blob: 94c8651609d8bba3001e00536dc6cacaba30abc4 [file] [log] [blame]
Chris Lattner5a945e32004-01-12 21:13:12 +00001//===- ConstantFolding.cpp - LLVM constant folder -------------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner2f7c9632001-06-06 20:29:01 +00009//
Chris Lattner5a945e32004-01-12 21:13:12 +000010// This file implements folding of constants for LLVM. This implements the
11// (internal) ConstantFolding.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
Chris Lattner2f7c9632001-06-06 20:29:01 +000013//
Chris Lattner1dd054c2004-01-12 22:07:24 +000014// The current constant folding implementation is implemented in two pieces: the
15// template-based folder for simple primitive constants like ConstantInt, and
16// the special case hackery that we use to symbolically evaluate expressions
17// that use ConstantExprs.
18//
Chris Lattner2f7c9632001-06-06 20:29:01 +000019//===----------------------------------------------------------------------===//
20
Chris Lattner5a945e32004-01-12 21:13:12 +000021#include "ConstantFolding.h"
Chris Lattner6ff6cea2004-01-12 21:02:29 +000022#include "llvm/Constants.h"
Chris Lattnera9eddae2004-02-22 06:25:38 +000023#include "llvm/Instructions.h"
Chris Lattner1f0049c2003-04-17 19:24:18 +000024#include "llvm/DerivedTypes.h"
Chris Lattnerea0789c2004-03-08 06:17:35 +000025#include "llvm/Function.h"
Chris Lattnerad70d4a2003-11-25 21:21:46 +000026#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner6b3f4752006-04-02 01:38:28 +000027#include "llvm/Support/MathExtras.h"
Jeff Cohen4e3aede2005-05-03 03:13:01 +000028#include <limits>
Chris Lattner0a144ad2002-05-03 21:41:07 +000029#include <cmath>
Chris Lattner9d9cbcf2003-11-17 19:05:17 +000030using namespace llvm;
Chris Lattner61607ee2001-09-09 21:01:20 +000031
Chris Lattner5a945e32004-01-12 21:13:12 +000032namespace {
33 struct ConstRules {
34 ConstRules() {}
Reid Spencer9c47b252005-04-24 22:27:20 +000035 virtual ~ConstRules() {}
Misha Brukmanb1c93172005-04-21 23:48:37 +000036
Chris Lattner5a945e32004-01-12 21:13:12 +000037 // Binary Operators...
38 virtual Constant *add(const Constant *V1, const Constant *V2) const = 0;
39 virtual Constant *sub(const Constant *V1, const Constant *V2) const = 0;
40 virtual Constant *mul(const Constant *V1, const Constant *V2) const = 0;
41 virtual Constant *div(const Constant *V1, const Constant *V2) const = 0;
42 virtual Constant *rem(const Constant *V1, const Constant *V2) const = 0;
43 virtual Constant *op_and(const Constant *V1, const Constant *V2) const = 0;
44 virtual Constant *op_or (const Constant *V1, const Constant *V2) const = 0;
45 virtual Constant *op_xor(const Constant *V1, const Constant *V2) const = 0;
46 virtual Constant *shl(const Constant *V1, const Constant *V2) const = 0;
47 virtual Constant *shr(const Constant *V1, const Constant *V2) const = 0;
48 virtual Constant *lessthan(const Constant *V1, const Constant *V2) const =0;
49 virtual Constant *equalto(const Constant *V1, const Constant *V2) const = 0;
50
51 // Casting operators.
52 virtual Constant *castToBool (const Constant *V) const = 0;
53 virtual Constant *castToSByte (const Constant *V) const = 0;
54 virtual Constant *castToUByte (const Constant *V) const = 0;
55 virtual Constant *castToShort (const Constant *V) const = 0;
56 virtual Constant *castToUShort(const Constant *V) const = 0;
57 virtual Constant *castToInt (const Constant *V) const = 0;
58 virtual Constant *castToUInt (const Constant *V) const = 0;
59 virtual Constant *castToLong (const Constant *V) const = 0;
60 virtual Constant *castToULong (const Constant *V) const = 0;
61 virtual Constant *castToFloat (const Constant *V) const = 0;
62 virtual Constant *castToDouble(const Constant *V) const = 0;
63 virtual Constant *castToPointer(const Constant *V,
64 const PointerType *Ty) const = 0;
Misha Brukmanb1c93172005-04-21 23:48:37 +000065
Chris Lattner5a945e32004-01-12 21:13:12 +000066 // ConstRules::get - Return an instance of ConstRules for the specified
67 // constant operands.
68 //
69 static ConstRules &get(const Constant *V1, const Constant *V2);
70 private:
71 ConstRules(const ConstRules &); // Do not implement
72 ConstRules &operator=(const ConstRules &); // Do not implement
73 };
74}
75
76
Chris Lattner2f7c9632001-06-06 20:29:01 +000077//===----------------------------------------------------------------------===//
78// TemplateRules Class
79//===----------------------------------------------------------------------===//
80//
Misha Brukmanb1c93172005-04-21 23:48:37 +000081// TemplateRules - Implement a subclass of ConstRules that provides all
82// operations as noops. All other rules classes inherit from this class so
83// that if functionality is needed in the future, it can simply be added here
Chris Lattner2f7c9632001-06-06 20:29:01 +000084// and to ConstRules without changing anything else...
Misha Brukmanb1c93172005-04-21 23:48:37 +000085//
Chris Lattner2f7c9632001-06-06 20:29:01 +000086// This class also provides subclasses with typesafe implementations of methods
87// so that don't have to do type casting.
88//
89template<class ArgType, class SubClassName>
90class TemplateRules : public ConstRules {
91
Reid Spencer9c47b252005-04-24 22:27:20 +000092
Chris Lattner2f7c9632001-06-06 20:29:01 +000093 //===--------------------------------------------------------------------===//
94 // Redirecting functions that cast to the appropriate types
95 //===--------------------------------------------------------------------===//
96
Misha Brukmanb1c93172005-04-21 23:48:37 +000097 virtual Constant *add(const Constant *V1, const Constant *V2) const {
98 return SubClassName::Add((const ArgType *)V1, (const ArgType *)V2);
Chris Lattner2f7c9632001-06-06 20:29:01 +000099 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000100 virtual Constant *sub(const Constant *V1, const Constant *V2) const {
101 return SubClassName::Sub((const ArgType *)V1, (const ArgType *)V2);
Chris Lattner2f7c9632001-06-06 20:29:01 +0000102 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000103 virtual Constant *mul(const Constant *V1, const Constant *V2) const {
104 return SubClassName::Mul((const ArgType *)V1, (const ArgType *)V2);
Chris Lattner4f6031f2001-07-20 19:15:36 +0000105 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000106 virtual Constant *div(const Constant *V1, const Constant *V2) const {
107 return SubClassName::Div((const ArgType *)V1, (const ArgType *)V2);
Chris Lattneraf259a72002-04-07 08:10:14 +0000108 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000109 virtual Constant *rem(const Constant *V1, const Constant *V2) const {
110 return SubClassName::Rem((const ArgType *)V1, (const ArgType *)V2);
Chris Lattner0a144ad2002-05-03 21:41:07 +0000111 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000112 virtual Constant *op_and(const Constant *V1, const Constant *V2) const {
113 return SubClassName::And((const ArgType *)V1, (const ArgType *)V2);
Chris Lattnere87f65e2002-07-30 16:24:28 +0000114 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000115 virtual Constant *op_or(const Constant *V1, const Constant *V2) const {
116 return SubClassName::Or((const ArgType *)V1, (const ArgType *)V2);
Chris Lattnere87f65e2002-07-30 16:24:28 +0000117 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000118 virtual Constant *op_xor(const Constant *V1, const Constant *V2) const {
119 return SubClassName::Xor((const ArgType *)V1, (const ArgType *)V2);
Chris Lattnere87f65e2002-07-30 16:24:28 +0000120 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000121 virtual Constant *shl(const Constant *V1, const Constant *V2) const {
122 return SubClassName::Shl((const ArgType *)V1, (const ArgType *)V2);
Chris Lattner6670d862002-05-06 03:00:54 +0000123 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000124 virtual Constant *shr(const Constant *V1, const Constant *V2) const {
125 return SubClassName::Shr((const ArgType *)V1, (const ArgType *)V2);
Chris Lattner6670d862002-05-06 03:00:54 +0000126 }
Chris Lattner4f6031f2001-07-20 19:15:36 +0000127
Misha Brukmanb1c93172005-04-21 23:48:37 +0000128 virtual Constant *lessthan(const Constant *V1, const Constant *V2) const {
Chris Lattner2f7c9632001-06-06 20:29:01 +0000129 return SubClassName::LessThan((const ArgType *)V1, (const ArgType *)V2);
130 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000131 virtual Constant *equalto(const Constant *V1, const Constant *V2) const {
Chris Lattnerdc2e3912003-11-17 20:19:35 +0000132 return SubClassName::EqualTo((const ArgType *)V1, (const ArgType *)V2);
133 }
Chris Lattner2f7c9632001-06-06 20:29:01 +0000134
Chris Lattner55406842001-07-21 19:10:49 +0000135 // Casting operators. ick
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000136 virtual Constant *castToBool(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000137 return SubClassName::CastToBool((const ArgType*)V);
138 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000139 virtual Constant *castToSByte(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000140 return SubClassName::CastToSByte((const ArgType*)V);
141 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000142 virtual Constant *castToUByte(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000143 return SubClassName::CastToUByte((const ArgType*)V);
144 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000145 virtual Constant *castToShort(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000146 return SubClassName::CastToShort((const ArgType*)V);
147 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000148 virtual Constant *castToUShort(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000149 return SubClassName::CastToUShort((const ArgType*)V);
150 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000151 virtual Constant *castToInt(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000152 return SubClassName::CastToInt((const ArgType*)V);
153 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000154 virtual Constant *castToUInt(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000155 return SubClassName::CastToUInt((const ArgType*)V);
156 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000157 virtual Constant *castToLong(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000158 return SubClassName::CastToLong((const ArgType*)V);
159 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000160 virtual Constant *castToULong(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000161 return SubClassName::CastToULong((const ArgType*)V);
162 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000163 virtual Constant *castToFloat(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000164 return SubClassName::CastToFloat((const ArgType*)V);
165 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000166 virtual Constant *castToDouble(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000167 return SubClassName::CastToDouble((const ArgType*)V);
168 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000169 virtual Constant *castToPointer(const Constant *V,
Chris Lattner1f0049c2003-04-17 19:24:18 +0000170 const PointerType *Ty) const {
Chris Lattner977f0042001-11-01 05:55:13 +0000171 return SubClassName::CastToPointer((const ArgType*)V, Ty);
172 }
Chris Lattner55406842001-07-21 19:10:49 +0000173
Chris Lattner2f7c9632001-06-06 20:29:01 +0000174 //===--------------------------------------------------------------------===//
175 // Default "noop" implementations
176 //===--------------------------------------------------------------------===//
177
Chris Lattnere87f65e2002-07-30 16:24:28 +0000178 static Constant *Add(const ArgType *V1, const ArgType *V2) { return 0; }
179 static Constant *Sub(const ArgType *V1, const ArgType *V2) { return 0; }
180 static Constant *Mul(const ArgType *V1, const ArgType *V2) { return 0; }
181 static Constant *Div(const ArgType *V1, const ArgType *V2) { return 0; }
182 static Constant *Rem(const ArgType *V1, const ArgType *V2) { return 0; }
183 static Constant *And(const ArgType *V1, const ArgType *V2) { return 0; }
184 static Constant *Or (const ArgType *V1, const ArgType *V2) { return 0; }
185 static Constant *Xor(const ArgType *V1, const ArgType *V2) { return 0; }
186 static Constant *Shl(const ArgType *V1, const ArgType *V2) { return 0; }
187 static Constant *Shr(const ArgType *V1, const ArgType *V2) { return 0; }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000188 static Constant *LessThan(const ArgType *V1, const ArgType *V2) {
Chris Lattner2f7c9632001-06-06 20:29:01 +0000189 return 0;
190 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000191 static Constant *EqualTo(const ArgType *V1, const ArgType *V2) {
Chris Lattnerdc2e3912003-11-17 20:19:35 +0000192 return 0;
193 }
Chris Lattner55406842001-07-21 19:10:49 +0000194
195 // Casting operators. ick
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000196 static Constant *CastToBool (const Constant *V) { return 0; }
197 static Constant *CastToSByte (const Constant *V) { return 0; }
198 static Constant *CastToUByte (const Constant *V) { return 0; }
199 static Constant *CastToShort (const Constant *V) { return 0; }
200 static Constant *CastToUShort(const Constant *V) { return 0; }
201 static Constant *CastToInt (const Constant *V) { return 0; }
202 static Constant *CastToUInt (const Constant *V) { return 0; }
203 static Constant *CastToLong (const Constant *V) { return 0; }
204 static Constant *CastToULong (const Constant *V) { return 0; }
205 static Constant *CastToFloat (const Constant *V) { return 0; }
206 static Constant *CastToDouble(const Constant *V) { return 0; }
207 static Constant *CastToPointer(const Constant *,
208 const PointerType *) {return 0;}
Reid Spencer9c47b252005-04-24 22:27:20 +0000209
210public:
211 virtual ~TemplateRules() {}
Chris Lattner2f7c9632001-06-06 20:29:01 +0000212};
213
214
215
216//===----------------------------------------------------------------------===//
217// EmptyRules Class
218//===----------------------------------------------------------------------===//
219//
220// EmptyRules provides a concrete base class of ConstRules that does nothing
221//
Chris Lattner3462ae32001-12-03 22:26:30 +0000222struct EmptyRules : public TemplateRules<Constant, EmptyRules> {
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000223 static Constant *EqualTo(const Constant *V1, const Constant *V2) {
Chris Lattnerdc2e3912003-11-17 20:19:35 +0000224 if (V1 == V2) return ConstantBool::True;
225 return 0;
226 }
Chris Lattner61607ee2001-09-09 21:01:20 +0000227};
Chris Lattner2f7c9632001-06-06 20:29:01 +0000228
229
230
231//===----------------------------------------------------------------------===//
232// BoolRules Class
233//===----------------------------------------------------------------------===//
234//
235// BoolRules provides a concrete base class of ConstRules for the 'bool' type.
236//
Chris Lattner3462ae32001-12-03 22:26:30 +0000237struct BoolRules : public TemplateRules<ConstantBool, BoolRules> {
Chris Lattner2f7c9632001-06-06 20:29:01 +0000238
Chris Lattner0f7e9f52006-01-05 07:19:51 +0000239 static Constant *LessThan(const ConstantBool *V1, const ConstantBool *V2) {
Chris Lattner07507a42002-09-03 20:09:49 +0000240 return ConstantBool::get(V1->getValue() < V2->getValue());
241 }
242
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000243 static Constant *EqualTo(const Constant *V1, const Constant *V2) {
Chris Lattnerdc2e3912003-11-17 20:19:35 +0000244 return ConstantBool::get(V1 == V2);
245 }
246
Chris Lattnere87f65e2002-07-30 16:24:28 +0000247 static Constant *And(const ConstantBool *V1, const ConstantBool *V2) {
248 return ConstantBool::get(V1->getValue() & V2->getValue());
249 }
250
251 static Constant *Or(const ConstantBool *V1, const ConstantBool *V2) {
Chris Lattner3462ae32001-12-03 22:26:30 +0000252 return ConstantBool::get(V1->getValue() | V2->getValue());
Chris Lattner2f7c9632001-06-06 20:29:01 +0000253 }
254
Chris Lattnere87f65e2002-07-30 16:24:28 +0000255 static Constant *Xor(const ConstantBool *V1, const ConstantBool *V2) {
256 return ConstantBool::get(V1->getValue() ^ V2->getValue());
Chris Lattner2f7c9632001-06-06 20:29:01 +0000257 }
Chris Lattnercea4d8c2003-08-13 15:52:25 +0000258
259 // Casting operators. ick
260#define DEF_CAST(TYPE, CLASS, CTYPE) \
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000261 static Constant *CastTo##TYPE (const ConstantBool *V) { \
Chris Lattnercea4d8c2003-08-13 15:52:25 +0000262 return CLASS::get(Type::TYPE##Ty, (CTYPE)(bool)V->getValue()); \
263 }
264
265 DEF_CAST(Bool , ConstantBool, bool)
266 DEF_CAST(SByte , ConstantSInt, signed char)
267 DEF_CAST(UByte , ConstantUInt, unsigned char)
268 DEF_CAST(Short , ConstantSInt, signed short)
269 DEF_CAST(UShort, ConstantUInt, unsigned short)
270 DEF_CAST(Int , ConstantSInt, signed int)
271 DEF_CAST(UInt , ConstantUInt, unsigned int)
272 DEF_CAST(Long , ConstantSInt, int64_t)
273 DEF_CAST(ULong , ConstantUInt, uint64_t)
274 DEF_CAST(Float , ConstantFP , float)
275 DEF_CAST(Double, ConstantFP , double)
276#undef DEF_CAST
Chris Lattner61607ee2001-09-09 21:01:20 +0000277};
Chris Lattner2f7c9632001-06-06 20:29:01 +0000278
279
280//===----------------------------------------------------------------------===//
Chris Lattner4b6addf2003-11-17 19:19:32 +0000281// NullPointerRules Class
Chris Lattner977f0042001-11-01 05:55:13 +0000282//===----------------------------------------------------------------------===//
283//
Chris Lattner4b6addf2003-11-17 19:19:32 +0000284// NullPointerRules provides a concrete base class of ConstRules for null
285// pointers.
Chris Lattner977f0042001-11-01 05:55:13 +0000286//
Chris Lattner77f20dc2003-11-17 19:21:04 +0000287struct NullPointerRules : public TemplateRules<ConstantPointerNull,
Chris Lattner4b6addf2003-11-17 19:19:32 +0000288 NullPointerRules> {
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000289 static Constant *EqualTo(const Constant *V1, const Constant *V2) {
Chris Lattnerdc2e3912003-11-17 20:19:35 +0000290 return ConstantBool::True; // Null pointers are always equal
291 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000292 static Constant *CastToBool(const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000293 return ConstantBool::False;
Chris Lattner977f0042001-11-01 05:55:13 +0000294 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000295 static Constant *CastToSByte (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000296 return ConstantSInt::get(Type::SByteTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000297 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000298 static Constant *CastToUByte (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000299 return ConstantUInt::get(Type::UByteTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000300 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000301 static Constant *CastToShort (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000302 return ConstantSInt::get(Type::ShortTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000303 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000304 static Constant *CastToUShort(const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000305 return ConstantUInt::get(Type::UShortTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000306 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000307 static Constant *CastToInt (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000308 return ConstantSInt::get(Type::IntTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000309 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000310 static Constant *CastToUInt (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000311 return ConstantUInt::get(Type::UIntTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000312 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000313 static Constant *CastToLong (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000314 return ConstantSInt::get(Type::LongTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000315 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000316 static Constant *CastToULong (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000317 return ConstantUInt::get(Type::ULongTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000318 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000319 static Constant *CastToFloat (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000320 return ConstantFP::get(Type::FloatTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000321 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000322 static Constant *CastToDouble(const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000323 return ConstantFP::get(Type::DoubleTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000324 }
325
Chris Lattner77f20dc2003-11-17 19:21:04 +0000326 static Constant *CastToPointer(const ConstantPointerNull *V,
Chris Lattner1f0049c2003-04-17 19:24:18 +0000327 const PointerType *PTy) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000328 return ConstantPointerNull::get(PTy);
Chris Lattner977f0042001-11-01 05:55:13 +0000329 }
330};
331
Chris Lattner1171d952006-01-04 02:03:29 +0000332//===----------------------------------------------------------------------===//
333// ConstantPackedRules Class
334//===----------------------------------------------------------------------===//
335
Chris Lattnerf0f40682006-01-04 02:15:02 +0000336/// DoVectorOp - Given two packed constants and a function pointer, apply the
337/// function pointer to each element pair, producing a new ConstantPacked
338/// constant.
339static Constant *EvalVectorOp(const ConstantPacked *V1,
340 const ConstantPacked *V2,
341 Constant *(*FP)(Constant*, Constant*)) {
342 std::vector<Constant*> Res;
343 for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i)
344 Res.push_back(FP(const_cast<Constant*>(V1->getOperand(i)),
345 const_cast<Constant*>(V2->getOperand(i))));
346 return ConstantPacked::get(Res);
347}
348
Chris Lattner1171d952006-01-04 02:03:29 +0000349/// PackedTypeRules provides a concrete base class of ConstRules for
350/// ConstantPacked operands.
351///
352struct ConstantPackedRules
353 : public TemplateRules<ConstantPacked, ConstantPackedRules> {
Chris Lattnerf0f40682006-01-04 02:15:02 +0000354
355 static Constant *Add(const ConstantPacked *V1, const ConstantPacked *V2) {
356 return EvalVectorOp(V1, V2, ConstantExpr::getAdd);
357 }
358 static Constant *Sub(const ConstantPacked *V1, const ConstantPacked *V2) {
359 return EvalVectorOp(V1, V2, ConstantExpr::getSub);
360 }
361 static Constant *Mul(const ConstantPacked *V1, const ConstantPacked *V2) {
362 return EvalVectorOp(V1, V2, ConstantExpr::getMul);
363 }
364 static Constant *Div(const ConstantPacked *V1, const ConstantPacked *V2) {
365 return EvalVectorOp(V1, V2, ConstantExpr::getDiv);
366 }
367 static Constant *Rem(const ConstantPacked *V1, const ConstantPacked *V2) {
368 return EvalVectorOp(V1, V2, ConstantExpr::getRem);
369 }
370 static Constant *And(const ConstantPacked *V1, const ConstantPacked *V2) {
371 return EvalVectorOp(V1, V2, ConstantExpr::getAnd);
372 }
373 static Constant *Or (const ConstantPacked *V1, const ConstantPacked *V2) {
374 return EvalVectorOp(V1, V2, ConstantExpr::getOr);
375 }
376 static Constant *Xor(const ConstantPacked *V1, const ConstantPacked *V2) {
377 return EvalVectorOp(V1, V2, ConstantExpr::getXor);
378 }
379 static Constant *Shl(const ConstantPacked *V1, const ConstantPacked *V2) {
380 return EvalVectorOp(V1, V2, ConstantExpr::getShl);
381 }
382 static Constant *Shr(const ConstantPacked *V1, const ConstantPacked *V2) {
383 return EvalVectorOp(V1, V2, ConstantExpr::getShr);
384 }
385 static Constant *LessThan(const ConstantPacked *V1, const ConstantPacked *V2){
386 return 0;
387 }
388 static Constant *EqualTo(const ConstantPacked *V1, const ConstantPacked *V2) {
Chris Lattner6b52be62006-01-04 02:20:54 +0000389 for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i) {
390 Constant *C =
391 ConstantExpr::getSetEQ(const_cast<Constant*>(V1->getOperand(i)),
392 const_cast<Constant*>(V2->getOperand(i)));
393 if (ConstantBool *CB = dyn_cast<ConstantBool>(C))
394 return CB;
395 }
396 // Otherwise, could not decide from any element pairs.
Chris Lattnerf0f40682006-01-04 02:15:02 +0000397 return 0;
398 }
Chris Lattner1171d952006-01-04 02:03:29 +0000399};
400
401
402//===----------------------------------------------------------------------===//
403// GeneralPackedRules Class
404//===----------------------------------------------------------------------===//
405
406/// GeneralPackedRules provides a concrete base class of ConstRules for
407/// PackedType operands, where both operands are not ConstantPacked. The usual
408/// cause for this is that one operand is a ConstantAggregateZero.
409///
410struct GeneralPackedRules : public TemplateRules<Constant, GeneralPackedRules> {
411};
412
Chris Lattner977f0042001-11-01 05:55:13 +0000413
414//===----------------------------------------------------------------------===//
Chris Lattner2f7c9632001-06-06 20:29:01 +0000415// DirectRules Class
416//===----------------------------------------------------------------------===//
417//
418// DirectRules provides a concrete base classes of ConstRules for a variety of
419// different types. This allows the C++ compiler to automatically generate our
420// constant handling operations in a typesafe and accurate manner.
421//
Chris Lattner0a144ad2002-05-03 21:41:07 +0000422template<class ConstantClass, class BuiltinType, Type **Ty, class SuperClass>
423struct DirectRules : public TemplateRules<ConstantClass, SuperClass> {
Chris Lattnere87f65e2002-07-30 16:24:28 +0000424 static Constant *Add(const ConstantClass *V1, const ConstantClass *V2) {
425 BuiltinType R = (BuiltinType)V1->getValue() + (BuiltinType)V2->getValue();
426 return ConstantClass::get(*Ty, R);
Chris Lattner2f7c9632001-06-06 20:29:01 +0000427 }
428
Chris Lattnere87f65e2002-07-30 16:24:28 +0000429 static Constant *Sub(const ConstantClass *V1, const ConstantClass *V2) {
430 BuiltinType R = (BuiltinType)V1->getValue() - (BuiltinType)V2->getValue();
431 return ConstantClass::get(*Ty, R);
Chris Lattner2f7c9632001-06-06 20:29:01 +0000432 }
433
Chris Lattnere87f65e2002-07-30 16:24:28 +0000434 static Constant *Mul(const ConstantClass *V1, const ConstantClass *V2) {
435 BuiltinType R = (BuiltinType)V1->getValue() * (BuiltinType)V2->getValue();
436 return ConstantClass::get(*Ty, R);
Chris Lattner4f6031f2001-07-20 19:15:36 +0000437 }
438
Chris Lattnere87f65e2002-07-30 16:24:28 +0000439 static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
Chris Lattner0a144ad2002-05-03 21:41:07 +0000440 if (V2->isNullValue()) return 0;
Chris Lattnere87f65e2002-07-30 16:24:28 +0000441 BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
442 return ConstantClass::get(*Ty, R);
Chris Lattneraf259a72002-04-07 08:10:14 +0000443 }
444
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000445 static Constant *LessThan(const ConstantClass *V1, const ConstantClass *V2) {
Chris Lattnere87f65e2002-07-30 16:24:28 +0000446 bool R = (BuiltinType)V1->getValue() < (BuiltinType)V2->getValue();
447 return ConstantBool::get(R);
Misha Brukmanb1c93172005-04-21 23:48:37 +0000448 }
Chris Lattner55406842001-07-21 19:10:49 +0000449
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000450 static Constant *EqualTo(const ConstantClass *V1, const ConstantClass *V2) {
Chris Lattnerdc2e3912003-11-17 20:19:35 +0000451 bool R = (BuiltinType)V1->getValue() == (BuiltinType)V2->getValue();
452 return ConstantBool::get(R);
453 }
454
Chris Lattner1f0049c2003-04-17 19:24:18 +0000455 static Constant *CastToPointer(const ConstantClass *V,
456 const PointerType *PTy) {
Chris Lattner977f0042001-11-01 05:55:13 +0000457 if (V->isNullValue()) // Is it a FP or Integral null value?
Chris Lattner3462ae32001-12-03 22:26:30 +0000458 return ConstantPointerNull::get(PTy);
Chris Lattner977f0042001-11-01 05:55:13 +0000459 return 0; // Can't const prop other types of pointers
460 }
461
Chris Lattner55406842001-07-21 19:10:49 +0000462 // Casting operators. ick
463#define DEF_CAST(TYPE, CLASS, CTYPE) \
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000464 static Constant *CastTo##TYPE (const ConstantClass *V) { \
Chris Lattnerbbb22962001-09-07 16:40:34 +0000465 return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getValue()); \
Chris Lattner55406842001-07-21 19:10:49 +0000466 }
467
Chris Lattner3462ae32001-12-03 22:26:30 +0000468 DEF_CAST(Bool , ConstantBool, bool)
469 DEF_CAST(SByte , ConstantSInt, signed char)
470 DEF_CAST(UByte , ConstantUInt, unsigned char)
471 DEF_CAST(Short , ConstantSInt, signed short)
472 DEF_CAST(UShort, ConstantUInt, unsigned short)
473 DEF_CAST(Int , ConstantSInt, signed int)
474 DEF_CAST(UInt , ConstantUInt, unsigned int)
475 DEF_CAST(Long , ConstantSInt, int64_t)
476 DEF_CAST(ULong , ConstantUInt, uint64_t)
477 DEF_CAST(Float , ConstantFP , float)
478 DEF_CAST(Double, ConstantFP , double)
Chris Lattner55406842001-07-21 19:10:49 +0000479#undef DEF_CAST
Chris Lattner2f7c9632001-06-06 20:29:01 +0000480};
481
Chris Lattner62af86e2002-05-03 20:09:52 +0000482
483//===----------------------------------------------------------------------===//
484// DirectIntRules Class
485//===----------------------------------------------------------------------===//
486//
487// DirectIntRules provides implementations of functions that are valid on
488// integer types, but not all types in general.
489//
490template <class ConstantClass, class BuiltinType, Type **Ty>
Chris Lattner0a144ad2002-05-03 21:41:07 +0000491struct DirectIntRules
492 : public DirectRules<ConstantClass, BuiltinType, Ty,
493 DirectIntRules<ConstantClass, BuiltinType, Ty> > {
Chris Lattner0a144ad2002-05-03 21:41:07 +0000494
Chris Lattner268916262003-05-12 15:26:25 +0000495 static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
496 if (V2->isNullValue()) return 0;
497 if (V2->isAllOnesValue() && // MIN_INT / -1
498 (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue())
499 return 0;
500 BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
501 return ConstantClass::get(*Ty, R);
502 }
503
Chris Lattnere87f65e2002-07-30 16:24:28 +0000504 static Constant *Rem(const ConstantClass *V1,
505 const ConstantClass *V2) {
Chris Lattner268916262003-05-12 15:26:25 +0000506 if (V2->isNullValue()) return 0; // X / 0
507 if (V2->isAllOnesValue() && // MIN_INT / -1
508 (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue())
509 return 0;
Chris Lattnere87f65e2002-07-30 16:24:28 +0000510 BuiltinType R = (BuiltinType)V1->getValue() % (BuiltinType)V2->getValue();
511 return ConstantClass::get(*Ty, R);
Chris Lattner0a144ad2002-05-03 21:41:07 +0000512 }
Chris Lattner6670d862002-05-06 03:00:54 +0000513
Chris Lattnere87f65e2002-07-30 16:24:28 +0000514 static Constant *And(const ConstantClass *V1, const ConstantClass *V2) {
515 BuiltinType R = (BuiltinType)V1->getValue() & (BuiltinType)V2->getValue();
516 return ConstantClass::get(*Ty, R);
517 }
518 static Constant *Or(const ConstantClass *V1, const ConstantClass *V2) {
519 BuiltinType R = (BuiltinType)V1->getValue() | (BuiltinType)V2->getValue();
520 return ConstantClass::get(*Ty, R);
521 }
522 static Constant *Xor(const ConstantClass *V1, const ConstantClass *V2) {
523 BuiltinType R = (BuiltinType)V1->getValue() ^ (BuiltinType)V2->getValue();
524 return ConstantClass::get(*Ty, R);
Chris Lattner6670d862002-05-06 03:00:54 +0000525 }
526
Chris Lattnere87f65e2002-07-30 16:24:28 +0000527 static Constant *Shl(const ConstantClass *V1, const ConstantClass *V2) {
528 BuiltinType R = (BuiltinType)V1->getValue() << (BuiltinType)V2->getValue();
529 return ConstantClass::get(*Ty, R);
530 }
531
532 static Constant *Shr(const ConstantClass *V1, const ConstantClass *V2) {
533 BuiltinType R = (BuiltinType)V1->getValue() >> (BuiltinType)V2->getValue();
534 return ConstantClass::get(*Ty, R);
Chris Lattner6670d862002-05-06 03:00:54 +0000535 }
Chris Lattner0a144ad2002-05-03 21:41:07 +0000536};
537
538
539//===----------------------------------------------------------------------===//
540// DirectFPRules Class
541//===----------------------------------------------------------------------===//
542//
Chris Lattner1dd054c2004-01-12 22:07:24 +0000543/// DirectFPRules provides implementations of functions that are valid on
544/// floating point types, but not all types in general.
545///
Chris Lattner0a144ad2002-05-03 21:41:07 +0000546template <class ConstantClass, class BuiltinType, Type **Ty>
547struct DirectFPRules
548 : public DirectRules<ConstantClass, BuiltinType, Ty,
549 DirectFPRules<ConstantClass, BuiltinType, Ty> > {
Chris Lattnere87f65e2002-07-30 16:24:28 +0000550 static Constant *Rem(const ConstantClass *V1, const ConstantClass *V2) {
Chris Lattner0a144ad2002-05-03 21:41:07 +0000551 if (V2->isNullValue()) return 0;
552 BuiltinType Result = std::fmod((BuiltinType)V1->getValue(),
553 (BuiltinType)V2->getValue());
554 return ConstantClass::get(*Ty, Result);
555 }
Andrew Lenharthc73e6332005-05-02 21:25:47 +0000556 static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
Jeff Cohen4e3aede2005-05-03 03:13:01 +0000557 BuiltinType inf = std::numeric_limits<BuiltinType>::infinity();
558 if (V2->isExactlyValue(0.0)) return ConstantClass::get(*Ty, inf);
559 if (V2->isExactlyValue(-0.0)) return ConstantClass::get(*Ty, -inf);
Andrew Lenharthc73e6332005-05-02 21:25:47 +0000560 BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
561 return ConstantClass::get(*Ty, R);
562 }
Chris Lattner62af86e2002-05-03 20:09:52 +0000563};
564
Chris Lattner1dd054c2004-01-12 22:07:24 +0000565
566/// ConstRules::get - This method returns the constant rules implementation that
567/// implements the semantics of the two specified constants.
Chris Lattnerf8348c32004-01-12 20:41:05 +0000568ConstRules &ConstRules::get(const Constant *V1, const Constant *V2) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000569 static EmptyRules EmptyR;
570 static BoolRules BoolR;
571 static NullPointerRules NullPointerR;
Chris Lattner1171d952006-01-04 02:03:29 +0000572 static ConstantPackedRules ConstantPackedR;
573 static GeneralPackedRules GeneralPackedR;
Chris Lattner9d9cbcf2003-11-17 19:05:17 +0000574 static DirectIntRules<ConstantSInt, signed char , &Type::SByteTy> SByteR;
575 static DirectIntRules<ConstantUInt, unsigned char , &Type::UByteTy> UByteR;
576 static DirectIntRules<ConstantSInt, signed short, &Type::ShortTy> ShortR;
577 static DirectIntRules<ConstantUInt, unsigned short, &Type::UShortTy> UShortR;
578 static DirectIntRules<ConstantSInt, signed int , &Type::IntTy> IntR;
579 static DirectIntRules<ConstantUInt, unsigned int , &Type::UIntTy> UIntR;
580 static DirectIntRules<ConstantSInt, int64_t , &Type::LongTy> LongR;
581 static DirectIntRules<ConstantUInt, uint64_t , &Type::ULongTy> ULongR;
582 static DirectFPRules <ConstantFP , float , &Type::FloatTy> FloatR;
583 static DirectFPRules <ConstantFP , double , &Type::DoubleTy> DoubleR;
Chris Lattner2f7c9632001-06-06 20:29:01 +0000584
Chris Lattner4b6addf2003-11-17 19:19:32 +0000585 if (isa<ConstantExpr>(V1) || isa<ConstantExpr>(V2) ||
Chris Lattnerfd7bf722004-10-16 23:31:32 +0000586 isa<GlobalValue>(V1) || isa<GlobalValue>(V2) ||
587 isa<UndefValue>(V1) || isa<UndefValue>(V2))
Chris Lattner9d9cbcf2003-11-17 19:05:17 +0000588 return EmptyR;
589
Chris Lattner6b727592004-06-17 18:19:28 +0000590 switch (V1->getType()->getTypeID()) {
Chris Lattner9d9cbcf2003-11-17 19:05:17 +0000591 default: assert(0 && "Unknown value type for constant folding!");
592 case Type::BoolTyID: return BoolR;
Chris Lattner4b6addf2003-11-17 19:19:32 +0000593 case Type::PointerTyID: return NullPointerR;
Chris Lattner9d9cbcf2003-11-17 19:05:17 +0000594 case Type::SByteTyID: return SByteR;
595 case Type::UByteTyID: return UByteR;
596 case Type::ShortTyID: return ShortR;
597 case Type::UShortTyID: return UShortR;
598 case Type::IntTyID: return IntR;
599 case Type::UIntTyID: return UIntR;
600 case Type::LongTyID: return LongR;
601 case Type::ULongTyID: return ULongR;
602 case Type::FloatTyID: return FloatR;
603 case Type::DoubleTyID: return DoubleR;
Chris Lattner1171d952006-01-04 02:03:29 +0000604 case Type::PackedTyID:
605 if (isa<ConstantPacked>(V1) && isa<ConstantPacked>(V2))
606 return ConstantPackedR;
607 return GeneralPackedR; // Constant folding rules for ConstantAggregateZero.
Chris Lattner2f7c9632001-06-06 20:29:01 +0000608 }
Chris Lattner2f7c9632001-06-06 20:29:01 +0000609}
Chris Lattner1dd054c2004-01-12 22:07:24 +0000610
611
612//===----------------------------------------------------------------------===//
613// ConstantFold*Instruction Implementations
614//===----------------------------------------------------------------------===//
615//
616// These methods contain the special case hackery required to symbolically
617// evaluate some constant expression cases, and use the ConstantRules class to
618// evaluate normal constants.
619//
620static unsigned getSize(const Type *Ty) {
621 unsigned S = Ty->getPrimitiveSize();
622 return S ? S : 8; // Treat pointers at 8 bytes
623}
624
Chris Lattner6b3f4752006-04-02 01:38:28 +0000625/// CastConstantPacked - Convert the specified ConstantPacked node to the
626/// specified packed type. At this point, we know that the elements of the
627/// input packed constant are all simple integer or FP values.
628static Constant *CastConstantPacked(ConstantPacked *CP,
629 const PackedType *DstTy) {
630 unsigned SrcNumElts = CP->getType()->getNumElements();
631 unsigned DstNumElts = DstTy->getNumElements();
632 const Type *SrcEltTy = CP->getType()->getElementType();
633 const Type *DstEltTy = DstTy->getElementType();
634
635 // If both vectors have the same number of elements (thus, the elements
636 // are the same size), perform the conversion now.
637 if (SrcNumElts == DstNumElts) {
638 std::vector<Constant*> Result;
639
640 // If the src and dest elements are both integers, just cast each one
641 // which will do the appropriate bit-convert.
642 if (SrcEltTy->isIntegral() && DstEltTy->isIntegral()) {
643 for (unsigned i = 0; i != SrcNumElts; ++i)
644 Result.push_back(ConstantExpr::getCast(CP->getOperand(i),
645 DstEltTy));
646 return ConstantPacked::get(Result);
647 }
648
649 if (SrcEltTy->isIntegral()) {
650 // Otherwise, this is an int-to-fp cast.
651 assert(DstEltTy->isFloatingPoint());
652 if (DstEltTy->getTypeID() == Type::DoubleTyID) {
653 for (unsigned i = 0; i != SrcNumElts; ++i) {
654 double V =
655 BitsToDouble(cast<ConstantInt>(CP->getOperand(i))->getRawValue());
656 Result.push_back(ConstantFP::get(Type::DoubleTy, V));
657 }
658 return ConstantPacked::get(Result);
659 }
660 assert(DstEltTy == Type::FloatTy && "Unknown fp type!");
661 for (unsigned i = 0; i != SrcNumElts; ++i) {
662 float V =
663 BitsToFloat(cast<ConstantInt>(CP->getOperand(i))->getRawValue());
664 Result.push_back(ConstantFP::get(Type::FloatTy, V));
665 }
666 return ConstantPacked::get(Result);
667 }
668
669 // Otherwise, this is an fp-to-int cast.
670 assert(SrcEltTy->isFloatingPoint() && DstEltTy->isIntegral());
671
672 if (SrcEltTy->getTypeID() == Type::DoubleTyID) {
673 for (unsigned i = 0; i != SrcNumElts; ++i) {
674 uint64_t V =
675 DoubleToBits(cast<ConstantFP>(CP->getOperand(i))->getValue());
676 Constant *C = ConstantUInt::get(Type::ULongTy, V);
677 Result.push_back(ConstantExpr::getCast(C, DstEltTy));
678 }
679 return ConstantPacked::get(Result);
680 }
681
682 assert(SrcEltTy->getTypeID() == Type::FloatTyID);
683 for (unsigned i = 0; i != SrcNumElts; ++i) {
684 unsigned V = FloatToBits(cast<ConstantFP>(CP->getOperand(i))->getValue());
685 Constant *C = ConstantUInt::get(Type::UIntTy, V);
686 Result.push_back(ConstantExpr::getCast(C, DstEltTy));
687 }
688 return ConstantPacked::get(Result);
689 }
690
691 // Otherwise, this is a cast that changes element count and size. Handle
692 // casts which shrink the elements here.
693
694 // FIXME: We need to know endianness to do this!
695
696 return 0;
697}
698
699
Chris Lattner1dd054c2004-01-12 22:07:24 +0000700Constant *llvm::ConstantFoldCastInstruction(const Constant *V,
701 const Type *DestTy) {
702 if (V->getType() == DestTy) return (Constant*)V;
703
Chris Lattnerea0789c2004-03-08 06:17:35 +0000704 // Cast of a global address to boolean is always true.
Chris Lattnerfd7bf722004-10-16 23:31:32 +0000705 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Chris Lattnerea0789c2004-03-08 06:17:35 +0000706 if (DestTy == Type::BoolTy)
707 // FIXME: When we support 'external weak' references, we have to prevent
Chris Lattnercd4003e2005-01-06 16:26:38 +0000708 // this transformation from happening. This code will need to be updated
709 // to ignore external weak symbols when we support it.
710 return ConstantBool::True;
Chris Lattnerfd7bf722004-10-16 23:31:32 +0000711 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Chris Lattner1dd054c2004-01-12 22:07:24 +0000712 if (CE->getOpcode() == Instruction::Cast) {
713 Constant *Op = const_cast<Constant*>(CE->getOperand(0));
714 // Try to not produce a cast of a cast, which is almost always redundant.
715 if (!Op->getType()->isFloatingPoint() &&
716 !CE->getType()->isFloatingPoint() &&
Reid Spencer8eb06df2004-05-30 01:19:48 +0000717 !DestTy->isFloatingPoint()) {
Chris Lattner1dd054c2004-01-12 22:07:24 +0000718 unsigned S1 = getSize(Op->getType()), S2 = getSize(CE->getType());
719 unsigned S3 = getSize(DestTy);
720 if (Op->getType() == DestTy && S3 >= S2)
721 return Op;
722 if (S1 >= S2 && S2 >= S3)
723 return ConstantExpr::getCast(Op, DestTy);
724 if (S1 <= S2 && S2 >= S3 && S1 <= S3)
725 return ConstantExpr::getCast(Op, DestTy);
726 }
727 } else if (CE->getOpcode() == Instruction::GetElementPtr) {
728 // If all of the indexes in the GEP are null values, there is no pointer
729 // adjustment going on. We might as well cast the source pointer.
730 bool isAllNull = true;
731 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
732 if (!CE->getOperand(i)->isNullValue()) {
733 isAllNull = false;
734 break;
735 }
736 if (isAllNull)
737 return ConstantExpr::getCast(CE->getOperand(0), DestTy);
738 }
Chris Lattnerfd7bf722004-10-16 23:31:32 +0000739 } else if (isa<UndefValue>(V)) {
740 return UndefValue::get(DestTy);
741 }
Chris Lattner1dd054c2004-01-12 22:07:24 +0000742
Chris Lattnerba18b9a2004-11-17 17:59:35 +0000743 // Check to see if we are casting an pointer to an aggregate to a pointer to
744 // the first element. If so, return the appropriate GEP instruction.
Chris Lattnerb2b7f902004-10-11 03:57:30 +0000745 if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
Chris Lattnerba18b9a2004-11-17 17:59:35 +0000746 if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
747 std::vector<Value*> IdxList;
748 IdxList.push_back(Constant::getNullValue(Type::IntTy));
749 const Type *ElTy = PTy->getElementType();
750 while (ElTy != DPTy->getElementType()) {
751 if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
Chris Lattner9e907202004-11-22 19:15:27 +0000752 if (STy->getNumElements() == 0) break;
Chris Lattnerba18b9a2004-11-17 17:59:35 +0000753 ElTy = STy->getElementType(0);
754 IdxList.push_back(Constant::getNullValue(Type::UIntTy));
755 } else if (const SequentialType *STy = dyn_cast<SequentialType>(ElTy)) {
756 if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
757 ElTy = STy->getElementType();
758 IdxList.push_back(IdxList[0]);
759 } else {
760 break;
Chris Lattnerb2b7f902004-10-11 03:57:30 +0000761 }
Chris Lattnerba18b9a2004-11-17 17:59:35 +0000762 }
763
764 if (ElTy == DPTy->getElementType())
765 return ConstantExpr::getGetElementPtr(const_cast<Constant*>(V),IdxList);
766 }
Chris Lattner6b3f4752006-04-02 01:38:28 +0000767
768 // Handle casts from one packed constant to another. We know that the src and
769 // dest type have the same size.
770 if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
771 if (const PackedType *SrcTy = dyn_cast<PackedType>(V->getType())) {
772 assert(DestPTy->getElementType()->getPrimitiveSizeInBits() *
773 DestPTy->getNumElements() ==
774 SrcTy->getElementType()->getPrimitiveSizeInBits() *
775 SrcTy->getNumElements() && "Not cast between same sized vectors!");
776 if (isa<ConstantAggregateZero>(V))
777 return Constant::getNullValue(DestTy);
778 if (isa<UndefValue>(V))
779 return UndefValue::get(DestTy);
780 if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
781 // This is a cast from a ConstantPacked of one type to a ConstantPacked
782 // of another type. Check to see if all elements of the input are
783 // simple.
784 bool AllSimpleConstants = true;
785 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
786 if (!isa<ConstantInt>(CP->getOperand(i)) &&
787 !isa<ConstantFP>(CP->getOperand(i))) {
788 AllSimpleConstants = false;
789 break;
790 }
791 }
792
793 // If all of the elements are simple constants, we can fold this.
794 if (AllSimpleConstants)
795 return CastConstantPacked(const_cast<ConstantPacked*>(CP), DestPTy);
796 }
797 }
798 }
Chris Lattnerb2b7f902004-10-11 03:57:30 +0000799
Chris Lattner1dd054c2004-01-12 22:07:24 +0000800 ConstRules &Rules = ConstRules::get(V, V);
801
Chris Lattner6b727592004-06-17 18:19:28 +0000802 switch (DestTy->getTypeID()) {
Chris Lattner1dd054c2004-01-12 22:07:24 +0000803 case Type::BoolTyID: return Rules.castToBool(V);
804 case Type::UByteTyID: return Rules.castToUByte(V);
805 case Type::SByteTyID: return Rules.castToSByte(V);
806 case Type::UShortTyID: return Rules.castToUShort(V);
807 case Type::ShortTyID: return Rules.castToShort(V);
808 case Type::UIntTyID: return Rules.castToUInt(V);
809 case Type::IntTyID: return Rules.castToInt(V);
810 case Type::ULongTyID: return Rules.castToULong(V);
811 case Type::LongTyID: return Rules.castToLong(V);
812 case Type::FloatTyID: return Rules.castToFloat(V);
813 case Type::DoubleTyID: return Rules.castToDouble(V);
814 case Type::PointerTyID:
815 return Rules.castToPointer(V, cast<PointerType>(DestTy));
816 default: return 0;
817 }
818}
819
Chris Lattner6ea4b522004-03-12 05:53:32 +0000820Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
821 const Constant *V1,
822 const Constant *V2) {
823 if (Cond == ConstantBool::True)
824 return const_cast<Constant*>(V1);
825 else if (Cond == ConstantBool::False)
826 return const_cast<Constant*>(V2);
Chris Lattnerfd7bf722004-10-16 23:31:32 +0000827
828 if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
829 if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
830 if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
Chris Lattnerfed8ceb2006-01-05 07:49:30 +0000831 if (V1 == V2) return const_cast<Constant*>(V1);
Chris Lattner6ea4b522004-03-12 05:53:32 +0000832 return 0;
833}
834
Robert Bocchinode7f1c92006-01-10 20:03:46 +0000835Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
836 const Constant *Idx) {
Chris Lattnere52f29b2006-03-31 18:31:40 +0000837 if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
838 return UndefValue::get(cast<PackedType>(Val->getType())->getElementType());
Chris Lattnere4f9d7b2006-04-07 04:44:06 +0000839 if (Val->isNullValue()) // ee(zero, x) -> zero
840 return Constant::getNullValue(
841 cast<PackedType>(Val->getType())->getElementType());
Chris Lattnere52f29b2006-03-31 18:31:40 +0000842
Robert Bocchinode7f1c92006-01-10 20:03:46 +0000843 if (const ConstantPacked *CVal = dyn_cast<ConstantPacked>(Val)) {
844 if (const ConstantUInt *CIdx = dyn_cast<ConstantUInt>(Idx)) {
845 return const_cast<Constant*>(CVal->getOperand(CIdx->getValue()));
Chris Lattnere52f29b2006-03-31 18:31:40 +0000846 } else if (isa<UndefValue>(Idx)) {
847 // ee({w,x,y,z}, undef) -> w (an arbitrary value).
848 return const_cast<Constant*>(CVal->getOperand(0));
Robert Bocchinode7f1c92006-01-10 20:03:46 +0000849 }
Chris Lattnere52f29b2006-03-31 18:31:40 +0000850 }
Robert Bocchinode7f1c92006-01-10 20:03:46 +0000851 return 0;
852}
853
Robert Bocchinoca27f032006-01-17 20:07:22 +0000854Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
855 const Constant *Elt,
856 const Constant *Idx) {
857 const ConstantUInt *CIdx = dyn_cast<ConstantUInt>(Idx);
858 if (!CIdx) return 0;
859 unsigned idxVal = CIdx->getValue();
860 if (const UndefValue *UVal = dyn_cast<UndefValue>(Val)) {
861 // Insertion of scalar constant into packed undef
862 // Optimize away insertion of undef
863 if (isa<UndefValue>(Elt))
864 return const_cast<Constant*>(Val);
865 // Otherwise break the aggregate undef into multiple undefs and do
866 // the insertion
867 unsigned numOps =
868 cast<PackedType>(Val->getType())->getNumElements();
869 std::vector<Constant*> Ops;
870 Ops.reserve(numOps);
871 for (unsigned i = 0; i < numOps; ++i) {
872 const Constant *Op =
873 (i == idxVal) ? Elt : UndefValue::get(Elt->getType());
874 Ops.push_back(const_cast<Constant*>(Op));
875 }
876 return ConstantPacked::get(Ops);
877 }
878 if (const ConstantAggregateZero *CVal =
879 dyn_cast<ConstantAggregateZero>(Val)) {
880 // Insertion of scalar constant into packed aggregate zero
881 // Optimize away insertion of zero
882 if (Elt->isNullValue())
883 return const_cast<Constant*>(Val);
884 // Otherwise break the aggregate zero into multiple zeros and do
885 // the insertion
886 unsigned numOps =
887 cast<PackedType>(Val->getType())->getNumElements();
888 std::vector<Constant*> Ops;
889 Ops.reserve(numOps);
890 for (unsigned i = 0; i < numOps; ++i) {
891 const Constant *Op =
892 (i == idxVal) ? Elt : Constant::getNullValue(Elt->getType());
893 Ops.push_back(const_cast<Constant*>(Op));
894 }
895 return ConstantPacked::get(Ops);
896 }
897 if (const ConstantPacked *CVal = dyn_cast<ConstantPacked>(Val)) {
898 // Insertion of scalar constant into packed constant
899 std::vector<Constant*> Ops;
900 Ops.reserve(CVal->getNumOperands());
901 for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
902 const Constant *Op =
903 (i == idxVal) ? Elt : cast<Constant>(CVal->getOperand(i));
904 Ops.push_back(const_cast<Constant*>(Op));
905 }
906 return ConstantPacked::get(Ops);
907 }
908 return 0;
909}
910
Chris Lattner60c47262005-01-28 19:09:51 +0000911/// isZeroSizedType - This type is zero sized if its an array or structure of
912/// zero sized types. The only leaf zero sized type is an empty structure.
913static bool isMaybeZeroSizedType(const Type *Ty) {
914 if (isa<OpaqueType>(Ty)) return true; // Can't say.
915 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
916
917 // If all of elements have zero size, this does too.
918 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
Chris Lattnerfeaf92f2005-01-28 23:17:27 +0000919 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
Chris Lattner60c47262005-01-28 19:09:51 +0000920 return true;
921
922 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
923 return isMaybeZeroSizedType(ATy->getElementType());
924 }
925 return false;
926}
Chris Lattner6ea4b522004-03-12 05:53:32 +0000927
Chris Lattner061da2f2004-01-13 05:51:55 +0000928/// IdxCompare - Compare the two constants as though they were getelementptr
929/// indices. This allows coersion of the types to be the same thing.
930///
931/// If the two constants are the "same" (after coersion), return 0. If the
932/// first is less than the second, return -1, if the second is less than the
933/// first, return 1. If the constants are not integral, return -2.
934///
Chris Lattner60c47262005-01-28 19:09:51 +0000935static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
Chris Lattner061da2f2004-01-13 05:51:55 +0000936 if (C1 == C2) return 0;
937
938 // Ok, we found a different index. Are either of the operands
939 // ConstantExprs? If so, we can't do anything with them.
940 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
941 return -2; // don't know!
Misha Brukmanb1c93172005-04-21 23:48:37 +0000942
Chris Lattner69193f92004-04-05 01:30:19 +0000943 // Ok, we have two differing integer indices. Sign extend them to be the same
944 // type. Long is always big enough, so we use it.
945 C1 = ConstantExpr::getSignExtend(C1, Type::LongTy);
946 C2 = ConstantExpr::getSignExtend(C2, Type::LongTy);
Chris Lattner061da2f2004-01-13 05:51:55 +0000947 if (C1 == C2) return 0; // Are they just differing types?
948
Chris Lattner60c47262005-01-28 19:09:51 +0000949 // If the type being indexed over is really just a zero sized type, there is
950 // no pointer difference being made here.
951 if (isMaybeZeroSizedType(ElTy))
952 return -2; // dunno.
953
Chris Lattner061da2f2004-01-13 05:51:55 +0000954 // If they are really different, now that they are the same type, then we
955 // found a difference!
956 if (cast<ConstantSInt>(C1)->getValue() < cast<ConstantSInt>(C2)->getValue())
957 return -1;
958 else
959 return 1;
960}
961
962/// evaluateRelation - This function determines if there is anything we can
963/// decide about the two constants provided. This doesn't need to handle simple
Reid Spenceraccd7c72004-07-17 23:47:01 +0000964/// things like integer comparisons, but should instead handle ConstantExprs
965/// and GlobalValuess. If we can determine that the two constants have a
Chris Lattner061da2f2004-01-13 05:51:55 +0000966/// particular relation to each other, we should return the corresponding SetCC
967/// code, otherwise return Instruction::BinaryOpsEnd.
968///
969/// To simplify this code we canonicalize the relation so that the first
970/// operand is always the most "complex" of the two. We consider simple
971/// constants (like ConstantInt) to be the simplest, followed by
Reid Spenceraccd7c72004-07-17 23:47:01 +0000972/// GlobalValues, followed by ConstantExpr's (the most complex).
Chris Lattner061da2f2004-01-13 05:51:55 +0000973///
Chris Lattnerfed8ceb2006-01-05 07:49:30 +0000974static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
Chris Lattner061da2f2004-01-13 05:51:55 +0000975 assert(V1->getType() == V2->getType() &&
976 "Cannot compare different types of values!");
977 if (V1 == V2) return Instruction::SetEQ;
978
Reid Spenceraccd7c72004-07-17 23:47:01 +0000979 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
Chris Lattnerfed8ceb2006-01-05 07:49:30 +0000980 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
981 // We distilled this down to a simple case, use the standard constant
982 // folder.
983 ConstantBool *R = dyn_cast<ConstantBool>(ConstantExpr::getSetEQ(V1, V2));
984 if (R == ConstantBool::True) return Instruction::SetEQ;
985 R = dyn_cast<ConstantBool>(ConstantExpr::getSetLT(V1, V2));
986 if (R == ConstantBool::True) return Instruction::SetLT;
987 R = dyn_cast<ConstantBool>(ConstantExpr::getSetGT(V1, V2));
988 if (R == ConstantBool::True) return Instruction::SetGT;
989
990 // If we couldn't figure it out, bail.
991 return Instruction::BinaryOpsEnd;
992 }
993
Chris Lattner061da2f2004-01-13 05:51:55 +0000994 // If the first operand is simple, swap operands.
Chris Lattner125ed542004-02-01 01:23:19 +0000995 Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
996 if (SwappedRelation != Instruction::BinaryOpsEnd)
997 return SetCondInst::getSwappedCondition(SwappedRelation);
Chris Lattner061da2f2004-01-13 05:51:55 +0000998
Chris Lattner0f7e9f52006-01-05 07:19:51 +0000999 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
Chris Lattner125ed542004-02-01 01:23:19 +00001000 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
Chris Lattner0f7e9f52006-01-05 07:19:51 +00001001 Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
1002 if (SwappedRelation != Instruction::BinaryOpsEnd)
1003 return SetCondInst::getSwappedCondition(SwappedRelation);
1004 else
1005 return Instruction::BinaryOpsEnd;
Chris Lattner125ed542004-02-01 01:23:19 +00001006 }
Chris Lattner061da2f2004-01-13 05:51:55 +00001007
Reid Spenceraccd7c72004-07-17 23:47:01 +00001008 // Now we know that the RHS is a GlobalValue or simple constant,
Chris Lattner061da2f2004-01-13 05:51:55 +00001009 // which (since the types must match) means that it's a ConstantPointerNull.
Reid Spenceraccd7c72004-07-17 23:47:01 +00001010 if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1011 assert(CPR1 != CPR2 &&
1012 "GVs for the same value exist at different addresses??");
Chris Lattner061da2f2004-01-13 05:51:55 +00001013 // FIXME: If both globals are external weak, they might both be null!
1014 return Instruction::SetNE;
1015 } else {
1016 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1017 // Global can never be null. FIXME: if we implement external weak
1018 // linkage, this is not necessarily true!
1019 return Instruction::SetNE;
1020 }
1021
1022 } else {
1023 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1024 // constantexpr, a CPR, or a simple constant.
Chris Lattnerfed8ceb2006-01-05 07:49:30 +00001025 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
Chris Lattner061da2f2004-01-13 05:51:55 +00001026 Constant *CE1Op0 = CE1->getOperand(0);
1027
1028 switch (CE1->getOpcode()) {
1029 case Instruction::Cast:
1030 // If the cast is not actually changing bits, and the second operand is a
1031 // null pointer, do the comparison with the pre-casted value.
1032 if (V2->isNullValue() &&
Chris Lattnerfed8ceb2006-01-05 07:49:30 +00001033 (isa<PointerType>(CE1->getType()) || CE1->getType()->isIntegral()))
Chris Lattner061da2f2004-01-13 05:51:55 +00001034 return evaluateRelation(CE1Op0,
1035 Constant::getNullValue(CE1Op0->getType()));
Chris Lattnerfed8ceb2006-01-05 07:49:30 +00001036
1037 // If the dest type is a pointer type, and the RHS is a constantexpr cast
1038 // from the same type as the src of the LHS, evaluate the inputs. This is
1039 // important for things like "seteq (cast 4 to int*), (cast 5 to int*)",
1040 // which happens a lot in compilers with tagged integers.
1041 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1042 if (isa<PointerType>(CE1->getType()) &&
1043 CE2->getOpcode() == Instruction::Cast &&
1044 CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
1045 CE1->getOperand(0)->getType()->isIntegral()) {
1046 return evaluateRelation(CE1->getOperand(0), CE2->getOperand(0));
1047 }
Chris Lattner192e3262004-04-11 01:29:30 +00001048 break;
Chris Lattner061da2f2004-01-13 05:51:55 +00001049
1050 case Instruction::GetElementPtr:
1051 // Ok, since this is a getelementptr, we know that the constant has a
1052 // pointer type. Check the various cases.
1053 if (isa<ConstantPointerNull>(V2)) {
1054 // If we are comparing a GEP to a null pointer, check to see if the base
1055 // of the GEP equals the null pointer.
Reid Spenceraccd7c72004-07-17 23:47:01 +00001056 if (isa<GlobalValue>(CE1Op0)) {
Chris Lattner061da2f2004-01-13 05:51:55 +00001057 // FIXME: this is not true when we have external weak references!
1058 // No offset can go from a global to a null pointer.
1059 return Instruction::SetGT;
1060 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1061 // If we are indexing from a null pointer, check to see if we have any
1062 // non-zero indices.
1063 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1064 if (!CE1->getOperand(i)->isNullValue())
1065 // Offsetting from null, must not be equal.
1066 return Instruction::SetGT;
1067 // Only zero indexes from null, must still be zero.
1068 return Instruction::SetEQ;
1069 }
1070 // Otherwise, we can't really say if the first operand is null or not.
Reid Spenceraccd7c72004-07-17 23:47:01 +00001071 } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
Chris Lattner061da2f2004-01-13 05:51:55 +00001072 if (isa<ConstantPointerNull>(CE1Op0)) {
1073 // FIXME: This is not true with external weak references.
1074 return Instruction::SetLT;
Reid Spenceraccd7c72004-07-17 23:47:01 +00001075 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
Chris Lattner061da2f2004-01-13 05:51:55 +00001076 if (CPR1 == CPR2) {
1077 // If this is a getelementptr of the same global, then it must be
1078 // different. Because the types must match, the getelementptr could
1079 // only have at most one index, and because we fold getelementptr's
1080 // with a single zero index, it must be nonzero.
1081 assert(CE1->getNumOperands() == 2 &&
1082 !CE1->getOperand(1)->isNullValue() &&
1083 "Suprising getelementptr!");
1084 return Instruction::SetGT;
1085 } else {
1086 // If they are different globals, we don't know what the value is,
1087 // but they can't be equal.
1088 return Instruction::SetNE;
1089 }
1090 }
1091 } else {
1092 const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1093 const Constant *CE2Op0 = CE2->getOperand(0);
1094
1095 // There are MANY other foldings that we could perform here. They will
1096 // probably be added on demand, as they seem needed.
1097 switch (CE2->getOpcode()) {
1098 default: break;
1099 case Instruction::GetElementPtr:
1100 // By far the most common case to handle is when the base pointers are
1101 // obviously to the same or different globals.
Reid Spenceraccd7c72004-07-17 23:47:01 +00001102 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
Chris Lattner061da2f2004-01-13 05:51:55 +00001103 if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1104 return Instruction::SetNE;
1105 // Ok, we know that both getelementptr instructions are based on the
1106 // same global. From this, we can precisely determine the relative
1107 // ordering of the resultant pointers.
1108 unsigned i = 1;
Misha Brukmanb1c93172005-04-21 23:48:37 +00001109
Chris Lattner061da2f2004-01-13 05:51:55 +00001110 // Compare all of the operands the GEP's have in common.
Chris Lattner60c47262005-01-28 19:09:51 +00001111 gep_type_iterator GTI = gep_type_begin(CE1);
1112 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1113 ++i, ++GTI)
1114 switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
1115 GTI.getIndexedType())) {
Chris Lattner061da2f2004-01-13 05:51:55 +00001116 case -1: return Instruction::SetLT;
1117 case 1: return Instruction::SetGT;
1118 case -2: return Instruction::BinaryOpsEnd;
1119 }
1120
1121 // Ok, we ran out of things they have in common. If any leftovers
1122 // are non-zero then we have a difference, otherwise we are equal.
1123 for (; i < CE1->getNumOperands(); ++i)
1124 if (!CE1->getOperand(i)->isNullValue())
Chris Lattner60c47262005-01-28 19:09:51 +00001125 if (isa<ConstantIntegral>(CE1->getOperand(i)))
1126 return Instruction::SetGT;
1127 else
1128 return Instruction::BinaryOpsEnd; // Might be equal.
Misha Brukmanb1c93172005-04-21 23:48:37 +00001129
Chris Lattner061da2f2004-01-13 05:51:55 +00001130 for (; i < CE2->getNumOperands(); ++i)
1131 if (!CE2->getOperand(i)->isNullValue())
Chris Lattner60c47262005-01-28 19:09:51 +00001132 if (isa<ConstantIntegral>(CE2->getOperand(i)))
1133 return Instruction::SetLT;
1134 else
1135 return Instruction::BinaryOpsEnd; // Might be equal.
Chris Lattner061da2f2004-01-13 05:51:55 +00001136 return Instruction::SetEQ;
1137 }
1138 }
1139 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001140
Chris Lattner061da2f2004-01-13 05:51:55 +00001141 default:
1142 break;
1143 }
1144 }
1145
1146 return Instruction::BinaryOpsEnd;
1147}
1148
Chris Lattner1dd054c2004-01-12 22:07:24 +00001149Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
1150 const Constant *V1,
1151 const Constant *V2) {
Chris Lattner061da2f2004-01-13 05:51:55 +00001152 Constant *C = 0;
Chris Lattner1dd054c2004-01-12 22:07:24 +00001153 switch (Opcode) {
Chris Lattner061da2f2004-01-13 05:51:55 +00001154 default: break;
1155 case Instruction::Add: C = ConstRules::get(V1, V2).add(V1, V2); break;
1156 case Instruction::Sub: C = ConstRules::get(V1, V2).sub(V1, V2); break;
1157 case Instruction::Mul: C = ConstRules::get(V1, V2).mul(V1, V2); break;
1158 case Instruction::Div: C = ConstRules::get(V1, V2).div(V1, V2); break;
1159 case Instruction::Rem: C = ConstRules::get(V1, V2).rem(V1, V2); break;
1160 case Instruction::And: C = ConstRules::get(V1, V2).op_and(V1, V2); break;
1161 case Instruction::Or: C = ConstRules::get(V1, V2).op_or (V1, V2); break;
1162 case Instruction::Xor: C = ConstRules::get(V1, V2).op_xor(V1, V2); break;
1163 case Instruction::Shl: C = ConstRules::get(V1, V2).shl(V1, V2); break;
1164 case Instruction::Shr: C = ConstRules::get(V1, V2).shr(V1, V2); break;
1165 case Instruction::SetEQ: C = ConstRules::get(V1, V2).equalto(V1, V2); break;
1166 case Instruction::SetLT: C = ConstRules::get(V1, V2).lessthan(V1, V2);break;
1167 case Instruction::SetGT: C = ConstRules::get(V1, V2).lessthan(V2, V1);break;
Chris Lattner1dd054c2004-01-12 22:07:24 +00001168 case Instruction::SetNE: // V1 != V2 === !(V1 == V2)
1169 C = ConstRules::get(V1, V2).equalto(V1, V2);
Chris Lattner6b52be62006-01-04 02:20:54 +00001170 if (C) return ConstantExpr::getNot(C);
Chris Lattner1dd054c2004-01-12 22:07:24 +00001171 break;
1172 case Instruction::SetLE: // V1 <= V2 === !(V2 < V1)
1173 C = ConstRules::get(V1, V2).lessthan(V2, V1);
Chris Lattner6b52be62006-01-04 02:20:54 +00001174 if (C) return ConstantExpr::getNot(C);
Chris Lattner1dd054c2004-01-12 22:07:24 +00001175 break;
1176 case Instruction::SetGE: // V1 >= V2 === !(V1 < V2)
1177 C = ConstRules::get(V1, V2).lessthan(V1, V2);
Chris Lattner6b52be62006-01-04 02:20:54 +00001178 if (C) return ConstantExpr::getNot(C);
Chris Lattner1dd054c2004-01-12 22:07:24 +00001179 break;
1180 }
1181
Chris Lattner061da2f2004-01-13 05:51:55 +00001182 // If we successfully folded the expression, return it now.
1183 if (C) return C;
1184
Chris Lattner192eacc2004-10-17 04:01:51 +00001185 if (SetCondInst::isRelational(Opcode)) {
1186 if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1187 return UndefValue::get(Type::BoolTy);
Chris Lattnerfed8ceb2006-01-05 07:49:30 +00001188 switch (evaluateRelation(const_cast<Constant*>(V1),
1189 const_cast<Constant*>(V2))) {
Chris Lattner061da2f2004-01-13 05:51:55 +00001190 default: assert(0 && "Unknown relational!");
1191 case Instruction::BinaryOpsEnd:
1192 break; // Couldn't determine anything about these constants.
1193 case Instruction::SetEQ: // We know the constants are equal!
1194 // If we know the constants are equal, we can decide the result of this
1195 // computation precisely.
1196 return ConstantBool::get(Opcode == Instruction::SetEQ ||
1197 Opcode == Instruction::SetLE ||
1198 Opcode == Instruction::SetGE);
1199 case Instruction::SetLT:
1200 // If we know that V1 < V2, we can decide the result of this computation
1201 // precisely.
1202 return ConstantBool::get(Opcode == Instruction::SetLT ||
1203 Opcode == Instruction::SetNE ||
1204 Opcode == Instruction::SetLE);
1205 case Instruction::SetGT:
1206 // If we know that V1 > V2, we can decide the result of this computation
1207 // precisely.
1208 return ConstantBool::get(Opcode == Instruction::SetGT ||
1209 Opcode == Instruction::SetNE ||
1210 Opcode == Instruction::SetGE);
1211 case Instruction::SetLE:
1212 // If we know that V1 <= V2, we can only partially decide this relation.
1213 if (Opcode == Instruction::SetGT) return ConstantBool::False;
1214 if (Opcode == Instruction::SetLT) return ConstantBool::True;
1215 break;
1216
1217 case Instruction::SetGE:
1218 // If we know that V1 >= V2, we can only partially decide this relation.
1219 if (Opcode == Instruction::SetLT) return ConstantBool::False;
1220 if (Opcode == Instruction::SetGT) return ConstantBool::True;
1221 break;
Misha Brukmanb1c93172005-04-21 23:48:37 +00001222
Chris Lattner061da2f2004-01-13 05:51:55 +00001223 case Instruction::SetNE:
1224 // If we know that V1 != V2, we can only partially decide this relation.
1225 if (Opcode == Instruction::SetEQ) return ConstantBool::False;
1226 if (Opcode == Instruction::SetNE) return ConstantBool::True;
1227 break;
1228 }
Chris Lattner192eacc2004-10-17 04:01:51 +00001229 }
Chris Lattner061da2f2004-01-13 05:51:55 +00001230
Chris Lattnerfd7bf722004-10-16 23:31:32 +00001231 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) {
1232 switch (Opcode) {
1233 case Instruction::Add:
1234 case Instruction::Sub:
Chris Lattnerfd7bf722004-10-16 23:31:32 +00001235 case Instruction::Xor:
1236 return UndefValue::get(V1->getType());
1237
1238 case Instruction::Mul:
1239 case Instruction::And:
1240 return Constant::getNullValue(V1->getType());
1241 case Instruction::Div:
1242 case Instruction::Rem:
1243 if (!isa<UndefValue>(V2)) // undef/X -> 0
1244 return Constant::getNullValue(V1->getType());
1245 return const_cast<Constant*>(V2); // X/undef -> undef
1246 case Instruction::Or: // X|undef -> -1
1247 return ConstantInt::getAllOnesValue(V1->getType());
1248 case Instruction::Shr:
1249 if (!isa<UndefValue>(V2)) {
1250 if (V1->getType()->isSigned())
1251 return const_cast<Constant*>(V1); // undef >>s X -> undef
1252 // undef >>u X -> 0
1253 } else if (isa<UndefValue>(V1)) {
1254 return const_cast<Constant*>(V1); // undef >> undef -> undef
1255 } else {
1256 if (V1->getType()->isSigned())
1257 return const_cast<Constant*>(V1); // X >>s undef -> X
1258 // X >>u undef -> 0
1259 }
1260 return Constant::getNullValue(V1->getType());
1261
1262 case Instruction::Shl:
1263 // undef << X -> 0 X << undef -> 0
1264 return Constant::getNullValue(V1->getType());
1265 }
1266 }
1267
Chris Lattner061da2f2004-01-13 05:51:55 +00001268 if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(V1)) {
1269 if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2)) {
1270 // There are many possible foldings we could do here. We should probably
1271 // at least fold add of a pointer with an integer into the appropriate
1272 // getelementptr. This will improve alias analysis a bit.
1273
1274
1275
1276
1277 } else {
1278 // Just implement a couple of simple identities.
1279 switch (Opcode) {
1280 case Instruction::Add:
1281 if (V2->isNullValue()) return const_cast<Constant*>(V1); // X + 0 == X
1282 break;
1283 case Instruction::Sub:
1284 if (V2->isNullValue()) return const_cast<Constant*>(V1); // X - 0 == X
1285 break;
1286 case Instruction::Mul:
1287 if (V2->isNullValue()) return const_cast<Constant*>(V2); // X * 0 == 0
1288 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
1289 if (CI->getRawValue() == 1)
1290 return const_cast<Constant*>(V1); // X * 1 == X
1291 break;
1292 case Instruction::Div:
1293 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
1294 if (CI->getRawValue() == 1)
1295 return const_cast<Constant*>(V1); // X / 1 == X
1296 break;
1297 case Instruction::Rem:
1298 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
1299 if (CI->getRawValue() == 1)
1300 return Constant::getNullValue(CI->getType()); // X % 1 == 0
1301 break;
1302 case Instruction::And:
1303 if (cast<ConstantIntegral>(V2)->isAllOnesValue())
1304 return const_cast<Constant*>(V1); // X & -1 == X
1305 if (V2->isNullValue()) return const_cast<Constant*>(V2); // X & 0 == 0
Chris Lattnerea0789c2004-03-08 06:17:35 +00001306 if (CE1->getOpcode() == Instruction::Cast &&
Reid Spenceraccd7c72004-07-17 23:47:01 +00001307 isa<GlobalValue>(CE1->getOperand(0))) {
Chris Lattner13128ab2004-10-11 22:52:25 +00001308 GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
Chris Lattnerea0789c2004-03-08 06:17:35 +00001309
1310 // Functions are at least 4-byte aligned. If and'ing the address of a
1311 // function with a constant < 4, fold it to zero.
1312 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
Reid Spenceraccd7c72004-07-17 23:47:01 +00001313 if (CI->getRawValue() < 4 && isa<Function>(CPR))
Chris Lattnerea0789c2004-03-08 06:17:35 +00001314 return Constant::getNullValue(CI->getType());
1315 }
Chris Lattner061da2f2004-01-13 05:51:55 +00001316 break;
1317 case Instruction::Or:
1318 if (V2->isNullValue()) return const_cast<Constant*>(V1); // X | 0 == X
1319 if (cast<ConstantIntegral>(V2)->isAllOnesValue())
1320 return const_cast<Constant*>(V2); // X | -1 == -1
1321 break;
1322 case Instruction::Xor:
1323 if (V2->isNullValue()) return const_cast<Constant*>(V1); // X ^ 0 == X
1324 break;
1325 }
1326 }
1327
1328 } else if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2)) {
1329 // If V2 is a constant expr and V1 isn't, flop them around and fold the
1330 // other way if possible.
1331 switch (Opcode) {
1332 case Instruction::Add:
1333 case Instruction::Mul:
1334 case Instruction::And:
1335 case Instruction::Or:
1336 case Instruction::Xor:
1337 case Instruction::SetEQ:
1338 case Instruction::SetNE:
1339 // No change of opcode required.
1340 return ConstantFoldBinaryInstruction(Opcode, V2, V1);
1341
1342 case Instruction::SetLT:
1343 case Instruction::SetGT:
1344 case Instruction::SetLE:
1345 case Instruction::SetGE:
1346 // Change the opcode as necessary to swap the operands.
1347 Opcode = SetCondInst::getSwappedCondition((Instruction::BinaryOps)Opcode);
1348 return ConstantFoldBinaryInstruction(Opcode, V2, V1);
1349
1350 case Instruction::Shl:
1351 case Instruction::Shr:
1352 case Instruction::Sub:
1353 case Instruction::Div:
1354 case Instruction::Rem:
1355 default: // These instructions cannot be flopped around.
1356 break;
1357 }
1358 }
1359 return 0;
Chris Lattner1dd054c2004-01-12 22:07:24 +00001360}
1361
1362Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
Chris Lattner13128ab2004-10-11 22:52:25 +00001363 const std::vector<Value*> &IdxList) {
Chris Lattner1dd054c2004-01-12 22:07:24 +00001364 if (IdxList.size() == 0 ||
Chris Lattner13128ab2004-10-11 22:52:25 +00001365 (IdxList.size() == 1 && cast<Constant>(IdxList[0])->isNullValue()))
Chris Lattner1dd054c2004-01-12 22:07:24 +00001366 return const_cast<Constant*>(C);
1367
Chris Lattnerf6013752004-10-17 21:54:55 +00001368 if (isa<UndefValue>(C)) {
1369 const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
1370 true);
1371 assert(Ty != 0 && "Invalid indices for GEP!");
1372 return UndefValue::get(PointerType::get(Ty));
1373 }
1374
1375 Constant *Idx0 = cast<Constant>(IdxList[0]);
Chris Lattner04b60fe2004-02-16 20:46:13 +00001376 if (C->isNullValue()) {
1377 bool isNull = true;
1378 for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
Chris Lattner13128ab2004-10-11 22:52:25 +00001379 if (!cast<Constant>(IdxList[i])->isNullValue()) {
Chris Lattner04b60fe2004-02-16 20:46:13 +00001380 isNull = false;
1381 break;
1382 }
1383 if (isNull) {
Chris Lattner13128ab2004-10-11 22:52:25 +00001384 const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
Chris Lattner04b60fe2004-02-16 20:46:13 +00001385 true);
1386 assert(Ty != 0 && "Invalid indices for GEP!");
1387 return ConstantPointerNull::get(PointerType::get(Ty));
1388 }
Chris Lattner4bbd4092004-07-15 01:16:59 +00001389
1390 if (IdxList.size() == 1) {
1391 const Type *ElTy = cast<PointerType>(C->getType())->getElementType();
1392 if (unsigned ElSize = ElTy->getPrimitiveSize()) {
1393 // gep null, C is equal to C*sizeof(nullty). If nullty is a known llvm
1394 // type, we can statically fold this.
1395 Constant *R = ConstantUInt::get(Type::UIntTy, ElSize);
Chris Lattner13128ab2004-10-11 22:52:25 +00001396 R = ConstantExpr::getCast(R, Idx0->getType());
1397 R = ConstantExpr::getMul(R, Idx0);
Chris Lattner4bbd4092004-07-15 01:16:59 +00001398 return ConstantExpr::getCast(R, C->getType());
1399 }
1400 }
Chris Lattner04b60fe2004-02-16 20:46:13 +00001401 }
Chris Lattner1dd054c2004-01-12 22:07:24 +00001402
1403 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1404 // Combine Indices - If the source pointer to this getelementptr instruction
1405 // is a getelementptr instruction, combine the indices of the two
1406 // getelementptr instructions into a single instruction.
1407 //
1408 if (CE->getOpcode() == Instruction::GetElementPtr) {
1409 const Type *LastTy = 0;
1410 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1411 I != E; ++I)
1412 LastTy = *I;
1413
Chris Lattner13128ab2004-10-11 22:52:25 +00001414 if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1415 std::vector<Value*> NewIndices;
Chris Lattner1dd054c2004-01-12 22:07:24 +00001416 NewIndices.reserve(IdxList.size() + CE->getNumOperands());
1417 for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
Chris Lattner13128ab2004-10-11 22:52:25 +00001418 NewIndices.push_back(CE->getOperand(i));
Chris Lattner1dd054c2004-01-12 22:07:24 +00001419
1420 // Add the last index of the source with the first index of the new GEP.
1421 // Make sure to handle the case when they are actually different types.
1422 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
Chris Lattner13128ab2004-10-11 22:52:25 +00001423 // Otherwise it must be an array.
1424 if (!Idx0->isNullValue()) {
Chris Lattner71068a02004-07-07 04:45:13 +00001425 const Type *IdxTy = Combined->getType();
Chris Lattner13128ab2004-10-11 22:52:25 +00001426 if (IdxTy != Idx0->getType()) IdxTy = Type::LongTy;
Misha Brukmanb1c93172005-04-21 23:48:37 +00001427 Combined =
Chris Lattner1dd054c2004-01-12 22:07:24 +00001428 ConstantExpr::get(Instruction::Add,
Chris Lattner13128ab2004-10-11 22:52:25 +00001429 ConstantExpr::getCast(Idx0, IdxTy),
Chris Lattner71068a02004-07-07 04:45:13 +00001430 ConstantExpr::getCast(Combined, IdxTy));
1431 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001432
Chris Lattner1dd054c2004-01-12 22:07:24 +00001433 NewIndices.push_back(Combined);
1434 NewIndices.insert(NewIndices.end(), IdxList.begin()+1, IdxList.end());
1435 return ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices);
1436 }
1437 }
1438
1439 // Implement folding of:
1440 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1441 // long 0, long 0)
1442 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1443 //
1444 if (CE->getOpcode() == Instruction::Cast && IdxList.size() > 1 &&
Chris Lattner13128ab2004-10-11 22:52:25 +00001445 Idx0->isNullValue())
Misha Brukmanb1c93172005-04-21 23:48:37 +00001446 if (const PointerType *SPT =
Chris Lattner1dd054c2004-01-12 22:07:24 +00001447 dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1448 if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1449 if (const ArrayType *CAT =
1450 dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1451 if (CAT->getElementType() == SAT->getElementType())
1452 return ConstantExpr::getGetElementPtr(
1453 (Constant*)CE->getOperand(0), IdxList);
1454 }
1455 return 0;
1456}
1457