0000 | [diff] [blame] | 611 | // And we're done! |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 612 | return DeletedSCCs; |
Chandler Carruth | 5217c94 | 2014-04-30 10:48:36 +0000 | [diff] [blame] | 613 | } |
| 614 | |
Chandler Carruth | 443e57e | 2016-12-28 10:34:50 +0000 | [diff] [blame] | 615 | void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, |
| 616 | Node &TargetN) { |
| 617 | assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); |
| 618 | |
| 619 | #ifndef NDEBUG |
| 620 | // In a debug build, verify the RefSCC is valid to start with and when this |
| 621 | // routine finishes. |
| 622 | verify(); |
| 623 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
| 624 | #endif |
| 625 | |
| 626 | assert(G->lookupRefSCC(SourceN) == this && |
| 627 | "Source must be in this RefSCC."); |
| 628 | assert(G->lookupRefSCC(TargetN) == this && |
| 629 | "Target must be in this RefSCC."); |
| 630 | assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && |
| 631 | "Source and Target must be in separate SCCs for this to be trivial!"); |
| 632 | |
| 633 | // Set the edge kind. |
| 634 | SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); |
| 635 | } |
| 636 | |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame] | 637 | iterator_range<LazyCallGraph::RefSCC::iterator> |
| 638 | LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 639 | assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); |
| 640 | |
Chandler Carruth | 11b3f60 | 2016-09-04 08:34:31 +0000 | [diff] [blame] | 641 | #ifndef NDEBUG |
| 642 | // In a debug build, verify the RefSCC is valid to start with and when this |
| 643 | // routine finishes. |
| 644 | verify(); |
| 645 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
| 646 | #endif |
| 647 | |
Chandler Carruth | 443e57e | 2016-12-28 10:34:50 +0000 | [diff] [blame] | 648 | assert(G->lookupRefSCC(SourceN) == this && |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 649 | "Source must be in this RefSCC."); |
Chandler Carruth | 443e57e | 2016-12-28 10:34:50 +0000 | [diff] [blame] | 650 | assert(G->lookupRefSCC(TargetN) == this && |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 651 | "Target must be in this RefSCC."); |
| 652 | |
Chandler Carruth | 443e57e | 2016-12-28 10:34:50 +0000 | [diff] [blame] | 653 | SCC &TargetSCC = *G->lookupSCC(TargetN); |
| 654 | assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " |
| 655 | "the same SCC to require the " |
| 656 | "full CG update."); |
| 657 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 658 | // Set the edge kind. |
| 659 | SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); |
| 660 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 661 | // Otherwise we are removing a call edge from a single SCC. This may break |
| 662 | // the cycle. In order to compute the new set of SCCs, we need to do a small |
| 663 | // DFS over the nodes within the SCC to form any sub-cycles that remain as |
| 664 | // distinct SCCs and compute a postorder over the resulting SCCs. |
| 665 | // |
| 666 | // However, we specially handle the target node. The target node is known to |
| 667 | // reach all other nodes in the original SCC by definition. This means that |
| 668 | // we want the old SCC to be replaced with an SCC contaning that node as it |
| 669 | // will be the root of whatever SCC DAG results from the DFS. Assumptions |
| 670 | // about an SCC such as the set of functions called will continue to hold, |
| 671 | // etc. |
| 672 | |
| 673 | SCC &OldSCC = TargetSCC; |
| 674 | SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; |
| 675 | SmallVector<Node *, 16> PendingSCCStack; |
| 676 | SmallVector<SCC *, 4> NewSCCs; |
| 677 | |
| 678 | // Prepare the nodes for a fresh DFS. |
| 679 | SmallVector<Node *, 16> Worklist; |
| 680 | Worklist.swap(OldSCC.Nodes); |
| 681 | for (Node *N : Worklist) { |
| 682 | N->DFSNumber = N->LowLink = 0; |
| 683 | G->SCCMap.erase(N); |
| 684 | } |
| 685 | |
| 686 | // Force the target node to be in the old SCC. This also enables us to take |
| 687 | // a very significant short-cut in the standard Tarjan walk to re-form SCCs |
| 688 | // below: whenever we build an edge that reaches the target node, we know |
| 689 | // that the target node eventually connects back to all other nodes in our |
| 690 | // walk. As a consequence, we can detect and handle participants in that |
| 691 | // cycle without walking all the edges that form this connection, and instead |
| 692 | // by relying on the fundamental guarantee coming into this operation (all |
| 693 | // nodes are reachable from the target due to previously forming an SCC). |
| 694 | TargetN.DFSNumber = TargetN.LowLink = -1; |
| 695 | OldSCC.Nodes.push_back(&TargetN); |
| 696 | G->SCCMap[&TargetN] = &OldSCC; |
| 697 | |
| 698 | // Scan down the stack and DFS across the call edges. |
| 699 | for (Node *RootN : Worklist) { |
| 700 | assert(DFSStack.empty() && |
| 701 | "Cannot begin a new root with a non-empty DFS stack!"); |
| 702 | assert(PendingSCCStack.empty() && |
| 703 | "Cannot begin a new root with pending nodes for an SCC!"); |
| 704 | |
| 705 | // Skip any nodes we've already reached in the DFS. |
| 706 | if (RootN->DFSNumber != 0) { |
| 707 | assert(RootN->DFSNumber == -1 && |
| 708 | "Shouldn't have any mid-DFS root nodes!"); |
| 709 | continue; |
| 710 | } |
| 711 | |
| 712 | RootN->DFSNumber = RootN->LowLink = 1; |
| 713 | int NextDFSNumber = 2; |
| 714 | |
| 715 | DFSStack.push_back({RootN, RootN->call_begin()}); |
| 716 | do { |
| 717 | Node *N; |
| 718 | call_edge_iterator I; |
| 719 | std::tie(N, I) = DFSStack.pop_back_val(); |
| 720 | auto E = N->call_end(); |
| 721 | while (I != E) { |
| 722 | Node &ChildN = *I->getNode(); |
| 723 | if (ChildN.DFSNumber == 0) { |
| 724 | // We haven't yet visited this child, so descend, pushing the current |
| 725 | // node onto the stack. |
| 726 | DFSStack.push_back({N, I}); |
| 727 | |
| 728 | assert(!G->SCCMap.count(&ChildN) && |
| 729 | "Found a node with 0 DFS number but already in an SCC!"); |
| 730 | ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; |
| 731 | N = &ChildN; |
| 732 | I = N->call_begin(); |
| 733 | E = N->call_end(); |
| 734 | continue; |
| 735 | } |
| 736 | |
| 737 | // Check for the child already being part of some component. |
| 738 | if (ChildN.DFSNumber == -1) { |
| 739 | if (G->lookupSCC(ChildN) == &OldSCC) { |
| 740 | // If the child is part of the old SCC, we know that it can reach |
| 741 | // every other node, so we have formed a cycle. Pull the entire DFS |
| 742 | // and pending stacks into it. See the comment above about setting |
| 743 | // up the old SCC for why we do this. |
| 744 | int OldSize = OldSCC.size(); |
| 745 | OldSCC.Nodes.push_back(N); |
| 746 | OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); |
| 747 | PendingSCCStack.clear(); |
| 748 | while (!DFSStack.empty()) |
| 749 | OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); |
| 750 | for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { |
| 751 | N.DFSNumber = N.LowLink = -1; |
| 752 | G->SCCMap[&N] = &OldSCC; |
| 753 | } |
| 754 | N = nullptr; |
| 755 | break; |
| 756 | } |
| 757 | |
| 758 | // If the child has already been added to some child component, it |
| 759 | // couldn't impact the low-link of this parent because it isn't |
| 760 | // connected, and thus its low-link isn't relevant so skip it. |
| 761 | ++I; |
| 762 | continue; |
| 763 | } |
| 764 | |
| 765 | // Track the lowest linked child as the lowest link for this node. |
| 766 | assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); |
| 767 | if (ChildN.LowLink < N->LowLink) |
| 768 | N->LowLink = ChildN.LowLink; |
| 769 | |
| 770 | // Move to the next edge. |
| 771 | ++I; |
| 772 | } |
| 773 | if (!N) |
| 774 | // Cleared the DFS early, start another round. |
| 775 | break; |
| 776 | |
| 777 | // We've finished processing N and its descendents, put it on our pending |
| 778 | // SCC stack to eventually get merged into an SCC of nodes. |
| 779 | PendingSCCStack.push_back(N); |
| 780 | |
| 781 | // If this node is linked to some lower entry, continue walking up the |
| 782 | // stack. |
| 783 | if (N->LowLink != N->DFSNumber) |
| 784 | continue; |
| 785 | |
| 786 | // Otherwise, we've completed an SCC. Append it to our post order list of |
| 787 | // SCCs. |
| 788 | int RootDFSNumber = N->DFSNumber; |
| 789 | // Find the range of the node stack by walking down until we pass the |
| 790 | // root DFS number. |
| 791 | auto SCCNodes = make_range( |
| 792 | PendingSCCStack.rbegin(), |
David Majnemer | 4253126 | 2016-08-12 03:55:06 +0000 | [diff] [blame] | 793 | find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { |
| 794 | return N->DFSNumber < RootDFSNumber; |
| 795 | })); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 796 | |
| 797 | // Form a new SCC out of these nodes and then clear them off our pending |
| 798 | // stack. |
| 799 | NewSCCs.push_back(G->createSCC(*this, SCCNodes)); |
| 800 | for (Node &N : *NewSCCs.back()) { |
| 801 | N.DFSNumber = N.LowLink = -1; |
| 802 | G->SCCMap[&N] = NewSCCs.back(); |
| 803 | } |
| 804 | PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); |
| 805 | } while (!DFSStack.empty()); |
| 806 | } |
| 807 | |
| 808 | // Insert the remaining SCCs before the old one. The old SCC can reach all |
| 809 | // other SCCs we form because it contains the target node of the removed edge |
| 810 | // of the old SCC. This means that we will have edges into all of the new |
| 811 | // SCCs, which means the old one must come last for postorder. |
| 812 | int OldIdx = SCCIndices[&OldSCC]; |
| 813 | SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); |
| 814 | |
| 815 | // Update the mapping from SCC* to index to use the new SCC*s, and remove the |
| 816 | // old SCC from the mapping. |
| 817 | for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) |
| 818 | SCCIndices[SCCs[Idx]] = Idx; |
| 819 | |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame] | 820 | return make_range(SCCs.begin() + OldIdx, |
| 821 | SCCs.begin() + OldIdx + NewSCCs.size()); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 822 | } |
| 823 | |
| 824 | void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, |
| 825 | Node &TargetN) { |
| 826 | assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); |
| 827 | |
| 828 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); |
| 829 | assert(G->lookupRefSCC(TargetN) != this && |
| 830 | "Target must not be in this RefSCC."); |
| 831 | assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && |
| 832 | "Target must be a descendant of the Source."); |
| 833 | |
| 834 | // Edges between RefSCCs are the same regardless of call or ref, so we can |
| 835 | // just flip the edge here. |
| 836 | SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); |
| 837 | |
| 838 | #ifndef NDEBUG |
| 839 | // Check that the RefSCC is still valid. |
| 840 | verify(); |
| 841 | #endif |
| 842 | } |
| 843 | |
| 844 | void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, |
| 845 | Node &TargetN) { |
| 846 | assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); |
| 847 | |
| 848 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); |
| 849 | assert(G->lookupRefSCC(TargetN) != this && |
| 850 | "Target must not be in this RefSCC."); |
| 851 | assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && |
| 852 | "Target must be a descendant of the Source."); |
| 853 | |
| 854 | // Edges between RefSCCs are the same regardless of call or ref, so we can |
| 855 | // just flip the edge here. |
| 856 | SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); |
| 857 | |
| 858 | #ifndef NDEBUG |
| 859 | // Check that the RefSCC is still valid. |
| 860 | verify(); |
| 861 | #endif |
| 862 | } |
| 863 | |
| 864 | void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, |
| 865 | Node &TargetN) { |
| 866 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); |
| 867 | assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); |
| 868 | |
| 869 | SourceN.insertEdgeInternal(TargetN, Edge::Ref); |
| 870 | |
| 871 | #ifndef NDEBUG |
| 872 | // Check that the RefSCC is still valid. |
| 873 | verify(); |
| 874 | #endif |
| 875 | } |
| 876 | |
| 877 | void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, |
| 878 | Edge::Kind EK) { |
Chandler Carruth | 7cc4ed8 | 2014-05-01 12:18:20 +0000 | [diff] [blame] | 879 | // First insert it into the caller. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 880 | SourceN.insertEdgeInternal(TargetN, EK); |
Chandler Carruth | 7cc4ed8 | 2014-05-01 12:18:20 +0000 | [diff] [blame] | 881 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 882 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); |
Chandler Carruth | 7cc4ed8 | 2014-05-01 12:18:20 +0000 | [diff] [blame] | 883 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 884 | RefSCC &TargetC = *G->lookupRefSCC(TargetN); |
| 885 | assert(&TargetC != this && "Target must not be in this RefSCC."); |
| 886 | assert(TargetC.isDescendantOf(*this) && |
| 887 | "Target must be a descendant of the Source."); |
Chandler Carruth | 7cc4ed8 | 2014-05-01 12:18:20 +0000 | [diff] [blame] | 888 | |
Chandler Carruth | 9153911 | 2015-12-28 01:54:20 +0000 | [diff] [blame] | 889 | // The only change required is to add this SCC to the parent set of the |
| 890 | // callee. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 891 | TargetC.Parents.insert(this); |
| 892 | |
| 893 | #ifndef NDEBUG |
| 894 | // Check that the RefSCC is still valid. |
| 895 | verify(); |
| 896 | #endif |
Chandler Carruth | 7cc4ed8 | 2014-05-01 12:18:20 +0000 | [diff] [blame] | 897 | } |
| 898 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 899 | SmallVector<LazyCallGraph::RefSCC *, 1> |
| 900 | LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 901 | assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); |
| 902 | RefSCC &SourceC = *G->lookupRefSCC(SourceN); |
| 903 | assert(&SourceC != this && "Source must not be in this RefSCC."); |
| 904 | assert(SourceC.isDescendantOf(*this) && |
| 905 | "Source must be a descendant of the Target."); |
| 906 | |
| 907 | SmallVector<RefSCC *, 1> DeletedRefSCCs; |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 908 | |
Chandler Carruth | 11b3f60 | 2016-09-04 08:34:31 +0000 | [diff] [blame] | 909 | #ifndef NDEBUG |
| 910 | // In a debug build, verify the RefSCC is valid to start with and when this |
| 911 | // routine finishes. |
| 912 | verify(); |
| 913 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
| 914 | #endif |
| 915 | |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 916 | int SourceIdx = G->RefSCCIndices[&SourceC]; |
| 917 | int TargetIdx = G->RefSCCIndices[this]; |
| 918 | assert(SourceIdx < TargetIdx && |
| 919 | "Postorder list doesn't see edge as incoming!"); |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 920 | |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 921 | // Compute the RefSCCs which (transitively) reach the source. We do this by |
| 922 | // working backwards from the source using the parent set in each RefSCC, |
| 923 | // skipping any RefSCCs that don't fall in the postorder range. This has the |
| 924 | // advantage of walking the sparser parent edge (in high fan-out graphs) but |
| 925 | // more importantly this removes examining all forward edges in all RefSCCs |
| 926 | // within the postorder range which aren't in fact connected. Only connected |
| 927 | // RefSCCs (and their edges) are visited here. |
| 928 | auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { |
| 929 | Set.insert(&SourceC); |
| 930 | SmallVector<RefSCC *, 4> Worklist; |
| 931 | Worklist.push_back(&SourceC); |
| 932 | do { |
| 933 | RefSCC &RC = *Worklist.pop_back_val(); |
| 934 | for (RefSCC &ParentRC : RC.parents()) { |
| 935 | // Skip any RefSCCs outside the range of source to target in the |
| 936 | // postorder sequence. |
| 937 | int ParentIdx = G->getRefSCCIndex(ParentRC); |
| 938 | assert(ParentIdx > SourceIdx && "Parent cannot precede source in postorder!"); |
| 939 | if (ParentIdx > TargetIdx) |
| 940 | continue; |
| 941 | if (Set.insert(&ParentRC).second) |
| 942 | // First edge connecting to this parent, add it to our worklist. |
| 943 | Worklist.push_back(&ParentRC); |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 944 | } |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 945 | } while (!Worklist.empty()); |
| 946 | }; |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 947 | |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 948 | // Use a normal worklist to find which SCCs the target connects to. We still |
| 949 | // bound the search based on the range in the postorder list we care about, |
| 950 | // but because this is forward connectivity we just "recurse" through the |
| 951 | // edges. |
| 952 | auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { |
| 953 | Set.insert(this); |
| 954 | SmallVector<RefSCC *, 4> Worklist; |
| 955 | Worklist.push_back(this); |
| 956 | do { |
| 957 | RefSCC &RC = *Worklist.pop_back_val(); |
| 958 | for (SCC &C : RC) |
| 959 | for (Node &N : C) |
| 960 | for (Edge &E : N) { |
| 961 | assert(E.getNode() && "Must have formed a node!"); |
| 962 | RefSCC &EdgeRC = *G->lookupRefSCC(*E.getNode()); |
| 963 | if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) |
| 964 | // Not in the postorder sequence between source and target. |
| 965 | continue; |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 966 | |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 967 | if (Set.insert(&EdgeRC).second) |
| 968 | Worklist.push_back(&EdgeRC); |
| 969 | } |
| 970 | } while (!Worklist.empty()); |
| 971 | }; |
| 972 | |
| 973 | // Use a generic helper to update the postorder sequence of RefSCCs and return |
| 974 | // a range of any RefSCCs connected into a cycle by inserting this edge. This |
| 975 | // routine will also take care of updating the indices into the postorder |
| 976 | // sequence. |
| 977 | iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = |
| 978 | updatePostorderSequenceForEdgeInsertion( |
| 979 | SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, |
| 980 | ComputeSourceConnectedSet, ComputeTargetConnectedSet); |
| 981 | |
Chandler Carruth | 5205c35 | 2016-12-07 01:42:40 +0000 | [diff] [blame] | 982 | // Build a set so we can do fast tests for whether a RefSCC will end up as |
| 983 | // part of the merged RefSCC. |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 984 | SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 985 | |
Chandler Carruth | 5205c35 | 2016-12-07 01:42:40 +0000 | [diff] [blame] | 986 | // This RefSCC will always be part of that set, so just insert it here. |
| 987 | MergeSet.insert(this); |
| 988 | |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 989 | // Now that we have identified all of the SCCs which need to be merged into |
| 990 | // a connected set with the inserted edge, merge all of them into this SCC. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 991 | SmallVector<SCC *, 16> MergedSCCs; |
| 992 | int SCCIndex = 0; |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 993 | for (RefSCC *RC : MergeRange) { |
| 994 | assert(RC != this && "We're merging into the target RefSCC, so it " |
| 995 | "shouldn't be in the range."); |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 996 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 997 | // Merge the parents which aren't part of the merge into the our parents. |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 998 | for (RefSCC *ParentRC : RC->Parents) |
| 999 | if (!MergeSet.count(ParentRC)) |
| 1000 | Parents.insert(ParentRC); |
| 1001 | RC->Parents.clear(); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1002 | |
| 1003 | // Walk the inner SCCs to update their up-pointer and walk all the edges to |
| 1004 | // update any parent sets. |
| 1005 | // FIXME: We should try to find a way to avoid this (rather expensive) edge |
| 1006 | // walk by updating the parent sets in some other manner. |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 1007 | for (SCC &InnerC : *RC) { |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1008 | InnerC.OuterRefSCC = this; |
| 1009 | SCCIndices[&InnerC] = SCCIndex++; |
| 1010 | for (Node &N : InnerC) { |
| 1011 | G->SCCMap[&N] = &InnerC; |
| 1012 | for (Edge &E : N) { |
| 1013 | assert(E.getNode() && |
| 1014 | "Cannot have a null node within a visited SCC!"); |
| 1015 | RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 1016 | if (MergeSet.count(&ChildRC)) |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1017 | continue; |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 1018 | ChildRC.Parents.erase(RC); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1019 | ChildRC.Parents.insert(this); |
| 1020 | } |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 1021 | } |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 1022 | } |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1023 | |
| 1024 | // Now merge in the SCCs. We can actually move here so try to reuse storage |
| 1025 | // the first time through. |
| 1026 | if (MergedSCCs.empty()) |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 1027 | MergedSCCs = std::move(RC->SCCs); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1028 | else |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 1029 | MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); |
| 1030 | RC->SCCs.clear(); |
| 1031 | DeletedRefSCCs.push_back(RC); |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 1032 | } |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1033 | |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 1034 | // Append our original SCCs to the merged list and move it into place. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1035 | for (SCC &InnerC : *this) |
| 1036 | SCCIndices[&InnerC] = SCCIndex++; |
| 1037 | MergedSCCs.append(SCCs.begin(), SCCs.end()); |
| 1038 | SCCs = std::move(MergedSCCs); |
| 1039 | |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 1040 | // Remove the merged away RefSCCs from the post order sequence. |
| 1041 | for (RefSCC *RC : MergeRange) |
| 1042 | G->RefSCCIndices.erase(RC); |
| 1043 | int IndexOffset = MergeRange.end() - MergeRange.begin(); |
| 1044 | auto EraseEnd = |
| 1045 | G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); |
| 1046 | for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) |
| 1047 | G->RefSCCIndices[RC] -= IndexOffset; |
| 1048 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1049 | // At this point we have a merged RefSCC with a post-order SCCs list, just |
| 1050 | // connect the nodes to form the new edge. |
| 1051 | SourceN.insertEdgeInternal(TargetN, Edge::Ref); |
| 1052 | |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 1053 | // We return the list of SCCs which were merged so that callers can |
| 1054 | // invalidate any data they have associated with those SCCs. Note that these |
| 1055 | // SCCs are no longer in an interesting state (they are totally empty) but |
| 1056 | // the pointers will remain stable for the life of the graph itself. |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 1057 | return DeletedRefSCCs; |
Chandler Carruth | 312dddf | 2014-05-04 09:38:32 +0000 | [diff] [blame] | 1058 | } |
| 1059 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1060 | void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { |
| 1061 | assert(G->lookupRefSCC(SourceN) == this && |
| 1062 | "The source must be a member of this RefSCC."); |
| 1063 | |
| 1064 | RefSCC &TargetRC = *G->lookupRefSCC(TargetN); |
| 1065 | assert(&TargetRC != this && "The target must not be a member of this RefSCC"); |
| 1066 | |
David Majnemer | 0d955d0 | 2016-08-11 22:21:41 +0000 | [diff] [blame] | 1067 | assert(!is_contained(G->LeafRefSCCs, this) && |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1068 | "Cannot have a leaf RefSCC source."); |
| 1069 | |
Chandler Carruth | 11b3f60 | 2016-09-04 08:34:31 +0000 | [diff] [blame] | 1070 | #ifndef NDEBUG |
| 1071 | // In a debug build, verify the RefSCC is valid to start with and when this |
| 1072 | // routine finishes. |
| 1073 | verify(); |
| 1074 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
| 1075 | #endif |
| 1076 | |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 1077 | // First remove it from the node. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1078 | SourceN.removeEdgeInternal(TargetN.getFunction()); |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 1079 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1080 | bool HasOtherEdgeToChildRC = false; |
| 1081 | bool HasOtherChildRC = false; |
| 1082 | for (SCC *InnerC : SCCs) { |
| 1083 | for (Node &N : *InnerC) { |
| 1084 | for (Edge &E : N) { |
| 1085 | assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); |
| 1086 | RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode()); |
| 1087 | if (&OtherChildRC == &TargetRC) { |
| 1088 | HasOtherEdgeToChildRC = true; |
| 1089 | break; |
| 1090 | } |
| 1091 | if (&OtherChildRC != this) |
| 1092 | HasOtherChildRC = true; |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1093 | } |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1094 | if (HasOtherEdgeToChildRC) |
| 1095 | break; |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1096 | } |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1097 | if (HasOtherEdgeToChildRC) |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1098 | break; |
| 1099 | } |
| 1100 | // Because the SCCs form a DAG, deleting such an edge cannot change the set |
| 1101 | // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1102 | // the source SCC no longer connected to the target SCC. If so, we need to |
| 1103 | // update the target SCC's map of its parents. |
| 1104 | if (!HasOtherEdgeToChildRC) { |
| 1105 | bool Removed = TargetRC.Parents.erase(this); |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1106 | (void)Removed; |
| 1107 | assert(Removed && |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1108 | "Did not find the source SCC in the target SCC's parent list!"); |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1109 | |
| 1110 | // It may orphan an SCC if it is the last edge reaching it, but that does |
| 1111 | // not violate any invariants of the graph. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1112 | if (TargetRC.Parents.empty()) |
| 1113 | DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName() |
| 1114 | << " -> " << TargetN.getFunction().getName() |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 1115 | << " edge orphaned the callee's SCC!\n"); |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1116 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1117 | // It may make the Source SCC a leaf SCC. |
| 1118 | if (!HasOtherChildRC) |
| 1119 | G->LeafRefSCCs.push_back(this); |
Chandler Carruth | aca48d0 | 2014-04-26 09:06:53 +0000 | [diff] [blame] | 1120 | } |
| 1121 | } |
| 1122 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1123 | SmallVector<LazyCallGraph::RefSCC *, 1> |
| 1124 | LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) { |
| 1125 | assert(!SourceN[TargetN].isCall() && |
| 1126 | "Cannot remove a call edge, it must first be made a ref edge"); |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 1127 | |
Chandler Carruth | 11b3f60 | 2016-09-04 08:34:31 +0000 | [diff] [blame] | 1128 | #ifndef NDEBUG |
| 1129 | // In a debug build, verify the RefSCC is valid to start with and when this |
| 1130 | // routine finishes. |
| 1131 | verify(); |
| 1132 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
| 1133 | #endif |
| 1134 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1135 | // First remove the actual edge. |
| 1136 | SourceN.removeEdgeInternal(TargetN.getFunction()); |
| 1137 | |
| 1138 | // We return a list of the resulting *new* RefSCCs in post-order. |
| 1139 | SmallVector<RefSCC *, 1> Result; |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1140 | |
Chandler Carruth | a7205b6 | 2014-04-26 03:36:37 +0000 | [diff] [blame] | 1141 | // Direct recursion doesn't impact the SCC graph at all. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1142 | if (&SourceN == &TargetN) |
| 1143 | return Result; |
Chandler Carruth | a7205b6 | 2014-04-26 03:36:37 +0000 | [diff] [blame] | 1144 | |
Chandler Carruth | c633457 | 2016-12-28 02:24:58 +0000 | [diff] [blame] | 1145 | // If this ref edge is within an SCC then there are sufficient other edges to |
| 1146 | // form a cycle without this edge so removing it is a no-op. |
| 1147 | SCC &SourceC = *G->lookupSCC(SourceN); |
| 1148 | SCC &TargetC = *G->lookupSCC(TargetN); |
| 1149 | if (&SourceC == &TargetC) |
| 1150 | return Result; |
| 1151 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1152 | // We build somewhat synthetic new RefSCCs by providing a postorder mapping |
| 1153 | // for each inner SCC. We also store these associated with *nodes* rather |
| 1154 | // than SCCs because this saves a round-trip through the node->SCC map and in |
| 1155 | // the common case, SCCs are small. We will verify that we always give the |
| 1156 | // same number to every node in the SCC such that these are equivalent. |
| 1157 | const int RootPostOrderNumber = 0; |
| 1158 | int PostOrderNumber = RootPostOrderNumber + 1; |
| 1159 | SmallDenseMap<Node *, int> PostOrderMapping; |
| 1160 | |
| 1161 | // Every node in the target SCC can already reach every node in this RefSCC |
| 1162 | // (by definition). It is the only node we know will stay inside this RefSCC. |
| 1163 | // Everything which transitively reaches Target will also remain in the |
| 1164 | // RefSCC. We handle this by pre-marking that the nodes in the target SCC map |
| 1165 | // back to the root post order number. |
| 1166 | // |
| 1167 | // This also enables us to take a very significant short-cut in the standard |
| 1168 | // Tarjan walk to re-form RefSCCs below: whenever we build an edge that |
| 1169 | // references the target node, we know that the target node eventually |
| 1170 | // references all other nodes in our walk. As a consequence, we can detect |
| 1171 | // and handle participants in that cycle without walking all the edges that |
| 1172 | // form the connections, and instead by relying on the fundamental guarantee |
| 1173 | // coming into this operation. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1174 | for (Node &N : TargetC) |
| 1175 | PostOrderMapping[&N] = RootPostOrderNumber; |
| 1176 | |
| 1177 | // Reset all the other nodes to prepare for a DFS over them, and add them to |
| 1178 | // our worklist. |
| 1179 | SmallVector<Node *, 8> Worklist; |
| 1180 | for (SCC *C : SCCs) { |
| 1181 | if (C == &TargetC) |
| 1182 | continue; |
| 1183 | |
| 1184 | for (Node &N : *C) |
| 1185 | N.DFSNumber = N.LowLink = 0; |
| 1186 | |
| 1187 | Worklist.append(C->Nodes.begin(), C->Nodes.end()); |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1188 | } |
| 1189 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1190 | auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) { |
| 1191 | N.DFSNumber = N.LowLink = -1; |
| 1192 | PostOrderMapping[&N] = Number; |
| 1193 | }; |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1194 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1195 | SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack; |
| 1196 | SmallVector<Node *, 4> PendingRefSCCStack; |
Chandler Carruth | aca48d0 | 2014-04-26 09:06:53 +0000 | [diff] [blame] | 1197 | do { |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1198 | assert(DFSStack.empty() && |
| 1199 | "Cannot begin a new root with a non-empty DFS stack!"); |
| 1200 | assert(PendingRefSCCStack.empty() && |
| 1201 | "Cannot begin a new root with pending nodes for an SCC!"); |
| 1202 | |
| 1203 | Node *RootN = Worklist.pop_back_val(); |
| 1204 | // Skip any nodes we've already reached in the DFS. |
| 1205 | if (RootN->DFSNumber != 0) { |
| 1206 | assert(RootN->DFSNumber == -1 && |
| 1207 | "Shouldn't have any mid-DFS root nodes!"); |
| 1208 | continue; |
| 1209 | } |
| 1210 | |
| 1211 | RootN->DFSNumber = RootN->LowLink = 1; |
| 1212 | int NextDFSNumber = 2; |
| 1213 | |
| 1214 | DFSStack.push_back({RootN, RootN->begin()}); |
| 1215 | do { |
| 1216 | Node *N; |
| 1217 | edge_iterator I; |
| 1218 | std::tie(N, I) = DFSStack.pop_back_val(); |
| 1219 | auto E = N->end(); |
| 1220 | |
| 1221 | assert(N->DFSNumber != 0 && "We should always assign a DFS number " |
| 1222 | "before processing a node."); |
| 1223 | |
| 1224 | while (I != E) { |
| 1225 | Node &ChildN = I->getNode(*G); |
| 1226 | if (ChildN.DFSNumber == 0) { |
| 1227 | // Mark that we should start at this child when next this node is the |
| 1228 | // top of the stack. We don't start at the next child to ensure this |
| 1229 | // child's lowlink is reflected. |
| 1230 | DFSStack.push_back({N, I}); |
| 1231 | |
| 1232 | // Continue, resetting to the child node. |
| 1233 | ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; |
| 1234 | N = &ChildN; |
| 1235 | I = ChildN.begin(); |
| 1236 | E = ChildN.end(); |
| 1237 | continue; |
| 1238 | } |
| 1239 | if (ChildN.DFSNumber == -1) { |
| 1240 | // Check if this edge's target node connects to the deleted edge's |
| 1241 | // target node. If so, we know that every node connected will end up |
| 1242 | // in this RefSCC, so collapse the entire current stack into the root |
| 1243 | // slot in our SCC numbering. See above for the motivation of |
| 1244 | // optimizing the target connected nodes in this way. |
| 1245 | auto PostOrderI = PostOrderMapping.find(&ChildN); |
| 1246 | if (PostOrderI != PostOrderMapping.end() && |
| 1247 | PostOrderI->second == RootPostOrderNumber) { |
| 1248 | MarkNodeForSCCNumber(*N, RootPostOrderNumber); |
| 1249 | while (!PendingRefSCCStack.empty()) |
| 1250 | MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(), |
| 1251 | RootPostOrderNumber); |
| 1252 | while (!DFSStack.empty()) |
| 1253 | MarkNodeForSCCNumber(*DFSStack.pop_back_val().first, |
| 1254 | RootPostOrderNumber); |
| 1255 | // Ensure we break all the way out of the enclosing loop. |
| 1256 | N = nullptr; |
| 1257 | break; |
| 1258 | } |
| 1259 | |
| 1260 | // If this child isn't currently in this RefSCC, no need to process |
Chandler Carruth | 23a6c3f | 2016-12-06 10:29:23 +0000 | [diff] [blame] | 1261 | // it. However, we do need to remove this RefSCC from its RefSCC's |
| 1262 | // parent set. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1263 | RefSCC &ChildRC = *G->lookupRefSCC(ChildN); |
| 1264 | ChildRC.Parents.erase(this); |
| 1265 | ++I; |
| 1266 | continue; |
| 1267 | } |
| 1268 | |
| 1269 | // Track the lowest link of the children, if any are still in the stack. |
| 1270 | // Any child not on the stack will have a LowLink of -1. |
| 1271 | assert(ChildN.LowLink != 0 && |
| 1272 | "Low-link must not be zero with a non-zero DFS number."); |
| 1273 | if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) |
| 1274 | N->LowLink = ChildN.LowLink; |
| 1275 | ++I; |
| 1276 | } |
| 1277 | if (!N) |
| 1278 | // We short-circuited this node. |
| 1279 | break; |
| 1280 | |
| 1281 | // We've finished processing N and its descendents, put it on our pending |
| 1282 | // stack to eventually get merged into a RefSCC. |
| 1283 | PendingRefSCCStack.push_back(N); |
| 1284 | |
| 1285 | // If this node is linked to some lower entry, continue walking up the |
| 1286 | // stack. |
| 1287 | if (N->LowLink != N->DFSNumber) { |
| 1288 | assert(!DFSStack.empty() && |
| 1289 | "We never found a viable root for a RefSCC to pop off!"); |
| 1290 | continue; |
| 1291 | } |
| 1292 | |
| 1293 | // Otherwise, form a new RefSCC from the top of the pending node stack. |
| 1294 | int RootDFSNumber = N->DFSNumber; |
| 1295 | // Find the range of the node stack by walking down until we pass the |
| 1296 | // root DFS number. |
| 1297 | auto RefSCCNodes = make_range( |
| 1298 | PendingRefSCCStack.rbegin(), |
David Majnemer | 4253126 | 2016-08-12 03:55:06 +0000 | [diff] [blame] | 1299 | find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) { |
| 1300 | return N->DFSNumber < RootDFSNumber; |
| 1301 | })); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1302 | |
| 1303 | // Mark the postorder number for these nodes and clear them off the |
| 1304 | // stack. We'll use the postorder number to pull them into RefSCCs at the |
| 1305 | // end. FIXME: Fuse with the loop above. |
| 1306 | int RefSCCNumber = PostOrderNumber++; |
| 1307 | for (Node *N : RefSCCNodes) |
| 1308 | MarkNodeForSCCNumber(*N, RefSCCNumber); |
| 1309 | |
| 1310 | PendingRefSCCStack.erase(RefSCCNodes.end().base(), |
| 1311 | PendingRefSCCStack.end()); |
| 1312 | } while (!DFSStack.empty()); |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1313 | |
Chandler Carruth | aca48d0 | 2014-04-26 09:06:53 +0000 | [diff] [blame] | 1314 | assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1315 | assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); |
Chandler Carruth | aca48d0 | 2014-04-26 09:06:53 +0000 | [diff] [blame] | 1316 | } while (!Worklist.empty()); |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1317 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1318 | // We now have a post-order numbering for RefSCCs and a mapping from each |
| 1319 | // node in this RefSCC to its final RefSCC. We create each new RefSCC node |
| 1320 | // (re-using this RefSCC node for the root) and build a radix-sort style map |
| 1321 | // from postorder number to the RefSCC. We then append SCCs to each of these |
| 1322 | // RefSCCs in the order they occured in the original SCCs container. |
| 1323 | for (int i = 1; i < PostOrderNumber; ++i) |
| 1324 | Result.push_back(G->createRefSCC(*G)); |
| 1325 | |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 1326 | // Insert the resulting postorder sequence into the global graph postorder |
| 1327 | // sequence before the current RefSCC in that sequence. The idea being that |
| 1328 | // this RefSCC is the target of the reference edge removed, and thus has |
| 1329 | // a direct or indirect edge to every other RefSCC formed and so must be at |
| 1330 | // the end of any postorder traversal. |
| 1331 | // |
| 1332 | // FIXME: It'd be nice to change the APIs so that we returned an iterator |
| 1333 | // range over the global postorder sequence and generally use that sequence |
| 1334 | // rather than building a separate result vector here. |
| 1335 | if (!Result.empty()) { |
| 1336 | int Idx = G->getRefSCCIndex(*this); |
| 1337 | G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, |
| 1338 | Result.begin(), Result.end()); |
| 1339 | for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size())) |
| 1340 | G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i; |
| 1341 | assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this && |
| 1342 | "Failed to update this RefSCC's index after insertion!"); |
| 1343 | } |
| 1344 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1345 | for (SCC *C : SCCs) { |
| 1346 | auto PostOrderI = PostOrderMapping.find(&*C->begin()); |
| 1347 | assert(PostOrderI != PostOrderMapping.end() && |
| 1348 | "Cannot have missing mappings for nodes!"); |
| 1349 | int SCCNumber = PostOrderI->second; |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1350 | #ifndef NDEBUG |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1351 | for (Node &N : *C) |
| 1352 | assert(PostOrderMapping.find(&N)->second == SCCNumber && |
| 1353 | "Cannot have different numbers for nodes in the same SCC!"); |
| 1354 | #endif |
| 1355 | if (SCCNumber == 0) |
| 1356 | // The root node is handled separately by removing the SCCs. |
| 1357 | continue; |
| 1358 | |
| 1359 | RefSCC &RC = *Result[SCCNumber - 1]; |
| 1360 | int SCCIndex = RC.SCCs.size(); |
| 1361 | RC.SCCs.push_back(C); |
Chandler Carruth | 23a6c3f | 2016-12-06 10:29:23 +0000 | [diff] [blame] | 1362 | RC.SCCIndices[C] = SCCIndex; |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1363 | C->OuterRefSCC = &RC; |
| 1364 | } |
| 1365 | |
| 1366 | // FIXME: We re-walk the edges in each RefSCC to establish whether it is |
| 1367 | // a leaf and connect it to the rest of the graph's parents lists. This is |
| 1368 | // really wasteful. We should instead do this during the DFS to avoid yet |
| 1369 | // another edge walk. |
| 1370 | for (RefSCC *RC : Result) |
| 1371 | G->connectRefSCC(*RC); |
| 1372 | |
| 1373 | // Now erase all but the root's SCCs. |
David Majnemer | 4253126 | 2016-08-12 03:55:06 +0000 | [diff] [blame] | 1374 | SCCs.erase(remove_if(SCCs, |
| 1375 | [&](SCC *C) { |
| 1376 | return PostOrderMapping.lookup(&*C->begin()) != |
| 1377 | RootPostOrderNumber; |
| 1378 | }), |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1379 | SCCs.end()); |
Chandler Carruth | 8882346 | 2016-08-24 09:37:14 +0000 | [diff] [blame] | 1380 | SCCIndices.clear(); |
| 1381 | for (int i = 0, Size = SCCs.size(); i < Size; ++i) |
| 1382 | SCCIndices[SCCs[i]] = i; |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1383 | |
| 1384 | #ifndef NDEBUG |
| 1385 | // Now we need to reconnect the current (root) SCC to the graph. We do this |
| 1386 | // manually because we can special case our leaf handling and detect errors. |
| 1387 | bool IsLeaf = true; |
| 1388 | #endif |
| 1389 | for (SCC *C : SCCs) |
| 1390 | for (Node &N : *C) { |
| 1391 | for (Edge &E : N) { |
| 1392 | assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); |
| 1393 | RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); |
| 1394 | if (&ChildRC == this) |
| 1395 | continue; |
| 1396 | ChildRC.Parents.insert(this); |
| 1397 | #ifndef NDEBUG |
| 1398 | IsLeaf = false; |
| 1399 | #endif |
| 1400 | } |
| 1401 | } |
| 1402 | #ifndef NDEBUG |
| 1403 | if (!Result.empty()) |
| 1404 | assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new " |
| 1405 | "SCCs by removing this edge."); |
David Majnemer | 0a16c22 | 2016-08-11 21:15:00 +0000 | [diff] [blame] | 1406 | if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; })) |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1407 | assert(!IsLeaf && "This SCC cannot be a leaf as it already had child " |
| 1408 | "SCCs before we removed this edge."); |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1409 | #endif |
Chandler Carruth | 5dbc164 | 2016-10-12 07:59:56 +0000 | [diff] [blame] | 1410 | // And connect both this RefSCC and all the new ones to the correct parents. |
| 1411 | // The easiest way to do this is just to re-analyze the old parent set. |
| 1412 | SmallVector<RefSCC *, 4> OldParents(Parents.begin(), Parents.end()); |
| 1413 | Parents.clear(); |
| 1414 | for (RefSCC *ParentRC : OldParents) |
Chandler Carruth | 5205c35 | 2016-12-07 01:42:40 +0000 | [diff] [blame] | 1415 | for (SCC &ParentC : *ParentRC) |
| 1416 | for (Node &ParentN : ParentC) |
Chandler Carruth | 5dbc164 | 2016-10-12 07:59:56 +0000 | [diff] [blame] | 1417 | for (Edge &E : ParentN) { |
| 1418 | assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); |
| 1419 | RefSCC &RC = *G->lookupRefSCC(*E.getNode()); |
Chandler Carruth | 5205c35 | 2016-12-07 01:42:40 +0000 | [diff] [blame] | 1420 | if (&RC != ParentRC) |
| 1421 | RC.Parents.insert(ParentRC); |
Chandler Carruth | 5dbc164 | 2016-10-12 07:59:56 +0000 | [diff] [blame] | 1422 | } |
| 1423 | |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1424 | // If this SCC stopped being a leaf through this edge removal, remove it from |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1425 | // the leaf SCC list. Note that this DTRT in the case where this was never |
| 1426 | // a leaf. |
| 1427 | // FIXME: As LeafRefSCCs could be very large, we might want to not walk the |
| 1428 | // entire list if this RefSCC wasn't a leaf before the edge removal. |
| 1429 | if (!Result.empty()) |
| 1430 | G->LeafRefSCCs.erase( |
| 1431 | std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this), |
| 1432 | G->LeafRefSCCs.end()); |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1433 | |
Chandler Carruth | 23a6c3f | 2016-12-06 10:29:23 +0000 | [diff] [blame] | 1434 | #ifndef NDEBUG |
| 1435 | // Verify all of the new RefSCCs. |
| 1436 | for (RefSCC *RC : Result) |
| 1437 | RC->verify(); |
| 1438 | #endif |
| 1439 | |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1440 | // Return the new list of SCCs. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1441 | return Result; |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1442 | } |
| 1443 | |
Chandler Carruth | 5dbc164 | 2016-10-12 07:59:56 +0000 | [diff] [blame] | 1444 | void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN, |
| 1445 | Node &TargetN) { |
| 1446 | // The only trivial case that requires any graph updates is when we add new |
| 1447 | // ref edge and may connect different RefSCCs along that path. This is only |
| 1448 | // because of the parents set. Every other part of the graph remains constant |
| 1449 | // after this edge insertion. |
| 1450 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); |
| 1451 | RefSCC &TargetRC = *G->lookupRefSCC(TargetN); |
| 1452 | if (&TargetRC == this) { |
| 1453 | |
| 1454 | return; |
| 1455 | } |
| 1456 | |
| 1457 | assert(TargetRC.isDescendantOf(*this) && |
| 1458 | "Target must be a descendant of the Source."); |
| 1459 | // The only change required is to add this RefSCC to the parent set of the |
| 1460 | // target. This is a set and so idempotent if the edge already existed. |
| 1461 | TargetRC.Parents.insert(this); |
| 1462 | } |
| 1463 | |
| 1464 | void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, |
| 1465 | Node &TargetN) { |
| 1466 | #ifndef NDEBUG |
| 1467 | // Check that the RefSCC is still valid when we finish. |
| 1468 | auto ExitVerifier = make_scope_exit([this] { verify(); }); |
Chandler Carruth | bae595b | 2016-11-22 19:23:31 +0000 | [diff] [blame] | 1469 | |
| 1470 | // Check that we aren't breaking some invariants of the SCC graph. |
| 1471 | SCC &SourceC = *G->lookupSCC(SourceN); |
| 1472 | SCC &TargetC = *G->lookupSCC(TargetN); |
| 1473 | if (&SourceC != &TargetC) |
| 1474 | assert(SourceC.isAncestorOf(TargetC) && |
| 1475 | "Call edge is not trivial in the SCC graph!"); |
Chandler Carruth | 5dbc164 | 2016-10-12 07:59:56 +0000 | [diff] [blame] | 1476 | #endif |
| 1477 | // First insert it into the source or find the existing edge. |
| 1478 | auto InsertResult = SourceN.EdgeIndexMap.insert( |
| 1479 | {&TargetN.getFunction(), SourceN.Edges.size()}); |
| 1480 | if (!InsertResult.second) { |
| 1481 | // Already an edge, just update it. |
| 1482 | Edge &E = SourceN.Edges[InsertResult.first->second]; |
| 1483 | if (E.isCall()) |
| 1484 | return; // Nothing to do! |
| 1485 | E.setKind(Edge::Call); |
| 1486 | } else { |
| 1487 | // Create the new edge. |
| 1488 | SourceN.Edges.emplace_back(TargetN, Edge::Call); |
| 1489 | } |
| 1490 | |
| 1491 | // Now that we have the edge, handle the graph fallout. |
| 1492 | handleTrivialEdgeInsertion(SourceN, TargetN); |
| 1493 | } |
| 1494 | |
| 1495 | void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { |
| 1496 | #ifndef NDEBUG |
| 1497 | // Check that the RefSCC is still valid when we finish. |
| 1498 | auto ExitVerifier = make_scope_exit([this] { verify(); }); |
Chandler Carruth | 9eb857c | 2016-11-22 21:40:10 +0000 | [diff] [blame] | 1499 | |
| 1500 | // Check that we aren't breaking some invariants of the RefSCC graph. |
| 1501 | RefSCC &SourceRC = *G->lookupRefSCC(SourceN); |
| 1502 | RefSCC &TargetRC = *G->lookupRefSCC(TargetN); |
| 1503 | if (&SourceRC != &TargetRC) |
| 1504 | assert(SourceRC.isAncestorOf(TargetRC) && |
| 1505 | "Ref edge is not trivial in the RefSCC graph!"); |
Chandler Carruth | 5dbc164 | 2016-10-12 07:59:56 +0000 | [diff] [blame] | 1506 | #endif |
| 1507 | // First insert it into the source or find the existing edge. |
| 1508 | auto InsertResult = SourceN.EdgeIndexMap.insert( |
| 1509 | {&TargetN.getFunction(), SourceN.Edges.size()}); |
| 1510 | if (!InsertResult.second) |
| 1511 | // Already an edge, we're done. |
| 1512 | return; |
| 1513 | |
| 1514 | // Create the new edge. |
| 1515 | SourceN.Edges.emplace_back(TargetN, Edge::Ref); |
| 1516 | |
| 1517 | // Now that we have the edge, handle the graph fallout. |
| 1518 | handleTrivialEdgeInsertion(SourceN, TargetN); |
| 1519 | } |
| 1520 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1521 | void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) { |
Chandler Carruth | c00a7ff | 2014-04-28 11:10:23 +0000 | [diff] [blame] | 1522 | assert(SCCMap.empty() && DFSStack.empty() && |
| 1523 | "This method cannot be called after SCCs have been formed!"); |
| 1524 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1525 | return SourceN.insertEdgeInternal(Target, EK); |
Chandler Carruth | c00a7ff | 2014-04-28 11:10:23 +0000 | [diff] [blame] | 1526 | } |
| 1527 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1528 | void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) { |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 1529 | assert(SCCMap.empty() && DFSStack.empty() && |
| 1530 | "This method cannot be called after SCCs have been formed!"); |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1531 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1532 | return SourceN.removeEdgeInternal(Target); |
Chandler Carruth | 9302fbf | 2014-04-23 11:03:03 +0000 | [diff] [blame] | 1533 | } |
| 1534 | |
Chandler Carruth | 5dbc164 | 2016-10-12 07:59:56 +0000 | [diff] [blame] | 1535 | void LazyCallGraph::removeDeadFunction(Function &F) { |
| 1536 | // FIXME: This is unnecessarily restrictive. We should be able to remove |
| 1537 | // functions which recursively call themselves. |
| 1538 | assert(F.use_empty() && |
| 1539 | "This routine should only be called on trivially dead functions!"); |
| 1540 | |
| 1541 | auto EII = EntryIndexMap.find(&F); |
| 1542 | if (EII != EntryIndexMap.end()) { |
| 1543 | EntryEdges[EII->second] = Edge(); |
| 1544 | EntryIndexMap.erase(EII); |
| 1545 | } |
| 1546 | |
| 1547 | // It's safe to just remove un-visited functions from the RefSCC entry list. |
| 1548 | // FIXME: This is a linear operation which could become hot and benefit from |
| 1549 | // an index map. |
| 1550 | auto RENI = find(RefSCCEntryNodes, &F); |
| 1551 | if (RENI != RefSCCEntryNodes.end()) |
| 1552 | RefSCCEntryNodes.erase(RENI); |
| 1553 | |
| 1554 | auto NI = NodeMap.find(&F); |
| 1555 | if (NI == NodeMap.end()) |
| 1556 | // Not in the graph at all! |
| 1557 | return; |
| 1558 | |
| 1559 | Node &N = *NI->second; |
| 1560 | NodeMap.erase(NI); |
| 1561 | |
| 1562 | if (SCCMap.empty() && DFSStack.empty()) { |
| 1563 | // No SCC walk has begun, so removing this is fine and there is nothing |
| 1564 | // else necessary at this point but clearing out the node. |
| 1565 | N.clear(); |
| 1566 | return; |
| 1567 | } |
| 1568 | |
| 1569 | // Check that we aren't going to break the DFS walk. |
| 1570 | assert(all_of(DFSStack, |
| 1571 | [&N](const std::pair<Node *, edge_iterator> &Element) { |
| 1572 | return Element.first != &N; |
| 1573 | }) && |
| 1574 | "Tried to remove a function currently in the DFS stack!"); |
| 1575 | assert(find(PendingRefSCCStack, &N) == PendingRefSCCStack.end() && |
| 1576 | "Tried to remove a function currently pending to add to a RefSCC!"); |
| 1577 | |
| 1578 | // Cannot remove a function which has yet to be visited in the DFS walk, so |
| 1579 | // if we have a node at all then we must have an SCC and RefSCC. |
| 1580 | auto CI = SCCMap.find(&N); |
| 1581 | assert(CI != SCCMap.end() && |
| 1582 | "Tried to remove a node without an SCC after DFS walk started!"); |
| 1583 | SCC &C = *CI->second; |
| 1584 | SCCMap.erase(CI); |
| 1585 | RefSCC &RC = C.getOuterRefSCC(); |
| 1586 | |
| 1587 | // This node must be the only member of its SCC as it has no callers, and |
| 1588 | // that SCC must be the only member of a RefSCC as it has no references. |
| 1589 | // Validate these properties first. |
| 1590 | assert(C.size() == 1 && "Dead functions must be in a singular SCC"); |
| 1591 | assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC"); |
| 1592 | assert(RC.Parents.empty() && "Cannot have parents of a dead RefSCC!"); |
| 1593 | |
| 1594 | // Now remove this RefSCC from any parents sets and the leaf list. |
| 1595 | for (Edge &E : N) |
| 1596 | if (Node *TargetN = E.getNode()) |
| 1597 | if (RefSCC *TargetRC = lookupRefSCC(*TargetN)) |
| 1598 | TargetRC->Parents.erase(&RC); |
| 1599 | // FIXME: This is a linear operation which could become hot and benefit from |
| 1600 | // an index map. |
| 1601 | auto LRI = find(LeafRefSCCs, &RC); |
| 1602 | if (LRI != LeafRefSCCs.end()) |
| 1603 | LeafRefSCCs.erase(LRI); |
| 1604 | |
| 1605 | auto RCIndexI = RefSCCIndices.find(&RC); |
| 1606 | int RCIndex = RCIndexI->second; |
| 1607 | PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex); |
| 1608 | RefSCCIndices.erase(RCIndexI); |
| 1609 | for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i) |
| 1610 | RefSCCIndices[PostOrderRefSCCs[i]] = i; |
| 1611 | |
| 1612 | // Finally clear out all the data structures from the node down through the |
| 1613 | // components. |
| 1614 | N.clear(); |
| 1615 | C.clear(); |
| 1616 | RC.clear(); |
| 1617 | |
| 1618 | // Nothing to delete as all the objects are allocated in stable bump pointer |
| 1619 | // allocators. |
| 1620 | } |
| 1621 | |
Chandler Carruth | 2a898e0 | 2014-04-23 23:20:36 +0000 | [diff] [blame] | 1622 | LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { |
| 1623 | return *new (MappedN = BPA.Allocate()) Node(*this, F); |
Chandler Carruth | d8d865e | 2014-04-18 11:02:33 +0000 | [diff] [blame] | 1624 | } |
| 1625 | |
| 1626 | void LazyCallGraph::updateGraphPtrs() { |
Chandler Carruth | b60cb31 | 2014-04-17 07:25:59 +0000 | [diff] [blame] | 1627 | // Process all nodes updating the graph pointers. |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 1628 | { |
| 1629 | SmallVector<Node *, 16> Worklist; |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 1630 | for (Edge &E : EntryEdges) |
| 1631 | if (Node *EntryN = E.getNode()) |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 1632 | Worklist.push_back(EntryN); |
Chandler Carruth | b60cb31 | 2014-04-17 07:25:59 +0000 | [diff] [blame] | 1633 | |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 1634 | while (!Worklist.empty()) { |
| 1635 | Node *N = Worklist.pop_back_val(); |
| 1636 | N->G = this; |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 1637 | for (Edge &E : N->Edges) |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1638 | if (Node *TargetN = E.getNode()) |
| 1639 | Worklist.push_back(TargetN); |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 1640 | } |
| 1641 | } |
| 1642 | |
| 1643 | // Process all SCCs updating the graph pointers. |
| 1644 | { |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1645 | SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end()); |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 1646 | |
| 1647 | while (!Worklist.empty()) { |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1648 | RefSCC &C = *Worklist.pop_back_val(); |
| 1649 | C.G = this; |
| 1650 | for (RefSCC &ParentC : C.parents()) |
| 1651 | Worklist.push_back(&ParentC); |
Chandler Carruth | aa839b2 | 2014-04-27 01:59:50 +0000 | [diff] [blame] | 1652 | } |
Chandler Carruth | b60cb31 | 2014-04-17 07:25:59 +0000 | [diff] [blame] | 1653 | } |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 1654 | } |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 1655 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1656 | /// Build the internal SCCs for a RefSCC from a sequence of nodes. |
| 1657 | /// |
| 1658 | /// Appends the SCCs to the provided vector and updates the map with their |
| 1659 | /// indices. Both the vector and map must be empty when passed into this |
| 1660 | /// routine. |
| 1661 | void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { |
| 1662 | assert(RC.SCCs.empty() && "Already built SCCs!"); |
| 1663 | assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); |
Chandler Carruth | 3f9869a | 2014-04-23 06:09:03 +0000 | [diff] [blame] | 1664 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1665 | for (Node *N : Nodes) { |
| 1666 | assert(N->LowLink >= (*Nodes.begin())->LowLink && |
Chandler Carruth | cace662 | 2014-04-23 10:31:17 +0000 | [diff] [blame] | 1667 | "We cannot have a low link in an SCC lower than its root on the " |
| 1668 | "stack!"); |
Chandler Carruth | 3f9869a | 2014-04-23 06:09:03 +0000 | [diff] [blame] | 1669 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1670 | // This node will go into the next RefSCC, clear out its DFS and low link |
| 1671 | // as we scan. |
| 1672 | N->DFSNumber = N->LowLink = 0; |
| 1673 | } |
| 1674 | |
| 1675 | // Each RefSCC contains a DAG of the call SCCs. To build these, we do |
| 1676 | // a direct walk of the call edges using Tarjan's algorithm. We reuse the |
| 1677 | // internal storage as we won't need it for the outer graph's DFS any longer. |
| 1678 | |
| 1679 | SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; |
| 1680 | SmallVector<Node *, 16> PendingSCCStack; |
| 1681 | |
| 1682 | // Scan down the stack and DFS across the call edges. |
| 1683 | for (Node *RootN : Nodes) { |
| 1684 | assert(DFSStack.empty() && |
| 1685 | "Cannot begin a new root with a non-empty DFS stack!"); |
| 1686 | assert(PendingSCCStack.empty() && |
| 1687 | "Cannot begin a new root with pending nodes for an SCC!"); |
| 1688 | |
| 1689 | // Skip any nodes we've already reached in the DFS. |
| 1690 | if (RootN->DFSNumber != 0) { |
| 1691 | assert(RootN->DFSNumber == -1 && |
| 1692 | "Shouldn't have any mid-DFS root nodes!"); |
| 1693 | continue; |
Chandler Carruth | 3f9869a | 2014-04-23 06:09:03 +0000 | [diff] [blame] | 1694 | } |
| 1695 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1696 | RootN->DFSNumber = RootN->LowLink = 1; |
| 1697 | int NextDFSNumber = 2; |
Chandler Carruth | 3f9869a | 2014-04-23 06:09:03 +0000 | [diff] [blame] | 1698 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1699 | DFSStack.push_back({RootN, RootN->call_begin()}); |
| 1700 | do { |
| 1701 | Node *N; |
| 1702 | call_edge_iterator I; |
| 1703 | std::tie(N, I) = DFSStack.pop_back_val(); |
| 1704 | auto E = N->call_end(); |
| 1705 | while (I != E) { |
| 1706 | Node &ChildN = *I->getNode(); |
| 1707 | if (ChildN.DFSNumber == 0) { |
| 1708 | // We haven't yet visited this child, so descend, pushing the current |
| 1709 | // node onto the stack. |
| 1710 | DFSStack.push_back({N, I}); |
| 1711 | |
| 1712 | assert(!lookupSCC(ChildN) && |
| 1713 | "Found a node with 0 DFS number but already in an SCC!"); |
| 1714 | ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; |
| 1715 | N = &ChildN; |
| 1716 | I = N->call_begin(); |
| 1717 | E = N->call_end(); |
| 1718 | continue; |
| 1719 | } |
| 1720 | |
| 1721 | // If the child has already been added to some child component, it |
| 1722 | // couldn't impact the low-link of this parent because it isn't |
| 1723 | // connected, and thus its low-link isn't relevant so skip it. |
| 1724 | if (ChildN.DFSNumber == -1) { |
| 1725 | ++I; |
| 1726 | continue; |
| 1727 | } |
| 1728 | |
| 1729 | // Track the lowest linked child as the lowest link for this node. |
| 1730 | assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); |
| 1731 | if (ChildN.LowLink < N->LowLink) |
| 1732 | N->LowLink = ChildN.LowLink; |
| 1733 | |
| 1734 | // Move to the next edge. |
| 1735 | ++I; |
| 1736 | } |
| 1737 | |
| 1738 | // We've finished processing N and its descendents, put it on our pending |
| 1739 | // SCC stack to eventually get merged into an SCC of nodes. |
| 1740 | PendingSCCStack.push_back(N); |
| 1741 | |
| 1742 | // If this node is linked to some lower entry, continue walking up the |
| 1743 | // stack. |
| 1744 | if (N->LowLink != N->DFSNumber) |
| 1745 | continue; |
| 1746 | |
| 1747 | // Otherwise, we've completed an SCC. Append it to our post order list of |
| 1748 | // SCCs. |
| 1749 | int RootDFSNumber = N->DFSNumber; |
| 1750 | // Find the range of the node stack by walking down until we pass the |
| 1751 | // root DFS number. |
| 1752 | auto SCCNodes = make_range( |
| 1753 | PendingSCCStack.rbegin(), |
David Majnemer | 4253126 | 2016-08-12 03:55:06 +0000 | [diff] [blame] | 1754 | find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { |
| 1755 | return N->DFSNumber < RootDFSNumber; |
| 1756 | })); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1757 | // Form a new SCC out of these nodes and then clear them off our pending |
| 1758 | // stack. |
| 1759 | RC.SCCs.push_back(createSCC(RC, SCCNodes)); |
| 1760 | for (Node &N : *RC.SCCs.back()) { |
| 1761 | N.DFSNumber = N.LowLink = -1; |
| 1762 | SCCMap[&N] = RC.SCCs.back(); |
| 1763 | } |
| 1764 | PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); |
| 1765 | } while (!DFSStack.empty()); |
| 1766 | } |
| 1767 | |
| 1768 | // Wire up the SCC indices. |
| 1769 | for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) |
| 1770 | RC.SCCIndices[RC.SCCs[i]] = i; |
Chandler Carruth | 3f9869a | 2014-04-23 06:09:03 +0000 | [diff] [blame] | 1771 | } |
| 1772 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1773 | // FIXME: We should move callers of this to embed the parent linking and leaf |
| 1774 | // tracking into their DFS in order to remove a full walk of all edges. |
| 1775 | void LazyCallGraph::connectRefSCC(RefSCC &RC) { |
| 1776 | // Walk all edges in the RefSCC (this remains linear as we only do this once |
| 1777 | // when we build the RefSCC) to connect it to the parent sets of its |
| 1778 | // children. |
| 1779 | bool IsLeaf = true; |
| 1780 | for (SCC &C : RC) |
| 1781 | for (Node &N : C) |
| 1782 | for (Edge &E : N) { |
| 1783 | assert(E.getNode() && |
| 1784 | "Cannot have a missing node in a visited part of the graph!"); |
| 1785 | RefSCC &ChildRC = *lookupRefSCC(*E.getNode()); |
| 1786 | if (&ChildRC == &RC) |
| 1787 | continue; |
| 1788 | ChildRC.Parents.insert(&RC); |
| 1789 | IsLeaf = false; |
| 1790 | } |
| 1791 | |
Chandler Carruth | 5dbc164 | 2016-10-12 07:59:56 +0000 | [diff] [blame] | 1792 | // For the SCCs where we find no child SCCs, add them to the leaf list. |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1793 | if (IsLeaf) |
| 1794 | LeafRefSCCs.push_back(&RC); |
| 1795 | } |
| 1796 | |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 1797 | bool LazyCallGraph::buildNextRefSCCInPostOrder() { |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1798 | if (DFSStack.empty()) { |
| 1799 | Node *N; |
Chandler Carruth | 90821c2 | 2014-04-26 09:45:55 +0000 | [diff] [blame] | 1800 | do { |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1801 | // If we've handled all candidate entry nodes to the SCC forest, we're |
| 1802 | // done. |
| 1803 | if (RefSCCEntryNodes.empty()) |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 1804 | return false; |
Chandler Carruth | 18eadd92 | 2014-04-18 10:50:32 +0000 | [diff] [blame] | 1805 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1806 | N = &get(*RefSCCEntryNodes.pop_back_val()); |
Chandler Carruth | 90821c2 | 2014-04-26 09:45:55 +0000 | [diff] [blame] | 1807 | } while (N->DFSNumber != 0); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1808 | |
| 1809 | // Found a new root, begin the DFS here. |
Chandler Carruth | 5e2d70b | 2014-04-26 09:28:00 +0000 | [diff] [blame] | 1810 | N->LowLink = N->DFSNumber = 1; |
Chandler Carruth | 09751bf | 2014-04-24 09:59:59 +0000 | [diff] [blame] | 1811 | NextDFSNumber = 2; |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1812 | DFSStack.push_back({N, N->begin()}); |
Chandler Carruth | 18eadd92 | 2014-04-18 10:50:32 +0000 | [diff] [blame] | 1813 | } |
| 1814 | |
Chandler Carruth | 91dcf0f | 2014-04-24 21:19:30 +0000 | [diff] [blame] | 1815 | for (;;) { |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1816 | Node *N; |
| 1817 | edge_iterator I; |
| 1818 | std::tie(N, I) = DFSStack.pop_back_val(); |
| 1819 | |
| 1820 | assert(N->DFSNumber > 0 && "We should always assign a DFS number " |
| 1821 | "before placing a node onto the stack."); |
Chandler Carruth | 2455393 | 2014-04-24 11:05:20 +0000 | [diff] [blame] | 1822 | |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 1823 | auto E = N->end(); |
Chandler Carruth | 5e2d70b | 2014-04-26 09:28:00 +0000 | [diff] [blame] | 1824 | while (I != E) { |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 1825 | Node &ChildN = I->getNode(*this); |
Chandler Carruth | bd5d308 | 2014-04-23 23:34:48 +0000 | [diff] [blame] | 1826 | if (ChildN.DFSNumber == 0) { |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1827 | // We haven't yet visited this child, so descend, pushing the current |
| 1828 | // node onto the stack. |
| 1829 | DFSStack.push_back({N, N->begin()}); |
Chandler Carruth | 18eadd92 | 2014-04-18 10:50:32 +0000 | [diff] [blame] | 1830 | |
Chandler Carruth | 09751bf | 2014-04-24 09:59:59 +0000 | [diff] [blame] | 1831 | assert(!SCCMap.count(&ChildN) && |
| 1832 | "Found a node with 0 DFS number but already in an SCC!"); |
| 1833 | ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; |
Chandler Carruth | 5e2d70b | 2014-04-26 09:28:00 +0000 | [diff] [blame] | 1834 | N = &ChildN; |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1835 | I = N->begin(); |
| 1836 | E = N->end(); |
Chandler Carruth | 5e2d70b | 2014-04-26 09:28:00 +0000 | [diff] [blame] | 1837 | continue; |
Chandler Carruth | cace662 | 2014-04-23 10:31:17 +0000 | [diff] [blame] | 1838 | } |
| 1839 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1840 | // If the child has already been added to some child component, it |
| 1841 | // couldn't impact the low-link of this parent because it isn't |
| 1842 | // connected, and thus its low-link isn't relevant so skip it. |
| 1843 | if (ChildN.DFSNumber == -1) { |
| 1844 | ++I; |
| 1845 | continue; |
| 1846 | } |
| 1847 | |
| 1848 | // Track the lowest linked child as the lowest link for this node. |
| 1849 | assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); |
| 1850 | if (ChildN.LowLink < N->LowLink) |
Chandler Carruth | bd5d308 | 2014-04-23 23:34:48 +0000 | [diff] [blame] | 1851 | N->LowLink = ChildN.LowLink; |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1852 | |
| 1853 | // Move to the next edge. |
Chandler Carruth | 5e2d70b | 2014-04-26 09:28:00 +0000 | [diff] [blame] | 1854 | ++I; |
Chandler Carruth | 18eadd92 | 2014-04-18 10:50:32 +0000 | [diff] [blame] | 1855 | } |
| 1856 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1857 | // We've finished processing N and its descendents, put it on our pending |
| 1858 | // SCC stack to eventually get merged into an SCC of nodes. |
| 1859 | PendingRefSCCStack.push_back(N); |
Chandler Carruth | 18eadd92 | 2014-04-18 10:50:32 +0000 | [diff] [blame] | 1860 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1861 | // If this node is linked to some lower entry, continue walking up the |
| 1862 | // stack. |
| 1863 | if (N->LowLink != N->DFSNumber) { |
| 1864 | assert(!DFSStack.empty() && |
| 1865 | "We never found a viable root for an SCC to pop off!"); |
| 1866 | continue; |
| 1867 | } |
Chandler Carruth | 5e2d70b | 2014-04-26 09:28:00 +0000 | [diff] [blame] | 1868 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1869 | // Otherwise, form a new RefSCC from the top of the pending node stack. |
| 1870 | int RootDFSNumber = N->DFSNumber; |
| 1871 | // Find the range of the node stack by walking down until we pass the |
| 1872 | // root DFS number. |
| 1873 | auto RefSCCNodes = node_stack_range( |
| 1874 | PendingRefSCCStack.rbegin(), |
David Majnemer | 4253126 | 2016-08-12 03:55:06 +0000 | [diff] [blame] | 1875 | find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) { |
| 1876 | return N->DFSNumber < RootDFSNumber; |
| 1877 | })); |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1878 | // Form a new RefSCC out of these nodes and then clear them off our pending |
| 1879 | // stack. |
| 1880 | RefSCC *NewRC = createRefSCC(*this); |
| 1881 | buildSCCs(*NewRC, RefSCCNodes); |
| 1882 | connectRefSCC(*NewRC); |
| 1883 | PendingRefSCCStack.erase(RefSCCNodes.end().base(), |
| 1884 | PendingRefSCCStack.end()); |
| 1885 | |
Chandler Carruth | 49d728a | 2016-09-16 10:20:17 +0000 | [diff] [blame] | 1886 | // Push the new node into the postorder list and return true indicating we |
| 1887 | // successfully grew the postorder sequence by one. |
| 1888 | bool Inserted = |
| 1889 | RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second; |
| 1890 | (void)Inserted; |
| 1891 | assert(Inserted && "Cannot already have this RefSCC in the index map!"); |
| 1892 | PostOrderRefSCCs.push_back(NewRC); |
| 1893 | return true; |
Chandler Carruth | 91dcf0f | 2014-04-24 21:19:30 +0000 | [diff] [blame] | 1894 | } |
Chandler Carruth | 18eadd92 | 2014-04-18 10:50:32 +0000 | [diff] [blame] | 1895 | } |
| 1896 | |
Chandler Carruth | dab4eae | 2016-11-23 17:53:26 +0000 | [diff] [blame] | 1897 | AnalysisKey LazyCallGraphAnalysis::Key; |
NAKAMURA Takumi | df0cd72 | 2016-02-28 17:17:00 +0000 | [diff] [blame] | 1898 | |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 1899 | LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} |
| 1900 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1901 | static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { |
Chandler Carruth | a4499e9 | 2016-02-02 03:57:13 +0000 | [diff] [blame] | 1902 | OS << " Edges in function: " << N.getFunction().getName() << "\n"; |
| 1903 | for (const LazyCallGraph::Edge &E : N) |
| 1904 | OS << " " << (E.isCall() ? "call" : "ref ") << " -> " |
| 1905 | << E.getFunction().getName() << "\n"; |
Chandler Carruth | 11f5032 | 2015-01-14 00:27:45 +0000 | [diff] [blame] | 1906 | |
| 1907 | OS << "\n"; |
| 1908 | } |
| 1909 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1910 | static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { |
| 1911 | ptrdiff_t Size = std::distance(C.begin(), C.end()); |
| 1912 | OS << " SCC with " << Size << " functions:\n"; |
Chandler Carruth | 11f5032 | 2015-01-14 00:27:45 +0000 | [diff] [blame] | 1913 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1914 | for (LazyCallGraph::Node &N : C) |
| 1915 | OS << " " << N.getFunction().getName() << "\n"; |
| 1916 | } |
| 1917 | |
| 1918 | static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { |
| 1919 | ptrdiff_t Size = std::distance(C.begin(), C.end()); |
| 1920 | OS << " RefSCC with " << Size << " call SCCs:\n"; |
| 1921 | |
| 1922 | for (LazyCallGraph::SCC &InnerC : C) |
| 1923 | printSCC(OS, InnerC); |
Chandler Carruth | 11f5032 | 2015-01-14 00:27:45 +0000 | [diff] [blame] | 1924 | |
| 1925 | OS << "\n"; |
| 1926 | } |
| 1927 | |
Chandler Carruth | d174ce4 | 2015-01-05 02:47:05 +0000 | [diff] [blame] | 1928 | PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, |
Chandler Carruth | b47f801 | 2016-03-11 11:05:24 +0000 | [diff] [blame] | 1929 | ModuleAnalysisManager &AM) { |
| 1930 | LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); |
Chandler Carruth | 11f5032 | 2015-01-14 00:27:45 +0000 | [diff] [blame] | 1931 | |
| 1932 | OS << "Printing the call graph for module: " << M.getModuleIdentifier() |
| 1933 | << "\n\n"; |
| 1934 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1935 | for (Function &F : M) |
| 1936 | printNode(OS, G.get(F)); |
Chandler Carruth | 11f5032 | 2015-01-14 00:27:45 +0000 | [diff] [blame] | 1937 | |
Chandler Carruth | e5944d9 | 2016-02-17 00:18:16 +0000 | [diff] [blame] | 1938 | for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) |
| 1939 | printRefSCC(OS, C); |
Chandler Carruth | 18eadd92 | 2014-04-18 10:50:32 +0000 | [diff] [blame] | 1940 | |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 1941 | return PreservedAnalyses::all(); |
Chandler Carruth | bf71a34 | 2014-02-06 04:37:03 +0000 | [diff] [blame] | 1942 | } |
Sean Silva | 7cb3066 | 2016-06-18 09:17:32 +0000 | [diff] [blame] | 1943 | |
| 1944 | LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) |
| 1945 | : OS(OS) {} |
| 1946 | |
| 1947 | static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { |
| 1948 | std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\""; |
| 1949 | |
| 1950 | for (const LazyCallGraph::Edge &E : N) { |
| 1951 | OS << " " << Name << " -> \"" |
| 1952 | << DOT::EscapeString(E.getFunction().getName()) << "\""; |
| 1953 | if (!E.isCall()) // It is a ref edge. |
| 1954 | OS << " [style=dashed,label=\"ref\"]"; |
| 1955 | OS << ";\n"; |
| 1956 | } |
| 1957 | |
| 1958 | OS << "\n"; |
| 1959 | } |
| 1960 | |
| 1961 | PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, |
| 1962 | ModuleAnalysisManager &AM) { |
| 1963 | LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); |
| 1964 | |
| 1965 | OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; |
| 1966 | |
| 1967 | for (Function &F : M) |
| 1968 | printNodeDOT(OS, G.get(F)); |
| 1969 | |
| 1970 | OS << "}\n"; |
| 1971 | |
| 1972 | return PreservedAnalyses::all(); |
| 1973 | } |