blob: 6eab3f1d6af4f53d3622660baf5147f4b46dd7bb [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86CallingConv.h"
18#include "X86InstrBuilder.h"
19#include "X86InstrInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "X86RegisterInfo.h"
22#include "X86Subtarget.h"
23#include "X86TargetMachine.h"
24#include "llvm/Analysis/BranchProbabilityInfo.h"
25#include "llvm/CodeGen/Analysis.h"
26#include "llvm/CodeGen/FastISel.h"
27#include "llvm/CodeGen/FunctionLoweringInfo.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/IR/CallSite.h"
32#include "llvm/IR/CallingConv.h"
Reid Kleckner28865802016-04-14 18:29:59 +000033#include "llvm/IR/DebugInfo.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000034#include "llvm/IR/DerivedTypes.h"
35#include "llvm/IR/GetElementPtrTypeIterator.h"
36#include "llvm/IR/GlobalAlias.h"
37#include "llvm/IR/GlobalVariable.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Operator.h"
David Majnemerca194852015-02-10 22:00:34 +000041#include "llvm/MC/MCAsmInfo.h"
Rafael Espindolace4c2bc2015-06-23 12:21:54 +000042#include "llvm/MC/MCSymbol.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000043#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Target/TargetOptions.h"
45using namespace llvm;
46
47namespace {
48
49class X86FastISel final : public FastISel {
50 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
51 /// make the right decision when generating code for different targets.
52 const X86Subtarget *Subtarget;
53
54 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
55 /// floating point ops.
56 /// When SSE is available, use it for f32 operations.
57 /// When SSE2 is available, use it for f64 operations.
58 bool X86ScalarSSEf64;
59 bool X86ScalarSSEf32;
60
61public:
62 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
63 const TargetLibraryInfo *libInfo)
Eric Christophera1c535b2015-02-02 23:03:45 +000064 : FastISel(funcInfo, libInfo) {
65 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 X86ScalarSSEf64 = Subtarget->hasSSE2();
67 X86ScalarSSEf32 = Subtarget->hasSSE1();
68 }
69
70 bool fastSelectInstruction(const Instruction *I) override;
71
72 /// \brief The specified machine instr operand is a vreg, and that
73 /// vreg is being provided by the specified load instruction. If possible,
74 /// try to fold the load as an operand to the instruction, returning true if
75 /// possible.
76 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
77 const LoadInst *LI) override;
78
79 bool fastLowerArguments() override;
80 bool fastLowerCall(CallLoweringInfo &CLI) override;
81 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
82
83#include "X86GenFastISel.inc"
84
85private:
86 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL);
87
Pete Cooperd0dae3e2015-05-05 23:41:53 +000088 bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +000089 unsigned &ResultReg, unsigned Alignment = 1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000090
Pete Cooperd0dae3e2015-05-05 23:41:53 +000091 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000092 MachineMemOperand *MMO = nullptr, bool Aligned = false);
93 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +000094 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000095 MachineMemOperand *MMO = nullptr, bool Aligned = false);
96
97 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
98 unsigned &ResultReg);
99
100 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
101 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
102
103 bool X86SelectLoad(const Instruction *I);
104
105 bool X86SelectStore(const Instruction *I);
106
107 bool X86SelectRet(const Instruction *I);
108
109 bool X86SelectCmp(const Instruction *I);
110
111 bool X86SelectZExt(const Instruction *I);
112
113 bool X86SelectBranch(const Instruction *I);
114
115 bool X86SelectShift(const Instruction *I);
116
117 bool X86SelectDivRem(const Instruction *I);
118
119 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
120
121 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
122
123 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
124
125 bool X86SelectSelect(const Instruction *I);
126
127 bool X86SelectTrunc(const Instruction *I);
128
Andrea Di Biagio62622d22015-02-10 12:04:41 +0000129 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
130 const TargetRegisterClass *RC);
131
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000132 bool X86SelectFPExt(const Instruction *I);
133 bool X86SelectFPTrunc(const Instruction *I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +0000134 bool X86SelectSIToFP(const Instruction *I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000135
136 const X86InstrInfo *getInstrInfo() const {
Eric Christophera1c535b2015-02-02 23:03:45 +0000137 return Subtarget->getInstrInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000138 }
139 const X86TargetMachine *getTargetMachine() const {
140 return static_cast<const X86TargetMachine *>(&TM);
141 }
142
143 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
144
145 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
146 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
147 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
148 unsigned fastMaterializeConstant(const Constant *C) override;
149
150 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
151
152 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
153
154 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
155 /// computed in an SSE register, not on the X87 floating point stack.
156 bool isScalarFPTypeInSSEReg(EVT VT) const {
157 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
158 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
159 }
160
161 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
162
163 bool IsMemcpySmall(uint64_t Len);
164
165 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
166 X86AddressMode SrcAM, uint64_t Len);
167
168 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
169 const Value *Cond);
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000170
171 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
172 X86AddressMode &AM);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000173};
174
175} // end anonymous namespace.
176
177static std::pair<X86::CondCode, bool>
178getX86ConditionCode(CmpInst::Predicate Predicate) {
179 X86::CondCode CC = X86::COND_INVALID;
180 bool NeedSwap = false;
181 switch (Predicate) {
182 default: break;
183 // Floating-point Predicates
184 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
185 case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
186 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
187 case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
188 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
189 case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
190 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
191 case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
192 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
193 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
194 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
195 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
196 case CmpInst::FCMP_OEQ: // fall-through
197 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
198
199 // Integer Predicates
200 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
201 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
202 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
203 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
204 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
205 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
206 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
207 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
208 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
209 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
210 }
211
212 return std::make_pair(CC, NeedSwap);
213}
214
215static std::pair<unsigned, bool>
216getX86SSEConditionCode(CmpInst::Predicate Predicate) {
217 unsigned CC;
218 bool NeedSwap = false;
219
220 // SSE Condition code mapping:
221 // 0 - EQ
222 // 1 - LT
223 // 2 - LE
224 // 3 - UNORD
225 // 4 - NEQ
226 // 5 - NLT
227 // 6 - NLE
228 // 7 - ORD
229 switch (Predicate) {
230 default: llvm_unreachable("Unexpected predicate");
231 case CmpInst::FCMP_OEQ: CC = 0; break;
232 case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
233 case CmpInst::FCMP_OLT: CC = 1; break;
234 case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
235 case CmpInst::FCMP_OLE: CC = 2; break;
236 case CmpInst::FCMP_UNO: CC = 3; break;
237 case CmpInst::FCMP_UNE: CC = 4; break;
238 case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
239 case CmpInst::FCMP_UGE: CC = 5; break;
240 case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
241 case CmpInst::FCMP_UGT: CC = 6; break;
242 case CmpInst::FCMP_ORD: CC = 7; break;
243 case CmpInst::FCMP_UEQ:
244 case CmpInst::FCMP_ONE: CC = 8; break;
245 }
246
247 return std::make_pair(CC, NeedSwap);
248}
249
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000250/// \brief Adds a complex addressing mode to the given machine instr builder.
251/// Note, this will constrain the index register. If its not possible to
252/// constrain the given index register, then a new one will be created. The
253/// IndexReg field of the addressing mode will be updated to match in this case.
254const MachineInstrBuilder &
255X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
256 X86AddressMode &AM) {
257 // First constrain the index register. It needs to be a GR64_NOSP.
258 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
259 MIB->getNumOperands() +
260 X86::AddrIndexReg);
261 return ::addFullAddress(MIB, AM);
262}
263
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000264/// \brief Check if it is possible to fold the condition from the XALU intrinsic
265/// into the user. The condition code will only be updated on success.
266bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
267 const Value *Cond) {
268 if (!isa<ExtractValueInst>(Cond))
269 return false;
270
271 const auto *EV = cast<ExtractValueInst>(Cond);
272 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
273 return false;
274
275 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
276 MVT RetVT;
277 const Function *Callee = II->getCalledFunction();
278 Type *RetTy =
279 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
280 if (!isTypeLegal(RetTy, RetVT))
281 return false;
282
283 if (RetVT != MVT::i32 && RetVT != MVT::i64)
284 return false;
285
286 X86::CondCode TmpCC;
287 switch (II->getIntrinsicID()) {
288 default: return false;
289 case Intrinsic::sadd_with_overflow:
290 case Intrinsic::ssub_with_overflow:
291 case Intrinsic::smul_with_overflow:
292 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
293 case Intrinsic::uadd_with_overflow:
294 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
295 }
296
297 // Check if both instructions are in the same basic block.
298 if (II->getParent() != I->getParent())
299 return false;
300
301 // Make sure nothing is in the way
Duncan P. N. Exon Smithd77de642015-10-19 21:48:29 +0000302 BasicBlock::const_iterator Start(I);
303 BasicBlock::const_iterator End(II);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000304 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
305 // We only expect extractvalue instructions between the intrinsic and the
306 // instruction to be selected.
307 if (!isa<ExtractValueInst>(Itr))
308 return false;
309
310 // Check that the extractvalue operand comes from the intrinsic.
311 const auto *EVI = cast<ExtractValueInst>(Itr);
312 if (EVI->getAggregateOperand() != II)
313 return false;
314 }
315
316 CC = TmpCC;
317 return true;
318}
319
320bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
Mehdi Amini44ede332015-07-09 02:09:04 +0000321 EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000322 if (evt == MVT::Other || !evt.isSimple())
323 // Unhandled type. Halt "fast" selection and bail.
324 return false;
325
326 VT = evt.getSimpleVT();
327 // For now, require SSE/SSE2 for performing floating-point operations,
328 // since x87 requires additional work.
329 if (VT == MVT::f64 && !X86ScalarSSEf64)
330 return false;
331 if (VT == MVT::f32 && !X86ScalarSSEf32)
332 return false;
333 // Similarly, no f80 support yet.
334 if (VT == MVT::f80)
335 return false;
336 // We only handle legal types. For example, on x86-32 the instruction
337 // selector contains all of the 64-bit instructions from x86-64,
338 // under the assumption that i64 won't be used if the target doesn't
339 // support it.
340 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
341}
342
343#include "X86GenCallingConv.inc"
344
345/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
346/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
347/// Return true and the result register by reference if it is possible.
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000348bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000349 MachineMemOperand *MMO, unsigned &ResultReg,
350 unsigned Alignment) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000351 // Get opcode and regclass of the output for the given load instruction.
352 unsigned Opc = 0;
353 const TargetRegisterClass *RC = nullptr;
354 switch (VT.getSimpleVT().SimpleTy) {
355 default: return false;
356 case MVT::i1:
357 case MVT::i8:
358 Opc = X86::MOV8rm;
359 RC = &X86::GR8RegClass;
360 break;
361 case MVT::i16:
362 Opc = X86::MOV16rm;
363 RC = &X86::GR16RegClass;
364 break;
365 case MVT::i32:
366 Opc = X86::MOV32rm;
367 RC = &X86::GR32RegClass;
368 break;
369 case MVT::i64:
370 // Must be in x86-64 mode.
371 Opc = X86::MOV64rm;
372 RC = &X86::GR64RegClass;
373 break;
374 case MVT::f32:
375 if (X86ScalarSSEf32) {
376 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
377 RC = &X86::FR32RegClass;
378 } else {
379 Opc = X86::LD_Fp32m;
380 RC = &X86::RFP32RegClass;
381 }
382 break;
383 case MVT::f64:
384 if (X86ScalarSSEf64) {
385 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
386 RC = &X86::FR64RegClass;
387 } else {
388 Opc = X86::LD_Fp64m;
389 RC = &X86::RFP64RegClass;
390 }
391 break;
392 case MVT::f80:
393 // No f80 support yet.
394 return false;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000395 case MVT::v4f32:
396 if (Alignment >= 16)
397 Opc = Subtarget->hasAVX() ? X86::VMOVAPSrm : X86::MOVAPSrm;
398 else
399 Opc = Subtarget->hasAVX() ? X86::VMOVUPSrm : X86::MOVUPSrm;
400 RC = &X86::VR128RegClass;
401 break;
402 case MVT::v2f64:
403 if (Alignment >= 16)
404 Opc = Subtarget->hasAVX() ? X86::VMOVAPDrm : X86::MOVAPDrm;
405 else
406 Opc = Subtarget->hasAVX() ? X86::VMOVUPDrm : X86::MOVUPDrm;
407 RC = &X86::VR128RegClass;
408 break;
409 case MVT::v4i32:
410 case MVT::v2i64:
411 case MVT::v8i16:
412 case MVT::v16i8:
413 if (Alignment >= 16)
414 Opc = Subtarget->hasAVX() ? X86::VMOVDQArm : X86::MOVDQArm;
415 else
416 Opc = Subtarget->hasAVX() ? X86::VMOVDQUrm : X86::MOVDQUrm;
417 RC = &X86::VR128RegClass;
418 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000419 }
420
421 ResultReg = createResultReg(RC);
422 MachineInstrBuilder MIB =
423 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
424 addFullAddress(MIB, AM);
425 if (MMO)
426 MIB->addMemOperand(*FuncInfo.MF, MMO);
427 return true;
428}
429
430/// X86FastEmitStore - Emit a machine instruction to store a value Val of
431/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
432/// and a displacement offset, or a GlobalAddress,
433/// i.e. V. Return true if it is possible.
434bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000435 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000436 MachineMemOperand *MMO, bool Aligned) {
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000437 bool HasSSE2 = Subtarget->hasSSE2();
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000438 bool HasSSE4A = Subtarget->hasSSE4A();
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000439 bool HasAVX = Subtarget->hasAVX();
440 bool IsNonTemporal = MMO && MMO->isNonTemporal();
441
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000442 // Get opcode and regclass of the output for the given store instruction.
443 unsigned Opc = 0;
444 switch (VT.getSimpleVT().SimpleTy) {
445 case MVT::f80: // No f80 support yet.
446 default: return false;
447 case MVT::i1: {
448 // Mask out all but lowest bit.
449 unsigned AndResult = createResultReg(&X86::GR8RegClass);
450 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
451 TII.get(X86::AND8ri), AndResult)
452 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
453 ValReg = AndResult;
454 }
455 // FALLTHROUGH, handling i1 as i8.
456 case MVT::i8: Opc = X86::MOV8mr; break;
457 case MVT::i16: Opc = X86::MOV16mr; break;
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000458 case MVT::i32:
459 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
460 break;
461 case MVT::i64:
462 // Must be in x86-64 mode.
463 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
464 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000465 case MVT::f32:
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000466 if (X86ScalarSSEf32) {
467 if (IsNonTemporal && HasSSE4A)
468 Opc = X86::MOVNTSS;
469 else
470 Opc = HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
471 } else
472 Opc = X86::ST_Fp32m;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000473 break;
474 case MVT::f64:
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000475 if (X86ScalarSSEf32) {
476 if (IsNonTemporal && HasSSE4A)
477 Opc = X86::MOVNTSD;
478 else
479 Opc = HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
480 } else
481 Opc = X86::ST_Fp64m;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000482 break;
483 case MVT::v4f32:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000484 if (Aligned) {
485 if (IsNonTemporal)
486 Opc = HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
487 else
488 Opc = HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
489 } else
490 Opc = HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000491 break;
492 case MVT::v2f64:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000493 if (Aligned) {
494 if (IsNonTemporal)
495 Opc = HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
496 else
497 Opc = HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
498 } else
499 Opc = HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000500 break;
501 case MVT::v4i32:
502 case MVT::v2i64:
503 case MVT::v8i16:
504 case MVT::v16i8:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000505 if (Aligned) {
506 if (IsNonTemporal)
507 Opc = HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
508 else
509 Opc = HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
510 } else
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000511 Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
512 break;
513 }
514
Quentin Colombetbf200682016-04-27 22:33:42 +0000515 const MCInstrDesc &Desc = TII.get(Opc);
516 // Some of the instructions in the previous switch use FR128 instead
517 // of FR32 for ValReg. Make sure the register we feed the instruction
518 // matches its register class constraints.
519 // Note: This is fine to do a copy from FR32 to FR128, this is the
520 // same registers behind the scene and actually why it did not trigger
521 // any bugs before.
522 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000523 MachineInstrBuilder MIB =
Quentin Colombetbf200682016-04-27 22:33:42 +0000524 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000525 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
526 if (MMO)
527 MIB->addMemOperand(*FuncInfo.MF, MMO);
528
529 return true;
530}
531
532bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000533 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000534 MachineMemOperand *MMO, bool Aligned) {
535 // Handle 'null' like i32/i64 0.
536 if (isa<ConstantPointerNull>(Val))
537 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
538
539 // If this is a store of a simple constant, fold the constant into the store.
540 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
541 unsigned Opc = 0;
542 bool Signed = true;
543 switch (VT.getSimpleVT().SimpleTy) {
544 default: break;
545 case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
546 case MVT::i8: Opc = X86::MOV8mi; break;
547 case MVT::i16: Opc = X86::MOV16mi; break;
548 case MVT::i32: Opc = X86::MOV32mi; break;
549 case MVT::i64:
550 // Must be a 32-bit sign extended value.
551 if (isInt<32>(CI->getSExtValue()))
552 Opc = X86::MOV64mi32;
553 break;
554 }
555
556 if (Opc) {
557 MachineInstrBuilder MIB =
558 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
559 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
560 : CI->getZExtValue());
561 if (MMO)
562 MIB->addMemOperand(*FuncInfo.MF, MMO);
563 return true;
564 }
565 }
566
567 unsigned ValReg = getRegForValue(Val);
568 if (ValReg == 0)
569 return false;
570
571 bool ValKill = hasTrivialKill(Val);
572 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
573}
574
575/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
576/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
577/// ISD::SIGN_EXTEND).
578bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
579 unsigned Src, EVT SrcVT,
580 unsigned &ResultReg) {
581 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
582 Src, /*TODO: Kill=*/false);
583 if (RR == 0)
584 return false;
585
586 ResultReg = RR;
587 return true;
588}
589
590bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
591 // Handle constant address.
592 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
593 // Can't handle alternate code models yet.
594 if (TM.getCodeModel() != CodeModel::Small)
595 return false;
596
597 // Can't handle TLS yet.
598 if (GV->isThreadLocal())
599 return false;
600
601 // RIP-relative addresses can't have additional register operands, so if
602 // we've already folded stuff into the addressing mode, just force the
603 // global value into its own register, which we can use as the basereg.
604 if (!Subtarget->isPICStyleRIPRel() ||
605 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
606 // Okay, we've committed to selecting this global. Set up the address.
607 AM.GV = GV;
608
609 // Allow the subtarget to classify the global.
610 unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
611
612 // If this reference is relative to the pic base, set it now.
613 if (isGlobalRelativeToPICBase(GVFlags)) {
614 // FIXME: How do we know Base.Reg is free??
615 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
616 }
617
618 // Unless the ABI requires an extra load, return a direct reference to
619 // the global.
620 if (!isGlobalStubReference(GVFlags)) {
621 if (Subtarget->isPICStyleRIPRel()) {
622 // Use rip-relative addressing if we can. Above we verified that the
623 // base and index registers are unused.
624 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
625 AM.Base.Reg = X86::RIP;
626 }
627 AM.GVOpFlags = GVFlags;
628 return true;
629 }
630
631 // Ok, we need to do a load from a stub. If we've already loaded from
632 // this stub, reuse the loaded pointer, otherwise emit the load now.
633 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
634 unsigned LoadReg;
635 if (I != LocalValueMap.end() && I->second != 0) {
636 LoadReg = I->second;
637 } else {
638 // Issue load from stub.
639 unsigned Opc = 0;
640 const TargetRegisterClass *RC = nullptr;
641 X86AddressMode StubAM;
642 StubAM.Base.Reg = AM.Base.Reg;
643 StubAM.GV = GV;
644 StubAM.GVOpFlags = GVFlags;
645
646 // Prepare for inserting code in the local-value area.
647 SavePoint SaveInsertPt = enterLocalValueArea();
648
Mehdi Amini44ede332015-07-09 02:09:04 +0000649 if (TLI.getPointerTy(DL) == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000650 Opc = X86::MOV64rm;
651 RC = &X86::GR64RegClass;
652
653 if (Subtarget->isPICStyleRIPRel())
654 StubAM.Base.Reg = X86::RIP;
655 } else {
656 Opc = X86::MOV32rm;
657 RC = &X86::GR32RegClass;
658 }
659
660 LoadReg = createResultReg(RC);
661 MachineInstrBuilder LoadMI =
662 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
663 addFullAddress(LoadMI, StubAM);
664
665 // Ok, back to normal mode.
666 leaveLocalValueArea(SaveInsertPt);
667
668 // Prevent loading GV stub multiple times in same MBB.
669 LocalValueMap[V] = LoadReg;
670 }
671
672 // Now construct the final address. Note that the Disp, Scale,
673 // and Index values may already be set here.
674 AM.Base.Reg = LoadReg;
675 AM.GV = nullptr;
676 return true;
677 }
678 }
679
680 // If all else fails, try to materialize the value in a register.
681 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
682 if (AM.Base.Reg == 0) {
683 AM.Base.Reg = getRegForValue(V);
684 return AM.Base.Reg != 0;
685 }
686 if (AM.IndexReg == 0) {
687 assert(AM.Scale == 1 && "Scale with no index!");
688 AM.IndexReg = getRegForValue(V);
689 return AM.IndexReg != 0;
690 }
691 }
692
693 return false;
694}
695
696/// X86SelectAddress - Attempt to fill in an address from the given value.
697///
698bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
699 SmallVector<const Value *, 32> GEPs;
700redo_gep:
701 const User *U = nullptr;
702 unsigned Opcode = Instruction::UserOp1;
703 if (const Instruction *I = dyn_cast<Instruction>(V)) {
704 // Don't walk into other basic blocks; it's possible we haven't
705 // visited them yet, so the instructions may not yet be assigned
706 // virtual registers.
707 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
708 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
709 Opcode = I->getOpcode();
710 U = I;
711 }
712 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
713 Opcode = C->getOpcode();
714 U = C;
715 }
716
717 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
718 if (Ty->getAddressSpace() > 255)
719 // Fast instruction selection doesn't support the special
720 // address spaces.
721 return false;
722
723 switch (Opcode) {
724 default: break;
725 case Instruction::BitCast:
726 // Look past bitcasts.
727 return X86SelectAddress(U->getOperand(0), AM);
728
729 case Instruction::IntToPtr:
730 // Look past no-op inttoptrs.
Mehdi Amini44ede332015-07-09 02:09:04 +0000731 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
732 TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000733 return X86SelectAddress(U->getOperand(0), AM);
734 break;
735
736 case Instruction::PtrToInt:
737 // Look past no-op ptrtoints.
Mehdi Amini44ede332015-07-09 02:09:04 +0000738 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000739 return X86SelectAddress(U->getOperand(0), AM);
740 break;
741
742 case Instruction::Alloca: {
743 // Do static allocas.
744 const AllocaInst *A = cast<AllocaInst>(V);
745 DenseMap<const AllocaInst *, int>::iterator SI =
746 FuncInfo.StaticAllocaMap.find(A);
747 if (SI != FuncInfo.StaticAllocaMap.end()) {
748 AM.BaseType = X86AddressMode::FrameIndexBase;
749 AM.Base.FrameIndex = SI->second;
750 return true;
751 }
752 break;
753 }
754
755 case Instruction::Add: {
756 // Adds of constants are common and easy enough.
757 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
758 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
759 // They have to fit in the 32-bit signed displacement field though.
760 if (isInt<32>(Disp)) {
761 AM.Disp = (uint32_t)Disp;
762 return X86SelectAddress(U->getOperand(0), AM);
763 }
764 }
765 break;
766 }
767
768 case Instruction::GetElementPtr: {
769 X86AddressMode SavedAM = AM;
770
771 // Pattern-match simple GEPs.
772 uint64_t Disp = (int32_t)AM.Disp;
773 unsigned IndexReg = AM.IndexReg;
774 unsigned Scale = AM.Scale;
775 gep_type_iterator GTI = gep_type_begin(U);
776 // Iterate through the indices, folding what we can. Constants can be
777 // folded, and one dynamic index can be handled, if the scale is supported.
778 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
779 i != e; ++i, ++GTI) {
780 const Value *Op = *i;
781 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
782 const StructLayout *SL = DL.getStructLayout(STy);
783 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
784 continue;
785 }
786
787 // A array/variable index is always of the form i*S where S is the
788 // constant scale size. See if we can push the scale into immediates.
789 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
790 for (;;) {
791 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
792 // Constant-offset addressing.
793 Disp += CI->getSExtValue() * S;
794 break;
795 }
796 if (canFoldAddIntoGEP(U, Op)) {
797 // A compatible add with a constant operand. Fold the constant.
798 ConstantInt *CI =
799 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
800 Disp += CI->getSExtValue() * S;
801 // Iterate on the other operand.
802 Op = cast<AddOperator>(Op)->getOperand(0);
803 continue;
804 }
805 if (IndexReg == 0 &&
806 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
807 (S == 1 || S == 2 || S == 4 || S == 8)) {
808 // Scaled-index addressing.
809 Scale = S;
810 IndexReg = getRegForGEPIndex(Op).first;
811 if (IndexReg == 0)
812 return false;
813 break;
814 }
815 // Unsupported.
816 goto unsupported_gep;
817 }
818 }
819
820 // Check for displacement overflow.
821 if (!isInt<32>(Disp))
822 break;
823
824 AM.IndexReg = IndexReg;
825 AM.Scale = Scale;
826 AM.Disp = (uint32_t)Disp;
827 GEPs.push_back(V);
828
829 if (const GetElementPtrInst *GEP =
830 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
831 // Ok, the GEP indices were covered by constant-offset and scaled-index
832 // addressing. Update the address state and move on to examining the base.
833 V = GEP;
834 goto redo_gep;
835 } else if (X86SelectAddress(U->getOperand(0), AM)) {
836 return true;
837 }
838
839 // If we couldn't merge the gep value into this addr mode, revert back to
840 // our address and just match the value instead of completely failing.
841 AM = SavedAM;
842
843 for (SmallVectorImpl<const Value *>::reverse_iterator
844 I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
845 if (handleConstantAddresses(*I, AM))
846 return true;
847
848 return false;
849 unsupported_gep:
850 // Ok, the GEP indices weren't all covered.
851 break;
852 }
853 }
854
855 return handleConstantAddresses(V, AM);
856}
857
858/// X86SelectCallAddress - Attempt to fill in an address from the given value.
859///
860bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
861 const User *U = nullptr;
862 unsigned Opcode = Instruction::UserOp1;
863 const Instruction *I = dyn_cast<Instruction>(V);
864 // Record if the value is defined in the same basic block.
865 //
866 // This information is crucial to know whether or not folding an
867 // operand is valid.
868 // Indeed, FastISel generates or reuses a virtual register for all
869 // operands of all instructions it selects. Obviously, the definition and
870 // its uses must use the same virtual register otherwise the produced
871 // code is incorrect.
872 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
873 // registers for values that are alive across basic blocks. This ensures
874 // that the values are consistently set between across basic block, even
875 // if different instruction selection mechanisms are used (e.g., a mix of
876 // SDISel and FastISel).
877 // For values local to a basic block, the instruction selection process
878 // generates these virtual registers with whatever method is appropriate
879 // for its needs. In particular, FastISel and SDISel do not share the way
880 // local virtual registers are set.
881 // Therefore, this is impossible (or at least unsafe) to share values
882 // between basic blocks unless they use the same instruction selection
883 // method, which is not guarantee for X86.
884 // Moreover, things like hasOneUse could not be used accurately, if we
885 // allow to reference values across basic blocks whereas they are not
886 // alive across basic blocks initially.
887 bool InMBB = true;
888 if (I) {
889 Opcode = I->getOpcode();
890 U = I;
891 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
892 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
893 Opcode = C->getOpcode();
894 U = C;
895 }
896
897 switch (Opcode) {
898 default: break;
899 case Instruction::BitCast:
900 // Look past bitcasts if its operand is in the same BB.
901 if (InMBB)
902 return X86SelectCallAddress(U->getOperand(0), AM);
903 break;
904
905 case Instruction::IntToPtr:
906 // Look past no-op inttoptrs if its operand is in the same BB.
907 if (InMBB &&
Mehdi Amini44ede332015-07-09 02:09:04 +0000908 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
909 TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000910 return X86SelectCallAddress(U->getOperand(0), AM);
911 break;
912
913 case Instruction::PtrToInt:
914 // Look past no-op ptrtoints if its operand is in the same BB.
Mehdi Amini44ede332015-07-09 02:09:04 +0000915 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000916 return X86SelectCallAddress(U->getOperand(0), AM);
917 break;
918 }
919
920 // Handle constant address.
921 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
922 // Can't handle alternate code models yet.
923 if (TM.getCodeModel() != CodeModel::Small)
924 return false;
925
926 // RIP-relative addresses can't have additional register operands.
927 if (Subtarget->isPICStyleRIPRel() &&
928 (AM.Base.Reg != 0 || AM.IndexReg != 0))
929 return false;
930
931 // Can't handle DLL Import.
932 if (GV->hasDLLImportStorageClass())
933 return false;
934
935 // Can't handle TLS.
936 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
937 if (GVar->isThreadLocal())
938 return false;
939
940 // Okay, we've committed to selecting this global. Set up the basic address.
941 AM.GV = GV;
942
943 // No ABI requires an extra load for anything other than DLLImport, which
944 // we rejected above. Return a direct reference to the global.
945 if (Subtarget->isPICStyleRIPRel()) {
946 // Use rip-relative addressing if we can. Above we verified that the
947 // base and index registers are unused.
948 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
949 AM.Base.Reg = X86::RIP;
950 } else if (Subtarget->isPICStyleStubPIC()) {
951 AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
952 } else if (Subtarget->isPICStyleGOT()) {
953 AM.GVOpFlags = X86II::MO_GOTOFF;
954 }
955
956 return true;
957 }
958
959 // If all else fails, try to materialize the value in a register.
960 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
961 if (AM.Base.Reg == 0) {
962 AM.Base.Reg = getRegForValue(V);
963 return AM.Base.Reg != 0;
964 }
965 if (AM.IndexReg == 0) {
966 assert(AM.Scale == 1 && "Scale with no index!");
967 AM.IndexReg = getRegForValue(V);
968 return AM.IndexReg != 0;
969 }
970 }
971
972 return false;
973}
974
975
976/// X86SelectStore - Select and emit code to implement store instructions.
977bool X86FastISel::X86SelectStore(const Instruction *I) {
978 // Atomic stores need special handling.
979 const StoreInst *S = cast<StoreInst>(I);
980
981 if (S->isAtomic())
982 return false;
983
Manman Ren57518142016-04-11 21:08:06 +0000984 const Value *PtrV = I->getOperand(1);
985 if (TLI.supportSwiftError()) {
986 // Swifterror values can come from either a function parameter with
987 // swifterror attribute or an alloca with swifterror attribute.
988 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
989 if (Arg->hasSwiftErrorAttr())
990 return false;
991 }
992
993 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
994 if (Alloca->isSwiftError())
995 return false;
996 }
997 }
998
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000999 const Value *Val = S->getValueOperand();
1000 const Value *Ptr = S->getPointerOperand();
1001
1002 MVT VT;
1003 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1004 return false;
1005
1006 unsigned Alignment = S->getAlignment();
1007 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1008 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1009 Alignment = ABIAlignment;
1010 bool Aligned = Alignment >= ABIAlignment;
1011
1012 X86AddressMode AM;
1013 if (!X86SelectAddress(Ptr, AM))
1014 return false;
1015
1016 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1017}
1018
1019/// X86SelectRet - Select and emit code to implement ret instructions.
1020bool X86FastISel::X86SelectRet(const Instruction *I) {
1021 const ReturnInst *Ret = cast<ReturnInst>(I);
1022 const Function &F = *I->getParent()->getParent();
1023 const X86MachineFunctionInfo *X86MFInfo =
1024 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1025
1026 if (!FuncInfo.CanLowerReturn)
1027 return false;
1028
Manman Ren57518142016-04-11 21:08:06 +00001029 if (TLI.supportSwiftError() &&
1030 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1031 return false;
1032
Manman Rened967f32016-01-12 01:08:46 +00001033 if (TLI.supportSplitCSR(FuncInfo.MF))
1034 return false;
1035
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001036 CallingConv::ID CC = F.getCallingConv();
1037 if (CC != CallingConv::C &&
1038 CC != CallingConv::Fast &&
1039 CC != CallingConv::X86_FastCall &&
1040 CC != CallingConv::X86_64_SysV)
1041 return false;
1042
1043 if (Subtarget->isCallingConvWin64(CC))
1044 return false;
1045
1046 // Don't handle popping bytes on return for now.
1047 if (X86MFInfo->getBytesToPopOnReturn() != 0)
1048 return false;
1049
1050 // fastcc with -tailcallopt is intended to provide a guaranteed
1051 // tail call optimization. Fastisel doesn't know how to do that.
1052 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1053 return false;
1054
1055 // Let SDISel handle vararg functions.
1056 if (F.isVarArg())
1057 return false;
1058
1059 // Build a list of return value registers.
1060 SmallVector<unsigned, 4> RetRegs;
1061
1062 if (Ret->getNumOperands() > 0) {
1063 SmallVector<ISD::OutputArg, 4> Outs;
Mehdi Amini44ede332015-07-09 02:09:04 +00001064 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001065
1066 // Analyze operands of the call, assigning locations to each operand.
1067 SmallVector<CCValAssign, 16> ValLocs;
1068 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1069 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1070
1071 const Value *RV = Ret->getOperand(0);
1072 unsigned Reg = getRegForValue(RV);
1073 if (Reg == 0)
1074 return false;
1075
1076 // Only handle a single return value for now.
1077 if (ValLocs.size() != 1)
1078 return false;
1079
1080 CCValAssign &VA = ValLocs[0];
1081
1082 // Don't bother handling odd stuff for now.
1083 if (VA.getLocInfo() != CCValAssign::Full)
1084 return false;
1085 // Only handle register returns for now.
1086 if (!VA.isRegLoc())
1087 return false;
1088
1089 // The calling-convention tables for x87 returns don't tell
1090 // the whole story.
1091 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1092 return false;
1093
1094 unsigned SrcReg = Reg + VA.getValNo();
Mehdi Amini44ede332015-07-09 02:09:04 +00001095 EVT SrcVT = TLI.getValueType(DL, RV->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001096 EVT DstVT = VA.getValVT();
1097 // Special handling for extended integers.
1098 if (SrcVT != DstVT) {
1099 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1100 return false;
1101
1102 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1103 return false;
1104
1105 assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1106
1107 if (SrcVT == MVT::i1) {
1108 if (Outs[0].Flags.isSExt())
1109 return false;
1110 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1111 SrcVT = MVT::i8;
1112 }
1113 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1114 ISD::SIGN_EXTEND;
1115 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1116 SrcReg, /*TODO: Kill=*/false);
1117 }
1118
1119 // Make the copy.
1120 unsigned DstReg = VA.getLocReg();
1121 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1122 // Avoid a cross-class copy. This is very unlikely.
1123 if (!SrcRC->contains(DstReg))
1124 return false;
1125 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1126 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1127
1128 // Add register to return instruction.
1129 RetRegs.push_back(VA.getLocReg());
1130 }
1131
Manman Ren1c3f65a2016-04-26 18:08:06 +00001132 // Swift calling convention does not require we copy the sret argument
1133 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1134
Dimitry Andric227b9282016-01-03 17:22:03 +00001135 // All x86 ABIs require that for returning structs by value we copy
1136 // the sret argument into %rax/%eax (depending on ABI) for the return.
1137 // We saved the argument into a virtual register in the entry block,
Michael Kuperstein2ea81ba2015-12-28 14:39:21 +00001138 // so now we copy the value out and into %rax/%eax.
Manman Ren1c3f65a2016-04-26 18:08:06 +00001139 if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001140 unsigned Reg = X86MFInfo->getSRetReturnReg();
1141 assert(Reg &&
1142 "SRetReturnReg should have been set in LowerFormalArguments()!");
1143 unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
1144 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1145 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1146 RetRegs.push_back(RetReg);
1147 }
1148
1149 // Now emit the RET.
1150 MachineInstrBuilder MIB =
1151 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1152 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1153 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1154 MIB.addReg(RetRegs[i], RegState::Implicit);
1155 return true;
1156}
1157
1158/// X86SelectLoad - Select and emit code to implement load instructions.
1159///
1160bool X86FastISel::X86SelectLoad(const Instruction *I) {
1161 const LoadInst *LI = cast<LoadInst>(I);
1162
1163 // Atomic loads need special handling.
1164 if (LI->isAtomic())
1165 return false;
1166
Manman Ren57518142016-04-11 21:08:06 +00001167 const Value *SV = I->getOperand(0);
1168 if (TLI.supportSwiftError()) {
1169 // Swifterror values can come from either a function parameter with
1170 // swifterror attribute or an alloca with swifterror attribute.
1171 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1172 if (Arg->hasSwiftErrorAttr())
1173 return false;
1174 }
1175
1176 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1177 if (Alloca->isSwiftError())
1178 return false;
1179 }
1180 }
1181
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001182 MVT VT;
1183 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1184 return false;
1185
1186 const Value *Ptr = LI->getPointerOperand();
1187
1188 X86AddressMode AM;
1189 if (!X86SelectAddress(Ptr, AM))
1190 return false;
1191
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001192 unsigned Alignment = LI->getAlignment();
1193 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1194 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1195 Alignment = ABIAlignment;
1196
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001197 unsigned ResultReg = 0;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001198 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1199 Alignment))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001200 return false;
1201
1202 updateValueMap(I, ResultReg);
1203 return true;
1204}
1205
1206static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1207 bool HasAVX = Subtarget->hasAVX();
1208 bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1209 bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1210
1211 switch (VT.getSimpleVT().SimpleTy) {
1212 default: return 0;
1213 case MVT::i8: return X86::CMP8rr;
1214 case MVT::i16: return X86::CMP16rr;
1215 case MVT::i32: return X86::CMP32rr;
1216 case MVT::i64: return X86::CMP64rr;
1217 case MVT::f32:
1218 return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
1219 case MVT::f64:
1220 return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
1221 }
1222}
1223
Rafael Espindola19141f22015-03-16 14:05:49 +00001224/// If we have a comparison with RHS as the RHS of the comparison, return an
1225/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001226static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
Rafael Espindola933f51a2015-03-16 14:25:08 +00001227 int64_t Val = RHSC->getSExtValue();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001228 switch (VT.getSimpleVT().SimpleTy) {
1229 // Otherwise, we can't fold the immediate into this comparison.
Rafael Espindola19141f22015-03-16 14:05:49 +00001230 default:
1231 return 0;
1232 case MVT::i8:
1233 return X86::CMP8ri;
1234 case MVT::i16:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001235 if (isInt<8>(Val))
1236 return X86::CMP16ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001237 return X86::CMP16ri;
1238 case MVT::i32:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001239 if (isInt<8>(Val))
1240 return X86::CMP32ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001241 return X86::CMP32ri;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001242 case MVT::i64:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001243 if (isInt<8>(Val))
1244 return X86::CMP64ri8;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001245 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1246 // field.
Rafael Espindola933f51a2015-03-16 14:25:08 +00001247 if (isInt<32>(Val))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001248 return X86::CMP64ri32;
1249 return 0;
1250 }
1251}
1252
1253bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
1254 EVT VT, DebugLoc CurDbgLoc) {
1255 unsigned Op0Reg = getRegForValue(Op0);
1256 if (Op0Reg == 0) return false;
1257
1258 // Handle 'null' like i32/i64 0.
1259 if (isa<ConstantPointerNull>(Op1))
1260 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1261
1262 // We have two options: compare with register or immediate. If the RHS of
1263 // the compare is an immediate that we can fold into this compare, use
1264 // CMPri, otherwise use CMPrr.
1265 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1266 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1267 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1268 .addReg(Op0Reg)
1269 .addImm(Op1C->getSExtValue());
1270 return true;
1271 }
1272 }
1273
1274 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1275 if (CompareOpc == 0) return false;
1276
1277 unsigned Op1Reg = getRegForValue(Op1);
1278 if (Op1Reg == 0) return false;
1279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1280 .addReg(Op0Reg)
1281 .addReg(Op1Reg);
1282
1283 return true;
1284}
1285
1286bool X86FastISel::X86SelectCmp(const Instruction *I) {
1287 const CmpInst *CI = cast<CmpInst>(I);
1288
1289 MVT VT;
1290 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1291 return false;
1292
1293 // Try to optimize or fold the cmp.
1294 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1295 unsigned ResultReg = 0;
1296 switch (Predicate) {
1297 default: break;
1298 case CmpInst::FCMP_FALSE: {
1299 ResultReg = createResultReg(&X86::GR32RegClass);
1300 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1301 ResultReg);
1302 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1303 X86::sub_8bit);
1304 if (!ResultReg)
1305 return false;
1306 break;
1307 }
1308 case CmpInst::FCMP_TRUE: {
1309 ResultReg = createResultReg(&X86::GR8RegClass);
1310 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1311 ResultReg).addImm(1);
1312 break;
1313 }
1314 }
1315
1316 if (ResultReg) {
1317 updateValueMap(I, ResultReg);
1318 return true;
1319 }
1320
1321 const Value *LHS = CI->getOperand(0);
1322 const Value *RHS = CI->getOperand(1);
1323
1324 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1325 // We don't have to materialize a zero constant for this case and can just use
1326 // %x again on the RHS.
1327 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1328 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1329 if (RHSC && RHSC->isNullValue())
1330 RHS = LHS;
1331 }
1332
1333 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1334 static unsigned SETFOpcTable[2][3] = {
1335 { X86::SETEr, X86::SETNPr, X86::AND8rr },
1336 { X86::SETNEr, X86::SETPr, X86::OR8rr }
1337 };
1338 unsigned *SETFOpc = nullptr;
1339 switch (Predicate) {
1340 default: break;
1341 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1342 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1343 }
1344
1345 ResultReg = createResultReg(&X86::GR8RegClass);
1346 if (SETFOpc) {
1347 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1348 return false;
1349
1350 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1351 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1352 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1353 FlagReg1);
1354 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1355 FlagReg2);
1356 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1357 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1358 updateValueMap(I, ResultReg);
1359 return true;
1360 }
1361
1362 X86::CondCode CC;
1363 bool SwapArgs;
1364 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1365 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1366 unsigned Opc = X86::getSETFromCond(CC);
1367
1368 if (SwapArgs)
1369 std::swap(LHS, RHS);
1370
1371 // Emit a compare of LHS/RHS.
1372 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1373 return false;
1374
1375 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1376 updateValueMap(I, ResultReg);
1377 return true;
1378}
1379
1380bool X86FastISel::X86SelectZExt(const Instruction *I) {
Mehdi Amini44ede332015-07-09 02:09:04 +00001381 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001382 if (!TLI.isTypeLegal(DstVT))
1383 return false;
1384
1385 unsigned ResultReg = getRegForValue(I->getOperand(0));
1386 if (ResultReg == 0)
1387 return false;
1388
1389 // Handle zero-extension from i1 to i8, which is common.
Mehdi Amini44ede332015-07-09 02:09:04 +00001390 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001391 if (SrcVT.SimpleTy == MVT::i1) {
1392 // Set the high bits to zero.
1393 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1394 SrcVT = MVT::i8;
1395
1396 if (ResultReg == 0)
1397 return false;
1398 }
1399
1400 if (DstVT == MVT::i64) {
1401 // Handle extension to 64-bits via sub-register shenanigans.
1402 unsigned MovInst;
1403
1404 switch (SrcVT.SimpleTy) {
1405 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1406 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1407 case MVT::i32: MovInst = X86::MOV32rr; break;
1408 default: llvm_unreachable("Unexpected zext to i64 source type");
1409 }
1410
1411 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1412 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1413 .addReg(ResultReg);
1414
1415 ResultReg = createResultReg(&X86::GR64RegClass);
1416 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1417 ResultReg)
1418 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1419 } else if (DstVT != MVT::i8) {
1420 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1421 ResultReg, /*Kill=*/true);
1422 if (ResultReg == 0)
1423 return false;
1424 }
1425
1426 updateValueMap(I, ResultReg);
1427 return true;
1428}
1429
1430bool X86FastISel::X86SelectBranch(const Instruction *I) {
1431 // Unconditional branches are selected by tablegen-generated code.
1432 // Handle a conditional branch.
1433 const BranchInst *BI = cast<BranchInst>(I);
1434 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1435 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1436
1437 // Fold the common case of a conditional branch with a comparison
1438 // in the same block (values defined on other blocks may not have
1439 // initialized registers).
1440 X86::CondCode CC;
1441 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1442 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
Mehdi Amini44ede332015-07-09 02:09:04 +00001443 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001444
1445 // Try to optimize or fold the cmp.
1446 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1447 switch (Predicate) {
1448 default: break;
1449 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1450 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
1451 }
1452
1453 const Value *CmpLHS = CI->getOperand(0);
1454 const Value *CmpRHS = CI->getOperand(1);
1455
1456 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1457 // 0.0.
1458 // We don't have to materialize a zero constant for this case and can just
1459 // use %x again on the RHS.
1460 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1461 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1462 if (CmpRHSC && CmpRHSC->isNullValue())
1463 CmpRHS = CmpLHS;
1464 }
1465
1466 // Try to take advantage of fallthrough opportunities.
1467 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1468 std::swap(TrueMBB, FalseMBB);
1469 Predicate = CmpInst::getInversePredicate(Predicate);
1470 }
1471
1472 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1473 // code check. Instead two branch instructions are required to check all
1474 // the flags. First we change the predicate to a supported condition code,
1475 // which will be the first branch. Later one we will emit the second
1476 // branch.
1477 bool NeedExtraBranch = false;
1478 switch (Predicate) {
1479 default: break;
1480 case CmpInst::FCMP_OEQ:
1481 std::swap(TrueMBB, FalseMBB); // fall-through
1482 case CmpInst::FCMP_UNE:
1483 NeedExtraBranch = true;
1484 Predicate = CmpInst::FCMP_ONE;
1485 break;
1486 }
1487
1488 bool SwapArgs;
1489 unsigned BranchOpc;
1490 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1491 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1492
1493 BranchOpc = X86::GetCondBranchFromCond(CC);
1494 if (SwapArgs)
1495 std::swap(CmpLHS, CmpRHS);
1496
1497 // Emit a compare of the LHS and RHS, setting the flags.
1498 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1499 return false;
1500
1501 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1502 .addMBB(TrueMBB);
1503
1504 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1505 // to UNE above).
1506 if (NeedExtraBranch) {
1507 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1508 .addMBB(TrueMBB);
1509 }
1510
Matthias Braun17af6072015-08-26 01:38:00 +00001511 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001512 return true;
1513 }
1514 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1515 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1516 // typically happen for _Bool and C++ bools.
1517 MVT SourceVT;
1518 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1519 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1520 unsigned TestOpc = 0;
1521 switch (SourceVT.SimpleTy) {
1522 default: break;
1523 case MVT::i8: TestOpc = X86::TEST8ri; break;
1524 case MVT::i16: TestOpc = X86::TEST16ri; break;
1525 case MVT::i32: TestOpc = X86::TEST32ri; break;
1526 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1527 }
1528 if (TestOpc) {
1529 unsigned OpReg = getRegForValue(TI->getOperand(0));
1530 if (OpReg == 0) return false;
1531 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1532 .addReg(OpReg).addImm(1);
1533
1534 unsigned JmpOpc = X86::JNE_1;
1535 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1536 std::swap(TrueMBB, FalseMBB);
1537 JmpOpc = X86::JE_1;
1538 }
1539
1540 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1541 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001542
1543 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001544 return true;
1545 }
1546 }
1547 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1548 // Fake request the condition, otherwise the intrinsic might be completely
1549 // optimized away.
1550 unsigned TmpReg = getRegForValue(BI->getCondition());
1551 if (TmpReg == 0)
1552 return false;
1553
1554 unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1555
1556 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1557 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001558 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001559 return true;
1560 }
1561
1562 // Otherwise do a clumsy setcc and re-test it.
1563 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1564 // in an explicit cast, so make sure to handle that correctly.
1565 unsigned OpReg = getRegForValue(BI->getCondition());
1566 if (OpReg == 0) return false;
1567
1568 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1569 .addReg(OpReg).addImm(1);
1570 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1571 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001572 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001573 return true;
1574}
1575
1576bool X86FastISel::X86SelectShift(const Instruction *I) {
1577 unsigned CReg = 0, OpReg = 0;
1578 const TargetRegisterClass *RC = nullptr;
1579 if (I->getType()->isIntegerTy(8)) {
1580 CReg = X86::CL;
1581 RC = &X86::GR8RegClass;
1582 switch (I->getOpcode()) {
1583 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1584 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1585 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1586 default: return false;
1587 }
1588 } else if (I->getType()->isIntegerTy(16)) {
1589 CReg = X86::CX;
1590 RC = &X86::GR16RegClass;
1591 switch (I->getOpcode()) {
1592 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1593 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1594 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1595 default: return false;
1596 }
1597 } else if (I->getType()->isIntegerTy(32)) {
1598 CReg = X86::ECX;
1599 RC = &X86::GR32RegClass;
1600 switch (I->getOpcode()) {
1601 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1602 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1603 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1604 default: return false;
1605 }
1606 } else if (I->getType()->isIntegerTy(64)) {
1607 CReg = X86::RCX;
1608 RC = &X86::GR64RegClass;
1609 switch (I->getOpcode()) {
1610 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1611 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1612 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1613 default: return false;
1614 }
1615 } else {
1616 return false;
1617 }
1618
1619 MVT VT;
1620 if (!isTypeLegal(I->getType(), VT))
1621 return false;
1622
1623 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1624 if (Op0Reg == 0) return false;
1625
1626 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1627 if (Op1Reg == 0) return false;
1628 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1629 CReg).addReg(Op1Reg);
1630
1631 // The shift instruction uses X86::CL. If we defined a super-register
1632 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1633 if (CReg != X86::CL)
1634 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1635 TII.get(TargetOpcode::KILL), X86::CL)
1636 .addReg(CReg, RegState::Kill);
1637
1638 unsigned ResultReg = createResultReg(RC);
1639 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1640 .addReg(Op0Reg);
1641 updateValueMap(I, ResultReg);
1642 return true;
1643}
1644
1645bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1646 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1647 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1648 const static bool S = true; // IsSigned
1649 const static bool U = false; // !IsSigned
1650 const static unsigned Copy = TargetOpcode::COPY;
1651 // For the X86 DIV/IDIV instruction, in most cases the dividend
1652 // (numerator) must be in a specific register pair highreg:lowreg,
1653 // producing the quotient in lowreg and the remainder in highreg.
1654 // For most data types, to set up the instruction, the dividend is
1655 // copied into lowreg, and lowreg is sign-extended or zero-extended
1656 // into highreg. The exception is i8, where the dividend is defined
1657 // as a single register rather than a register pair, and we
1658 // therefore directly sign-extend or zero-extend the dividend into
1659 // lowreg, instead of copying, and ignore the highreg.
1660 const static struct DivRemEntry {
1661 // The following portion depends only on the data type.
1662 const TargetRegisterClass *RC;
1663 unsigned LowInReg; // low part of the register pair
1664 unsigned HighInReg; // high part of the register pair
1665 // The following portion depends on both the data type and the operation.
1666 struct DivRemResult {
1667 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1668 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1669 // highreg, or copying a zero into highreg.
1670 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1671 // zero/sign-extending into lowreg for i8.
1672 unsigned DivRemResultReg; // Register containing the desired result.
1673 bool IsOpSigned; // Whether to use signed or unsigned form.
1674 } ResultTable[NumOps];
1675 } OpTable[NumTypes] = {
1676 { &X86::GR8RegClass, X86::AX, 0, {
1677 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1678 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1679 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1680 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1681 }
1682 }, // i8
1683 { &X86::GR16RegClass, X86::AX, X86::DX, {
1684 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1685 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1686 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1687 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1688 }
1689 }, // i16
1690 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1691 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1692 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1693 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1694 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1695 }
1696 }, // i32
1697 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1698 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1699 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1700 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1701 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1702 }
1703 }, // i64
1704 };
1705
1706 MVT VT;
1707 if (!isTypeLegal(I->getType(), VT))
1708 return false;
1709
1710 unsigned TypeIndex, OpIndex;
1711 switch (VT.SimpleTy) {
1712 default: return false;
1713 case MVT::i8: TypeIndex = 0; break;
1714 case MVT::i16: TypeIndex = 1; break;
1715 case MVT::i32: TypeIndex = 2; break;
1716 case MVT::i64: TypeIndex = 3;
1717 if (!Subtarget->is64Bit())
1718 return false;
1719 break;
1720 }
1721
1722 switch (I->getOpcode()) {
1723 default: llvm_unreachable("Unexpected div/rem opcode");
1724 case Instruction::SDiv: OpIndex = 0; break;
1725 case Instruction::SRem: OpIndex = 1; break;
1726 case Instruction::UDiv: OpIndex = 2; break;
1727 case Instruction::URem: OpIndex = 3; break;
1728 }
1729
1730 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1731 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1732 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1733 if (Op0Reg == 0)
1734 return false;
1735 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1736 if (Op1Reg == 0)
1737 return false;
1738
1739 // Move op0 into low-order input register.
1740 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1741 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1742 // Zero-extend or sign-extend into high-order input register.
1743 if (OpEntry.OpSignExtend) {
1744 if (OpEntry.IsOpSigned)
1745 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1746 TII.get(OpEntry.OpSignExtend));
1747 else {
1748 unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1749 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1750 TII.get(X86::MOV32r0), Zero32);
1751
1752 // Copy the zero into the appropriate sub/super/identical physical
1753 // register. Unfortunately the operations needed are not uniform enough
1754 // to fit neatly into the table above.
1755 if (VT.SimpleTy == MVT::i16) {
1756 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1757 TII.get(Copy), TypeEntry.HighInReg)
1758 .addReg(Zero32, 0, X86::sub_16bit);
1759 } else if (VT.SimpleTy == MVT::i32) {
1760 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1761 TII.get(Copy), TypeEntry.HighInReg)
1762 .addReg(Zero32);
1763 } else if (VT.SimpleTy == MVT::i64) {
1764 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1765 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1766 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1767 }
1768 }
1769 }
1770 // Generate the DIV/IDIV instruction.
1771 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1772 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1773 // For i8 remainder, we can't reference AH directly, as we'll end
1774 // up with bogus copies like %R9B = COPY %AH. Reference AX
1775 // instead to prevent AH references in a REX instruction.
1776 //
1777 // The current assumption of the fast register allocator is that isel
1778 // won't generate explicit references to the GPR8_NOREX registers. If
1779 // the allocator and/or the backend get enhanced to be more robust in
1780 // that regard, this can be, and should be, removed.
1781 unsigned ResultReg = 0;
1782 if ((I->getOpcode() == Instruction::SRem ||
1783 I->getOpcode() == Instruction::URem) &&
1784 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1785 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1786 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1787 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1788 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1789
1790 // Shift AX right by 8 bits instead of using AH.
1791 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1792 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1793
1794 // Now reference the 8-bit subreg of the result.
1795 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
1796 /*Kill=*/true, X86::sub_8bit);
1797 }
1798 // Copy the result out of the physreg if we haven't already.
1799 if (!ResultReg) {
1800 ResultReg = createResultReg(TypeEntry.RC);
1801 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
1802 .addReg(OpEntry.DivRemResultReg);
1803 }
1804 updateValueMap(I, ResultReg);
1805
1806 return true;
1807}
1808
1809/// \brief Emit a conditional move instruction (if the are supported) to lower
1810/// the select.
1811bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
1812 // Check if the subtarget supports these instructions.
1813 if (!Subtarget->hasCMov())
1814 return false;
1815
1816 // FIXME: Add support for i8.
1817 if (RetVT < MVT::i16 || RetVT > MVT::i64)
1818 return false;
1819
1820 const Value *Cond = I->getOperand(0);
1821 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
1822 bool NeedTest = true;
1823 X86::CondCode CC = X86::COND_NE;
1824
1825 // Optimize conditions coming from a compare if both instructions are in the
1826 // same basic block (values defined in other basic blocks may not have
1827 // initialized registers).
1828 const auto *CI = dyn_cast<CmpInst>(Cond);
1829 if (CI && (CI->getParent() == I->getParent())) {
1830 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1831
1832 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1833 static unsigned SETFOpcTable[2][3] = {
1834 { X86::SETNPr, X86::SETEr , X86::TEST8rr },
1835 { X86::SETPr, X86::SETNEr, X86::OR8rr }
1836 };
1837 unsigned *SETFOpc = nullptr;
1838 switch (Predicate) {
1839 default: break;
1840 case CmpInst::FCMP_OEQ:
1841 SETFOpc = &SETFOpcTable[0][0];
1842 Predicate = CmpInst::ICMP_NE;
1843 break;
1844 case CmpInst::FCMP_UNE:
1845 SETFOpc = &SETFOpcTable[1][0];
1846 Predicate = CmpInst::ICMP_NE;
1847 break;
1848 }
1849
1850 bool NeedSwap;
1851 std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
1852 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1853
1854 const Value *CmpLHS = CI->getOperand(0);
1855 const Value *CmpRHS = CI->getOperand(1);
1856 if (NeedSwap)
1857 std::swap(CmpLHS, CmpRHS);
1858
Mehdi Amini44ede332015-07-09 02:09:04 +00001859 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001860 // Emit a compare of the LHS and RHS, setting the flags.
1861 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
1862 return false;
1863
1864 if (SETFOpc) {
1865 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1866 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1867 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1868 FlagReg1);
1869 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1870 FlagReg2);
1871 auto const &II = TII.get(SETFOpc[2]);
1872 if (II.getNumDefs()) {
1873 unsigned TmpReg = createResultReg(&X86::GR8RegClass);
1874 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
1875 .addReg(FlagReg2).addReg(FlagReg1);
1876 } else {
1877 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1878 .addReg(FlagReg2).addReg(FlagReg1);
1879 }
1880 }
1881 NeedTest = false;
1882 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
1883 // Fake request the condition, otherwise the intrinsic might be completely
1884 // optimized away.
1885 unsigned TmpReg = getRegForValue(Cond);
1886 if (TmpReg == 0)
1887 return false;
1888
1889 NeedTest = false;
1890 }
1891
1892 if (NeedTest) {
1893 // Selects operate on i1, however, CondReg is 8 bits width and may contain
1894 // garbage. Indeed, only the less significant bit is supposed to be
1895 // accurate. If we read more than the lsb, we may see non-zero values
1896 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
1897 // the select. This is achieved by performing TEST against 1.
1898 unsigned CondReg = getRegForValue(Cond);
1899 if (CondReg == 0)
1900 return false;
1901 bool CondIsKill = hasTrivialKill(Cond);
1902
1903 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1904 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
1905 }
1906
1907 const Value *LHS = I->getOperand(1);
1908 const Value *RHS = I->getOperand(2);
1909
1910 unsigned RHSReg = getRegForValue(RHS);
1911 bool RHSIsKill = hasTrivialKill(RHS);
1912
1913 unsigned LHSReg = getRegForValue(LHS);
1914 bool LHSIsKill = hasTrivialKill(LHS);
1915
1916 if (!LHSReg || !RHSReg)
1917 return false;
1918
1919 unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
1920 unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
1921 LHSReg, LHSIsKill);
1922 updateValueMap(I, ResultReg);
1923 return true;
1924}
1925
Sanjay Patel302404b2015-03-05 21:46:54 +00001926/// \brief Emit SSE or AVX instructions to lower the select.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001927///
1928/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
1929/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
Sanjay Patel302404b2015-03-05 21:46:54 +00001930/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001931bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
1932 // Optimize conditions coming from a compare if both instructions are in the
1933 // same basic block (values defined in other basic blocks may not have
1934 // initialized registers).
1935 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
1936 if (!CI || (CI->getParent() != I->getParent()))
1937 return false;
1938
1939 if (I->getType() != CI->getOperand(0)->getType() ||
1940 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
1941 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
1942 return false;
1943
1944 const Value *CmpLHS = CI->getOperand(0);
1945 const Value *CmpRHS = CI->getOperand(1);
1946 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1947
1948 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1949 // We don't have to materialize a zero constant for this case and can just use
1950 // %x again on the RHS.
1951 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1952 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1953 if (CmpRHSC && CmpRHSC->isNullValue())
1954 CmpRHS = CmpLHS;
1955 }
1956
1957 unsigned CC;
1958 bool NeedSwap;
1959 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
1960 if (CC > 7)
1961 return false;
1962
1963 if (NeedSwap)
1964 std::swap(CmpLHS, CmpRHS);
1965
Sanjay Patel302404b2015-03-05 21:46:54 +00001966 // Choose the SSE instruction sequence based on data type (float or double).
1967 static unsigned OpcTable[2][4] = {
1968 { X86::CMPSSrr, X86::FsANDPSrr, X86::FsANDNPSrr, X86::FsORPSrr },
1969 { X86::CMPSDrr, X86::FsANDPDrr, X86::FsANDNPDrr, X86::FsORPDrr }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001970 };
1971
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001972 unsigned *Opc = nullptr;
1973 switch (RetVT.SimpleTy) {
1974 default: return false;
Sanjay Patel302404b2015-03-05 21:46:54 +00001975 case MVT::f32: Opc = &OpcTable[0][0]; break;
1976 case MVT::f64: Opc = &OpcTable[1][0]; break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001977 }
1978
1979 const Value *LHS = I->getOperand(1);
1980 const Value *RHS = I->getOperand(2);
1981
1982 unsigned LHSReg = getRegForValue(LHS);
1983 bool LHSIsKill = hasTrivialKill(LHS);
1984
1985 unsigned RHSReg = getRegForValue(RHS);
1986 bool RHSIsKill = hasTrivialKill(RHS);
1987
1988 unsigned CmpLHSReg = getRegForValue(CmpLHS);
1989 bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
1990
1991 unsigned CmpRHSReg = getRegForValue(CmpRHS);
1992 bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
1993
1994 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
1995 return false;
1996
1997 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
Sanjay Patel302404b2015-03-05 21:46:54 +00001998 unsigned ResultReg;
1999
2000 if (Subtarget->hasAVX()) {
Matthias Braun818c78d2015-08-31 18:25:11 +00002001 const TargetRegisterClass *FR32 = &X86::FR32RegClass;
2002 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2003
Sanjay Patel302404b2015-03-05 21:46:54 +00002004 // If we have AVX, create 1 blendv instead of 3 logic instructions.
2005 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2006 // uses XMM0 as the selection register. That may need just as many
2007 // instructions as the AND/ANDN/OR sequence due to register moves, so
2008 // don't bother.
2009 unsigned CmpOpcode =
2010 (RetVT.SimpleTy == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2011 unsigned BlendOpcode =
2012 (RetVT.SimpleTy == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2013
Matthias Braun818c78d2015-08-31 18:25:11 +00002014 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, FR32, CmpLHSReg, CmpLHSIsKill,
Sanjay Patel302404b2015-03-05 21:46:54 +00002015 CmpRHSReg, CmpRHSIsKill, CC);
Matthias Braun818c78d2015-08-31 18:25:11 +00002016 unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2017 LHSReg, LHSIsKill, CmpReg, true);
2018 ResultReg = createResultReg(RC);
2019 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2020 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
Sanjay Patel302404b2015-03-05 21:46:54 +00002021 } else {
2022 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2023 CmpRHSReg, CmpRHSIsKill, CC);
2024 unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
2025 LHSReg, LHSIsKill);
2026 unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
2027 RHSReg, RHSIsKill);
2028 ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
2029 AndReg, /*IsKill=*/true);
2030 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002031 updateValueMap(I, ResultReg);
2032 return true;
2033}
2034
2035bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2036 // These are pseudo CMOV instructions and will be later expanded into control-
2037 // flow.
2038 unsigned Opc;
2039 switch (RetVT.SimpleTy) {
2040 default: return false;
2041 case MVT::i8: Opc = X86::CMOV_GR8; break;
2042 case MVT::i16: Opc = X86::CMOV_GR16; break;
2043 case MVT::i32: Opc = X86::CMOV_GR32; break;
2044 case MVT::f32: Opc = X86::CMOV_FR32; break;
2045 case MVT::f64: Opc = X86::CMOV_FR64; break;
2046 }
2047
2048 const Value *Cond = I->getOperand(0);
2049 X86::CondCode CC = X86::COND_NE;
2050
2051 // Optimize conditions coming from a compare if both instructions are in the
2052 // same basic block (values defined in other basic blocks may not have
2053 // initialized registers).
2054 const auto *CI = dyn_cast<CmpInst>(Cond);
2055 if (CI && (CI->getParent() == I->getParent())) {
2056 bool NeedSwap;
2057 std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
2058 if (CC > X86::LAST_VALID_COND)
2059 return false;
2060
2061 const Value *CmpLHS = CI->getOperand(0);
2062 const Value *CmpRHS = CI->getOperand(1);
2063
2064 if (NeedSwap)
2065 std::swap(CmpLHS, CmpRHS);
2066
Mehdi Amini44ede332015-07-09 02:09:04 +00002067 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002068 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2069 return false;
2070 } else {
2071 unsigned CondReg = getRegForValue(Cond);
2072 if (CondReg == 0)
2073 return false;
2074 bool CondIsKill = hasTrivialKill(Cond);
2075 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2076 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
2077 }
2078
2079 const Value *LHS = I->getOperand(1);
2080 const Value *RHS = I->getOperand(2);
2081
2082 unsigned LHSReg = getRegForValue(LHS);
2083 bool LHSIsKill = hasTrivialKill(LHS);
2084
2085 unsigned RHSReg = getRegForValue(RHS);
2086 bool RHSIsKill = hasTrivialKill(RHS);
2087
2088 if (!LHSReg || !RHSReg)
2089 return false;
2090
2091 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2092
2093 unsigned ResultReg =
2094 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2095 updateValueMap(I, ResultReg);
2096 return true;
2097}
2098
2099bool X86FastISel::X86SelectSelect(const Instruction *I) {
2100 MVT RetVT;
2101 if (!isTypeLegal(I->getType(), RetVT))
2102 return false;
2103
2104 // Check if we can fold the select.
2105 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2106 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2107 const Value *Opnd = nullptr;
2108 switch (Predicate) {
2109 default: break;
2110 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2111 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2112 }
2113 // No need for a select anymore - this is an unconditional move.
2114 if (Opnd) {
2115 unsigned OpReg = getRegForValue(Opnd);
2116 if (OpReg == 0)
2117 return false;
2118 bool OpIsKill = hasTrivialKill(Opnd);
2119 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2120 unsigned ResultReg = createResultReg(RC);
2121 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2122 TII.get(TargetOpcode::COPY), ResultReg)
2123 .addReg(OpReg, getKillRegState(OpIsKill));
2124 updateValueMap(I, ResultReg);
2125 return true;
2126 }
2127 }
2128
2129 // First try to use real conditional move instructions.
2130 if (X86FastEmitCMoveSelect(RetVT, I))
2131 return true;
2132
2133 // Try to use a sequence of SSE instructions to simulate a conditional move.
2134 if (X86FastEmitSSESelect(RetVT, I))
2135 return true;
2136
2137 // Fall-back to pseudo conditional move instructions, which will be later
2138 // converted to control-flow.
2139 if (X86FastEmitPseudoSelect(RetVT, I))
2140 return true;
2141
2142 return false;
2143}
2144
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002145bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
Andrea Di Biagio98c36702015-04-20 11:56:59 +00002146 // The target-independent selection algorithm in FastISel already knows how
2147 // to select a SINT_TO_FP if the target is SSE but not AVX.
2148 // Early exit if the subtarget doesn't have AVX.
2149 if (!Subtarget->hasAVX())
2150 return false;
2151
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002152 if (!I->getOperand(0)->getType()->isIntegerTy(32))
2153 return false;
2154
2155 // Select integer to float/double conversion.
2156 unsigned OpReg = getRegForValue(I->getOperand(0));
2157 if (OpReg == 0)
2158 return false;
2159
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002160 const TargetRegisterClass *RC = nullptr;
2161 unsigned Opcode;
2162
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002163 if (I->getType()->isDoubleTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002164 // sitofp int -> double
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002165 Opcode = X86::VCVTSI2SDrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002166 RC = &X86::FR64RegClass;
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002167 } else if (I->getType()->isFloatTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002168 // sitofp int -> float
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002169 Opcode = X86::VCVTSI2SSrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002170 RC = &X86::FR32RegClass;
2171 } else
2172 return false;
2173
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002174 unsigned ImplicitDefReg = createResultReg(RC);
2175 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2176 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2177 unsigned ResultReg =
2178 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002179 updateValueMap(I, ResultReg);
2180 return true;
2181}
2182
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002183// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2184bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2185 unsigned TargetOpc,
2186 const TargetRegisterClass *RC) {
2187 assert((I->getOpcode() == Instruction::FPExt ||
2188 I->getOpcode() == Instruction::FPTrunc) &&
2189 "Instruction must be an FPExt or FPTrunc!");
2190
2191 unsigned OpReg = getRegForValue(I->getOperand(0));
2192 if (OpReg == 0)
2193 return false;
2194
2195 unsigned ResultReg = createResultReg(RC);
2196 MachineInstrBuilder MIB;
2197 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2198 ResultReg);
2199 if (Subtarget->hasAVX())
2200 MIB.addReg(OpReg);
2201 MIB.addReg(OpReg);
2202 updateValueMap(I, ResultReg);
2203 return true;
2204}
2205
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002206bool X86FastISel::X86SelectFPExt(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002207 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2208 I->getOperand(0)->getType()->isFloatTy()) {
2209 // fpext from float to double.
2210 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2211 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002212 }
2213
2214 return false;
2215}
2216
2217bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002218 if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2219 I->getOperand(0)->getType()->isDoubleTy()) {
2220 // fptrunc from double to float.
2221 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2222 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002223 }
2224
2225 return false;
2226}
2227
2228bool X86FastISel::X86SelectTrunc(const Instruction *I) {
Mehdi Amini44ede332015-07-09 02:09:04 +00002229 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2230 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002231
2232 // This code only handles truncation to byte.
2233 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2234 return false;
2235 if (!TLI.isTypeLegal(SrcVT))
2236 return false;
2237
2238 unsigned InputReg = getRegForValue(I->getOperand(0));
2239 if (!InputReg)
2240 // Unhandled operand. Halt "fast" selection and bail.
2241 return false;
2242
2243 if (SrcVT == MVT::i8) {
2244 // Truncate from i8 to i1; no code needed.
2245 updateValueMap(I, InputReg);
2246 return true;
2247 }
2248
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002249 bool KillInputReg = false;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002250 if (!Subtarget->is64Bit()) {
2251 // If we're on x86-32; we can't extract an i8 from a general register.
2252 // First issue a copy to GR16_ABCD or GR32_ABCD.
2253 const TargetRegisterClass *CopyRC =
2254 (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
2255 unsigned CopyReg = createResultReg(CopyRC);
2256 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2257 TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
2258 InputReg = CopyReg;
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002259 KillInputReg = true;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002260 }
2261
2262 // Issue an extract_subreg.
2263 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002264 InputReg, KillInputReg,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002265 X86::sub_8bit);
2266 if (!ResultReg)
2267 return false;
2268
2269 updateValueMap(I, ResultReg);
2270 return true;
2271}
2272
2273bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2274 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2275}
2276
2277bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2278 X86AddressMode SrcAM, uint64_t Len) {
2279
2280 // Make sure we don't bloat code by inlining very large memcpy's.
2281 if (!IsMemcpySmall(Len))
2282 return false;
2283
2284 bool i64Legal = Subtarget->is64Bit();
2285
2286 // We don't care about alignment here since we just emit integer accesses.
2287 while (Len) {
2288 MVT VT;
2289 if (Len >= 8 && i64Legal)
2290 VT = MVT::i64;
2291 else if (Len >= 4)
2292 VT = MVT::i32;
2293 else if (Len >= 2)
2294 VT = MVT::i16;
2295 else
2296 VT = MVT::i8;
2297
2298 unsigned Reg;
2299 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2300 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2301 assert(RV && "Failed to emit load or store??");
2302
2303 unsigned Size = VT.getSizeInBits()/8;
2304 Len -= Size;
2305 DestAM.Disp += Size;
2306 SrcAM.Disp += Size;
2307 }
2308
2309 return true;
2310}
2311
2312bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2313 // FIXME: Handle more intrinsics.
2314 switch (II->getIntrinsicID()) {
2315 default: return false;
Andrea Di Biagio70351782015-02-20 19:37:14 +00002316 case Intrinsic::convert_from_fp16:
2317 case Intrinsic::convert_to_fp16: {
Eric Christopher824f42f2015-05-12 01:26:05 +00002318 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
Andrea Di Biagio70351782015-02-20 19:37:14 +00002319 return false;
2320
2321 const Value *Op = II->getArgOperand(0);
2322 unsigned InputReg = getRegForValue(Op);
2323 if (InputReg == 0)
2324 return false;
2325
2326 // F16C only allows converting from float to half and from half to float.
2327 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2328 if (IsFloatToHalf) {
2329 if (!Op->getType()->isFloatTy())
2330 return false;
2331 } else {
2332 if (!II->getType()->isFloatTy())
2333 return false;
2334 }
2335
2336 unsigned ResultReg = 0;
2337 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2338 if (IsFloatToHalf) {
2339 // 'InputReg' is implicitly promoted from register class FR32 to
2340 // register class VR128 by method 'constrainOperandRegClass' which is
2341 // directly called by 'fastEmitInst_ri'.
2342 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
Ahmed Bougacha68a8efa2016-02-02 01:44:03 +00002343 // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2344 // It's consistent with the other FP instructions, which are usually
2345 // controlled by MXCSR.
2346 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
Andrea Di Biagio70351782015-02-20 19:37:14 +00002347
2348 // Move the lower 32-bits of ResultReg to another register of class GR32.
2349 ResultReg = createResultReg(&X86::GR32RegClass);
2350 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2351 TII.get(X86::VMOVPDI2DIrr), ResultReg)
2352 .addReg(InputReg, RegState::Kill);
2353
2354 // The result value is in the lower 16-bits of ResultReg.
2355 unsigned RegIdx = X86::sub_16bit;
2356 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2357 } else {
2358 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2359 // Explicitly sign-extend the input to 32-bit.
2360 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2361 /*Kill=*/false);
2362
2363 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2364 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2365 InputReg, /*Kill=*/true);
2366
2367 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2368
2369 // The result value is in the lower 32-bits of ResultReg.
2370 // Emit an explicit copy from register class VR128 to register class FR32.
2371 ResultReg = createResultReg(&X86::FR32RegClass);
2372 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2373 TII.get(TargetOpcode::COPY), ResultReg)
2374 .addReg(InputReg, RegState::Kill);
2375 }
2376
2377 updateValueMap(II, ResultReg);
2378 return true;
2379 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002380 case Intrinsic::frameaddress: {
David Majnemerca194852015-02-10 22:00:34 +00002381 MachineFunction *MF = FuncInfo.MF;
2382 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2383 return false;
2384
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002385 Type *RetTy = II->getCalledFunction()->getReturnType();
2386
2387 MVT VT;
2388 if (!isTypeLegal(RetTy, VT))
2389 return false;
2390
2391 unsigned Opc;
2392 const TargetRegisterClass *RC = nullptr;
2393
2394 switch (VT.SimpleTy) {
2395 default: llvm_unreachable("Invalid result type for frameaddress.");
2396 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2397 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2398 }
2399
2400 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2401 // we get the wrong frame register.
David Majnemerca194852015-02-10 22:00:34 +00002402 MachineFrameInfo *MFI = MF->getFrameInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002403 MFI->setFrameAddressIsTaken(true);
2404
Eric Christophera1c535b2015-02-02 23:03:45 +00002405 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
David Majnemerca194852015-02-10 22:00:34 +00002406 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002407 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2408 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2409 "Invalid Frame Register!");
2410
2411 // Always make a copy of the frame register to to a vreg first, so that we
2412 // never directly reference the frame register (the TwoAddressInstruction-
2413 // Pass doesn't like that).
2414 unsigned SrcReg = createResultReg(RC);
2415 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2416 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2417
2418 // Now recursively load from the frame address.
2419 // movq (%rbp), %rax
2420 // movq (%rax), %rax
2421 // movq (%rax), %rax
2422 // ...
2423 unsigned DestReg;
2424 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2425 while (Depth--) {
2426 DestReg = createResultReg(RC);
2427 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2428 TII.get(Opc), DestReg), SrcReg);
2429 SrcReg = DestReg;
2430 }
2431
2432 updateValueMap(II, SrcReg);
2433 return true;
2434 }
2435 case Intrinsic::memcpy: {
2436 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2437 // Don't handle volatile or variable length memcpys.
2438 if (MCI->isVolatile())
2439 return false;
2440
2441 if (isa<ConstantInt>(MCI->getLength())) {
2442 // Small memcpy's are common enough that we want to do them
2443 // without a call if possible.
2444 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2445 if (IsMemcpySmall(Len)) {
2446 X86AddressMode DestAM, SrcAM;
2447 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2448 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2449 return false;
2450 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2451 return true;
2452 }
2453 }
2454
2455 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2456 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2457 return false;
2458
2459 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2460 return false;
2461
Pete Cooper67cf9a72015-11-19 05:56:52 +00002462 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002463 }
2464 case Intrinsic::memset: {
2465 const MemSetInst *MSI = cast<MemSetInst>(II);
2466
2467 if (MSI->isVolatile())
2468 return false;
2469
2470 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2471 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2472 return false;
2473
2474 if (MSI->getDestAddressSpace() > 255)
2475 return false;
2476
Pete Cooper67cf9a72015-11-19 05:56:52 +00002477 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002478 }
2479 case Intrinsic::stackprotector: {
2480 // Emit code to store the stack guard onto the stack.
Mehdi Amini44ede332015-07-09 02:09:04 +00002481 EVT PtrTy = TLI.getPointerTy(DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002482
2483 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2484 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2485
2486 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2487
2488 // Grab the frame index.
2489 X86AddressMode AM;
2490 if (!X86SelectAddress(Slot, AM)) return false;
2491 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2492 return true;
2493 }
2494 case Intrinsic::dbg_declare: {
2495 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2496 X86AddressMode AM;
2497 assert(DI->getAddress() && "Null address should be checked earlier!");
2498 if (!X86SelectAddress(DI->getAddress(), AM))
2499 return false;
2500 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2501 // FIXME may need to add RegState::Debug to any registers produced,
2502 // although ESP/EBP should be the only ones at the moment.
Duncan P. N. Exon Smith3bef6a32015-04-03 19:20:26 +00002503 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2504 "Expected inlined-at fields to agree");
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002505 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2506 .addImm(0)
2507 .addMetadata(DI->getVariable())
2508 .addMetadata(DI->getExpression());
2509 return true;
2510 }
2511 case Intrinsic::trap: {
2512 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2513 return true;
2514 }
2515 case Intrinsic::sqrt: {
2516 if (!Subtarget->hasSSE1())
2517 return false;
2518
2519 Type *RetTy = II->getCalledFunction()->getReturnType();
2520
2521 MVT VT;
2522 if (!isTypeLegal(RetTy, VT))
2523 return false;
2524
2525 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2526 // is not generated by FastISel yet.
2527 // FIXME: Update this code once tablegen can handle it.
Craig Toppercf65c622016-03-02 04:42:31 +00002528 static const uint16_t SqrtOpc[2][2] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002529 {X86::SQRTSSr, X86::VSQRTSSr},
2530 {X86::SQRTSDr, X86::VSQRTSDr}
2531 };
2532 bool HasAVX = Subtarget->hasAVX();
2533 unsigned Opc;
2534 const TargetRegisterClass *RC;
2535 switch (VT.SimpleTy) {
2536 default: return false;
2537 case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
2538 case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
2539 }
2540
2541 const Value *SrcVal = II->getArgOperand(0);
2542 unsigned SrcReg = getRegForValue(SrcVal);
2543
2544 if (SrcReg == 0)
2545 return false;
2546
2547 unsigned ImplicitDefReg = 0;
2548 if (HasAVX) {
2549 ImplicitDefReg = createResultReg(RC);
2550 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2551 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2552 }
2553
2554 unsigned ResultReg = createResultReg(RC);
2555 MachineInstrBuilder MIB;
2556 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2557 ResultReg);
2558
2559 if (ImplicitDefReg)
2560 MIB.addReg(ImplicitDefReg);
2561
2562 MIB.addReg(SrcReg);
2563
2564 updateValueMap(II, ResultReg);
2565 return true;
2566 }
2567 case Intrinsic::sadd_with_overflow:
2568 case Intrinsic::uadd_with_overflow:
2569 case Intrinsic::ssub_with_overflow:
2570 case Intrinsic::usub_with_overflow:
2571 case Intrinsic::smul_with_overflow:
2572 case Intrinsic::umul_with_overflow: {
2573 // This implements the basic lowering of the xalu with overflow intrinsics
2574 // into add/sub/mul followed by either seto or setb.
2575 const Function *Callee = II->getCalledFunction();
2576 auto *Ty = cast<StructType>(Callee->getReturnType());
2577 Type *RetTy = Ty->getTypeAtIndex(0U);
2578 Type *CondTy = Ty->getTypeAtIndex(1);
2579
2580 MVT VT;
2581 if (!isTypeLegal(RetTy, VT))
2582 return false;
2583
2584 if (VT < MVT::i8 || VT > MVT::i64)
2585 return false;
2586
2587 const Value *LHS = II->getArgOperand(0);
2588 const Value *RHS = II->getArgOperand(1);
2589
2590 // Canonicalize immediate to the RHS.
2591 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2592 isCommutativeIntrinsic(II))
2593 std::swap(LHS, RHS);
2594
2595 bool UseIncDec = false;
2596 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
2597 UseIncDec = true;
2598
2599 unsigned BaseOpc, CondOpc;
2600 switch (II->getIntrinsicID()) {
2601 default: llvm_unreachable("Unexpected intrinsic!");
2602 case Intrinsic::sadd_with_overflow:
2603 BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
2604 CondOpc = X86::SETOr;
2605 break;
2606 case Intrinsic::uadd_with_overflow:
2607 BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2608 case Intrinsic::ssub_with_overflow:
2609 BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
2610 CondOpc = X86::SETOr;
2611 break;
2612 case Intrinsic::usub_with_overflow:
2613 BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2614 case Intrinsic::smul_with_overflow:
2615 BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2616 case Intrinsic::umul_with_overflow:
2617 BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2618 }
2619
2620 unsigned LHSReg = getRegForValue(LHS);
2621 if (LHSReg == 0)
2622 return false;
2623 bool LHSIsKill = hasTrivialKill(LHS);
2624
2625 unsigned ResultReg = 0;
2626 // Check if we have an immediate version.
2627 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2628 static const unsigned Opc[2][4] = {
2629 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2630 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2631 };
2632
2633 if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
2634 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2635 bool IsDec = BaseOpc == X86ISD::DEC;
2636 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2637 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2638 .addReg(LHSReg, getKillRegState(LHSIsKill));
2639 } else
2640 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2641 CI->getZExtValue());
2642 }
2643
2644 unsigned RHSReg;
2645 bool RHSIsKill;
2646 if (!ResultReg) {
2647 RHSReg = getRegForValue(RHS);
2648 if (RHSReg == 0)
2649 return false;
2650 RHSIsKill = hasTrivialKill(RHS);
2651 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2652 RHSIsKill);
2653 }
2654
2655 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2656 // it manually.
2657 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
Craig Toppercf65c622016-03-02 04:42:31 +00002658 static const uint16_t MULOpc[] =
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002659 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
Craig Toppercf65c622016-03-02 04:42:31 +00002660 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002661 // First copy the first operand into RAX, which is an implicit input to
2662 // the X86::MUL*r instruction.
2663 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2664 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2665 .addReg(LHSReg, getKillRegState(LHSIsKill));
2666 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2667 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2668 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
Craig Toppercf65c622016-03-02 04:42:31 +00002669 static const uint16_t MULOpc[] =
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002670 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2671 if (VT == MVT::i8) {
2672 // Copy the first operand into AL, which is an implicit input to the
2673 // X86::IMUL8r instruction.
2674 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2675 TII.get(TargetOpcode::COPY), X86::AL)
2676 .addReg(LHSReg, getKillRegState(LHSIsKill));
2677 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2678 RHSIsKill);
2679 } else
2680 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2681 TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2682 RHSReg, RHSIsKill);
2683 }
2684
2685 if (!ResultReg)
2686 return false;
2687
2688 unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
2689 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2690 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
2691 ResultReg2);
2692
2693 updateValueMap(II, ResultReg, 2);
2694 return true;
2695 }
2696 case Intrinsic::x86_sse_cvttss2si:
2697 case Intrinsic::x86_sse_cvttss2si64:
2698 case Intrinsic::x86_sse2_cvttsd2si:
2699 case Intrinsic::x86_sse2_cvttsd2si64: {
2700 bool IsInputDouble;
2701 switch (II->getIntrinsicID()) {
2702 default: llvm_unreachable("Unexpected intrinsic.");
2703 case Intrinsic::x86_sse_cvttss2si:
2704 case Intrinsic::x86_sse_cvttss2si64:
2705 if (!Subtarget->hasSSE1())
2706 return false;
2707 IsInputDouble = false;
2708 break;
2709 case Intrinsic::x86_sse2_cvttsd2si:
2710 case Intrinsic::x86_sse2_cvttsd2si64:
2711 if (!Subtarget->hasSSE2())
2712 return false;
2713 IsInputDouble = true;
2714 break;
2715 }
2716
2717 Type *RetTy = II->getCalledFunction()->getReturnType();
2718 MVT VT;
2719 if (!isTypeLegal(RetTy, VT))
2720 return false;
2721
2722 static const unsigned CvtOpc[2][2][2] = {
2723 { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr },
2724 { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } },
2725 { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr },
2726 { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } }
2727 };
2728 bool HasAVX = Subtarget->hasAVX();
2729 unsigned Opc;
2730 switch (VT.SimpleTy) {
2731 default: llvm_unreachable("Unexpected result type.");
2732 case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
2733 case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
2734 }
2735
2736 // Check if we can fold insertelement instructions into the convert.
2737 const Value *Op = II->getArgOperand(0);
2738 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
2739 const Value *Index = IE->getOperand(2);
2740 if (!isa<ConstantInt>(Index))
2741 break;
2742 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
2743
2744 if (Idx == 0) {
2745 Op = IE->getOperand(1);
2746 break;
2747 }
2748 Op = IE->getOperand(0);
2749 }
2750
2751 unsigned Reg = getRegForValue(Op);
2752 if (Reg == 0)
2753 return false;
2754
2755 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
2756 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2757 .addReg(Reg);
2758
2759 updateValueMap(II, ResultReg);
2760 return true;
2761 }
2762 }
2763}
2764
2765bool X86FastISel::fastLowerArguments() {
2766 if (!FuncInfo.CanLowerReturn)
2767 return false;
2768
2769 const Function *F = FuncInfo.Fn;
2770 if (F->isVarArg())
2771 return false;
2772
2773 CallingConv::ID CC = F->getCallingConv();
2774 if (CC != CallingConv::C)
2775 return false;
2776
2777 if (Subtarget->isCallingConvWin64(CC))
2778 return false;
2779
2780 if (!Subtarget->is64Bit())
2781 return false;
2782
2783 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
2784 unsigned GPRCnt = 0;
2785 unsigned FPRCnt = 0;
2786 unsigned Idx = 0;
2787 for (auto const &Arg : F->args()) {
2788 // The first argument is at index 1.
2789 ++Idx;
2790 if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
2791 F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
2792 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
Manman Renf46262e2016-03-29 17:37:21 +00002793 F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) ||
Manman Ren57518142016-04-11 21:08:06 +00002794 F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) ||
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002795 F->getAttributes().hasAttribute(Idx, Attribute::Nest))
2796 return false;
2797
2798 Type *ArgTy = Arg.getType();
2799 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
2800 return false;
2801
Mehdi Amini44ede332015-07-09 02:09:04 +00002802 EVT ArgVT = TLI.getValueType(DL, ArgTy);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002803 if (!ArgVT.isSimple()) return false;
2804 switch (ArgVT.getSimpleVT().SimpleTy) {
2805 default: return false;
2806 case MVT::i32:
2807 case MVT::i64:
2808 ++GPRCnt;
2809 break;
2810 case MVT::f32:
2811 case MVT::f64:
2812 if (!Subtarget->hasSSE1())
2813 return false;
2814 ++FPRCnt;
2815 break;
2816 }
2817
2818 if (GPRCnt > 6)
2819 return false;
2820
2821 if (FPRCnt > 8)
2822 return false;
2823 }
2824
2825 static const MCPhysReg GPR32ArgRegs[] = {
2826 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
2827 };
2828 static const MCPhysReg GPR64ArgRegs[] = {
2829 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
2830 };
2831 static const MCPhysReg XMMArgRegs[] = {
2832 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2833 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2834 };
2835
2836 unsigned GPRIdx = 0;
2837 unsigned FPRIdx = 0;
2838 for (auto const &Arg : F->args()) {
Mehdi Amini44ede332015-07-09 02:09:04 +00002839 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002840 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2841 unsigned SrcReg;
2842 switch (VT.SimpleTy) {
2843 default: llvm_unreachable("Unexpected value type.");
2844 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
2845 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
2846 case MVT::f32: // fall-through
2847 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
2848 }
2849 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
2850 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
2851 // Without this, EmitLiveInCopies may eliminate the livein if its only
2852 // use is a bitcast (which isn't turned into an instruction).
2853 unsigned ResultReg = createResultReg(RC);
2854 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2855 TII.get(TargetOpcode::COPY), ResultReg)
2856 .addReg(DstReg, getKillRegState(true));
2857 updateValueMap(&Arg, ResultReg);
2858 }
2859 return true;
2860}
2861
2862static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
2863 CallingConv::ID CC,
2864 ImmutableCallSite *CS) {
2865 if (Subtarget->is64Bit())
2866 return 0;
2867 if (Subtarget->getTargetTriple().isOSMSVCRT())
2868 return 0;
2869 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2870 CC == CallingConv::HiPE)
2871 return 0;
Sanjoy Dasb11b4402015-11-04 20:33:45 +00002872
2873 if (CS)
2874 if (CS->arg_empty() || !CS->paramHasAttr(1, Attribute::StructRet) ||
Michael Kuperstein2ea81ba2015-12-28 14:39:21 +00002875 CS->paramHasAttr(1, Attribute::InReg) || Subtarget->isTargetMCU())
Sanjoy Dasb11b4402015-11-04 20:33:45 +00002876 return 0;
2877
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002878 return 4;
2879}
2880
2881bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
2882 auto &OutVals = CLI.OutVals;
2883 auto &OutFlags = CLI.OutFlags;
2884 auto &OutRegs = CLI.OutRegs;
2885 auto &Ins = CLI.Ins;
2886 auto &InRegs = CLI.InRegs;
2887 CallingConv::ID CC = CLI.CallConv;
2888 bool &IsTailCall = CLI.IsTailCall;
2889 bool IsVarArg = CLI.IsVarArg;
2890 const Value *Callee = CLI.Callee;
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00002891 MCSymbol *Symbol = CLI.Symbol;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002892
2893 bool Is64Bit = Subtarget->is64Bit();
2894 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
2895
2896 // Handle only C, fastcc, and webkit_js calling conventions for now.
2897 switch (CC) {
2898 default: return false;
2899 case CallingConv::C:
2900 case CallingConv::Fast:
2901 case CallingConv::WebKit_JS:
Manman Renf8bdd882016-04-05 22:41:47 +00002902 case CallingConv::Swift:
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002903 case CallingConv::X86_FastCall:
2904 case CallingConv::X86_64_Win64:
2905 case CallingConv::X86_64_SysV:
2906 break;
2907 }
2908
2909 // Allow SelectionDAG isel to handle tail calls.
2910 if (IsTailCall)
2911 return false;
2912
2913 // fastcc with -tailcallopt is intended to provide a guaranteed
2914 // tail call optimization. Fastisel doesn't know how to do that.
2915 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
2916 return false;
2917
2918 // Don't know how to handle Win64 varargs yet. Nothing special needed for
2919 // x86-32. Special handling for x86-64 is implemented.
2920 if (IsVarArg && IsWin64)
2921 return false;
2922
2923 // Don't know about inalloca yet.
2924 if (CLI.CS && CLI.CS->hasInAllocaArgument())
2925 return false;
2926
Manman Ren57518142016-04-11 21:08:06 +00002927 for (auto Flag : CLI.OutFlags)
2928 if (Flag.isSwiftError())
2929 return false;
2930
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002931 // Fast-isel doesn't know about callee-pop yet.
2932 if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
2933 TM.Options.GuaranteedTailCallOpt))
2934 return false;
2935
2936 SmallVector<MVT, 16> OutVTs;
2937 SmallVector<unsigned, 16> ArgRegs;
2938
2939 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
2940 // instruction. This is safe because it is common to all FastISel supported
2941 // calling conventions on x86.
2942 for (int i = 0, e = OutVals.size(); i != e; ++i) {
2943 Value *&Val = OutVals[i];
2944 ISD::ArgFlagsTy Flags = OutFlags[i];
2945 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
2946 if (CI->getBitWidth() < 32) {
2947 if (Flags.isSExt())
2948 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
2949 else
2950 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
2951 }
2952 }
2953
2954 // Passing bools around ends up doing a trunc to i1 and passing it.
2955 // Codegen this as an argument + "and 1".
2956 MVT VT;
2957 auto *TI = dyn_cast<TruncInst>(Val);
2958 unsigned ResultReg;
2959 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
2960 (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
2961 TI->hasOneUse()) {
2962 Value *PrevVal = TI->getOperand(0);
2963 ResultReg = getRegForValue(PrevVal);
2964
2965 if (!ResultReg)
2966 return false;
2967
2968 if (!isTypeLegal(PrevVal->getType(), VT))
2969 return false;
2970
2971 ResultReg =
2972 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
2973 } else {
2974 if (!isTypeLegal(Val->getType(), VT))
2975 return false;
2976 ResultReg = getRegForValue(Val);
2977 }
2978
2979 if (!ResultReg)
2980 return false;
2981
2982 ArgRegs.push_back(ResultReg);
2983 OutVTs.push_back(VT);
2984 }
2985
2986 // Analyze operands of the call, assigning locations to each operand.
2987 SmallVector<CCValAssign, 16> ArgLocs;
2988 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
2989
2990 // Allocate shadow area for Win64
2991 if (IsWin64)
2992 CCInfo.AllocateStack(32, 8);
2993
2994 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
2995
2996 // Get a count of how many bytes are to be pushed on the stack.
Jeroen Ketema740f9d72015-09-29 10:12:57 +00002997 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002998
2999 // Issue CALLSEQ_START
3000 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3001 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
Michael Kuperstein13fbd452015-02-01 16:56:04 +00003002 .addImm(NumBytes).addImm(0);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003003
3004 // Walk the register/memloc assignments, inserting copies/loads.
Eric Christophera1c535b2015-02-02 23:03:45 +00003005 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003006 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3007 CCValAssign const &VA = ArgLocs[i];
3008 const Value *ArgVal = OutVals[VA.getValNo()];
3009 MVT ArgVT = OutVTs[VA.getValNo()];
3010
3011 if (ArgVT == MVT::x86mmx)
3012 return false;
3013
3014 unsigned ArgReg = ArgRegs[VA.getValNo()];
3015
3016 // Promote the value if needed.
3017 switch (VA.getLocInfo()) {
3018 case CCValAssign::Full: break;
3019 case CCValAssign::SExt: {
3020 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3021 "Unexpected extend");
3022 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3023 ArgVT, ArgReg);
3024 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3025 ArgVT = VA.getLocVT();
3026 break;
3027 }
3028 case CCValAssign::ZExt: {
3029 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3030 "Unexpected extend");
3031 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3032 ArgVT, ArgReg);
3033 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3034 ArgVT = VA.getLocVT();
3035 break;
3036 }
3037 case CCValAssign::AExt: {
3038 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3039 "Unexpected extend");
3040 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3041 ArgVT, ArgReg);
3042 if (!Emitted)
3043 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3044 ArgVT, ArgReg);
3045 if (!Emitted)
3046 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3047 ArgVT, ArgReg);
3048
3049 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3050 ArgVT = VA.getLocVT();
3051 break;
3052 }
3053 case CCValAssign::BCvt: {
3054 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3055 /*TODO: Kill=*/false);
3056 assert(ArgReg && "Failed to emit a bitcast!");
3057 ArgVT = VA.getLocVT();
3058 break;
3059 }
3060 case CCValAssign::VExt:
3061 // VExt has not been implemented, so this should be impossible to reach
3062 // for now. However, fallback to Selection DAG isel once implemented.
3063 return false;
3064 case CCValAssign::AExtUpper:
3065 case CCValAssign::SExtUpper:
3066 case CCValAssign::ZExtUpper:
3067 case CCValAssign::FPExt:
3068 llvm_unreachable("Unexpected loc info!");
3069 case CCValAssign::Indirect:
3070 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3071 // support this.
3072 return false;
3073 }
3074
3075 if (VA.isRegLoc()) {
3076 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3077 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3078 OutRegs.push_back(VA.getLocReg());
3079 } else {
3080 assert(VA.isMemLoc());
3081
3082 // Don't emit stores for undef values.
3083 if (isa<UndefValue>(ArgVal))
3084 continue;
3085
3086 unsigned LocMemOffset = VA.getLocMemOffset();
3087 X86AddressMode AM;
3088 AM.Base.Reg = RegInfo->getStackRegister();
3089 AM.Disp = LocMemOffset;
3090 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3091 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3092 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00003093 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3094 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003095 if (Flags.isByVal()) {
3096 X86AddressMode SrcAM;
3097 SrcAM.Base.Reg = ArgReg;
3098 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3099 return false;
3100 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3101 // If this is a really simple value, emit this with the Value* version
3102 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3103 // as it can cause us to reevaluate the argument.
3104 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3105 return false;
3106 } else {
3107 bool ValIsKill = hasTrivialKill(ArgVal);
3108 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3109 return false;
3110 }
3111 }
3112 }
3113
3114 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3115 // GOT pointer.
3116 if (Subtarget->isPICStyleGOT()) {
3117 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3118 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3119 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3120 }
3121
3122 if (Is64Bit && IsVarArg && !IsWin64) {
3123 // From AMD64 ABI document:
3124 // For calls that may call functions that use varargs or stdargs
3125 // (prototype-less calls or calls to functions containing ellipsis (...) in
3126 // the declaration) %al is used as hidden argument to specify the number
3127 // of SSE registers used. The contents of %al do not need to match exactly
3128 // the number of registers, but must be an ubound on the number of SSE
3129 // registers used and is in the range 0 - 8 inclusive.
3130
3131 // Count the number of XMM registers allocated.
3132 static const MCPhysReg XMMArgRegs[] = {
3133 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3134 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3135 };
Tim Northover3b6b7ca2015-02-21 02:11:17 +00003136 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003137 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3138 && "SSE registers cannot be used when SSE is disabled");
3139 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3140 X86::AL).addImm(NumXMMRegs);
3141 }
3142
3143 // Materialize callee address in a register. FIXME: GV address can be
3144 // handled with a CALLpcrel32 instead.
3145 X86AddressMode CalleeAM;
3146 if (!X86SelectCallAddress(Callee, CalleeAM))
3147 return false;
3148
3149 unsigned CalleeOp = 0;
3150 const GlobalValue *GV = nullptr;
3151 if (CalleeAM.GV != nullptr) {
3152 GV = CalleeAM.GV;
3153 } else if (CalleeAM.Base.Reg != 0) {
3154 CalleeOp = CalleeAM.Base.Reg;
3155 } else
3156 return false;
3157
3158 // Issue the call.
3159 MachineInstrBuilder MIB;
3160 if (CalleeOp) {
3161 // Register-indirect call.
3162 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3163 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3164 .addReg(CalleeOp);
3165 } else {
3166 // Direct call.
3167 assert(GV && "Not a direct call");
3168 unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
3169
3170 // See if we need any target-specific flags on the GV operand.
Asaf Badouh89406d12016-04-20 08:32:57 +00003171 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV, TM);
3172 // Ignore NonLazyBind attribute in FastISel
3173 if (OpFlags == X86II::MO_GOTPCREL)
3174 OpFlags = 0;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003175
3176 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00003177 if (Symbol)
3178 MIB.addSym(Symbol, OpFlags);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003179 else
3180 MIB.addGlobalAddress(GV, 0, OpFlags);
3181 }
3182
3183 // Add a register mask operand representing the call-preserved registers.
3184 // Proper defs for return values will be added by setPhysRegsDeadExcept().
Eric Christopher9deb75d2015-03-11 22:42:13 +00003185 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003186
3187 // Add an implicit use GOT pointer in EBX.
3188 if (Subtarget->isPICStyleGOT())
3189 MIB.addReg(X86::EBX, RegState::Implicit);
3190
3191 if (Is64Bit && IsVarArg && !IsWin64)
3192 MIB.addReg(X86::AL, RegState::Implicit);
3193
3194 // Add implicit physical register uses to the call.
3195 for (auto Reg : OutRegs)
3196 MIB.addReg(Reg, RegState::Implicit);
3197
3198 // Issue CALLSEQ_END
3199 unsigned NumBytesForCalleeToPop =
3200 computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
3201 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3202 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3203 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3204
3205 // Now handle call return values.
3206 SmallVector<CCValAssign, 16> RVLocs;
3207 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3208 CLI.RetTy->getContext());
3209 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3210
3211 // Copy all of the result registers out of their specified physreg.
3212 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3213 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3214 CCValAssign &VA = RVLocs[i];
3215 EVT CopyVT = VA.getValVT();
3216 unsigned CopyReg = ResultReg + i;
3217
3218 // If this is x86-64, and we disabled SSE, we can't return FP values
3219 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3220 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3221 report_fatal_error("SSE register return with SSE disabled");
3222 }
3223
3224 // If we prefer to use the value in xmm registers, copy it out as f80 and
3225 // use a truncate to move it from fp stack reg to xmm reg.
3226 if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
3227 isScalarFPTypeInSSEReg(VA.getValVT())) {
3228 CopyVT = MVT::f80;
3229 CopyReg = createResultReg(&X86::RFP80RegClass);
3230 }
3231
3232 // Copy out the result.
3233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3234 TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
3235 InRegs.push_back(VA.getLocReg());
3236
3237 // Round the f80 to the right size, which also moves it to the appropriate
3238 // xmm register. This is accomplished by storing the f80 value in memory
3239 // and then loading it back.
3240 if (CopyVT != VA.getValVT()) {
3241 EVT ResVT = VA.getValVT();
3242 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3243 unsigned MemSize = ResVT.getSizeInBits()/8;
3244 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3245 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3246 TII.get(Opc)), FI)
3247 .addReg(CopyReg);
3248 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3249 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3250 TII.get(Opc), ResultReg + i), FI);
3251 }
3252 }
3253
3254 CLI.ResultReg = ResultReg;
3255 CLI.NumResultRegs = RVLocs.size();
3256 CLI.Call = MIB;
3257
3258 return true;
3259}
3260
3261bool
3262X86FastISel::fastSelectInstruction(const Instruction *I) {
3263 switch (I->getOpcode()) {
3264 default: break;
3265 case Instruction::Load:
3266 return X86SelectLoad(I);
3267 case Instruction::Store:
3268 return X86SelectStore(I);
3269 case Instruction::Ret:
3270 return X86SelectRet(I);
3271 case Instruction::ICmp:
3272 case Instruction::FCmp:
3273 return X86SelectCmp(I);
3274 case Instruction::ZExt:
3275 return X86SelectZExt(I);
3276 case Instruction::Br:
3277 return X86SelectBranch(I);
3278 case Instruction::LShr:
3279 case Instruction::AShr:
3280 case Instruction::Shl:
3281 return X86SelectShift(I);
3282 case Instruction::SDiv:
3283 case Instruction::UDiv:
3284 case Instruction::SRem:
3285 case Instruction::URem:
3286 return X86SelectDivRem(I);
3287 case Instruction::Select:
3288 return X86SelectSelect(I);
3289 case Instruction::Trunc:
3290 return X86SelectTrunc(I);
3291 case Instruction::FPExt:
3292 return X86SelectFPExt(I);
3293 case Instruction::FPTrunc:
3294 return X86SelectFPTrunc(I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00003295 case Instruction::SIToFP:
3296 return X86SelectSIToFP(I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003297 case Instruction::IntToPtr: // Deliberate fall-through.
3298 case Instruction::PtrToInt: {
Mehdi Amini44ede332015-07-09 02:09:04 +00003299 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3300 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003301 if (DstVT.bitsGT(SrcVT))
3302 return X86SelectZExt(I);
3303 if (DstVT.bitsLT(SrcVT))
3304 return X86SelectTrunc(I);
3305 unsigned Reg = getRegForValue(I->getOperand(0));
3306 if (Reg == 0) return false;
3307 updateValueMap(I, Reg);
3308 return true;
3309 }
Andrea Di Biagio77f62652015-10-02 16:08:05 +00003310 case Instruction::BitCast: {
3311 // Select SSE2/AVX bitcasts between 128/256 bit vector types.
3312 if (!Subtarget->hasSSE2())
3313 return false;
3314
3315 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3316 EVT DstVT = TLI.getValueType(DL, I->getType());
3317
3318 if (!SrcVT.isSimple() || !DstVT.isSimple())
3319 return false;
3320
3321 if (!SrcVT.is128BitVector() &&
3322 !(Subtarget->hasAVX() && SrcVT.is256BitVector()))
3323 return false;
3324
3325 unsigned Reg = getRegForValue(I->getOperand(0));
3326 if (Reg == 0)
3327 return false;
3328
3329 // No instruction is needed for conversion. Reuse the register used by
3330 // the fist operand.
3331 updateValueMap(I, Reg);
3332 return true;
3333 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003334 }
3335
3336 return false;
3337}
3338
3339unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3340 if (VT > MVT::i64)
3341 return 0;
3342
3343 uint64_t Imm = CI->getZExtValue();
3344 if (Imm == 0) {
3345 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3346 switch (VT.SimpleTy) {
3347 default: llvm_unreachable("Unexpected value type");
3348 case MVT::i1:
3349 case MVT::i8:
3350 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3351 X86::sub_8bit);
3352 case MVT::i16:
3353 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3354 X86::sub_16bit);
3355 case MVT::i32:
3356 return SrcReg;
3357 case MVT::i64: {
3358 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3359 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3360 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3361 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3362 return ResultReg;
3363 }
3364 }
3365 }
3366
3367 unsigned Opc = 0;
3368 switch (VT.SimpleTy) {
3369 default: llvm_unreachable("Unexpected value type");
3370 case MVT::i1: VT = MVT::i8; // fall-through
3371 case MVT::i8: Opc = X86::MOV8ri; break;
3372 case MVT::i16: Opc = X86::MOV16ri; break;
3373 case MVT::i32: Opc = X86::MOV32ri; break;
3374 case MVT::i64: {
3375 if (isUInt<32>(Imm))
3376 Opc = X86::MOV32ri;
3377 else if (isInt<32>(Imm))
3378 Opc = X86::MOV64ri32;
3379 else
3380 Opc = X86::MOV64ri;
3381 break;
3382 }
3383 }
3384 if (VT == MVT::i64 && Opc == X86::MOV32ri) {
3385 unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
3386 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3387 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3388 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3389 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3390 return ResultReg;
3391 }
3392 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3393}
3394
3395unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3396 if (CFP->isNullValue())
3397 return fastMaterializeFloatZero(CFP);
3398
3399 // Can't handle alternate code models yet.
3400 CodeModel::Model CM = TM.getCodeModel();
3401 if (CM != CodeModel::Small && CM != CodeModel::Large)
3402 return 0;
3403
3404 // Get opcode and regclass of the output for the given load instruction.
3405 unsigned Opc = 0;
3406 const TargetRegisterClass *RC = nullptr;
3407 switch (VT.SimpleTy) {
3408 default: return 0;
3409 case MVT::f32:
3410 if (X86ScalarSSEf32) {
3411 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3412 RC = &X86::FR32RegClass;
3413 } else {
3414 Opc = X86::LD_Fp32m;
3415 RC = &X86::RFP32RegClass;
3416 }
3417 break;
3418 case MVT::f64:
3419 if (X86ScalarSSEf64) {
3420 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3421 RC = &X86::FR64RegClass;
3422 } else {
3423 Opc = X86::LD_Fp64m;
3424 RC = &X86::RFP64RegClass;
3425 }
3426 break;
3427 case MVT::f80:
3428 // No f80 support yet.
3429 return 0;
3430 }
3431
3432 // MachineConstantPool wants an explicit alignment.
3433 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3434 if (Align == 0) {
3435 // Alignment of vector types. FIXME!
3436 Align = DL.getTypeAllocSize(CFP->getType());
3437 }
3438
3439 // x86-32 PIC requires a PIC base register for constant pools.
3440 unsigned PICBase = 0;
3441 unsigned char OpFlag = 0;
3442 if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
3443 OpFlag = X86II::MO_PIC_BASE_OFFSET;
3444 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3445 } else if (Subtarget->isPICStyleGOT()) {
3446 OpFlag = X86II::MO_GOTOFF;
3447 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3448 } else if (Subtarget->isPICStyleRIPRel() &&
3449 TM.getCodeModel() == CodeModel::Small) {
3450 PICBase = X86::RIP;
3451 }
3452
3453 // Create the load from the constant pool.
3454 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3455 unsigned ResultReg = createResultReg(RC);
3456
3457 if (CM == CodeModel::Large) {
3458 unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3459 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3460 AddrReg)
3461 .addConstantPoolIndex(CPI, 0, OpFlag);
3462 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3463 TII.get(Opc), ResultReg);
3464 addDirectMem(MIB, AddrReg);
3465 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00003466 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3467 MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003468 MIB->addMemOperand(*FuncInfo.MF, MMO);
3469 return ResultReg;
3470 }
3471
3472 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3473 TII.get(Opc), ResultReg),
3474 CPI, PICBase, OpFlag);
3475 return ResultReg;
3476}
3477
3478unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3479 // Can't handle alternate code models yet.
3480 if (TM.getCodeModel() != CodeModel::Small)
3481 return 0;
3482
3483 // Materialize addresses with LEA/MOV instructions.
3484 X86AddressMode AM;
3485 if (X86SelectAddress(GV, AM)) {
3486 // If the expression is just a basereg, then we're done, otherwise we need
3487 // to emit an LEA.
3488 if (AM.BaseType == X86AddressMode::RegBase &&
3489 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3490 return AM.Base.Reg;
3491
3492 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3493 if (TM.getRelocationModel() == Reloc::Static &&
Mehdi Amini44ede332015-07-09 02:09:04 +00003494 TLI.getPointerTy(DL) == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003495 // The displacement code could be more than 32 bits away so we need to use
3496 // an instruction with a 64 bit immediate
3497 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3498 ResultReg)
3499 .addGlobalAddress(GV);
3500 } else {
Mehdi Amini44ede332015-07-09 02:09:04 +00003501 unsigned Opc =
3502 TLI.getPointerTy(DL) == MVT::i32
3503 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3504 : X86::LEA64r;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003505 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3506 TII.get(Opc), ResultReg), AM);
3507 }
3508 return ResultReg;
3509 }
3510 return 0;
3511}
3512
3513unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
Mehdi Amini44ede332015-07-09 02:09:04 +00003514 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003515
3516 // Only handle simple types.
3517 if (!CEVT.isSimple())
3518 return 0;
3519 MVT VT = CEVT.getSimpleVT();
3520
3521 if (const auto *CI = dyn_cast<ConstantInt>(C))
3522 return X86MaterializeInt(CI, VT);
3523 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3524 return X86MaterializeFP(CFP, VT);
3525 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3526 return X86MaterializeGV(GV, VT);
3527
3528 return 0;
3529}
3530
3531unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3532 // Fail on dynamic allocas. At this point, getRegForValue has already
3533 // checked its CSE maps, so if we're here trying to handle a dynamic
3534 // alloca, we're not going to succeed. X86SelectAddress has a
3535 // check for dynamic allocas, because it's called directly from
3536 // various places, but targetMaterializeAlloca also needs a check
3537 // in order to avoid recursion between getRegForValue,
3538 // X86SelectAddrss, and targetMaterializeAlloca.
3539 if (!FuncInfo.StaticAllocaMap.count(C))
3540 return 0;
3541 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3542
3543 X86AddressMode AM;
3544 if (!X86SelectAddress(C, AM))
3545 return 0;
Mehdi Amini44ede332015-07-09 02:09:04 +00003546 unsigned Opc =
3547 TLI.getPointerTy(DL) == MVT::i32
3548 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3549 : X86::LEA64r;
3550 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003551 unsigned ResultReg = createResultReg(RC);
3552 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3553 TII.get(Opc), ResultReg), AM);
3554 return ResultReg;
3555}
3556
3557unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3558 MVT VT;
3559 if (!isTypeLegal(CF->getType(), VT))
3560 return 0;
3561
3562 // Get opcode and regclass for the given zero.
3563 unsigned Opc = 0;
3564 const TargetRegisterClass *RC = nullptr;
3565 switch (VT.SimpleTy) {
3566 default: return 0;
3567 case MVT::f32:
3568 if (X86ScalarSSEf32) {
3569 Opc = X86::FsFLD0SS;
3570 RC = &X86::FR32RegClass;
3571 } else {
3572 Opc = X86::LD_Fp032;
3573 RC = &X86::RFP32RegClass;
3574 }
3575 break;
3576 case MVT::f64:
3577 if (X86ScalarSSEf64) {
3578 Opc = X86::FsFLD0SD;
3579 RC = &X86::FR64RegClass;
3580 } else {
3581 Opc = X86::LD_Fp064;
3582 RC = &X86::RFP64RegClass;
3583 }
3584 break;
3585 case MVT::f80:
3586 // No f80 support yet.
3587 return 0;
3588 }
3589
3590 unsigned ResultReg = createResultReg(RC);
3591 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3592 return ResultReg;
3593}
3594
3595
3596bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3597 const LoadInst *LI) {
3598 const Value *Ptr = LI->getPointerOperand();
3599 X86AddressMode AM;
3600 if (!X86SelectAddress(Ptr, AM))
3601 return false;
3602
3603 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3604
3605 unsigned Size = DL.getTypeAllocSize(LI->getType());
3606 unsigned Alignment = LI->getAlignment();
3607
3608 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3609 Alignment = DL.getABITypeAlignment(LI->getType());
3610
3611 SmallVector<MachineOperand, 8> AddrOps;
3612 AM.getFullAddress(AddrOps);
3613
Keno Fischere70b31f2015-06-08 20:09:58 +00003614 MachineInstr *Result = XII.foldMemoryOperandImpl(
3615 *FuncInfo.MF, MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3616 /*AllowCommute=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003617 if (!Result)
3618 return false;
3619
Pete Cooperd31583d2015-05-06 21:37:19 +00003620 // The index register could be in the wrong register class. Unfortunately,
3621 // foldMemoryOperandImpl could have commuted the instruction so its not enough
3622 // to just look at OpNo + the offset to the index reg. We actually need to
3623 // scan the instruction to find the index reg and see if its the correct reg
3624 // class.
Matthias Braune41e1462015-05-29 02:56:46 +00003625 unsigned OperandNo = 0;
3626 for (MachineInstr::mop_iterator I = Result->operands_begin(),
3627 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3628 MachineOperand &MO = *I;
3629 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
Pete Cooperd31583d2015-05-06 21:37:19 +00003630 continue;
3631 // Found the index reg, now try to rewrite it.
Pete Cooperd31583d2015-05-06 21:37:19 +00003632 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
Matthias Braune41e1462015-05-29 02:56:46 +00003633 MO.getReg(), OperandNo);
3634 if (IndexReg == MO.getReg())
Pete Cooperd31583d2015-05-06 21:37:19 +00003635 continue;
Matthias Braune41e1462015-05-29 02:56:46 +00003636 MO.setReg(IndexReg);
Pete Cooperd31583d2015-05-06 21:37:19 +00003637 }
3638
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003639 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003640 MI->eraseFromParent();
3641 return true;
3642}
3643
3644
3645namespace llvm {
3646 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
3647 const TargetLibraryInfo *libInfo) {
3648 return new X86FastISel(funcInfo, libInfo);
3649 }
3650}