blob: a0c583a5c25360db5cc47fdb1152ab19af4b9aa4 [file] [log] [blame]
Eugene Zelenko59e12822017-08-08 00:47:13 +00001//===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
Kannan Narayananacb089e2017-04-12 03:25:12 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief Insert wait instructions for memory reads and writes.
12///
13/// Memory reads and writes are issued asynchronously, so we need to insert
14/// S_WAITCNT instructions when we want to access any of their results or
15/// overwrite any register that's used asynchronously.
16//
17//===----------------------------------------------------------------------===//
18
19#include "AMDGPU.h"
20#include "AMDGPUSubtarget.h"
21#include "SIDefines.h"
22#include "SIInstrInfo.h"
23#include "SIMachineFunctionInfo.h"
Eugene Zelenko59e12822017-08-08 00:47:13 +000024#include "SIRegisterInfo.h"
Kannan Narayananacb089e2017-04-12 03:25:12 +000025#include "Utils/AMDGPUBaseInfo.h"
Eugene Zelenko59e12822017-08-08 00:47:13 +000026#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DenseSet.h"
Kannan Narayananacb089e2017-04-12 03:25:12 +000028#include "llvm/ADT/PostOrderIterator.h"
Eugene Zelenko59e12822017-08-08 00:47:13 +000029#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/CodeGen/MachineBasicBlock.h"
Kannan Narayananacb089e2017-04-12 03:25:12 +000032#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
Eugene Zelenko59e12822017-08-08 00:47:13 +000034#include "llvm/CodeGen/MachineInstr.h"
Kannan Narayananacb089e2017-04-12 03:25:12 +000035#include "llvm/CodeGen/MachineInstrBuilder.h"
Eugene Zelenko59e12822017-08-08 00:47:13 +000036#include "llvm/CodeGen/MachineLoopInfo.h"
37#include "llvm/CodeGen/MachineMemOperand.h"
38#include "llvm/CodeGen/MachineOperand.h"
Kannan Narayananacb089e2017-04-12 03:25:12 +000039#include "llvm/CodeGen/MachineRegisterInfo.h"
Eugene Zelenko59e12822017-08-08 00:47:13 +000040#include "llvm/IR/DebugLoc.h"
41#include "llvm/Pass.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include <algorithm>
46#include <cassert>
47#include <cstdint>
48#include <cstring>
49#include <memory>
50#include <utility>
51#include <vector>
Kannan Narayananacb089e2017-04-12 03:25:12 +000052
53#define DEBUG_TYPE "si-insert-waitcnts"
54
55using namespace llvm;
56
57namespace {
58
59// Class of object that encapsulates latest instruction counter score
60// associated with the operand. Used for determining whether
61// s_waitcnt instruction needs to be emited.
62
63#define CNT_MASK(t) (1u << (t))
64
65enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS };
66
Eugene Zelenko59e12822017-08-08 00:47:13 +000067using RegInterval = std::pair<signed, signed>;
Kannan Narayananacb089e2017-04-12 03:25:12 +000068
69struct {
70 int32_t VmcntMax;
71 int32_t ExpcntMax;
72 int32_t LgkmcntMax;
73 int32_t NumVGPRsMax;
74 int32_t NumSGPRsMax;
75} HardwareLimits;
76
77struct {
78 unsigned VGPR0;
79 unsigned VGPRL;
80 unsigned SGPR0;
81 unsigned SGPRL;
82} RegisterEncoding;
83
84enum WaitEventType {
85 VMEM_ACCESS, // vector-memory read & write
86 LDS_ACCESS, // lds read & write
87 GDS_ACCESS, // gds read & write
88 SQ_MESSAGE, // send message
89 SMEM_ACCESS, // scalar-memory read & write
90 EXP_GPR_LOCK, // export holding on its data src
91 GDS_GPR_LOCK, // GDS holding on its data and addr src
92 EXP_POS_ACCESS, // write to export position
93 EXP_PARAM_ACCESS, // write to export parameter
94 VMW_GPR_LOCK, // vector-memory write holding on its data src
95 NUM_WAIT_EVENTS,
96};
97
98// The mapping is:
99// 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs
100// SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots
101// NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
102// We reserve a fixed number of VGPR slots in the scoring tables for
103// special tokens like SCMEM_LDS (needed for buffer load to LDS).
104enum RegisterMapping {
105 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
106 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
107 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS.
108 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses.
109 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
110};
111
112#define ForAllWaitEventType(w) \
113 for (enum WaitEventType w = (enum WaitEventType)0; \
114 (w) < (enum WaitEventType)NUM_WAIT_EVENTS; \
115 (w) = (enum WaitEventType)((w) + 1))
116
117// This is a per-basic-block object that maintains current score brackets
118// of each wait-counter, and a per-register scoreboard for each wait-couner.
119// We also maintain the latest score for every event type that can change the
120// waitcnt in order to know if there are multiple types of events within
121// the brackets. When multiple types of event happen in the bracket,
122// wait-count may get decreased out of order, therefore we need to put in
123// "s_waitcnt 0" before use.
124class BlockWaitcntBrackets {
125public:
Eugene Zelenko59e12822017-08-08 00:47:13 +0000126 BlockWaitcntBrackets() {
127 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
128 T = (enum InstCounterType)(T + 1)) {
129 memset(VgprScores[T], 0, sizeof(VgprScores[T]));
130 }
131 }
132
133 ~BlockWaitcntBrackets() = default;
134
Kannan Narayananacb089e2017-04-12 03:25:12 +0000135 static int32_t getWaitCountMax(InstCounterType T) {
136 switch (T) {
137 case VM_CNT:
138 return HardwareLimits.VmcntMax;
139 case LGKM_CNT:
140 return HardwareLimits.LgkmcntMax;
141 case EXP_CNT:
142 return HardwareLimits.ExpcntMax;
143 default:
144 break;
145 }
146 return 0;
Eugene Zelenko59e12822017-08-08 00:47:13 +0000147 }
Kannan Narayananacb089e2017-04-12 03:25:12 +0000148
149 void setScoreLB(InstCounterType T, int32_t Val) {
150 assert(T < NUM_INST_CNTS);
151 if (T >= NUM_INST_CNTS)
152 return;
153 ScoreLBs[T] = Val;
Eugene Zelenko59e12822017-08-08 00:47:13 +0000154 }
Kannan Narayananacb089e2017-04-12 03:25:12 +0000155
156 void setScoreUB(InstCounterType T, int32_t Val) {
157 assert(T < NUM_INST_CNTS);
158 if (T >= NUM_INST_CNTS)
159 return;
160 ScoreUBs[T] = Val;
161 if (T == EXP_CNT) {
162 int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT));
163 if (ScoreLBs[T] < UB)
164 ScoreLBs[T] = UB;
165 }
Eugene Zelenko59e12822017-08-08 00:47:13 +0000166 }
Kannan Narayananacb089e2017-04-12 03:25:12 +0000167
168 int32_t getScoreLB(InstCounterType T) {
169 assert(T < NUM_INST_CNTS);
170 if (T >= NUM_INST_CNTS)
171 return 0;
172 return ScoreLBs[T];
Eugene Zelenko59e12822017-08-08 00:47:13 +0000173 }
Kannan Narayananacb089e2017-04-12 03:25:12 +0000174
175 int32_t getScoreUB(InstCounterType T) {
176 assert(T < NUM_INST_CNTS);
177 if (T >= NUM_INST_CNTS)
178 return 0;
179 return ScoreUBs[T];
Eugene Zelenko59e12822017-08-08 00:47:13 +0000180 }
Kannan Narayananacb089e2017-04-12 03:25:12 +0000181
182 // Mapping from event to counter.
183 InstCounterType eventCounter(WaitEventType E) {
184 switch (E) {
185 case VMEM_ACCESS:
186 return VM_CNT;
187 case LDS_ACCESS:
188 case GDS_ACCESS:
189 case SQ_MESSAGE:
190 case SMEM_ACCESS:
191 return LGKM_CNT;
192 case EXP_GPR_LOCK:
193 case GDS_GPR_LOCK:
194 case VMW_GPR_LOCK:
195 case EXP_POS_ACCESS:
196 case EXP_PARAM_ACCESS:
197 return EXP_CNT;
198 default:
199 llvm_unreachable("unhandled event type");
200 }
201 return NUM_INST_CNTS;
202 }
203
204 void setRegScore(int GprNo, InstCounterType T, int32_t Val) {
205 if (GprNo < NUM_ALL_VGPRS) {
206 if (GprNo > VgprUB) {
207 VgprUB = GprNo;
208 }
209 VgprScores[T][GprNo] = Val;
210 } else {
211 assert(T == LGKM_CNT);
212 if (GprNo - NUM_ALL_VGPRS > SgprUB) {
213 SgprUB = GprNo - NUM_ALL_VGPRS;
214 }
215 SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
216 }
217 }
218
219 int32_t getRegScore(int GprNo, InstCounterType T) {
220 if (GprNo < NUM_ALL_VGPRS) {
221 return VgprScores[T][GprNo];
222 }
223 return SgprScores[GprNo - NUM_ALL_VGPRS];
224 }
225
226 void clear() {
227 memset(ScoreLBs, 0, sizeof(ScoreLBs));
228 memset(ScoreUBs, 0, sizeof(ScoreUBs));
229 memset(EventUBs, 0, sizeof(EventUBs));
230 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
231 T = (enum InstCounterType)(T + 1)) {
232 memset(VgprScores[T], 0, sizeof(VgprScores[T]));
233 }
234 memset(SgprScores, 0, sizeof(SgprScores));
235 }
236
237 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
238 const MachineRegisterInfo *MRI,
239 const SIRegisterInfo *TRI, unsigned OpNo,
240 bool Def) const;
241
242 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
243 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
244 unsigned OpNo, int32_t Val);
245
246 void setWaitAtBeginning() { WaitAtBeginning = true; }
247 void clearWaitAtBeginning() { WaitAtBeginning = false; }
248 bool getWaitAtBeginning() const { return WaitAtBeginning; }
249 void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; }
250 int32_t getMaxVGPR() const { return VgprUB; }
251 int32_t getMaxSGPR() const { return SgprUB; }
Eugene Zelenko59e12822017-08-08 00:47:13 +0000252
Kannan Narayananacb089e2017-04-12 03:25:12 +0000253 int32_t getEventUB(enum WaitEventType W) const {
254 assert(W < NUM_WAIT_EVENTS);
255 return EventUBs[W];
256 }
Eugene Zelenko59e12822017-08-08 00:47:13 +0000257
Kannan Narayananacb089e2017-04-12 03:25:12 +0000258 bool counterOutOfOrder(InstCounterType T);
259 unsigned int updateByWait(InstCounterType T, int ScoreToWait);
260 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
261 const MachineRegisterInfo *MRI, WaitEventType E,
262 MachineInstr &MI);
263
Kannan Narayananacb089e2017-04-12 03:25:12 +0000264 bool hasPendingSMEM() const {
265 return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] &&
266 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]);
267 }
268
269 bool hasPendingFlat() const {
270 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
271 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
272 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
273 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
274 }
275
276 void setPendingFlat() {
277 LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
278 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
279 }
280
281 int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; }
282
283 void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; }
284
285 bool getRevisitLoop() const { return RevisitLoop; }
286 void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; }
287
288 void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; }
289 int32_t getPostOrder() const { return PostOrder; }
290
291 void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; }
Eugene Zelenko59e12822017-08-08 00:47:13 +0000292 void clearWaitcnt() { Waitcnt = nullptr; }
Kannan Narayananacb089e2017-04-12 03:25:12 +0000293 MachineInstr *getWaitcnt() const { return Waitcnt; }
294
295 bool mixedExpTypes() const { return MixedExpTypes; }
296 void setMixedExpTypes(bool MixedExpTypesIn) {
297 MixedExpTypes = MixedExpTypesIn;
298 }
299
300 void print(raw_ostream &);
301 void dump() { print(dbgs()); }
302
303private:
Eugene Zelenko59e12822017-08-08 00:47:13 +0000304 bool WaitAtBeginning = false;
305 bool RevisitLoop = false;
306 bool ValidLoop = false;
307 bool MixedExpTypes = false;
308 MachineLoop *LoopRegion = nullptr;
309 int32_t PostOrder = 0;
310 MachineInstr *Waitcnt = nullptr;
Kannan Narayananacb089e2017-04-12 03:25:12 +0000311 int32_t ScoreLBs[NUM_INST_CNTS] = {0};
312 int32_t ScoreUBs[NUM_INST_CNTS] = {0};
313 int32_t EventUBs[NUM_WAIT_EVENTS] = {0};
314 // Remember the last flat memory operation.
315 int32_t LastFlat[NUM_INST_CNTS] = {0};
316 // wait_cnt scores for every vgpr.
317 // Keep track of the VgprUB and SgprUB to make merge at join efficient.
Eugene Zelenko59e12822017-08-08 00:47:13 +0000318 int32_t VgprUB = 0;
319 int32_t SgprUB = 0;
Kannan Narayananacb089e2017-04-12 03:25:12 +0000320 int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS];
321 // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
322 int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0};
323};
324
325// This is a per-loop-region object that records waitcnt status at the end of
326// loop footer from the previous iteration. We also maintain an iteration
327// count to track the number of times the loop has been visited. When it
328// doesn't converge naturally, we force convergence by inserting s_waitcnt 0
329// at the end of the loop footer.
330class LoopWaitcntData {
331public:
Eugene Zelenko59e12822017-08-08 00:47:13 +0000332 LoopWaitcntData() = default;
333 ~LoopWaitcntData() = default;
334
Kannan Narayananacb089e2017-04-12 03:25:12 +0000335 void incIterCnt() { IterCnt++; }
336 void resetIterCnt() { IterCnt = 0; }
337 int32_t getIterCnt() { return IterCnt; }
338
Kannan Narayananacb089e2017-04-12 03:25:12 +0000339 void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; }
340 MachineInstr *getWaitcnt() const { return LfWaitcnt; }
341
342 void print() {
343 DEBUG(dbgs() << " iteration " << IterCnt << '\n';);
Kannan Narayananacb089e2017-04-12 03:25:12 +0000344 }
345
346private:
347 // s_waitcnt added at the end of loop footer to stablize wait scores
348 // at the end of the loop footer.
Eugene Zelenko59e12822017-08-08 00:47:13 +0000349 MachineInstr *LfWaitcnt = nullptr;
Kannan Narayananacb089e2017-04-12 03:25:12 +0000350 // Number of iterations the loop has been visited, not including the initial
351 // walk over.
Eugene Zelenko59e12822017-08-08 00:47:13 +0000352 int32_t IterCnt = 0;
Kannan Narayananacb089e2017-04-12 03:25:12 +0000353};
354
355class SIInsertWaitcnts : public MachineFunctionPass {
Kannan Narayananacb089e2017-04-12 03:25:12 +0000356private:
Eugene Zelenko59e12822017-08-08 00:47:13 +0000357 const SISubtarget *ST = nullptr;
358 const SIInstrInfo *TII = nullptr;
359 const SIRegisterInfo *TRI = nullptr;
360 const MachineRegisterInfo *MRI = nullptr;
361 const MachineLoopInfo *MLI = nullptr;
Kannan Narayananacb089e2017-04-12 03:25:12 +0000362 AMDGPU::IsaInfo::IsaVersion IV;
363 AMDGPUAS AMDGPUASI;
364
365 DenseSet<MachineBasicBlock *> BlockVisitedSet;
366 DenseSet<MachineInstr *> CompilerGeneratedWaitcntSet;
367 DenseSet<MachineInstr *> VCCZBugHandledSet;
368
369 DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>>
370 BlockWaitcntBracketsMap;
371
372 DenseSet<MachineBasicBlock *> BlockWaitcntProcessedSet;
373
374 DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap;
375
376 std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets;
377
378public:
379 static char ID;
380
Eugene Zelenko59e12822017-08-08 00:47:13 +0000381 SIInsertWaitcnts() : MachineFunctionPass(ID) {}
Kannan Narayananacb089e2017-04-12 03:25:12 +0000382
383 bool runOnMachineFunction(MachineFunction &MF) override;
384
385 StringRef getPassName() const override {
386 return "SI insert wait instructions";
387 }
388
389 void getAnalysisUsage(AnalysisUsage &AU) const override {
390 AU.setPreservesCFG();
391 AU.addRequired<MachineLoopInfo>();
392 MachineFunctionPass::getAnalysisUsage(AU);
393 }
394
395 void addKillWaitBracket(BlockWaitcntBrackets *Bracket) {
396 // The waitcnt information is copied because it changes as the block is
397 // traversed.
Eugene Zelenko59e12822017-08-08 00:47:13 +0000398 KillWaitBrackets.push_back(
399 llvm::make_unique<BlockWaitcntBrackets>(*Bracket));
Kannan Narayananacb089e2017-04-12 03:25:12 +0000400 }
401
Matt Arsenault0ed39d32017-07-21 18:54:54 +0000402 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
Kannan Narayananacb089e2017-04-12 03:25:12 +0000403 MachineInstr *generateSWaitCntInstBefore(MachineInstr &MI,
404 BlockWaitcntBrackets *ScoreBrackets);
405 void updateEventWaitCntAfter(MachineInstr &Inst,
406 BlockWaitcntBrackets *ScoreBrackets);
407 void mergeInputScoreBrackets(MachineBasicBlock &Block);
408 MachineBasicBlock *loopBottom(const MachineLoop *Loop);
409 void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block);
410 void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst);
411};
412
Eugene Zelenko59e12822017-08-08 00:47:13 +0000413} // end anonymous namespace
Kannan Narayananacb089e2017-04-12 03:25:12 +0000414
415RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI,
416 const SIInstrInfo *TII,
417 const MachineRegisterInfo *MRI,
418 const SIRegisterInfo *TRI,
419 unsigned OpNo,
420 bool Def) const {
421 const MachineOperand &Op = MI->getOperand(OpNo);
422 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) ||
423 (Def && !Op.isDef()))
424 return {-1, -1};
425
426 // A use via a PW operand does not need a waitcnt.
427 // A partial write is not a WAW.
428 assert(!Op.getSubReg() || !Op.isUndef());
429
430 RegInterval Result;
431 const MachineRegisterInfo &MRIA = *MRI;
432
433 unsigned Reg = TRI->getEncodingValue(Op.getReg());
434
435 if (TRI->isVGPR(MRIA, Op.getReg())) {
436 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
437 Result.first = Reg - RegisterEncoding.VGPR0;
438 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
439 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) {
440 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
441 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
442 assert(Result.first >= NUM_ALL_VGPRS &&
443 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
444 }
445 // TODO: Handle TTMP
446 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ...
447 else
448 return {-1, -1};
449
450 const MachineInstr &MIA = *MI;
451 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo);
Krzysztof Parzyszek44e25f32017-04-24 18:55:33 +0000452 unsigned Size = TRI->getRegSizeInBits(*RC);
453 Result.second = Result.first + (Size / 32);
Kannan Narayananacb089e2017-04-12 03:25:12 +0000454
455 return Result;
456}
457
458void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI,
459 const SIInstrInfo *TII,
460 const SIRegisterInfo *TRI,
461 const MachineRegisterInfo *MRI,
462 unsigned OpNo, int32_t Val) {
463 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false);
464 DEBUG({
465 const MachineOperand &Opnd = MI->getOperand(OpNo);
466 assert(TRI->isVGPR(*MRI, Opnd.getReg()));
467 });
468 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
469 setRegScore(RegNo, EXP_CNT, Val);
470 }
471}
472
473void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
474 const SIRegisterInfo *TRI,
475 const MachineRegisterInfo *MRI,
476 WaitEventType E, MachineInstr &Inst) {
477 const MachineRegisterInfo &MRIA = *MRI;
478 InstCounterType T = eventCounter(E);
479 int32_t CurrScore = getScoreUB(T) + 1;
480 // EventUB and ScoreUB need to be update regardless if this event changes
481 // the score of a register or not.
482 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
483 EventUBs[E] = CurrScore;
484 setScoreUB(T, CurrScore);
485
486 if (T == EXP_CNT) {
487 // Check for mixed export types. If they are mixed, then a waitcnt exp(0)
488 // is required.
489 if (!MixedExpTypes) {
490 MixedExpTypes = counterOutOfOrder(EXP_CNT);
491 }
492
493 // Put score on the source vgprs. If this is a store, just use those
494 // specific register(s).
495 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
496 // All GDS operations must protect their address register (same as
497 // export.)
498 if (Inst.getOpcode() != AMDGPU::DS_APPEND &&
499 Inst.getOpcode() != AMDGPU::DS_CONSUME) {
500 setExpScore(
501 &Inst, TII, TRI, MRI,
502 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr),
503 CurrScore);
504 }
505 if (Inst.mayStore()) {
506 setExpScore(
507 &Inst, TII, TRI, MRI,
508 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
509 CurrScore);
510 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
511 AMDGPU::OpName::data1) != -1) {
512 setExpScore(&Inst, TII, TRI, MRI,
513 AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
514 AMDGPU::OpName::data1),
515 CurrScore);
516 }
517 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
518 Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
519 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
520 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
521 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
522 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
523 Inst.getOpcode() != AMDGPU::DS_APPEND &&
524 Inst.getOpcode() != AMDGPU::DS_CONSUME &&
525 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
526 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
527 const MachineOperand &Op = Inst.getOperand(I);
528 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) {
529 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
530 }
531 }
532 }
533 } else if (TII->isFLAT(Inst)) {
534 if (Inst.mayStore()) {
535 setExpScore(
536 &Inst, TII, TRI, MRI,
537 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
538 CurrScore);
539 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
540 setExpScore(
541 &Inst, TII, TRI, MRI,
542 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
543 CurrScore);
544 }
545 } else if (TII->isMIMG(Inst)) {
546 if (Inst.mayStore()) {
547 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
548 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
549 setExpScore(
550 &Inst, TII, TRI, MRI,
551 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
552 CurrScore);
553 }
554 } else if (TII->isMTBUF(Inst)) {
555 if (Inst.mayStore()) {
556 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
557 }
558 } else if (TII->isMUBUF(Inst)) {
559 if (Inst.mayStore()) {
560 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
561 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
562 setExpScore(
563 &Inst, TII, TRI, MRI,
564 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
565 CurrScore);
566 }
567 } else {
568 if (TII->isEXP(Inst)) {
569 // For export the destination registers are really temps that
570 // can be used as the actual source after export patching, so
571 // we need to treat them like sources and set the EXP_CNT
572 // score.
573 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
574 MachineOperand &DefMO = Inst.getOperand(I);
575 if (DefMO.isReg() && DefMO.isDef() &&
576 TRI->isVGPR(MRIA, DefMO.getReg())) {
577 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
578 CurrScore);
579 }
580 }
581 }
582 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
583 MachineOperand &MO = Inst.getOperand(I);
584 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) {
585 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
586 }
587 }
588 }
589#if 0 // TODO: check if this is handled by MUBUF code above.
590 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
Evgeny Mankovbf975172017-08-16 16:47:29 +0000591 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
592 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
Kannan Narayananacb089e2017-04-12 03:25:12 +0000593 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
594 unsigned OpNo;//TODO: find the OpNo for this operand;
595 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false);
596 for (signed RegNo = Interval.first; RegNo < Interval.second;
Evgeny Mankovbf975172017-08-16 16:47:29 +0000597 ++RegNo) {
Kannan Narayananacb089e2017-04-12 03:25:12 +0000598 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
599 }
600#endif
601 } else {
602 // Match the score to the destination registers.
603 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
604 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true);
605 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS)
606 continue;
607 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
608 setRegScore(RegNo, T, CurrScore);
609 }
610 }
611 if (TII->isDS(Inst) && Inst.mayStore()) {
612 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
613 }
614 }
615}
616
617void BlockWaitcntBrackets::print(raw_ostream &OS) {
618 OS << '\n';
619 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
620 T = (enum InstCounterType)(T + 1)) {
621 int LB = getScoreLB(T);
622 int UB = getScoreUB(T);
623
624 switch (T) {
625 case VM_CNT:
626 OS << " VM_CNT(" << UB - LB << "): ";
627 break;
628 case LGKM_CNT:
629 OS << " LGKM_CNT(" << UB - LB << "): ";
630 break;
631 case EXP_CNT:
632 OS << " EXP_CNT(" << UB - LB << "): ";
633 break;
634 default:
635 OS << " UNKNOWN(" << UB - LB << "): ";
636 break;
637 }
638
639 if (LB < UB) {
640 // Print vgpr scores.
641 for (int J = 0; J <= getMaxVGPR(); J++) {
642 int RegScore = getRegScore(J, T);
643 if (RegScore <= LB)
644 continue;
645 int RelScore = RegScore - LB - 1;
646 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
647 OS << RelScore << ":v" << J << " ";
648 } else {
649 OS << RelScore << ":ds ";
650 }
651 }
652 // Also need to print sgpr scores for lgkm_cnt.
653 if (T == LGKM_CNT) {
654 for (int J = 0; J <= getMaxSGPR(); J++) {
655 int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
656 if (RegScore <= LB)
657 continue;
658 int RelScore = RegScore - LB - 1;
659 OS << RelScore << ":s" << J << " ";
660 }
661 }
662 }
663 OS << '\n';
664 }
665 OS << '\n';
Kannan Narayananacb089e2017-04-12 03:25:12 +0000666}
667
668unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T,
669 int ScoreToWait) {
670 unsigned int NeedWait = 0;
671 if (ScoreToWait == -1) {
672 // The score to wait is unknown. This implies that it was not encountered
673 // during the path of the CFG walk done during the current traversal but
674 // may be seen on a different path. Emit an s_wait counter with a
675 // conservative value of 0 for the counter.
676 NeedWait = CNT_MASK(T);
677 setScoreLB(T, getScoreUB(T));
678 return NeedWait;
679 }
680
681 // If the score of src_operand falls within the bracket, we need an
682 // s_waitcnt instruction.
683 const int32_t LB = getScoreLB(T);
684 const int32_t UB = getScoreUB(T);
685 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
686 if (T == VM_CNT && hasPendingFlat()) {
687 // If there is a pending FLAT operation, and this is a VM waitcnt,
688 // then we need to force a waitcnt 0 for VM.
689 NeedWait = CNT_MASK(T);
690 setScoreLB(T, getScoreUB(T));
691 } else if (counterOutOfOrder(T)) {
692 // Counter can get decremented out-of-order when there
693 // are multiple types event in the brack. Also emit an s_wait counter
694 // with a conservative value of 0 for the counter.
695 NeedWait = CNT_MASK(T);
696 setScoreLB(T, getScoreUB(T));
697 } else {
698 NeedWait = CNT_MASK(T);
699 setScoreLB(T, ScoreToWait);
700 }
701 }
702
703 return NeedWait;
704}
705
706// Where there are multiple types of event in the bracket of a counter,
707// the decrement may go out of order.
708bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) {
709 switch (T) {
710 case VM_CNT:
711 return false;
712 case LGKM_CNT: {
713 if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] &&
714 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) {
715 // Scalar memory read always can go out of order.
716 return true;
717 }
718 int NumEventTypes = 0;
719 if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] &&
720 EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) {
721 NumEventTypes++;
722 }
723 if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] &&
724 EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) {
725 NumEventTypes++;
726 }
727 if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] &&
728 EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) {
729 NumEventTypes++;
730 }
731 if (NumEventTypes <= 1) {
732 return false;
733 }
734 break;
735 }
736 case EXP_CNT: {
737 // If there has been a mixture of export types, then a waitcnt exp(0) is
738 // required.
739 if (MixedExpTypes)
740 return true;
741 int NumEventTypes = 0;
742 if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
743 EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
744 NumEventTypes++;
745 }
746 if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
747 EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
748 NumEventTypes++;
749 }
750 if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
751 EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
752 NumEventTypes++;
753 }
754 if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] &&
755 EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) {
756 NumEventTypes++;
757 }
758
759 if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] &&
760 EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) {
761 NumEventTypes++;
762 }
763
764 if (NumEventTypes <= 1) {
765 return false;
766 }
767 break;
768 }
769 default:
770 break;
771 }
772 return true;
773}
774
775INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
776 false)
777INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
778 false)
779
780char SIInsertWaitcnts::ID = 0;
781
782char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
783
784FunctionPass *llvm::createSIInsertWaitcntsPass() {
785 return new SIInsertWaitcnts();
786}
787
788static bool readsVCCZ(const MachineInstr &MI) {
789 unsigned Opc = MI.getOpcode();
790 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
791 !MI.getOperand(1).isUndef();
792}
793
794/// \brief Generate s_waitcnt instruction to be placed before cur_Inst.
795/// Instructions of a given type are returned in order,
796/// but instructions of different types can complete out of order.
797/// We rely on this in-order completion
798/// and simply assign a score to the memory access instructions.
799/// We keep track of the active "score bracket" to determine
800/// if an access of a memory read requires an s_waitcnt
801/// and if so what the value of each counter is.
802/// The "score bracket" is bound by the lower bound and upper bound
803/// scores (*_score_LB and *_score_ub respectively).
804MachineInstr *SIInsertWaitcnts::generateSWaitCntInstBefore(
805 MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) {
806 // To emit, or not to emit - that's the question!
807 // Start with an assumption that there is no need to emit.
808 unsigned int EmitSwaitcnt = 0;
809 // s_waitcnt instruction to return; default is NULL.
810 MachineInstr *SWaitInst = nullptr;
811 // No need to wait before phi. If a phi-move exists, then the wait should
812 // has been inserted before the move. If a phi-move does not exist, then
813 // wait should be inserted before the real use. The same is true for
814 // sc-merge. It is not a coincident that all these cases correspond to the
815 // instructions that are skipped in the assembling loop.
816 bool NeedLineMapping = false; // TODO: Check on this.
817 if (MI.isDebugValue() &&
818 // TODO: any other opcode?
819 !NeedLineMapping) {
820 return SWaitInst;
821 }
822
823 // See if an s_waitcnt is forced at block entry, or is needed at
824 // program end.
825 if (ScoreBrackets->getWaitAtBeginning()) {
826 // Note that we have already cleared the state, so we don't need to update
827 // it.
828 ScoreBrackets->clearWaitAtBeginning();
829 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
830 T = (enum InstCounterType)(T + 1)) {
831 EmitSwaitcnt |= CNT_MASK(T);
832 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
833 }
834 }
835
836 // See if this instruction has a forced S_WAITCNT VM.
837 // TODO: Handle other cases of NeedsWaitcntVmBefore()
838 else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
839 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
840 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) {
841 EmitSwaitcnt |=
842 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
843 }
844
845 // All waits must be resolved at call return.
846 // NOTE: this could be improved with knowledge of all call sites or
847 // with knowledge of the called routines.
848 if (MI.getOpcode() == AMDGPU::RETURN ||
Mark Searles11d0a042017-05-31 16:44:23 +0000849 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
850 MI.getOpcode() == AMDGPU::S_SETPC_B64_return) {
Kannan Narayananacb089e2017-04-12 03:25:12 +0000851 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
852 T = (enum InstCounterType)(T + 1)) {
853 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) {
854 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
855 EmitSwaitcnt |= CNT_MASK(T);
856 }
857 }
858 }
859 // Resolve vm waits before gs-done.
860 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
861 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
862 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
863 AMDGPU::SendMsg::ID_GS_DONE)) {
864 if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) {
865 ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
866 EmitSwaitcnt |= CNT_MASK(VM_CNT);
867 }
868 }
869#if 0 // TODO: the following blocks of logic when we have fence.
870 else if (MI.getOpcode() == SC_FENCE) {
871 const unsigned int group_size =
872 context->shader_info->GetMaxThreadGroupSize();
873 // group_size == 0 means thread group size is unknown at compile time
874 const bool group_is_multi_wave =
875 (group_size == 0 || group_size > target_info->GetWaveFrontSize());
876 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
877
878 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
879 SCRegType src_type = Inst->GetSrcType(i);
880 switch (src_type) {
881 case SCMEM_LDS:
882 if (group_is_multi_wave ||
Evgeny Mankovbf975172017-08-16 16:47:29 +0000883 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
Kannan Narayananacb089e2017-04-12 03:25:12 +0000884 EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
885 ScoreBrackets->getScoreUB(LGKM_CNT));
886 // LDS may have to wait for VM_CNT after buffer load to LDS
887 if (target_info->HasBufferLoadToLDS()) {
888 EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
889 ScoreBrackets->getScoreUB(VM_CNT));
890 }
891 }
892 break;
893
894 case SCMEM_GDS:
895 if (group_is_multi_wave || fence_is_global) {
896 EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
Evgeny Mankovbf975172017-08-16 16:47:29 +0000897 ScoreBrackets->getScoreUB(EXP_CNT));
Kannan Narayananacb089e2017-04-12 03:25:12 +0000898 EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
Evgeny Mankovbf975172017-08-16 16:47:29 +0000899 ScoreBrackets->getScoreUB(LGKM_CNT));
Kannan Narayananacb089e2017-04-12 03:25:12 +0000900 }
901 break;
902
903 case SCMEM_UAV:
904 case SCMEM_TFBUF:
905 case SCMEM_RING:
906 case SCMEM_SCATTER:
907 if (group_is_multi_wave || fence_is_global) {
908 EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
Evgeny Mankovbf975172017-08-16 16:47:29 +0000909 ScoreBrackets->getScoreUB(EXP_CNT));
Kannan Narayananacb089e2017-04-12 03:25:12 +0000910 EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
Evgeny Mankovbf975172017-08-16 16:47:29 +0000911 ScoreBrackets->getScoreUB(VM_CNT));
Kannan Narayananacb089e2017-04-12 03:25:12 +0000912 }
913 break;
914
915 case SCMEM_SCRATCH:
916 default:
917 break;
918 }
919 }
920 }
921#endif
922
923 // Export & GDS instructions do not read the EXEC mask until after the export
924 // is granted (which can occur well after the instruction is issued).
925 // The shader program must flush all EXP operations on the export-count
926 // before overwriting the EXEC mask.
927 else {
928 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
929 // Export and GDS are tracked individually, either may trigger a waitcnt
930 // for EXEC.
931 EmitSwaitcnt |= ScoreBrackets->updateByWait(
932 EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK));
933 EmitSwaitcnt |= ScoreBrackets->updateByWait(
934 EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS));
935 EmitSwaitcnt |= ScoreBrackets->updateByWait(
936 EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS));
937 EmitSwaitcnt |= ScoreBrackets->updateByWait(
938 EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK));
939 }
940
941#if 0 // TODO: the following code to handle CALL.
942 // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT.
943 // However, there is a problem with EXP_CNT, because the call cannot
944 // easily tell if a register is used in the function, and if it did, then
945 // the referring instruction would have to have an S_WAITCNT, which is
946 // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs
947 // before the call.
948 if (MI.getOpcode() == SC_CALL) {
949 if (ScoreBrackets->getScoreUB(EXP_CNT) >
Evgeny Mankovbf975172017-08-16 16:47:29 +0000950 ScoreBrackets->getScoreLB(EXP_CNT)) {
Kannan Narayananacb089e2017-04-12 03:25:12 +0000951 ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
952 EmitSwaitcnt |= CNT_MASK(EXP_CNT);
953 }
954 }
955#endif
956
Matt Arsenault0ed39d32017-07-21 18:54:54 +0000957 // FIXME: Should not be relying on memoperands.
Kannan Narayananacb089e2017-04-12 03:25:12 +0000958 // Look at the source operands of every instruction to see if
959 // any of them results from a previous memory operation that affects
960 // its current usage. If so, an s_waitcnt instruction needs to be
961 // emitted.
962 // If the source operand was defined by a load, add the s_waitcnt
963 // instruction.
964 for (const MachineMemOperand *Memop : MI.memoperands()) {
965 unsigned AS = Memop->getAddrSpace();
966 if (AS != AMDGPUASI.LOCAL_ADDRESS)
967 continue;
968 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
969 // VM_CNT is only relevant to vgpr or LDS.
970 EmitSwaitcnt |= ScoreBrackets->updateByWait(
971 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
972 }
Matt Arsenault0ed39d32017-07-21 18:54:54 +0000973
Kannan Narayananacb089e2017-04-12 03:25:12 +0000974 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
975 const MachineOperand &Op = MI.getOperand(I);
976 const MachineRegisterInfo &MRIA = *MRI;
977 RegInterval Interval =
978 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false);
979 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
980 if (TRI->isVGPR(MRIA, Op.getReg())) {
981 // VM_CNT is only relevant to vgpr or LDS.
982 EmitSwaitcnt |= ScoreBrackets->updateByWait(
983 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
984 }
985 EmitSwaitcnt |= ScoreBrackets->updateByWait(
986 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT));
987 }
988 }
989 // End of for loop that looks at all source operands to decide vm_wait_cnt
990 // and lgk_wait_cnt.
991
992 // Two cases are handled for destination operands:
993 // 1) If the destination operand was defined by a load, add the s_waitcnt
994 // instruction to guarantee the right WAW order.
995 // 2) If a destination operand that was used by a recent export/store ins,
996 // add s_waitcnt on exp_cnt to guarantee the WAR order.
997 if (MI.mayStore()) {
Matt Arsenault0ed39d32017-07-21 18:54:54 +0000998 // FIXME: Should not be relying on memoperands.
Kannan Narayananacb089e2017-04-12 03:25:12 +0000999 for (const MachineMemOperand *Memop : MI.memoperands()) {
1000 unsigned AS = Memop->getAddrSpace();
1001 if (AS != AMDGPUASI.LOCAL_ADDRESS)
1002 continue;
1003 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
1004 EmitSwaitcnt |= ScoreBrackets->updateByWait(
1005 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
1006 EmitSwaitcnt |= ScoreBrackets->updateByWait(
1007 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT));
1008 }
1009 }
1010 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1011 MachineOperand &Def = MI.getOperand(I);
1012 const MachineRegisterInfo &MRIA = *MRI;
1013 RegInterval Interval =
1014 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true);
1015 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1016 if (TRI->isVGPR(MRIA, Def.getReg())) {
1017 EmitSwaitcnt |= ScoreBrackets->updateByWait(
1018 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
1019 EmitSwaitcnt |= ScoreBrackets->updateByWait(
1020 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT));
1021 }
1022 EmitSwaitcnt |= ScoreBrackets->updateByWait(
1023 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT));
1024 }
1025 } // End of for loop that looks at all dest operands.
1026 }
1027
1028 // TODO: Tie force zero to a compiler triage option.
1029 bool ForceZero = false;
1030
1031 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
1032 // occurs before the instruction. Doing it here prevents any additional
1033 // S_WAITCNTs from being emitted if the instruction was marked as
1034 // requiring a WAITCNT beforehand.
Konstantin Zhuravlyovbe6c0ca2017-06-02 17:40:26 +00001035 if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1036 !ST->hasAutoWaitcntBeforeBarrier()) {
Kannan Narayananacb089e2017-04-12 03:25:12 +00001037 EmitSwaitcnt |=
1038 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
1039 EmitSwaitcnt |= ScoreBrackets->updateByWait(
1040 EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
1041 EmitSwaitcnt |= ScoreBrackets->updateByWait(
1042 LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT));
1043 }
1044
1045 // TODO: Remove this work-around, enable the assert for Bug 457939
1046 // after fixing the scheduler. Also, the Shader Compiler code is
1047 // independent of target.
1048 if (readsVCCZ(MI) && ST->getGeneration() <= SISubtarget::SEA_ISLANDS) {
1049 if (ScoreBrackets->getScoreLB(LGKM_CNT) <
1050 ScoreBrackets->getScoreUB(LGKM_CNT) &&
1051 ScoreBrackets->hasPendingSMEM()) {
1052 // Wait on everything, not just LGKM. vccz reads usually come from
1053 // terminators, and we always wait on everything at the end of the
1054 // block, so if we only wait on LGKM here, we might end up with
1055 // another s_waitcnt inserted right after this if there are non-LGKM
1056 // instructions still outstanding.
1057 ForceZero = true;
1058 EmitSwaitcnt = true;
1059 }
1060 }
1061
1062 // Does this operand processing indicate s_wait counter update?
1063 if (EmitSwaitcnt) {
1064 int CntVal[NUM_INST_CNTS];
1065
1066 bool UseDefaultWaitcntStrategy = true;
1067 if (ForceZero) {
1068 // Force all waitcnts to 0.
1069 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1070 T = (enum InstCounterType)(T + 1)) {
1071 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
1072 }
1073 CntVal[VM_CNT] = 0;
1074 CntVal[EXP_CNT] = 0;
1075 CntVal[LGKM_CNT] = 0;
1076 UseDefaultWaitcntStrategy = false;
1077 }
1078
1079 if (UseDefaultWaitcntStrategy) {
1080 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1081 T = (enum InstCounterType)(T + 1)) {
1082 if (EmitSwaitcnt & CNT_MASK(T)) {
1083 int Delta =
1084 ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T);
1085 int MaxDelta = ScoreBrackets->getWaitCountMax(T);
1086 if (Delta >= MaxDelta) {
1087 Delta = -1;
1088 if (T != EXP_CNT) {
1089 ScoreBrackets->setScoreLB(
1090 T, ScoreBrackets->getScoreUB(T) - MaxDelta);
1091 }
1092 EmitSwaitcnt &= ~CNT_MASK(T);
1093 }
1094 CntVal[T] = Delta;
1095 } else {
1096 // If we are not waiting for a particular counter then encode
1097 // it as -1 which means "don't care."
1098 CntVal[T] = -1;
1099 }
1100 }
1101 }
1102
1103 // If we are not waiting on any counter we can skip the wait altogether.
1104 if (EmitSwaitcnt != 0) {
1105 MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt();
1106 int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm();
1107 if (!OldWaitcnt || (AMDGPU::decodeVmcnt(IV, Imm) !=
1108 (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) ||
1109 (AMDGPU::decodeExpcnt(IV, Imm) !=
1110 (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) ||
1111 (AMDGPU::decodeLgkmcnt(IV, Imm) !=
1112 (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) {
1113 MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent());
1114 if (ContainingLoop) {
Kannan Narayanan5e73b042017-05-05 21:10:17 +00001115 MachineBasicBlock *TBB = ContainingLoop->getHeader();
Kannan Narayananacb089e2017-04-12 03:25:12 +00001116 BlockWaitcntBrackets *ScoreBracket =
1117 BlockWaitcntBracketsMap[TBB].get();
1118 if (!ScoreBracket) {
1119 assert(BlockVisitedSet.find(TBB) == BlockVisitedSet.end());
Eugene Zelenko59e12822017-08-08 00:47:13 +00001120 BlockWaitcntBracketsMap[TBB] =
1121 llvm::make_unique<BlockWaitcntBrackets>();
Kannan Narayananacb089e2017-04-12 03:25:12 +00001122 ScoreBracket = BlockWaitcntBracketsMap[TBB].get();
1123 }
1124 ScoreBracket->setRevisitLoop(true);
1125 DEBUG(dbgs() << "set-revisit: block"
Kannan Narayanan5e73b042017-05-05 21:10:17 +00001126 << ContainingLoop->getHeader()->getNumber() << '\n';);
Kannan Narayananacb089e2017-04-12 03:25:12 +00001127 }
1128 }
1129
1130 // Update an existing waitcount, or make a new one.
1131 MachineFunction &MF = *MI.getParent()->getParent();
1132 if (OldWaitcnt && OldWaitcnt->getOpcode() != AMDGPU::S_WAITCNT) {
1133 SWaitInst = OldWaitcnt;
1134 } else {
1135 SWaitInst = MF.CreateMachineInstr(TII->get(AMDGPU::S_WAITCNT),
1136 MI.getDebugLoc());
1137 CompilerGeneratedWaitcntSet.insert(SWaitInst);
1138 }
1139
1140 const MachineOperand &Op =
1141 MachineOperand::CreateImm(AMDGPU::encodeWaitcnt(
1142 IV, CntVal[VM_CNT], CntVal[EXP_CNT], CntVal[LGKM_CNT]));
1143 SWaitInst->addOperand(MF, Op);
1144
1145 if (CntVal[EXP_CNT] == 0) {
1146 ScoreBrackets->setMixedExpTypes(false);
1147 }
1148 }
1149 }
1150
1151 return SWaitInst;
1152}
1153
1154void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB,
1155 MachineInstr *Waitcnt) {
1156 if (MBB.empty()) {
1157 MBB.push_back(Waitcnt);
1158 return;
1159 }
1160
1161 MachineBasicBlock::iterator It = MBB.end();
1162 MachineInstr *MI = &*(--It);
1163 if (MI->isBranch()) {
1164 MBB.insert(It, Waitcnt);
1165 } else {
1166 MBB.push_back(Waitcnt);
1167 }
Kannan Narayananacb089e2017-04-12 03:25:12 +00001168}
1169
Matt Arsenault0ed39d32017-07-21 18:54:54 +00001170// This is a flat memory operation. Check to see if it has memory
1171// tokens for both LDS and Memory, and if so mark it as a flat.
1172bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1173 if (MI.memoperands_empty())
1174 return true;
1175
1176 for (const MachineMemOperand *Memop : MI.memoperands()) {
1177 unsigned AS = Memop->getAddrSpace();
1178 if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS)
1179 return true;
1180 }
1181
1182 return false;
1183}
1184
Kannan Narayananacb089e2017-04-12 03:25:12 +00001185void SIInsertWaitcnts::updateEventWaitCntAfter(
1186 MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) {
1187 // Now look at the instruction opcode. If it is a memory access
1188 // instruction, update the upper-bound of the appropriate counter's
1189 // bracket and the destination operand scores.
1190 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
Matt Arsenault6ab9ea92017-07-21 18:34:51 +00001191 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
Matt Arsenault0ed39d32017-07-21 18:54:54 +00001192 if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
Kannan Narayananacb089e2017-04-12 03:25:12 +00001193 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1194 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1195 } else {
1196 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1197 }
1198 } else if (TII->isFLAT(Inst)) {
1199 assert(Inst.mayLoad() || Inst.mayStore());
Matt Arsenault6ab9ea92017-07-21 18:34:51 +00001200
1201 if (TII->usesVM_CNT(Inst))
1202 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1203
Matt Arsenault0ed39d32017-07-21 18:54:54 +00001204 if (TII->usesLGKM_CNT(Inst)) {
Matt Arsenault6ab9ea92017-07-21 18:34:51 +00001205 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
Kannan Narayananacb089e2017-04-12 03:25:12 +00001206
Matt Arsenault0ed39d32017-07-21 18:54:54 +00001207 // This is a flat memory operation, so note it - it will require
1208 // that both the VM and LGKM be flushed to zero if it is pending when
1209 // a VM or LGKM dependency occurs.
1210 if (mayAccessLDSThroughFlat(Inst))
1211 ScoreBrackets->setPendingFlat();
Kannan Narayananacb089e2017-04-12 03:25:12 +00001212 }
1213 } else if (SIInstrInfo::isVMEM(Inst) &&
1214 // TODO: get a better carve out.
1215 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
1216 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
1217 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) {
1218 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1219 if ( // TODO: assumed yes -- target_info->MemWriteNeedsExpWait() &&
Mark Searles11d0a042017-05-31 16:44:23 +00001220 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
Kannan Narayananacb089e2017-04-12 03:25:12 +00001221 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1222 }
1223 } else if (TII->isSMRD(Inst)) {
1224 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1225 } else {
1226 switch (Inst.getOpcode()) {
1227 case AMDGPU::S_SENDMSG:
1228 case AMDGPU::S_SENDMSGHALT:
1229 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1230 break;
1231 case AMDGPU::EXP:
1232 case AMDGPU::EXP_DONE: {
1233 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1234 if (Imm >= 32 && Imm <= 63)
1235 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1236 else if (Imm >= 12 && Imm <= 15)
1237 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1238 else
1239 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1240 break;
1241 }
1242 case AMDGPU::S_MEMTIME:
1243 case AMDGPU::S_MEMREALTIME:
1244 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1245 break;
1246 default:
1247 break;
1248 }
1249 }
1250}
1251
1252void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) {
1253 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get();
1254 int32_t MaxPending[NUM_INST_CNTS] = {0};
1255 int32_t MaxFlat[NUM_INST_CNTS] = {0};
1256 bool MixedExpTypes = false;
1257
1258 // Clear the score bracket state.
1259 ScoreBrackets->clear();
1260
1261 // Compute the number of pending elements on block entry.
1262
1263 // IMPORTANT NOTE: If iterative handling of loops is added, the code will
1264 // need to handle single BBs with backedges to themselves. This means that
1265 // they will need to retain and not clear their initial state.
1266
1267 // See if there are any uninitialized predecessors. If so, emit an
1268 // s_waitcnt 0 at the beginning of the block.
1269 for (MachineBasicBlock *pred : Block.predecessors()) {
1270 BlockWaitcntBrackets *PredScoreBrackets =
1271 BlockWaitcntBracketsMap[pred].get();
1272 bool Visited = BlockVisitedSet.find(pred) != BlockVisitedSet.end();
1273 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) {
1274 break;
1275 }
1276 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1277 T = (enum InstCounterType)(T + 1)) {
1278 int span =
1279 PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T);
1280 MaxPending[T] = std::max(MaxPending[T], span);
1281 span =
1282 PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T);
1283 MaxFlat[T] = std::max(MaxFlat[T], span);
1284 }
1285
1286 MixedExpTypes |= PredScoreBrackets->mixedExpTypes();
1287 }
1288
1289 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
1290 // Also handle kills for exit block.
1291 if (Block.succ_empty() && !KillWaitBrackets.empty()) {
1292 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
1293 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1294 T = (enum InstCounterType)(T + 1)) {
1295 int Span = KillWaitBrackets[I]->getScoreUB(T) -
1296 KillWaitBrackets[I]->getScoreLB(T);
1297 MaxPending[T] = std::max(MaxPending[T], Span);
1298 Span = KillWaitBrackets[I]->pendingFlat(T) -
1299 KillWaitBrackets[I]->getScoreLB(T);
1300 MaxFlat[T] = std::max(MaxFlat[T], Span);
1301 }
1302
1303 MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes();
1304 }
1305 }
1306
1307 // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK.
1308 for (MachineBasicBlock *Pred : Block.predecessors()) {
1309 BlockWaitcntBrackets *PredScoreBrackets =
1310 BlockWaitcntBracketsMap[Pred].get();
1311 bool Visited = BlockVisitedSet.find(Pred) != BlockVisitedSet.end();
1312 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) {
1313 break;
1314 }
1315
1316 int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) -
1317 PredScoreBrackets->getScoreLB(EXP_CNT);
1318 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan);
1319 int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) -
1320 PredScoreBrackets->getScoreLB(EXP_CNT);
1321 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan);
1322 }
1323
1324 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
1325 if (Block.succ_empty() && !KillWaitBrackets.empty()) {
1326 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
1327 int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) -
1328 KillWaitBrackets[I]->getScoreLB(EXP_CNT);
1329 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan);
1330 int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) -
1331 KillWaitBrackets[I]->getScoreLB(EXP_CNT);
1332 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan);
1333 }
1334 }
1335
1336#if 0
1337 // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker.
1338 // TODO: how does LC distinguish between function entry and main entry?
1339 // If this is the entry to a function, force a wait.
1340 MachineBasicBlock &Entry = Block.getParent()->front();
1341 if (Entry.getNumber() == Block.getNumber()) {
1342 ScoreBrackets->setWaitAtBeginning();
1343 return;
1344 }
1345#endif
1346
1347 // Now set the current Block's brackets to the largest ending bracket.
1348 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1349 T = (enum InstCounterType)(T + 1)) {
1350 ScoreBrackets->setScoreUB(T, MaxPending[T]);
1351 ScoreBrackets->setScoreLB(T, 0);
1352 ScoreBrackets->setLastFlat(T, MaxFlat[T]);
1353 }
1354
1355 ScoreBrackets->setMixedExpTypes(MixedExpTypes);
1356
1357 // Set the register scoreboard.
1358 for (MachineBasicBlock *Pred : Block.predecessors()) {
1359 if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) {
1360 break;
1361 }
1362
1363 BlockWaitcntBrackets *PredScoreBrackets =
1364 BlockWaitcntBracketsMap[Pred].get();
1365
1366 // Now merge the gpr_reg_score information
1367 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1368 T = (enum InstCounterType)(T + 1)) {
1369 int PredLB = PredScoreBrackets->getScoreLB(T);
1370 int PredUB = PredScoreBrackets->getScoreUB(T);
1371 if (PredLB < PredUB) {
1372 int PredScale = MaxPending[T] - PredUB;
1373 // Merge vgpr scores.
1374 for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) {
1375 int PredRegScore = PredScoreBrackets->getRegScore(J, T);
1376 if (PredRegScore <= PredLB)
1377 continue;
1378 int NewRegScore = PredScale + PredRegScore;
1379 ScoreBrackets->setRegScore(
1380 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore));
1381 }
1382 // Also need to merge sgpr scores for lgkm_cnt.
1383 if (T == LGKM_CNT) {
1384 for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) {
1385 int PredRegScore =
1386 PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
1387 if (PredRegScore <= PredLB)
1388 continue;
1389 int NewRegScore = PredScale + PredRegScore;
1390 ScoreBrackets->setRegScore(
1391 J + NUM_ALL_VGPRS, LGKM_CNT,
1392 std::max(
1393 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT),
1394 NewRegScore));
1395 }
1396 }
1397 }
1398 }
1399
1400 // Also merge the WaitEvent information.
1401 ForAllWaitEventType(W) {
1402 enum InstCounterType T = PredScoreBrackets->eventCounter(W);
1403 int PredEventUB = PredScoreBrackets->getEventUB(W);
1404 if (PredEventUB > PredScoreBrackets->getScoreLB(T)) {
1405 int NewEventUB =
1406 MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T);
1407 if (NewEventUB > 0) {
1408 ScoreBrackets->setEventUB(
1409 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB));
1410 }
1411 }
1412 }
1413 }
1414
1415 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
1416 // Set the register scoreboard.
1417 if (Block.succ_empty() && !KillWaitBrackets.empty()) {
1418 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
1419 // Now merge the gpr_reg_score information.
1420 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1421 T = (enum InstCounterType)(T + 1)) {
1422 int PredLB = KillWaitBrackets[I]->getScoreLB(T);
1423 int PredUB = KillWaitBrackets[I]->getScoreUB(T);
1424 if (PredLB < PredUB) {
1425 int PredScale = MaxPending[T] - PredUB;
1426 // Merge vgpr scores.
1427 for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) {
1428 int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T);
1429 if (PredRegScore <= PredLB)
1430 continue;
1431 int NewRegScore = PredScale + PredRegScore;
1432 ScoreBrackets->setRegScore(
1433 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore));
1434 }
1435 // Also need to merge sgpr scores for lgkm_cnt.
1436 if (T == LGKM_CNT) {
1437 for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) {
1438 int PredRegScore =
1439 KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
1440 if (PredRegScore <= PredLB)
1441 continue;
1442 int NewRegScore = PredScale + PredRegScore;
1443 ScoreBrackets->setRegScore(
1444 J + NUM_ALL_VGPRS, LGKM_CNT,
1445 std::max(
1446 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT),
1447 NewRegScore));
1448 }
1449 }
1450 }
1451 }
1452
1453 // Also merge the WaitEvent information.
1454 ForAllWaitEventType(W) {
1455 enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W);
1456 int PredEventUB = KillWaitBrackets[I]->getEventUB(W);
1457 if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) {
1458 int NewEventUB =
1459 MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T);
1460 if (NewEventUB > 0) {
1461 ScoreBrackets->setEventUB(
1462 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB));
1463 }
1464 }
1465 }
1466 }
1467 }
1468
1469 // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the
1470 // sequencing predecessors, because changes to EXEC require waitcnts due to
1471 // the delayed nature of these operations.
1472 for (MachineBasicBlock *Pred : Block.predecessors()) {
1473 if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) {
1474 break;
1475 }
1476
1477 BlockWaitcntBrackets *PredScoreBrackets =
1478 BlockWaitcntBracketsMap[Pred].get();
1479
1480 int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK);
1481 if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) {
1482 int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub -
1483 PredScoreBrackets->getScoreUB(EXP_CNT);
1484 if (new_gds_ub > 0) {
1485 ScoreBrackets->setEventUB(
1486 GDS_GPR_LOCK,
1487 std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub));
1488 }
1489 }
1490 int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK);
1491 if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) {
1492 int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub -
1493 PredScoreBrackets->getScoreUB(EXP_CNT);
1494 if (new_exp_ub > 0) {
1495 ScoreBrackets->setEventUB(
1496 EXP_GPR_LOCK,
1497 std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub));
1498 }
1499 }
1500 }
1501}
1502
1503/// Return the "bottom" block of a loop. This differs from
1504/// MachineLoop::getBottomBlock in that it works even if the loop is
1505/// discontiguous.
1506MachineBasicBlock *SIInsertWaitcnts::loopBottom(const MachineLoop *Loop) {
1507 MachineBasicBlock *Bottom = Loop->getHeader();
1508 for (MachineBasicBlock *MBB : Loop->blocks())
1509 if (MBB->getNumber() > Bottom->getNumber())
1510 Bottom = MBB;
1511 return Bottom;
1512}
1513
1514// Generate s_waitcnt instructions where needed.
1515void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1516 MachineBasicBlock &Block) {
1517 // Initialize the state information.
1518 mergeInputScoreBrackets(Block);
1519
1520 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get();
1521
1522 DEBUG({
1523 dbgs() << "Block" << Block.getNumber();
1524 ScoreBrackets->dump();
1525 });
1526
1527 bool InsertNOP = false;
1528
1529 // Walk over the instructions.
1530 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end();
1531 Iter != E;) {
1532 MachineInstr &Inst = *Iter;
1533 // Remove any previously existing waitcnts.
1534 if (Inst.getOpcode() == AMDGPU::S_WAITCNT) {
1535 // TODO: Register the old waitcnt and optimize the following waitcnts.
1536 // Leaving the previously existing waitcnts is conservatively correct.
1537 if (CompilerGeneratedWaitcntSet.find(&Inst) ==
1538 CompilerGeneratedWaitcntSet.end())
1539 ++Iter;
1540 else {
1541 ScoreBrackets->setWaitcnt(&Inst);
1542 ++Iter;
1543 Inst.removeFromParent();
1544 }
1545 continue;
1546 }
1547
1548 // Kill instructions generate a conditional branch to the endmain block.
1549 // Merge the current waitcnt state into the endmain block information.
1550 // TODO: Are there other flavors of KILL instruction?
1551 if (Inst.getOpcode() == AMDGPU::KILL) {
1552 addKillWaitBracket(ScoreBrackets);
1553 }
1554
1555 bool VCCZBugWorkAround = false;
1556 if (readsVCCZ(Inst) &&
1557 (VCCZBugHandledSet.find(&Inst) == VCCZBugHandledSet.end())) {
1558 if (ScoreBrackets->getScoreLB(LGKM_CNT) <
1559 ScoreBrackets->getScoreUB(LGKM_CNT) &&
1560 ScoreBrackets->hasPendingSMEM()) {
1561 if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS)
1562 VCCZBugWorkAround = true;
1563 }
1564 }
1565
1566 // Generate an s_waitcnt instruction to be placed before
1567 // cur_Inst, if needed.
1568 MachineInstr *SWaitInst = generateSWaitCntInstBefore(Inst, ScoreBrackets);
1569
1570 if (SWaitInst) {
1571 Block.insert(Inst, SWaitInst);
1572 if (ScoreBrackets->getWaitcnt() != SWaitInst) {
1573 DEBUG(dbgs() << "insertWaitcntInBlock\n"
1574 << "Old Instr: " << Inst << '\n'
1575 << "New Instr: " << *SWaitInst << '\n';);
1576 }
1577 }
1578
1579 updateEventWaitCntAfter(Inst, ScoreBrackets);
1580
1581#if 0 // TODO: implement resource type check controlled by options with ub = LB.
1582 // If this instruction generates a S_SETVSKIP because it is an
1583 // indexed resource, and we are on Tahiti, then it will also force
1584 // an S_WAITCNT vmcnt(0)
1585 if (RequireCheckResourceType(Inst, context)) {
1586 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1587 ScoreBrackets->setScoreLB(VM_CNT,
Evgeny Mankovbf975172017-08-16 16:47:29 +00001588 ScoreBrackets->getScoreUB(VM_CNT));
Kannan Narayananacb089e2017-04-12 03:25:12 +00001589 }
1590#endif
1591
1592 ScoreBrackets->clearWaitcnt();
1593
1594 if (SWaitInst) {
1595 DEBUG({ SWaitInst->print(dbgs() << '\n'); });
1596 }
1597 DEBUG({
1598 Inst.print(dbgs());
1599 ScoreBrackets->dump();
1600 });
1601
1602 // Check to see if this is a GWS instruction. If so, and if this is CI or
1603 // VI, then the generated code sequence will include an S_WAITCNT 0.
1604 // TODO: Are these the only GWS instructions?
1605 if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT ||
1606 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V ||
1607 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR ||
1608 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P ||
1609 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) {
1610 // TODO: && context->target_info->GwsRequiresMemViolTest() ) {
1611 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
1612 ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
1613 ScoreBrackets->updateByWait(LGKM_CNT,
1614 ScoreBrackets->getScoreUB(LGKM_CNT));
1615 }
1616
1617 // TODO: Remove this work-around after fixing the scheduler and enable the
1618 // assert above.
1619 if (VCCZBugWorkAround) {
1620 // Restore the vccz bit. Any time a value is written to vcc, the vcc
1621 // bit is updated, so we can restore the bit by reading the value of
1622 // vcc and then writing it back to the register.
1623 BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
1624 AMDGPU::VCC)
1625 .addReg(AMDGPU::VCC);
1626 VCCZBugHandledSet.insert(&Inst);
1627 }
1628
1629 if (ST->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
1630
1631 // This avoids a s_nop after a waitcnt has just been inserted.
1632 if (!SWaitInst && InsertNOP) {
1633 BuildMI(Block, Inst, DebugLoc(), TII->get(AMDGPU::S_NOP)).addImm(0);
1634 }
1635 InsertNOP = false;
1636
1637 // Any occurrence of consecutive VMEM or SMEM instructions forms a VMEM
1638 // or SMEM clause, respectively.
1639 //
1640 // The temporary workaround is to break the clauses with S_NOP.
1641 //
1642 // The proper solution would be to allocate registers such that all source
1643 // and destination registers don't overlap, e.g. this is illegal:
1644 // r0 = load r2
1645 // r2 = load r0
1646 bool IsSMEM = false;
1647 bool IsVMEM = false;
1648 if (TII->isSMRD(Inst))
1649 IsSMEM = true;
1650 else if (TII->usesVM_CNT(Inst))
1651 IsVMEM = true;
1652
1653 ++Iter;
1654 if (Iter == E)
1655 break;
1656
1657 MachineInstr &Next = *Iter;
1658
1659 // TODO: How about consecutive SMEM instructions?
1660 // The comments above says break the clause but the code does not.
1661 // if ((TII->isSMRD(next) && isSMEM) ||
1662 if (!IsSMEM && TII->usesVM_CNT(Next) && IsVMEM &&
1663 // TODO: Enable this check when hasSoftClause is upstreamed.
1664 // ST->hasSoftClauses() &&
1665 ST->isXNACKEnabled()) {
1666 // Insert a NOP to break the clause.
1667 InsertNOP = true;
1668 continue;
1669 }
1670
1671 // There must be "S_NOP 0" between an instruction writing M0 and
1672 // S_SENDMSG.
1673 if ((Next.getOpcode() == AMDGPU::S_SENDMSG ||
1674 Next.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
1675 Inst.definesRegister(AMDGPU::M0))
1676 InsertNOP = true;
1677
1678 continue;
1679 }
1680
1681 ++Iter;
1682 }
1683
1684 // Check if we need to force convergence at loop footer.
1685 MachineLoop *ContainingLoop = MLI->getLoopFor(&Block);
1686 if (ContainingLoop && loopBottom(ContainingLoop) == &Block) {
1687 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
1688 WaitcntData->print();
1689 DEBUG(dbgs() << '\n';);
1690
1691 // The iterative waitcnt insertion algorithm aims for optimal waitcnt
1692 // placement and doesn't always guarantee convergence for a loop. Each
1693 // loop should take at most 2 iterations for it to converge naturally.
1694 // When this max is reached and result doesn't converge, we force
1695 // convergence by inserting a s_waitcnt at the end of loop footer.
1696 if (WaitcntData->getIterCnt() > 2) {
1697 // To ensure convergence, need to make wait events at loop footer be no
1698 // more than those from the previous iteration.
1699 // As a simplification, Instead of tracking individual scores and
1700 // generate the precise wait count, just wait on 0.
1701 bool HasPending = false;
1702 MachineInstr *SWaitInst = WaitcntData->getWaitcnt();
1703 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1704 T = (enum InstCounterType)(T + 1)) {
1705 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) {
1706 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
1707 HasPending = true;
1708 }
1709 }
1710
1711 if (HasPending) {
1712 if (!SWaitInst) {
1713 SWaitInst = Block.getParent()->CreateMachineInstr(
1714 TII->get(AMDGPU::S_WAITCNT), DebugLoc());
1715 CompilerGeneratedWaitcntSet.insert(SWaitInst);
1716 const MachineOperand &Op = MachineOperand::CreateImm(0);
1717 SWaitInst->addOperand(MF, Op);
1718#if 0 // TODO: Format the debug output
1719 OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context);
1720 OutputTransformAdd(SWaitInst, context);
1721#endif
1722 }
1723#if 0 // TODO: ??
1724 _DEV( REPORTED_STATS->force_waitcnt_converge = 1; )
1725#endif
1726 }
1727
1728 if (SWaitInst) {
1729 DEBUG({
1730 SWaitInst->print(dbgs());
1731 dbgs() << "\nAdjusted score board:";
1732 ScoreBrackets->dump();
1733 });
1734
1735 // Add this waitcnt to the block. It is either newly created or
1736 // created in previous iterations and added back since block traversal
1737 // always remove waitcnt.
1738 insertWaitcntBeforeCF(Block, SWaitInst);
1739 WaitcntData->setWaitcnt(SWaitInst);
1740 }
1741 }
1742 }
1743}
1744
1745bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1746 ST = &MF.getSubtarget<SISubtarget>();
1747 TII = ST->getInstrInfo();
1748 TRI = &TII->getRegisterInfo();
1749 MRI = &MF.getRegInfo();
1750 MLI = &getAnalysis<MachineLoopInfo>();
1751 IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits());
Mark Searles11d0a042017-05-31 16:44:23 +00001752 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
Kannan Narayananacb089e2017-04-12 03:25:12 +00001753 AMDGPUASI = ST->getAMDGPUAS();
1754
1755 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1756 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1757 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1758
1759 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs();
1760 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs();
1761 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1762 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1763
1764 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1765 RegisterEncoding.VGPRL =
1766 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1;
1767 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1768 RegisterEncoding.SGPRL =
1769 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1;
1770
1771 // Walk over the blocks in reverse post-dominator order, inserting
1772 // s_waitcnt where needed.
1773 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
1774 bool Modified = false;
1775 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
1776 I = RPOT.begin(),
1777 E = RPOT.end(), J = RPOT.begin();
1778 I != E;) {
1779 MachineBasicBlock &MBB = **I;
1780
1781 BlockVisitedSet.insert(&MBB);
1782
1783 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get();
1784 if (!ScoreBrackets) {
Eugene Zelenko59e12822017-08-08 00:47:13 +00001785 BlockWaitcntBracketsMap[&MBB] = llvm::make_unique<BlockWaitcntBrackets>();
Kannan Narayananacb089e2017-04-12 03:25:12 +00001786 ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get();
1787 }
1788 ScoreBrackets->setPostOrder(MBB.getNumber());
1789 MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB);
1790 if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr)
Eugene Zelenko59e12822017-08-08 00:47:13 +00001791 LoopWaitcntDataMap[ContainingLoop] = llvm::make_unique<LoopWaitcntData>();
Kannan Narayananacb089e2017-04-12 03:25:12 +00001792
1793 // If we are walking into the block from before the loop, then guarantee
1794 // at least 1 re-walk over the loop to propagate the information, even if
1795 // no S_WAITCNT instructions were generated.
Kannan Narayanan5e73b042017-05-05 21:10:17 +00001796 if (ContainingLoop && ContainingLoop->getHeader() == &MBB && J < I &&
Kannan Narayananacb089e2017-04-12 03:25:12 +00001797 (BlockWaitcntProcessedSet.find(&MBB) ==
1798 BlockWaitcntProcessedSet.end())) {
1799 BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true);
1800 DEBUG(dbgs() << "set-revisit: block"
Kannan Narayanan5e73b042017-05-05 21:10:17 +00001801 << ContainingLoop->getHeader()->getNumber() << '\n';);
Kannan Narayananacb089e2017-04-12 03:25:12 +00001802 }
1803
1804 // Walk over the instructions.
1805 insertWaitcntInBlock(MF, MBB);
1806
1807 // Flag that waitcnts have been processed at least once.
1808 BlockWaitcntProcessedSet.insert(&MBB);
1809
1810 // See if we want to revisit the loop.
1811 if (ContainingLoop && loopBottom(ContainingLoop) == &MBB) {
Kannan Narayanan5e73b042017-05-05 21:10:17 +00001812 MachineBasicBlock *EntryBB = ContainingLoop->getHeader();
Kannan Narayananacb089e2017-04-12 03:25:12 +00001813 BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get();
1814 if (EntrySB && EntrySB->getRevisitLoop()) {
1815 EntrySB->setRevisitLoop(false);
1816 J = I;
1817 int32_t PostOrder = EntrySB->getPostOrder();
1818 // TODO: Avoid this loop. Find another way to set I.
1819 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
1820 X = RPOT.begin(),
1821 Y = RPOT.end();
1822 X != Y; ++X) {
1823 MachineBasicBlock &MBBX = **X;
1824 if (MBBX.getNumber() == PostOrder) {
1825 I = X;
1826 break;
1827 }
1828 }
1829 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
1830 WaitcntData->incIterCnt();
1831 DEBUG(dbgs() << "revisit: block" << EntryBB->getNumber() << '\n';);
1832 continue;
1833 } else {
1834 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
1835 // Loop converged, reset iteration count. If this loop gets revisited,
1836 // it must be from an outer loop, the counter will restart, this will
1837 // ensure we don't force convergence on such revisits.
1838 WaitcntData->resetIterCnt();
1839 }
1840 }
1841
1842 J = I;
1843 ++I;
1844 }
1845
1846 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1847
1848 bool HaveScalarStores = false;
1849
1850 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
1851 ++BI) {
Kannan Narayananacb089e2017-04-12 03:25:12 +00001852 MachineBasicBlock &MBB = *BI;
1853
1854 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
1855 ++I) {
Kannan Narayananacb089e2017-04-12 03:25:12 +00001856 if (!HaveScalarStores && TII->isScalarStore(*I))
1857 HaveScalarStores = true;
1858
1859 if (I->getOpcode() == AMDGPU::S_ENDPGM ||
1860 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1861 EndPgmBlocks.push_back(&MBB);
1862 }
1863 }
1864
1865 if (HaveScalarStores) {
1866 // If scalar writes are used, the cache must be flushed or else the next
1867 // wave to reuse the same scratch memory can be clobbered.
1868 //
1869 // Insert s_dcache_wb at wave termination points if there were any scalar
1870 // stores, and only if the cache hasn't already been flushed. This could be
1871 // improved by looking across blocks for flushes in postdominating blocks
1872 // from the stores but an explicitly requested flush is probably very rare.
1873 for (MachineBasicBlock *MBB : EndPgmBlocks) {
1874 bool SeenDCacheWB = false;
1875
1876 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
1877 ++I) {
Kannan Narayananacb089e2017-04-12 03:25:12 +00001878 if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1879 SeenDCacheWB = true;
1880 else if (TII->isScalarStore(*I))
1881 SeenDCacheWB = false;
1882
1883 // FIXME: It would be better to insert this before a waitcnt if any.
1884 if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1885 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1886 !SeenDCacheWB) {
1887 Modified = true;
1888 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
1889 }
1890 }
1891 }
1892 }
1893
Mark Searles11d0a042017-05-31 16:44:23 +00001894 if (!MFI->isEntryFunction()) {
1895 // Wait for any outstanding memory operations that the input registers may
1896 // depend on. We can't track them and it's better to to the wait after the
1897 // costly call sequence.
1898
1899 // TODO: Could insert earlier and schedule more liberally with operations
1900 // that only use caller preserved registers.
1901 MachineBasicBlock &EntryBB = MF.front();
1902 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1903 .addImm(0);
1904
1905 Modified = true;
1906 }
1907
Kannan Narayananacb089e2017-04-12 03:25:12 +00001908 return Modified;
1909}