blob: 356fcbeca97f792116b2856a7e64a5eb93bdf158 [file] [log] [blame]
Jim Cownie5e8470a2013-09-27 10:38:44 +00001/*
2 * kmp_affinity.cpp -- affinity management
Jim Cownie5e8470a2013-09-27 10:38:44 +00003 */
4
5
6//===----------------------------------------------------------------------===//
7//
8// The LLVM Compiler Infrastructure
9//
10// This file is dual licensed under the MIT and the University of Illinois Open
11// Source Licenses. See LICENSE.txt for details.
12//
13//===----------------------------------------------------------------------===//
14
15
16#include "kmp.h"
Jonathan Peyton30419822017-05-12 18:01:32 +000017#include "kmp_affinity.h"
Jim Cownie5e8470a2013-09-27 10:38:44 +000018#include "kmp_i18n.h"
19#include "kmp_io.h"
20#include "kmp_str.h"
Jim Cownie4cc4bb42014-10-07 16:25:50 +000021#include "kmp_wrapper_getpid.h"
Jonathan Peyton17078362015-09-10 19:22:07 +000022
23// Store the real or imagined machine hierarchy here
24static hierarchy_info machine_hierarchy;
25
Jonathan Peyton30419822017-05-12 18:01:32 +000026void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
27
Jonathan Peyton17078362015-09-10 19:22:07 +000028
29void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
Jonathan Peyton30419822017-05-12 18:01:32 +000030 kmp_uint32 depth;
31 // The test below is true if affinity is available, but set to "none". Need to
32 // init on first use of hierarchical barrier.
33 if (TCR_1(machine_hierarchy.uninitialized))
34 machine_hierarchy.init(NULL, nproc);
Jonathan Peyton17078362015-09-10 19:22:07 +000035
Jonathan Peyton30419822017-05-12 18:01:32 +000036 // Adjust the hierarchy in case num threads exceeds original
37 if (nproc > machine_hierarchy.base_num_threads)
38 machine_hierarchy.resize(nproc);
Jonathan Peyton7dee82e2015-11-09 16:24:53 +000039
Jonathan Peyton30419822017-05-12 18:01:32 +000040 depth = machine_hierarchy.depth;
41 KMP_DEBUG_ASSERT(depth > 0);
Jonathan Peyton17078362015-09-10 19:22:07 +000042
Jonathan Peyton30419822017-05-12 18:01:32 +000043 thr_bar->depth = depth;
44 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1;
45 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
Jonathan Peyton17078362015-09-10 19:22:07 +000046}
Jim Cownie5e8470a2013-09-27 10:38:44 +000047
Alp Toker763b9392014-02-28 09:42:41 +000048#if KMP_AFFINITY_SUPPORTED
Jim Cownie5e8470a2013-09-27 10:38:44 +000049
Jonathan Peyton1cdd87a2016-11-14 21:08:35 +000050bool KMPAffinity::picked_api = false;
51
Jonathan Peyton30419822017-05-12 18:01:32 +000052void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
53void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
54void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
55void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
56void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
57void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
Jonathan Peyton1cdd87a2016-11-14 21:08:35 +000058
59void KMPAffinity::pick_api() {
Jonathan Peyton30419822017-05-12 18:01:32 +000060 KMPAffinity *affinity_dispatch;
61 if (picked_api)
62 return;
Jonathan Peyton1cdd87a2016-11-14 21:08:35 +000063#if KMP_USE_HWLOC
Jonathan Peytone3e2aaf2017-05-31 20:35:22 +000064 // Only use Hwloc if affinity isn't explicitly disabled and
65 // user requests Hwloc topology method
66 if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
67 __kmp_affinity_type != affinity_disabled) {
Jonathan Peyton30419822017-05-12 18:01:32 +000068 affinity_dispatch = new KMPHwlocAffinity();
69 } else
Jonathan Peyton1cdd87a2016-11-14 21:08:35 +000070#endif
Jonathan Peyton30419822017-05-12 18:01:32 +000071 {
72 affinity_dispatch = new KMPNativeAffinity();
73 }
74 __kmp_affinity_dispatch = affinity_dispatch;
75 picked_api = true;
Jonathan Peyton1cdd87a2016-11-14 21:08:35 +000076}
77
78void KMPAffinity::destroy_api() {
Jonathan Peyton30419822017-05-12 18:01:32 +000079 if (__kmp_affinity_dispatch != NULL) {
80 delete __kmp_affinity_dispatch;
81 __kmp_affinity_dispatch = NULL;
82 picked_api = false;
83 }
Jonathan Peyton1cdd87a2016-11-14 21:08:35 +000084}
85
Jim Cownie5e8470a2013-09-27 10:38:44 +000086// Print the affinity mask to the character array in a pretty format.
Jonathan Peyton30419822017-05-12 18:01:32 +000087char *__kmp_affinity_print_mask(char *buf, int buf_len,
88 kmp_affin_mask_t *mask) {
89 KMP_ASSERT(buf_len >= 40);
90 char *scan = buf;
91 char *end = buf + buf_len - 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +000092
Jonathan Peyton30419822017-05-12 18:01:32 +000093 // Find first element / check for empty set.
94 size_t i;
95 i = mask->begin();
96 if (i == mask->end()) {
97 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
98 while (*scan != '\0')
99 scan++;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000100 KMP_ASSERT(scan <= end);
101 return buf;
Jonathan Peyton30419822017-05-12 18:01:32 +0000102 }
103
104 KMP_SNPRINTF(scan, end - scan + 1, "{%ld", (long)i);
105 while (*scan != '\0')
106 scan++;
107 i++;
108 for (; i != mask->end(); i = mask->next(i)) {
109 if (!KMP_CPU_ISSET(i, mask)) {
110 continue;
111 }
112
113 // Check for buffer overflow. A string of the form ",<n>" will have at most
114 // 10 characters, plus we want to leave room to print ",...}" if the set is
115 // too large to print for a total of 15 characters. We already left room for
116 // '\0' in setting end.
117 if (end - scan < 15) {
118 break;
119 }
120 KMP_SNPRINTF(scan, end - scan + 1, ",%-ld", (long)i);
121 while (*scan != '\0')
122 scan++;
123 }
124 if (i != mask->end()) {
125 KMP_SNPRINTF(scan, end - scan + 1, ",...");
126 while (*scan != '\0')
127 scan++;
128 }
129 KMP_SNPRINTF(scan, end - scan + 1, "}");
130 while (*scan != '\0')
131 scan++;
132 KMP_ASSERT(scan <= end);
133 return buf;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000134}
135
Jonathan Peyton30419822017-05-12 18:01:32 +0000136void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
137 KMP_CPU_ZERO(mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000138
Jonathan Peyton30419822017-05-12 18:01:32 +0000139#if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +0000140
Jonathan Peyton30419822017-05-12 18:01:32 +0000141 if (__kmp_num_proc_groups > 1) {
142 int group;
143 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
144 for (group = 0; group < __kmp_num_proc_groups; group++) {
145 int i;
146 int num = __kmp_GetActiveProcessorCount(group);
147 for (i = 0; i < num; i++) {
148 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
149 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000150 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000151 } else
Jim Cownie5e8470a2013-09-27 10:38:44 +0000152
Jonathan Peyton30419822017-05-12 18:01:32 +0000153#endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +0000154
Jonathan Peyton30419822017-05-12 18:01:32 +0000155 {
156 int proc;
157 for (proc = 0; proc < __kmp_xproc; proc++) {
158 KMP_CPU_SET(proc, mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000159 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000160 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000161}
162
Jim Cownie5e8470a2013-09-27 10:38:44 +0000163// When sorting by labels, __kmp_affinity_assign_child_nums() must first be
164// called to renumber the labels from [0..n] and place them into the child_num
165// vector of the address object. This is done in case the labels used for
Alp Toker8f2d3f02014-02-24 10:40:15 +0000166// the children at one node of the hierarchy differ from those used for
Jim Cownie5e8470a2013-09-27 10:38:44 +0000167// another node at the same level. Example: suppose the machine has 2 nodes
168// with 2 packages each. The first node contains packages 601 and 602, and
169// second node contains packages 603 and 604. If we try to sort the table
170// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
171// because we are paying attention to the labels themselves, not the ordinal
172// child numbers. By using the child numbers in the sort, the result is
173// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
Jonathan Peyton30419822017-05-12 18:01:32 +0000174static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
175 int numAddrs) {
176 KMP_DEBUG_ASSERT(numAddrs > 0);
177 int depth = address2os->first.depth;
178 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
179 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
180 int labCt;
181 for (labCt = 0; labCt < depth; labCt++) {
182 address2os[0].first.childNums[labCt] = counts[labCt] = 0;
183 lastLabel[labCt] = address2os[0].first.labels[labCt];
184 }
185 int i;
186 for (i = 1; i < numAddrs; i++) {
Jim Cownie5e8470a2013-09-27 10:38:44 +0000187 for (labCt = 0; labCt < depth; labCt++) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000188 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
189 int labCt2;
190 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
191 counts[labCt2] = 0;
192 lastLabel[labCt2] = address2os[i].first.labels[labCt2];
193 }
194 counts[labCt]++;
195 lastLabel[labCt] = address2os[i].first.labels[labCt];
196 break;
197 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000198 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000199 for (labCt = 0; labCt < depth; labCt++) {
200 address2os[i].first.childNums[labCt] = counts[labCt];
Jim Cownie5e8470a2013-09-27 10:38:44 +0000201 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000202 for (; labCt < (int)Address::maxDepth; labCt++) {
203 address2os[i].first.childNums[labCt] = 0;
204 }
205 }
206 __kmp_free(lastLabel);
207 __kmp_free(counts);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000208}
209
Jim Cownie5e8470a2013-09-27 10:38:44 +0000210// All of the __kmp_affinity_create_*_map() routines should set
211// __kmp_affinity_masks to a vector of affinity mask objects of length
Jonathan Peyton30419822017-05-12 18:01:32 +0000212// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return
213// the number of levels in the machine topology tree (zero if
Jim Cownie5e8470a2013-09-27 10:38:44 +0000214// __kmp_affinity_type == affinity_none).
215//
Jonathan Peyton30419822017-05-12 18:01:32 +0000216// All of the __kmp_affinity_create_*_map() routines should set
217// *__kmp_affin_fullMask to the affinity mask for the initialization thread.
218// They need to save and restore the mask, and it could be needed later, so
219// saving it is just an optimization to avoid calling kmp_get_system_affinity()
220// again.
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000221kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000222
223static int nCoresPerPkg, nPackages;
Andrey Churbanovf696c822015-01-27 16:55:43 +0000224static int __kmp_nThreadsPerCore;
225#ifndef KMP_DFLT_NTH_CORES
226static int __kmp_ncores;
227#endif
Jonathan Peytonfd7cc422016-06-21 15:54:38 +0000228static int *__kmp_pu_os_idx = NULL;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000229
Jim Cownie5e8470a2013-09-27 10:38:44 +0000230// __kmp_affinity_uniform_topology() doesn't work when called from
231// places which support arbitrarily many levels in the machine topology
232// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
233// __kmp_affinity_create_x2apicid_map().
Jonathan Peyton30419822017-05-12 18:01:32 +0000234inline static bool __kmp_affinity_uniform_topology() {
235 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000236}
237
Jim Cownie5e8470a2013-09-27 10:38:44 +0000238// Print out the detailed machine topology map, i.e. the physical locations
239// of each OS proc.
Jonathan Peyton30419822017-05-12 18:01:32 +0000240static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len,
241 int depth, int pkgLevel,
242 int coreLevel, int threadLevel) {
243 int proc;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000244
Jonathan Peyton30419822017-05-12 18:01:32 +0000245 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
246 for (proc = 0; proc < len; proc++) {
247 int level;
248 kmp_str_buf_t buf;
249 __kmp_str_buf_init(&buf);
250 for (level = 0; level < depth; level++) {
251 if (level == threadLevel) {
252 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
253 } else if (level == coreLevel) {
254 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
255 } else if (level == pkgLevel) {
256 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
257 } else if (level > pkgLevel) {
258 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
259 level - pkgLevel - 1);
260 } else {
261 __kmp_str_buf_print(&buf, "L%d ", level);
262 }
263 __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000264 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000265 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
266 buf.str);
267 __kmp_str_buf_free(&buf);
268 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000269}
270
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000271#if KMP_USE_HWLOC
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000272
273// This function removes the topology levels that are radix 1 and don't offer
274// further information about the topology. The most common example is when you
275// have one thread context per core, we don't want the extra thread context
276// level if it offers no unique labels. So they are removed.
277// return value: the new depth of address2os
Jonathan Peyton30419822017-05-12 18:01:32 +0000278static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *address2os,
279 int nActiveThreads, int depth,
280 int *pkgLevel, int *coreLevel,
281 int *threadLevel) {
282 int level;
283 int i;
284 int radix1_detected;
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000285
Jonathan Peyton30419822017-05-12 18:01:32 +0000286 for (level = depth - 1; level >= 0; --level) {
287 // Always keep the package level
288 if (level == *pkgLevel)
289 continue;
290 // Detect if this level is radix 1
291 radix1_detected = 1;
292 for (i = 1; i < nActiveThreads; ++i) {
293 if (address2os[0].first.labels[level] !=
294 address2os[i].first.labels[level]) {
295 // There are differing label values for this level so it stays
296 radix1_detected = 0;
297 break;
298 }
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000299 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000300 if (!radix1_detected)
301 continue;
302 // Radix 1 was detected
303 if (level == *threadLevel) {
304 // If only one thread per core, then just decrement
305 // the depth which removes the threadlevel from address2os
306 for (i = 0; i < nActiveThreads; ++i) {
307 address2os[i].first.depth--;
308 }
309 *threadLevel = -1;
310 } else if (level == *coreLevel) {
311 // For core level, we move the thread labels over if they are still
312 // valid (*threadLevel != -1), and also reduce the depth another level
313 for (i = 0; i < nActiveThreads; ++i) {
314 if (*threadLevel != -1) {
315 address2os[i].first.labels[*coreLevel] =
316 address2os[i].first.labels[*threadLevel];
317 }
318 address2os[i].first.depth--;
319 }
320 *coreLevel = -1;
321 }
322 }
323 return address2os[0].first.depth;
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000324}
325
Jonathan Peyton30419822017-05-12 18:01:32 +0000326// Returns the number of objects of type 'type' below 'obj' within the topology
327// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
328// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
329// object.
330static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
331 hwloc_obj_type_t type) {
332 int retval = 0;
333 hwloc_obj_t first;
334 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
335 obj->logical_index, type, 0);
336 first != NULL &&
337 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) ==
338 obj;
339 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
340 first)) {
341 ++retval;
342 }
343 return retval;
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000344}
345
Jonathan Peyton30419822017-05-12 18:01:32 +0000346static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
347 kmp_i18n_id_t *const msg_id) {
348 *address2os = NULL;
349 *msg_id = kmp_i18n_null;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000350
Jonathan Peyton30419822017-05-12 18:01:32 +0000351 // Save the affinity mask for the current thread.
352 kmp_affin_mask_t *oldMask;
353 KMP_CPU_ALLOC(oldMask);
354 __kmp_get_system_affinity(oldMask, TRUE);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000355
Jonathan Peyton30419822017-05-12 18:01:32 +0000356 int depth = 3;
357 int pkgLevel = 0;
358 int coreLevel = 1;
359 int threadLevel = 2;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000360
Jonathan Peyton30419822017-05-12 18:01:32 +0000361 if (!KMP_AFFINITY_CAPABLE()) {
362 // Hack to try and infer the machine topology using only the data
363 // available from cpuid on the current thread, and __kmp_xproc.
364 KMP_ASSERT(__kmp_affinity_type == affinity_none);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000365
Jonathan Peyton30419822017-05-12 18:01:32 +0000366 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(
367 hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_PACKAGE, 0),
368 HWLOC_OBJ_CORE);
369 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(
370 hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_CORE, 0),
371 HWLOC_OBJ_PU);
372 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
373 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000374 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000375 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
376 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
377 if (__kmp_affinity_uniform_topology()) {
378 KMP_INFORM(Uniform, "KMP_AFFINITY");
379 } else {
380 KMP_INFORM(NonUniform, "KMP_AFFINITY");
381 }
382 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
383 __kmp_nThreadsPerCore, __kmp_ncores);
384 }
385 KMP_CPU_FREE(oldMask);
386 return 0;
387 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000388
Jonathan Peyton30419822017-05-12 18:01:32 +0000389 // Allocate the data structure to be returned.
390 AddrUnsPair *retval =
391 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
392 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000393
Jonathan Peyton30419822017-05-12 18:01:32 +0000394 // When affinity is off, this routine will still be called to set
395 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
396 // nCoresPerPkg, & nPackages. Make sure all these vars are set
397 // correctly, and return if affinity is not enabled.
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000398
Jonathan Peyton30419822017-05-12 18:01:32 +0000399 hwloc_obj_t pu;
400 hwloc_obj_t core;
401 hwloc_obj_t socket;
402 int nActiveThreads = 0;
403 int socket_identifier = 0;
404 // re-calculate globals to count only accessible resources
405 __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
406 for (socket =
407 hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_PACKAGE, 0);
408 socket != NULL;
409 socket = hwloc_get_next_obj_by_type(__kmp_hwloc_topology,
410 HWLOC_OBJ_PACKAGE, socket),
411 socket_identifier++) {
412 int core_identifier = 0;
413 int num_active_cores = 0;
414 for (core = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, socket->type,
415 socket->logical_index,
416 HWLOC_OBJ_CORE, 0);
417 core != NULL &&
418 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, socket->type,
419 core) == socket;
420 core = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_CORE,
421 core),
422 core_identifier++) {
423 int pu_identifier = 0;
424 int num_active_threads = 0;
425 for (pu = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, core->type,
426 core->logical_index, HWLOC_OBJ_PU,
427 0);
428 pu != NULL &&
429 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, core->type,
430 pu) == core;
431 pu = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_PU,
432 pu),
433 pu_identifier++) {
434 Address addr(3);
435 if(!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
436 continue; // skip inactive (inaccessible) unit
437 KA_TRACE(20,
438 ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
439 socket->os_index, socket->logical_index, core->os_index,
440 core->logical_index, pu->os_index,pu->logical_index));
441 addr.labels[0] = socket_identifier; // package
442 addr.labels[1] = core_identifier; // core
443 addr.labels[2] = pu_identifier; // pu
444 retval[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
445 __kmp_pu_os_idx[nActiveThreads] =
446 pu->os_index; // keep os index for each active pu
447 nActiveThreads++;
448 ++num_active_threads; // count active threads per core
449 }
450 if (num_active_threads) { // were there any active threads on the core?
451 ++__kmp_ncores; // count total active cores
452 ++num_active_cores; // count active cores per socket
453 if (num_active_threads > __kmp_nThreadsPerCore)
454 __kmp_nThreadsPerCore = num_active_threads; // calc maximum
455 }
456 }
457 if (num_active_cores) { // were there any active cores on the socket?
458 ++nPackages; // count total active packages
459 if (num_active_cores > nCoresPerPkg)
460 nCoresPerPkg = num_active_cores; // calc maximum
461 }
462 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000463
Jonathan Peyton30419822017-05-12 18:01:32 +0000464 // If there's only one thread context to bind to, return now.
465 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
466 KMP_ASSERT(nActiveThreads > 0);
467 if (nActiveThreads == 1) {
468 __kmp_ncores = nPackages = 1;
469 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
470 if (__kmp_affinity_verbose) {
471 char buf[KMP_AFFIN_MASK_PRINT_LEN];
472 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
473
474 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
475 if (__kmp_affinity_respect_mask) {
476 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
477 } else {
478 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
479 }
480 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
481 KMP_INFORM(Uniform, "KMP_AFFINITY");
482 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
483 __kmp_nThreadsPerCore, __kmp_ncores);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000484 }
485
486 if (__kmp_affinity_type == affinity_none) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000487 __kmp_free(retval);
488 KMP_CPU_FREE(oldMask);
489 return 0;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000490 }
491
Jonathan Peyton30419822017-05-12 18:01:32 +0000492 // Form an Address object which only includes the package level.
493 Address addr(1);
494 addr.labels[0] = retval[0].first.labels[pkgLevel];
495 retval[0].first = addr;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000496
497 if (__kmp_affinity_gran_levels < 0) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000498 __kmp_affinity_gran_levels = 0;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000499 }
500
501 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000502 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000503 }
504
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000505 *address2os = retval;
Jonathan Peyton30419822017-05-12 18:01:32 +0000506 KMP_CPU_FREE(oldMask);
507 return 1;
508 }
509
510 // Sort the table by physical Id.
511 qsort(retval, nActiveThreads, sizeof(*retval),
512 __kmp_affinity_cmp_Address_labels);
513
514 // Check to see if the machine topology is uniform
515 unsigned uniform =
516 (nPackages * nCoresPerPkg * __kmp_nThreadsPerCore == nActiveThreads);
517
518 // Print the machine topology summary.
519 if (__kmp_affinity_verbose) {
520 char mask[KMP_AFFIN_MASK_PRINT_LEN];
521 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
522
523 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
524 if (__kmp_affinity_respect_mask) {
525 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
526 } else {
527 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
528 }
529 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
530 if (uniform) {
531 KMP_INFORM(Uniform, "KMP_AFFINITY");
532 } else {
533 KMP_INFORM(NonUniform, "KMP_AFFINITY");
534 }
535
536 kmp_str_buf_t buf;
537 __kmp_str_buf_init(&buf);
538
539 __kmp_str_buf_print(&buf, "%d", nPackages);
540 // for (level = 1; level <= pkgLevel; level++) {
541 // __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
542 // }
543 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
544 __kmp_nThreadsPerCore, __kmp_ncores);
545
546 __kmp_str_buf_free(&buf);
547 }
548
549 if (__kmp_affinity_type == affinity_none) {
550 __kmp_free(retval);
551 KMP_CPU_FREE(oldMask);
552 return 0;
553 }
554
555 // Find any levels with radiix 1, and remove them from the map
556 // (except for the package level).
557 depth = __kmp_affinity_remove_radix_one_levels(
558 retval, nActiveThreads, depth, &pkgLevel, &coreLevel, &threadLevel);
559
560 if (__kmp_affinity_gran_levels < 0) {
561 // Set the granularity level based on what levels are modeled
562 // in the machine topology map.
563 __kmp_affinity_gran_levels = 0;
564 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
565 __kmp_affinity_gran_levels++;
566 }
567 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
568 __kmp_affinity_gran_levels++;
569 }
570 if (__kmp_affinity_gran > affinity_gran_package) {
571 __kmp_affinity_gran_levels++;
572 }
573 }
574
575 if (__kmp_affinity_verbose) {
576 __kmp_affinity_print_topology(retval, nActiveThreads, depth, pkgLevel,
577 coreLevel, threadLevel);
578 }
579
580 KMP_CPU_FREE(oldMask);
581 *address2os = retval;
582 return depth;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000583}
584#endif // KMP_USE_HWLOC
Jim Cownie5e8470a2013-09-27 10:38:44 +0000585
Jim Cownie5e8470a2013-09-27 10:38:44 +0000586// If we don't know how to retrieve the machine's processor topology, or
587// encounter an error in doing so, this routine is called to form a "flat"
588// mapping of os thread id's <-> processor id's.
Jonathan Peyton30419822017-05-12 18:01:32 +0000589static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
590 kmp_i18n_id_t *const msg_id) {
591 *address2os = NULL;
592 *msg_id = kmp_i18n_null;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000593
Jonathan Peyton30419822017-05-12 18:01:32 +0000594 // Even if __kmp_affinity_type == affinity_none, this routine might still
595 // called to set __kmp_ncores, as well as
596 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
597 if (!KMP_AFFINITY_CAPABLE()) {
598 KMP_ASSERT(__kmp_affinity_type == affinity_none);
599 __kmp_ncores = nPackages = __kmp_xproc;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000600 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000601 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000602 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
603 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
604 KMP_INFORM(Uniform, "KMP_AFFINITY");
605 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
606 __kmp_nThreadsPerCore, __kmp_ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000607 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000608 return 0;
609 }
610
611 // When affinity is off, this routine will still be called to set
612 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
613 // Make sure all these vars are set correctly, and return now if affinity is
614 // not enabled.
615 __kmp_ncores = nPackages = __kmp_avail_proc;
616 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
617 if (__kmp_affinity_verbose) {
618 char buf[KMP_AFFIN_MASK_PRINT_LEN];
619 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
620 __kmp_affin_fullMask);
621
622 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
623 if (__kmp_affinity_respect_mask) {
624 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
625 } else {
626 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000627 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000628 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
629 KMP_INFORM(Uniform, "KMP_AFFINITY");
630 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
631 __kmp_nThreadsPerCore, __kmp_ncores);
632 }
633 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
634 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
635 if (__kmp_affinity_type == affinity_none) {
Jim Cownie5e8470a2013-09-27 10:38:44 +0000636 int avail_ct = 0;
637 int i;
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000638 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000639 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask))
640 continue;
641 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
Jim Cownie5e8470a2013-09-27 10:38:44 +0000642 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000643 return 0;
644 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000645
Jonathan Peyton30419822017-05-12 18:01:32 +0000646 // Contruct the data structure to be returned.
647 *address2os =
648 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
649 int avail_ct = 0;
650 unsigned int i;
651 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
652 // Skip this proc if it is not included in the machine model.
653 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
654 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000655 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000656 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
657 Address addr(1);
658 addr.labels[0] = i;
659 (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
660 }
661 if (__kmp_affinity_verbose) {
662 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
663 }
664
665 if (__kmp_affinity_gran_levels < 0) {
666 // Only the package level is modeled in the machine topology map,
667 // so the #levels of granularity is either 0 or 1.
668 if (__kmp_affinity_gran > affinity_gran_package) {
669 __kmp_affinity_gran_levels = 1;
670 } else {
671 __kmp_affinity_gran_levels = 0;
672 }
673 }
674 return 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000675}
676
Jonathan Peyton30419822017-05-12 18:01:32 +0000677#if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +0000678
Jonathan Peyton30419822017-05-12 18:01:32 +0000679// If multiple Windows* OS processor groups exist, we can create a 2-level
680// topology map with the groups at level 0 and the individual procs at level 1.
681// This facilitates letting the threads float among all procs in a group,
682// if granularity=group (the default when there are multiple groups).
683static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
684 kmp_i18n_id_t *const msg_id) {
685 *address2os = NULL;
686 *msg_id = kmp_i18n_null;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000687
Jonathan Peyton58684992017-05-15 19:05:59 +0000688 // If we aren't affinity capable, then return now.
Jonathan Peyton30419822017-05-12 18:01:32 +0000689 // The flat mapping will be used.
Jonathan Peyton58684992017-05-15 19:05:59 +0000690 if (!KMP_AFFINITY_CAPABLE()) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000691 // FIXME set *msg_id
692 return -1;
693 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000694
Jonathan Peyton30419822017-05-12 18:01:32 +0000695 // Contruct the data structure to be returned.
696 *address2os =
697 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
698 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
699 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
700 int avail_ct = 0;
701 int i;
702 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
703 // Skip this proc if it is not included in the machine model.
704 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
705 continue;
706 }
707 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
708 Address addr(2);
709 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
710 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
711 (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000712
Jonathan Peyton30419822017-05-12 18:01:32 +0000713 if (__kmp_affinity_verbose) {
714 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
715 addr.labels[1]);
716 }
717 }
718
719 if (__kmp_affinity_gran_levels < 0) {
720 if (__kmp_affinity_gran == affinity_gran_group) {
721 __kmp_affinity_gran_levels = 1;
722 } else if ((__kmp_affinity_gran == affinity_gran_fine) ||
723 (__kmp_affinity_gran == affinity_gran_thread)) {
724 __kmp_affinity_gran_levels = 0;
725 } else {
726 const char *gran_str = NULL;
727 if (__kmp_affinity_gran == affinity_gran_core) {
728 gran_str = "core";
729 } else if (__kmp_affinity_gran == affinity_gran_package) {
730 gran_str = "package";
731 } else if (__kmp_affinity_gran == affinity_gran_node) {
732 gran_str = "node";
733 } else {
734 KMP_ASSERT(0);
735 }
736
737 // Warning: can't use affinity granularity \"gran\" with group topology
738 // method, using "thread"
739 __kmp_affinity_gran_levels = 0;
740 }
741 }
742 return 2;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000743}
744
Jonathan Peyton30419822017-05-12 18:01:32 +0000745#endif /* KMP_GROUP_AFFINITY */
746
747#if KMP_ARCH_X86 || KMP_ARCH_X86_64
748
749static int __kmp_cpuid_mask_width(int count) {
750 int r = 0;
751
752 while ((1 << r) < count)
753 ++r;
754 return r;
755}
Jim Cownie5e8470a2013-09-27 10:38:44 +0000756
757class apicThreadInfo {
758public:
Jonathan Peyton30419822017-05-12 18:01:32 +0000759 unsigned osId; // param to __kmp_affinity_bind_thread
760 unsigned apicId; // from cpuid after binding
761 unsigned maxCoresPerPkg; // ""
762 unsigned maxThreadsPerPkg; // ""
763 unsigned pkgId; // inferred from above values
764 unsigned coreId; // ""
765 unsigned threadId; // ""
Jim Cownie5e8470a2013-09-27 10:38:44 +0000766};
767
Jonathan Peyton30419822017-05-12 18:01:32 +0000768static int __kmp_affinity_cmp_apicThreadInfo_os_id(const void *a,
769 const void *b) {
770 const apicThreadInfo *aa = (const apicThreadInfo *)a;
771 const apicThreadInfo *bb = (const apicThreadInfo *)b;
772 if (aa->osId < bb->osId)
773 return -1;
774 if (aa->osId > bb->osId)
775 return 1;
776 return 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000777}
778
Jonathan Peyton30419822017-05-12 18:01:32 +0000779static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
780 const void *b) {
781 const apicThreadInfo *aa = (const apicThreadInfo *)a;
782 const apicThreadInfo *bb = (const apicThreadInfo *)b;
783 if (aa->pkgId < bb->pkgId)
784 return -1;
785 if (aa->pkgId > bb->pkgId)
786 return 1;
787 if (aa->coreId < bb->coreId)
788 return -1;
789 if (aa->coreId > bb->coreId)
790 return 1;
791 if (aa->threadId < bb->threadId)
792 return -1;
793 if (aa->threadId > bb->threadId)
794 return 1;
795 return 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000796}
797
Jim Cownie5e8470a2013-09-27 10:38:44 +0000798// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
799// an algorithm which cycles through the available os threads, setting
800// the current thread's affinity mask to that thread, and then retrieves
801// the Apic Id for each thread context using the cpuid instruction.
Jonathan Peyton30419822017-05-12 18:01:32 +0000802static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
803 kmp_i18n_id_t *const msg_id) {
804 kmp_cpuid buf;
805 int rc;
806 *address2os = NULL;
807 *msg_id = kmp_i18n_null;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000808
Jonathan Peyton30419822017-05-12 18:01:32 +0000809 // Check if cpuid leaf 4 is supported.
810 __kmp_x86_cpuid(0, 0, &buf);
811 if (buf.eax < 4) {
812 *msg_id = kmp_i18n_str_NoLeaf4Support;
813 return -1;
814 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000815
Jonathan Peyton30419822017-05-12 18:01:32 +0000816 // The algorithm used starts by setting the affinity to each available thread
817 // and retrieving info from the cpuid instruction, so if we are not capable of
818 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
819 // need to do something else - use the defaults that we calculated from
820 // issuing cpuid without binding to each proc.
821 if (!KMP_AFFINITY_CAPABLE()) {
822 // Hack to try and infer the machine topology using only the data
823 // available from cpuid on the current thread, and __kmp_xproc.
824 KMP_ASSERT(__kmp_affinity_type == affinity_none);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000825
Jonathan Peyton30419822017-05-12 18:01:32 +0000826 // Get an upper bound on the number of threads per package using cpuid(1).
827 // On some OS/chps combinations where HT is supported by the chip but is
828 // disabled, this value will be 2 on a single core chip. Usually, it will be
829 // 2 if HT is enabled and 1 if HT is disabled.
830 __kmp_x86_cpuid(1, 0, &buf);
831 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
832 if (maxThreadsPerPkg == 0) {
833 maxThreadsPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000834 }
835
Jonathan Peyton30419822017-05-12 18:01:32 +0000836 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
837 // value.
Jim Cownie5e8470a2013-09-27 10:38:44 +0000838 //
Jonathan Peyton30419822017-05-12 18:01:32 +0000839 // The author of cpu_count.cpp treated this only an upper bound on the
840 // number of cores, but I haven't seen any cases where it was greater than
841 // the actual number of cores, so we will treat it as exact in this block of
842 // code.
Jim Cownie5e8470a2013-09-27 10:38:44 +0000843 //
Jonathan Peyton30419822017-05-12 18:01:32 +0000844 // First, we need to check if cpuid(4) is supported on this chip. To see if
845 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
846 // greater.
847 __kmp_x86_cpuid(0, 0, &buf);
848 if (buf.eax >= 4) {
849 __kmp_x86_cpuid(4, 0, &buf);
850 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
851 } else {
852 nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000853 }
854
Jonathan Peyton30419822017-05-12 18:01:32 +0000855 // There is no way to reliably tell if HT is enabled without issuing the
856 // cpuid instruction from every thread, can correlating the cpuid info, so
857 // if the machine is not affinity capable, we assume that HT is off. We have
858 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
859 // does not support HT.
Jim Cownie5e8470a2013-09-27 10:38:44 +0000860 //
Jonathan Peyton30419822017-05-12 18:01:32 +0000861 // - Older OSes are usually found on machines with older chips, which do not
862 // support HT.
863 // - The performance penalty for mistakenly identifying a machine as HT when
864 // it isn't (which results in blocktime being incorrecly set to 0) is
865 // greater than the penalty when for mistakenly identifying a machine as
866 // being 1 thread/core when it is really HT enabled (which results in
867 // blocktime being incorrectly set to a positive value).
868 __kmp_ncores = __kmp_xproc;
869 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000870 __kmp_nThreadsPerCore = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000871 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000872 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
873 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
874 if (__kmp_affinity_uniform_topology()) {
875 KMP_INFORM(Uniform, "KMP_AFFINITY");
876 } else {
877 KMP_INFORM(NonUniform, "KMP_AFFINITY");
878 }
879 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
880 __kmp_nThreadsPerCore, __kmp_ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000881 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000882 return 0;
883 }
884
885 // From here on, we can assume that it is safe to call
886 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
887 // __kmp_affinity_type = affinity_none.
888
889 // Save the affinity mask for the current thread.
890 kmp_affin_mask_t *oldMask;
891 KMP_CPU_ALLOC(oldMask);
892 KMP_ASSERT(oldMask != NULL);
893 __kmp_get_system_affinity(oldMask, TRUE);
894
895 // Run through each of the available contexts, binding the current thread
896 // to it, and obtaining the pertinent information using the cpuid instr.
897 //
898 // The relevant information is:
899 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
900 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
901 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
902 // of this field determines the width of the core# + thread# fields in the
903 // Apic Id. It is also an upper bound on the number of threads per
904 // package, but it has been verified that situations happen were it is not
905 // exact. In particular, on certain OS/chip combinations where Intel(R)
906 // Hyper-Threading Technology is supported by the chip but has been
907 // disabled, the value of this field will be 2 (for a single core chip).
908 // On other OS/chip combinations supporting Intel(R) Hyper-Threading
909 // Technology, the value of this field will be 1 when Intel(R)
910 // Hyper-Threading Technology is disabled and 2 when it is enabled.
911 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
912 // of this field (+1) determines the width of the core# field in the Apic
913 // Id. The comments in "cpucount.cpp" say that this value is an upper
914 // bound, but the IA-32 architecture manual says that it is exactly the
915 // number of cores per package, and I haven't seen any case where it
916 // wasn't.
917 //
918 // From this information, deduce the package Id, core Id, and thread Id,
919 // and set the corresponding fields in the apicThreadInfo struct.
920 unsigned i;
921 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
922 __kmp_avail_proc * sizeof(apicThreadInfo));
923 unsigned nApics = 0;
924 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
925 // Skip this proc if it is not included in the machine model.
926 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
927 continue;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +0000928 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000929 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
930
931 __kmp_affinity_dispatch->bind_thread(i);
932 threadInfo[nApics].osId = i;
933
934 // The apic id and max threads per pkg come from cpuid(1).
935 __kmp_x86_cpuid(1, 0, &buf);
936 if (((buf.edx >> 9) & 1) == 0) {
937 __kmp_set_system_affinity(oldMask, TRUE);
938 __kmp_free(threadInfo);
939 KMP_CPU_FREE(oldMask);
940 *msg_id = kmp_i18n_str_ApicNotPresent;
941 return -1;
942 }
943 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
944 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
945 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
946 threadInfo[nApics].maxThreadsPerPkg = 1;
947 }
948
949 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
950 // value.
951 //
952 // First, we need to check if cpuid(4) is supported on this chip. To see if
953 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
954 // or greater.
955 __kmp_x86_cpuid(0, 0, &buf);
956 if (buf.eax >= 4) {
957 __kmp_x86_cpuid(4, 0, &buf);
958 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
959 } else {
960 threadInfo[nApics].maxCoresPerPkg = 1;
961 }
962
963 // Infer the pkgId / coreId / threadId using only the info obtained locally.
964 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
965 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
966
967 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
968 int widthT = widthCT - widthC;
969 if (widthT < 0) {
970 // I've never seen this one happen, but I suppose it could, if the cpuid
971 // instruction on a chip was really screwed up. Make sure to restore the
972 // affinity mask before the tail call.
973 __kmp_set_system_affinity(oldMask, TRUE);
974 __kmp_free(threadInfo);
975 KMP_CPU_FREE(oldMask);
976 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
977 return -1;
978 }
979
980 int maskC = (1 << widthC) - 1;
981 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
982
983 int maskT = (1 << widthT) - 1;
984 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
985
986 nApics++;
987 }
988
989 // We've collected all the info we need.
990 // Restore the old affinity mask for this thread.
991 __kmp_set_system_affinity(oldMask, TRUE);
992
993 // If there's only one thread context to bind to, form an Address object
994 // with depth 1 and return immediately (or, if affinity is off, set
995 // address2os to NULL and return).
996 //
997 // If it is configured to omit the package level when there is only a single
998 // package, the logic at the end of this routine won't work if there is only
999 // a single thread - it would try to form an Address object with depth 0.
1000 KMP_ASSERT(nApics > 0);
1001 if (nApics == 1) {
1002 __kmp_ncores = nPackages = 1;
1003 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1004 if (__kmp_affinity_verbose) {
1005 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1006 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1007
1008 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1009 if (__kmp_affinity_respect_mask) {
1010 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1011 } else {
1012 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1013 }
1014 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1015 KMP_INFORM(Uniform, "KMP_AFFINITY");
1016 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1017 __kmp_nThreadsPerCore, __kmp_ncores);
1018 }
1019
Jim Cownie5e8470a2013-09-27 10:38:44 +00001020 if (__kmp_affinity_type == affinity_none) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001021 __kmp_free(threadInfo);
1022 KMP_CPU_FREE(oldMask);
1023 return 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001024 }
1025
Jonathan Peyton30419822017-05-12 18:01:32 +00001026 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
1027 Address addr(1);
1028 addr.labels[0] = threadInfo[0].pkgId;
1029 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001030
1031 if (__kmp_affinity_gran_levels < 0) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001032 __kmp_affinity_gran_levels = 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001033 }
1034
1035 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001036 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001037 }
1038
1039 __kmp_free(threadInfo);
1040 KMP_CPU_FREE(oldMask);
Jonathan Peyton30419822017-05-12 18:01:32 +00001041 return 1;
1042 }
1043
1044 // Sort the threadInfo table by physical Id.
1045 qsort(threadInfo, nApics, sizeof(*threadInfo),
1046 __kmp_affinity_cmp_apicThreadInfo_phys_id);
1047
1048 // The table is now sorted by pkgId / coreId / threadId, but we really don't
1049 // know the radix of any of the fields. pkgId's may be sparsely assigned among
1050 // the chips on a system. Although coreId's are usually assigned
1051 // [0 .. coresPerPkg-1] and threadId's are usually assigned
1052 // [0..threadsPerCore-1], we don't want to make any such assumptions.
1053 //
1054 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
1055 // total # packages) are at this point - we want to determine that now. We
1056 // only have an upper bound on the first two figures.
1057 //
1058 // We also perform a consistency check at this point: the values returned by
1059 // the cpuid instruction for any thread bound to a given package had better
1060 // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1061 nPackages = 1;
1062 nCoresPerPkg = 1;
1063 __kmp_nThreadsPerCore = 1;
1064 unsigned nCores = 1;
1065
1066 unsigned pkgCt = 1; // to determine radii
1067 unsigned lastPkgId = threadInfo[0].pkgId;
1068 unsigned coreCt = 1;
1069 unsigned lastCoreId = threadInfo[0].coreId;
1070 unsigned threadCt = 1;
1071 unsigned lastThreadId = threadInfo[0].threadId;
1072
1073 // intra-pkg consist checks
1074 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1075 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1076
1077 for (i = 1; i < nApics; i++) {
1078 if (threadInfo[i].pkgId != lastPkgId) {
1079 nCores++;
1080 pkgCt++;
1081 lastPkgId = threadInfo[i].pkgId;
1082 if ((int)coreCt > nCoresPerPkg)
1083 nCoresPerPkg = coreCt;
1084 coreCt = 1;
1085 lastCoreId = threadInfo[i].coreId;
1086 if ((int)threadCt > __kmp_nThreadsPerCore)
1087 __kmp_nThreadsPerCore = threadCt;
1088 threadCt = 1;
1089 lastThreadId = threadInfo[i].threadId;
1090
1091 // This is a different package, so go on to the next iteration without
1092 // doing any consistency checks. Reset the consistency check vars, though.
1093 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1094 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1095 continue;
1096 }
1097
1098 if (threadInfo[i].coreId != lastCoreId) {
1099 nCores++;
1100 coreCt++;
1101 lastCoreId = threadInfo[i].coreId;
1102 if ((int)threadCt > __kmp_nThreadsPerCore)
1103 __kmp_nThreadsPerCore = threadCt;
1104 threadCt = 1;
1105 lastThreadId = threadInfo[i].threadId;
1106 } else if (threadInfo[i].threadId != lastThreadId) {
1107 threadCt++;
1108 lastThreadId = threadInfo[i].threadId;
1109 } else {
1110 __kmp_free(threadInfo);
1111 KMP_CPU_FREE(oldMask);
1112 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1113 return -1;
1114 }
1115
1116 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1117 // fields agree between all the threads bounds to a given package.
1118 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
1119 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1120 __kmp_free(threadInfo);
1121 KMP_CPU_FREE(oldMask);
1122 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1123 return -1;
1124 }
1125 }
1126 nPackages = pkgCt;
1127 if ((int)coreCt > nCoresPerPkg)
1128 nCoresPerPkg = coreCt;
1129 if ((int)threadCt > __kmp_nThreadsPerCore)
1130 __kmp_nThreadsPerCore = threadCt;
1131
1132 // When affinity is off, this routine will still be called to set
1133 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1134 // Make sure all these vars are set correctly, and return now if affinity is
1135 // not enabled.
1136 __kmp_ncores = nCores;
1137 if (__kmp_affinity_verbose) {
1138 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1139 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1140
1141 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1142 if (__kmp_affinity_respect_mask) {
1143 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1144 } else {
1145 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1146 }
1147 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1148 if (__kmp_affinity_uniform_topology()) {
1149 KMP_INFORM(Uniform, "KMP_AFFINITY");
1150 } else {
1151 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1152 }
1153 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1154 __kmp_nThreadsPerCore, __kmp_ncores);
1155 }
1156 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1157 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1158 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1159 for (i = 0; i < nApics; ++i) {
1160 __kmp_pu_os_idx[i] = threadInfo[i].osId;
1161 }
1162 if (__kmp_affinity_type == affinity_none) {
1163 __kmp_free(threadInfo);
1164 KMP_CPU_FREE(oldMask);
1165 return 0;
1166 }
1167
1168 // Now that we've determined the number of packages, the number of cores per
1169 // package, and the number of threads per core, we can construct the data
1170 // structure that is to be returned.
1171 int pkgLevel = 0;
1172 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
1173 int threadLevel =
1174 (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1175 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1176
1177 KMP_ASSERT(depth > 0);
1178 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1179
1180 for (i = 0; i < nApics; ++i) {
1181 Address addr(depth);
1182 unsigned os = threadInfo[i].osId;
1183 int d = 0;
1184
1185 if (pkgLevel >= 0) {
1186 addr.labels[d++] = threadInfo[i].pkgId;
1187 }
1188 if (coreLevel >= 0) {
1189 addr.labels[d++] = threadInfo[i].coreId;
1190 }
1191 if (threadLevel >= 0) {
1192 addr.labels[d++] = threadInfo[i].threadId;
1193 }
1194 (*address2os)[i] = AddrUnsPair(addr, os);
1195 }
1196
1197 if (__kmp_affinity_gran_levels < 0) {
1198 // Set the granularity level based on what levels are modeled in the machine
1199 // topology map.
1200 __kmp_affinity_gran_levels = 0;
1201 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1202 __kmp_affinity_gran_levels++;
1203 }
1204 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1205 __kmp_affinity_gran_levels++;
1206 }
1207 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
1208 __kmp_affinity_gran_levels++;
1209 }
1210 }
1211
1212 if (__kmp_affinity_verbose) {
1213 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
1214 coreLevel, threadLevel);
1215 }
1216
1217 __kmp_free(threadInfo);
1218 KMP_CPU_FREE(oldMask);
1219 return depth;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001220}
1221
Jim Cownie5e8470a2013-09-27 10:38:44 +00001222// Intel(R) microarchitecture code name Nehalem, Dunnington and later
1223// architectures support a newer interface for specifying the x2APIC Ids,
1224// based on cpuid leaf 11.
Jonathan Peyton30419822017-05-12 18:01:32 +00001225static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
1226 kmp_i18n_id_t *const msg_id) {
1227 kmp_cpuid buf;
1228 *address2os = NULL;
1229 *msg_id = kmp_i18n_null;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001230
Jonathan Peyton30419822017-05-12 18:01:32 +00001231 // Check to see if cpuid leaf 11 is supported.
1232 __kmp_x86_cpuid(0, 0, &buf);
1233 if (buf.eax < 11) {
1234 *msg_id = kmp_i18n_str_NoLeaf11Support;
1235 return -1;
1236 }
1237 __kmp_x86_cpuid(11, 0, &buf);
1238 if (buf.ebx == 0) {
1239 *msg_id = kmp_i18n_str_NoLeaf11Support;
1240 return -1;
1241 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001242
Jonathan Peyton30419822017-05-12 18:01:32 +00001243 // Find the number of levels in the machine topology. While we're at it, get
1244 // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to
1245 // get more accurate values later by explicitly counting them, but get
1246 // reasonable defaults now, in case we return early.
1247 int level;
1248 int threadLevel = -1;
1249 int coreLevel = -1;
1250 int pkgLevel = -1;
1251 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1252
1253 for (level = 0;; level++) {
1254 if (level > 31) {
1255 // FIXME: Hack for DPD200163180
1256 //
1257 // If level is big then something went wrong -> exiting
1258 //
1259 // There could actually be 32 valid levels in the machine topology, but so
1260 // far, the only machine we have seen which does not exit this loop before
1261 // iteration 32 has fubar x2APIC settings.
1262 //
1263 // For now, just reject this case based upon loop trip count.
1264 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1265 return -1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001266 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001267 __kmp_x86_cpuid(11, level, &buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001268 if (buf.ebx == 0) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001269 if (pkgLevel < 0) {
1270 // Will infer nPackages from __kmp_xproc
1271 pkgLevel = level;
1272 level++;
1273 }
1274 break;
1275 }
1276 int kind = (buf.ecx >> 8) & 0xff;
1277 if (kind == 1) {
1278 // SMT level
1279 threadLevel = level;
1280 coreLevel = -1;
1281 pkgLevel = -1;
1282 __kmp_nThreadsPerCore = buf.ebx & 0xffff;
1283 if (__kmp_nThreadsPerCore == 0) {
1284 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001285 return -1;
Jonathan Peyton30419822017-05-12 18:01:32 +00001286 }
1287 } else if (kind == 2) {
1288 // core level
1289 coreLevel = level;
1290 pkgLevel = -1;
1291 nCoresPerPkg = buf.ebx & 0xffff;
1292 if (nCoresPerPkg == 0) {
1293 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1294 return -1;
1295 }
1296 } else {
1297 if (level <= 0) {
1298 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1299 return -1;
1300 }
1301 if (pkgLevel >= 0) {
1302 continue;
1303 }
1304 pkgLevel = level;
1305 nPackages = buf.ebx & 0xffff;
1306 if (nPackages == 0) {
1307 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1308 return -1;
1309 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001310 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001311 }
1312 int depth = level;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001313
Jonathan Peyton30419822017-05-12 18:01:32 +00001314 // In the above loop, "level" was counted from the finest level (usually
1315 // thread) to the coarsest. The caller expects that we will place the labels
1316 // in (*address2os)[].first.labels[] in the inverse order, so we need to
1317 // invert the vars saying which level means what.
1318 if (threadLevel >= 0) {
1319 threadLevel = depth - threadLevel - 1;
1320 }
1321 if (coreLevel >= 0) {
1322 coreLevel = depth - coreLevel - 1;
1323 }
1324 KMP_DEBUG_ASSERT(pkgLevel >= 0);
1325 pkgLevel = depth - pkgLevel - 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001326
Jonathan Peyton30419822017-05-12 18:01:32 +00001327 // The algorithm used starts by setting the affinity to each available thread
1328 // and retrieving info from the cpuid instruction, so if we are not capable of
1329 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1330 // need to do something else - use the defaults that we calculated from
1331 // issuing cpuid without binding to each proc.
1332 if (!KMP_AFFINITY_CAPABLE()) {
1333 // Hack to try and infer the machine topology using only the data
1334 // available from cpuid on the current thread, and __kmp_xproc.
1335 KMP_ASSERT(__kmp_affinity_type == affinity_none);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001336
Jonathan Peyton30419822017-05-12 18:01:32 +00001337 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1338 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001339 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001340 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1341 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1342 if (__kmp_affinity_uniform_topology()) {
1343 KMP_INFORM(Uniform, "KMP_AFFINITY");
1344 } else {
1345 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1346 }
1347 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1348 __kmp_nThreadsPerCore, __kmp_ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001349 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001350 return 0;
1351 }
1352
1353 // From here on, we can assume that it is safe to call
1354 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1355 // __kmp_affinity_type = affinity_none.
1356
1357 // Save the affinity mask for the current thread.
1358 kmp_affin_mask_t *oldMask;
1359 KMP_CPU_ALLOC(oldMask);
1360 __kmp_get_system_affinity(oldMask, TRUE);
1361
1362 // Allocate the data structure to be returned.
1363 AddrUnsPair *retval =
1364 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1365
1366 // Run through each of the available contexts, binding the current thread
1367 // to it, and obtaining the pertinent information using the cpuid instr.
1368 unsigned int proc;
1369 int nApics = 0;
1370 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
1371 // Skip this proc if it is not included in the machine model.
1372 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
1373 continue;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00001374 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001375 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1376
1377 __kmp_affinity_dispatch->bind_thread(proc);
1378
1379 // Extract labels for each level in the machine topology map from Apic ID.
1380 Address addr(depth);
1381 int prev_shift = 0;
1382
1383 for (level = 0; level < depth; level++) {
1384 __kmp_x86_cpuid(11, level, &buf);
1385 unsigned apicId = buf.edx;
1386 if (buf.ebx == 0) {
1387 if (level != depth - 1) {
1388 KMP_CPU_FREE(oldMask);
1389 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1390 return -1;
1391 }
1392 addr.labels[depth - level - 1] = apicId >> prev_shift;
1393 level++;
1394 break;
1395 }
1396 int shift = buf.eax & 0x1f;
1397 int mask = (1 << shift) - 1;
1398 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1399 prev_shift = shift;
1400 }
1401 if (level != depth) {
1402 KMP_CPU_FREE(oldMask);
1403 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1404 return -1;
1405 }
1406
1407 retval[nApics] = AddrUnsPair(addr, proc);
1408 nApics++;
1409 }
1410
1411 // We've collected all the info we need.
1412 // Restore the old affinity mask for this thread.
1413 __kmp_set_system_affinity(oldMask, TRUE);
1414
1415 // If there's only one thread context to bind to, return now.
1416 KMP_ASSERT(nApics > 0);
1417 if (nApics == 1) {
1418 __kmp_ncores = nPackages = 1;
1419 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1420 if (__kmp_affinity_verbose) {
1421 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1422 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1423
1424 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1425 if (__kmp_affinity_respect_mask) {
1426 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1427 } else {
1428 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1429 }
1430 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1431 KMP_INFORM(Uniform, "KMP_AFFINITY");
1432 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1433 __kmp_nThreadsPerCore, __kmp_ncores);
1434 }
1435
Jim Cownie5e8470a2013-09-27 10:38:44 +00001436 if (__kmp_affinity_type == affinity_none) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001437 __kmp_free(retval);
1438 KMP_CPU_FREE(oldMask);
1439 return 0;
1440 }
1441
1442 // Form an Address object which only includes the package level.
1443 Address addr(1);
1444 addr.labels[0] = retval[0].first.labels[pkgLevel];
1445 retval[0].first = addr;
1446
1447 if (__kmp_affinity_gran_levels < 0) {
1448 __kmp_affinity_gran_levels = 0;
1449 }
1450
1451 if (__kmp_affinity_verbose) {
1452 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1453 }
1454
1455 *address2os = retval;
1456 KMP_CPU_FREE(oldMask);
1457 return 1;
1458 }
1459
1460 // Sort the table by physical Id.
1461 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1462
1463 // Find the radix at each of the levels.
1464 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1465 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1466 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1467 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1468 for (level = 0; level < depth; level++) {
1469 totals[level] = 1;
1470 maxCt[level] = 1;
1471 counts[level] = 1;
1472 last[level] = retval[0].first.labels[level];
1473 }
1474
1475 // From here on, the iteration variable "level" runs from the finest level to
1476 // the coarsest, i.e. we iterate forward through
1477 // (*address2os)[].first.labels[] - in the previous loops, we iterated
1478 // backwards.
1479 for (proc = 1; (int)proc < nApics; proc++) {
1480 int level;
1481 for (level = 0; level < depth; level++) {
1482 if (retval[proc].first.labels[level] != last[level]) {
1483 int j;
1484 for (j = level + 1; j < depth; j++) {
1485 totals[j]++;
1486 counts[j] = 1;
1487 // The line below causes printing incorrect topology information in
1488 // case the max value for some level (maxCt[level]) is encountered
1489 // earlier than some less value while going through the array. For
1490 // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then
1491 // maxCt[1] == 2
1492 // whereas it must be 4.
1493 // TODO!!! Check if it can be commented safely
1494 // maxCt[j] = 1;
1495 last[j] = retval[proc].first.labels[j];
1496 }
1497 totals[level]++;
1498 counts[level]++;
1499 if (counts[level] > maxCt[level]) {
1500 maxCt[level] = counts[level];
1501 }
1502 last[level] = retval[proc].first.labels[level];
1503 break;
1504 } else if (level == depth - 1) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001505 __kmp_free(last);
1506 __kmp_free(maxCt);
1507 __kmp_free(counts);
1508 __kmp_free(totals);
1509 __kmp_free(retval);
1510 KMP_CPU_FREE(oldMask);
Jonathan Peyton30419822017-05-12 18:01:32 +00001511 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1512 return -1;
1513 }
1514 }
1515 }
1516
1517 // When affinity is off, this routine will still be called to set
1518 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1519 // Make sure all these vars are set correctly, and return if affinity is not
1520 // enabled.
1521 if (threadLevel >= 0) {
1522 __kmp_nThreadsPerCore = maxCt[threadLevel];
1523 } else {
1524 __kmp_nThreadsPerCore = 1;
1525 }
1526 nPackages = totals[pkgLevel];
1527
1528 if (coreLevel >= 0) {
1529 __kmp_ncores = totals[coreLevel];
1530 nCoresPerPkg = maxCt[coreLevel];
1531 } else {
1532 __kmp_ncores = nPackages;
1533 nCoresPerPkg = 1;
1534 }
1535
1536 // Check to see if the machine topology is uniform
1537 unsigned prod = maxCt[0];
1538 for (level = 1; level < depth; level++) {
1539 prod *= maxCt[level];
1540 }
1541 bool uniform = (prod == totals[level - 1]);
1542
1543 // Print the machine topology summary.
1544 if (__kmp_affinity_verbose) {
1545 char mask[KMP_AFFIN_MASK_PRINT_LEN];
1546 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1547
1548 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1549 if (__kmp_affinity_respect_mask) {
1550 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
1551 } else {
1552 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
1553 }
1554 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1555 if (uniform) {
1556 KMP_INFORM(Uniform, "KMP_AFFINITY");
1557 } else {
1558 KMP_INFORM(NonUniform, "KMP_AFFINITY");
Jim Cownie5e8470a2013-09-27 10:38:44 +00001559 }
1560
Jonathan Peyton30419822017-05-12 18:01:32 +00001561 kmp_str_buf_t buf;
1562 __kmp_str_buf_init(&buf);
1563
1564 __kmp_str_buf_print(&buf, "%d", totals[0]);
1565 for (level = 1; level <= pkgLevel; level++) {
1566 __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001567 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001568 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1569 __kmp_nThreadsPerCore, __kmp_ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001570
Jonathan Peyton30419822017-05-12 18:01:32 +00001571 __kmp_str_buf_free(&buf);
1572 }
1573 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1574 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1575 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1576 for (proc = 0; (int)proc < nApics; ++proc) {
1577 __kmp_pu_os_idx[proc] = retval[proc].second;
1578 }
1579 if (__kmp_affinity_type == affinity_none) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001580 __kmp_free(last);
1581 __kmp_free(maxCt);
1582 __kmp_free(counts);
1583 __kmp_free(totals);
Jonathan Peyton30419822017-05-12 18:01:32 +00001584 __kmp_free(retval);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001585 KMP_CPU_FREE(oldMask);
Jonathan Peyton30419822017-05-12 18:01:32 +00001586 return 0;
1587 }
1588
1589 // Find any levels with radiix 1, and remove them from the map
1590 // (except for the package level).
1591 int new_depth = 0;
1592 for (level = 0; level < depth; level++) {
1593 if ((maxCt[level] == 1) && (level != pkgLevel)) {
1594 continue;
1595 }
1596 new_depth++;
1597 }
1598
1599 // If we are removing any levels, allocate a new vector to return,
1600 // and copy the relevant information to it.
1601 if (new_depth != depth) {
1602 AddrUnsPair *new_retval =
1603 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1604 for (proc = 0; (int)proc < nApics; proc++) {
1605 Address addr(new_depth);
1606 new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1607 }
1608 int new_level = 0;
1609 int newPkgLevel = -1;
1610 int newCoreLevel = -1;
1611 int newThreadLevel = -1;
1612 int i;
1613 for (level = 0; level < depth; level++) {
1614 if ((maxCt[level] == 1) && (level != pkgLevel)) {
1615 // Remove this level. Never remove the package level
1616 continue;
1617 }
1618 if (level == pkgLevel) {
1619 newPkgLevel = level;
1620 }
1621 if (level == coreLevel) {
1622 newCoreLevel = level;
1623 }
1624 if (level == threadLevel) {
1625 newThreadLevel = level;
1626 }
1627 for (proc = 0; (int)proc < nApics; proc++) {
1628 new_retval[proc].first.labels[new_level] =
1629 retval[proc].first.labels[level];
1630 }
1631 new_level++;
1632 }
1633
1634 __kmp_free(retval);
1635 retval = new_retval;
1636 depth = new_depth;
1637 pkgLevel = newPkgLevel;
1638 coreLevel = newCoreLevel;
1639 threadLevel = newThreadLevel;
1640 }
1641
1642 if (__kmp_affinity_gran_levels < 0) {
1643 // Set the granularity level based on what levels are modeled
1644 // in the machine topology map.
1645 __kmp_affinity_gran_levels = 0;
1646 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1647 __kmp_affinity_gran_levels++;
1648 }
1649 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1650 __kmp_affinity_gran_levels++;
1651 }
1652 if (__kmp_affinity_gran > affinity_gran_package) {
1653 __kmp_affinity_gran_levels++;
1654 }
1655 }
1656
1657 if (__kmp_affinity_verbose) {
1658 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel,
1659 threadLevel);
1660 }
1661
1662 __kmp_free(last);
1663 __kmp_free(maxCt);
1664 __kmp_free(counts);
1665 __kmp_free(totals);
1666 KMP_CPU_FREE(oldMask);
1667 *address2os = retval;
1668 return depth;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001669}
1670
Jonathan Peyton30419822017-05-12 18:01:32 +00001671#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
Jim Cownie5e8470a2013-09-27 10:38:44 +00001672
Jonathan Peyton30419822017-05-12 18:01:32 +00001673#define osIdIndex 0
1674#define threadIdIndex 1
1675#define coreIdIndex 2
1676#define pkgIdIndex 3
1677#define nodeIdIndex 4
Jim Cownie5e8470a2013-09-27 10:38:44 +00001678
1679typedef unsigned *ProcCpuInfo;
1680static unsigned maxIndex = pkgIdIndex;
1681
Jonathan Peyton30419822017-05-12 18:01:32 +00001682static int __kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b) {
1683 const unsigned *aa = (const unsigned *)a;
1684 const unsigned *bb = (const unsigned *)b;
1685 if (aa[osIdIndex] < bb[osIdIndex])
1686 return -1;
1687 if (aa[osIdIndex] > bb[osIdIndex])
1688 return 1;
1689 return 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001690};
1691
Jonathan Peyton30419822017-05-12 18:01:32 +00001692static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
1693 const void *b) {
1694 unsigned i;
1695 const unsigned *aa = *((const unsigned **)a);
1696 const unsigned *bb = *((const unsigned **)b);
1697 for (i = maxIndex;; i--) {
1698 if (aa[i] < bb[i])
1699 return -1;
1700 if (aa[i] > bb[i])
1701 return 1;
1702 if (i == osIdIndex)
1703 break;
1704 }
1705 return 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001706}
1707
Jim Cownie5e8470a2013-09-27 10:38:44 +00001708// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
1709// affinity map.
Jonathan Peyton30419822017-05-12 18:01:32 +00001710static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os,
1711 int *line,
1712 kmp_i18n_id_t *const msg_id,
1713 FILE *f) {
1714 *address2os = NULL;
1715 *msg_id = kmp_i18n_null;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001716
Jonathan Peyton30419822017-05-12 18:01:32 +00001717 // Scan of the file, and count the number of "processor" (osId) fields,
1718 // and find the highest value of <n> for a node_<n> field.
1719 char buf[256];
1720 unsigned num_records = 0;
1721 while (!feof(f)) {
1722 buf[sizeof(buf) - 1] = 1;
1723 if (!fgets(buf, sizeof(buf), f)) {
1724 // Read errors presumably because of EOF
1725 break;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001726 }
1727
Jonathan Peyton30419822017-05-12 18:01:32 +00001728 char s1[] = "processor";
1729 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
1730 num_records++;
1731 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001732 }
1733
Jonathan Peyton30419822017-05-12 18:01:32 +00001734 // FIXME - this will match "node_<n> <garbage>"
1735 unsigned level;
1736 if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
1737 if (nodeIdIndex + level >= maxIndex) {
1738 maxIndex = nodeIdIndex + level;
1739 }
1740 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001741 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001742 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001743
Jonathan Peyton30419822017-05-12 18:01:32 +00001744 // Check for empty file / no valid processor records, or too many. The number
1745 // of records can't exceed the number of valid bits in the affinity mask.
1746 if (num_records == 0) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001747 *line = 0;
Jonathan Peyton30419822017-05-12 18:01:32 +00001748 *msg_id = kmp_i18n_str_NoProcRecords;
1749 return -1;
1750 }
1751 if (num_records > (unsigned)__kmp_xproc) {
1752 *line = 0;
1753 *msg_id = kmp_i18n_str_TooManyProcRecords;
1754 return -1;
1755 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001756
Jonathan Peyton30419822017-05-12 18:01:32 +00001757 // Set the file pointer back to the begginning, so that we can scan the file
1758 // again, this time performing a full parse of the data. Allocate a vector of
1759 // ProcCpuInfo object, where we will place the data. Adding an extra element
1760 // at the end allows us to remove a lot of extra checks for termination
1761 // conditions.
1762 if (fseek(f, 0, SEEK_SET) != 0) {
1763 *line = 0;
1764 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
1765 return -1;
1766 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001767
Jonathan Peyton30419822017-05-12 18:01:32 +00001768 // Allocate the array of records to store the proc info in. The dummy
1769 // element at the end makes the logic in filling them out easier to code.
1770 unsigned **threadInfo =
1771 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
1772 unsigned i;
1773 for (i = 0; i <= num_records; i++) {
1774 threadInfo[i] =
1775 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
1776 }
1777
1778#define CLEANUP_THREAD_INFO \
1779 for (i = 0; i <= num_records; i++) { \
1780 __kmp_free(threadInfo[i]); \
1781 } \
1782 __kmp_free(threadInfo);
1783
1784 // A value of UINT_MAX means that we didn't find the field
1785 unsigned __index;
1786
1787#define INIT_PROC_INFO(p) \
1788 for (__index = 0; __index <= maxIndex; __index++) { \
1789 (p)[__index] = UINT_MAX; \
1790 }
1791
1792 for (i = 0; i <= num_records; i++) {
1793 INIT_PROC_INFO(threadInfo[i]);
1794 }
1795
1796 unsigned num_avail = 0;
1797 *line = 0;
1798 while (!feof(f)) {
1799 // Create an inner scoping level, so that all the goto targets at the end of
1800 // the loop appear in an outer scoping level. This avoids warnings about
1801 // jumping past an initialization to a target in the same block.
1802 {
1803 buf[sizeof(buf) - 1] = 1;
1804 bool long_line = false;
1805 if (!fgets(buf, sizeof(buf), f)) {
1806 // Read errors presumably because of EOF
1807 // If there is valid data in threadInfo[num_avail], then fake
1808 // a blank line in ensure that the last address gets parsed.
1809 bool valid = false;
1810 for (i = 0; i <= maxIndex; i++) {
1811 if (threadInfo[num_avail][i] != UINT_MAX) {
1812 valid = true;
1813 }
1814 }
1815 if (!valid) {
1816 break;
1817 }
1818 buf[0] = 0;
1819 } else if (!buf[sizeof(buf) - 1]) {
1820 // The line is longer than the buffer. Set a flag and don't
1821 // emit an error if we were going to ignore the line, anyway.
1822 long_line = true;
1823
1824#define CHECK_LINE \
1825 if (long_line) { \
1826 CLEANUP_THREAD_INFO; \
1827 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
1828 return -1; \
1829 }
1830 }
1831 (*line)++;
1832
1833 char s1[] = "processor";
1834 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
1835 CHECK_LINE;
1836 char *p = strchr(buf + sizeof(s1) - 1, ':');
1837 unsigned val;
1838 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
1839 goto no_val;
1840 if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
1841 goto dup_field;
1842 threadInfo[num_avail][osIdIndex] = val;
Jim Cownie181b4bb2013-12-23 17:28:57 +00001843#if KMP_OS_LINUX && USE_SYSFS_INFO
Jonathan Peyton30419822017-05-12 18:01:32 +00001844 char path[256];
1845 KMP_SNPRINTF(
1846 path, sizeof(path),
1847 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
1848 threadInfo[num_avail][osIdIndex]);
1849 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
Jim Cownie181b4bb2013-12-23 17:28:57 +00001850
Jonathan Peyton30419822017-05-12 18:01:32 +00001851 KMP_SNPRINTF(path, sizeof(path),
1852 "/sys/devices/system/cpu/cpu%u/topology/core_id",
1853 threadInfo[num_avail][osIdIndex]);
1854 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
1855 continue;
Jim Cownie181b4bb2013-12-23 17:28:57 +00001856#else
Jonathan Peyton30419822017-05-12 18:01:32 +00001857 }
1858 char s2[] = "physical id";
1859 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
1860 CHECK_LINE;
1861 char *p = strchr(buf + sizeof(s2) - 1, ':');
1862 unsigned val;
1863 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
1864 goto no_val;
1865 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
1866 goto dup_field;
1867 threadInfo[num_avail][pkgIdIndex] = val;
1868 continue;
1869 }
1870 char s3[] = "core id";
1871 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
1872 CHECK_LINE;
1873 char *p = strchr(buf + sizeof(s3) - 1, ':');
1874 unsigned val;
1875 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
1876 goto no_val;
1877 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
1878 goto dup_field;
1879 threadInfo[num_avail][coreIdIndex] = val;
1880 continue;
Jim Cownie181b4bb2013-12-23 17:28:57 +00001881#endif // KMP_OS_LINUX && USE_SYSFS_INFO
Jonathan Peyton30419822017-05-12 18:01:32 +00001882 }
1883 char s4[] = "thread id";
1884 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
1885 CHECK_LINE;
1886 char *p = strchr(buf + sizeof(s4) - 1, ':');
1887 unsigned val;
1888 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
1889 goto no_val;
1890 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
1891 goto dup_field;
1892 threadInfo[num_avail][threadIdIndex] = val;
1893 continue;
1894 }
1895 unsigned level;
1896 if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
1897 CHECK_LINE;
1898 char *p = strchr(buf + sizeof(s4) - 1, ':');
1899 unsigned val;
1900 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
1901 goto no_val;
1902 KMP_ASSERT(nodeIdIndex + level <= maxIndex);
1903 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
1904 goto dup_field;
1905 threadInfo[num_avail][nodeIdIndex + level] = val;
1906 continue;
1907 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001908
Jonathan Peyton30419822017-05-12 18:01:32 +00001909 // We didn't recognize the leading token on the line. There are lots of
1910 // leading tokens that we don't recognize - if the line isn't empty, go on
1911 // to the next line.
1912 if ((*buf != 0) && (*buf != '\n')) {
1913 // If the line is longer than the buffer, read characters
1914 // until we find a newline.
1915 if (long_line) {
1916 int ch;
1917 while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
1918 ;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001919 }
1920 continue;
Jonathan Peyton30419822017-05-12 18:01:32 +00001921 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001922
Jonathan Peyton30419822017-05-12 18:01:32 +00001923 // A newline has signalled the end of the processor record.
1924 // Check that there aren't too many procs specified.
1925 if ((int)num_avail == __kmp_xproc) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001926 CLEANUP_THREAD_INFO;
Jonathan Peyton30419822017-05-12 18:01:32 +00001927 *msg_id = kmp_i18n_str_TooManyEntries;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001928 return -1;
Jonathan Peyton30419822017-05-12 18:01:32 +00001929 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001930
Jonathan Peyton30419822017-05-12 18:01:32 +00001931 // Check for missing fields. The osId field must be there, and we
1932 // currently require that the physical id field is specified, also.
1933 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001934 CLEANUP_THREAD_INFO;
Jonathan Peyton30419822017-05-12 18:01:32 +00001935 *msg_id = kmp_i18n_str_MissingProcField;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001936 return -1;
Jonathan Peyton30419822017-05-12 18:01:32 +00001937 }
1938 if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001939 CLEANUP_THREAD_INFO;
Jonathan Peyton30419822017-05-12 18:01:32 +00001940 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
1941 return -1;
1942 }
1943
1944 // Skip this proc if it is not included in the machine model.
1945 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
1946 __kmp_affin_fullMask)) {
1947 INIT_PROC_INFO(threadInfo[num_avail]);
1948 continue;
1949 }
1950
1951 // We have a successful parse of this proc's info.
1952 // Increment the counter, and prepare for the next proc.
1953 num_avail++;
1954 KMP_ASSERT(num_avail <= num_records);
1955 INIT_PROC_INFO(threadInfo[num_avail]);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001956 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001957 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001958
Jonathan Peyton30419822017-05-12 18:01:32 +00001959 no_val:
1960 CLEANUP_THREAD_INFO;
1961 *msg_id = kmp_i18n_str_MissingValCpuinfo;
1962 return -1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001963
Jonathan Peyton30419822017-05-12 18:01:32 +00001964 dup_field:
1965 CLEANUP_THREAD_INFO;
1966 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
1967 return -1;
1968 }
1969 *line = 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001970
Jonathan Peyton30419822017-05-12 18:01:32 +00001971#if KMP_MIC && REDUCE_TEAM_SIZE
1972 unsigned teamSize = 0;
1973#endif // KMP_MIC && REDUCE_TEAM_SIZE
Jim Cownie5e8470a2013-09-27 10:38:44 +00001974
Jonathan Peyton30419822017-05-12 18:01:32 +00001975 // check for num_records == __kmp_xproc ???
Jim Cownie5e8470a2013-09-27 10:38:44 +00001976
Jonathan Peyton30419822017-05-12 18:01:32 +00001977 // If there's only one thread context to bind to, form an Address object with
1978 // depth 1 and return immediately (or, if affinity is off, set address2os to
1979 // NULL and return).
1980 //
1981 // If it is configured to omit the package level when there is only a single
1982 // package, the logic at the end of this routine won't work if there is only a
1983 // single thread - it would try to form an Address object with depth 0.
1984 KMP_ASSERT(num_avail > 0);
1985 KMP_ASSERT(num_avail <= num_records);
1986 if (num_avail == 1) {
1987 __kmp_ncores = 1;
1988 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001989 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001990 if (!KMP_AFFINITY_CAPABLE()) {
1991 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
1992 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1993 KMP_INFORM(Uniform, "KMP_AFFINITY");
1994 } else {
1995 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1996 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
1997 __kmp_affin_fullMask);
1998 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
1999 if (__kmp_affinity_respect_mask) {
2000 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2001 } else {
2002 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002003 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002004 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2005 KMP_INFORM(Uniform, "KMP_AFFINITY");
2006 }
2007 int index;
2008 kmp_str_buf_t buf;
2009 __kmp_str_buf_init(&buf);
2010 __kmp_str_buf_print(&buf, "1");
2011 for (index = maxIndex - 1; index > pkgIdIndex; index--) {
2012 __kmp_str_buf_print(&buf, " x 1");
2013 }
2014 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
2015 __kmp_str_buf_free(&buf);
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00002016 }
2017
Jim Cownie5e8470a2013-09-27 10:38:44 +00002018 if (__kmp_affinity_type == affinity_none) {
Jonathan Peyton30419822017-05-12 18:01:32 +00002019 CLEANUP_THREAD_INFO;
2020 return 0;
2021 }
2022
2023 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
2024 Address addr(1);
2025 addr.labels[0] = threadInfo[0][pkgIdIndex];
2026 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
2027
2028 if (__kmp_affinity_gran_levels < 0) {
2029 __kmp_affinity_gran_levels = 0;
2030 }
2031
2032 if (__kmp_affinity_verbose) {
2033 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
2034 }
2035
2036 CLEANUP_THREAD_INFO;
2037 return 1;
2038 }
2039
2040 // Sort the threadInfo table by physical Id.
2041 qsort(threadInfo, num_avail, sizeof(*threadInfo),
2042 __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2043
2044 // The table is now sorted by pkgId / coreId / threadId, but we really don't
2045 // know the radix of any of the fields. pkgId's may be sparsely assigned among
2046 // the chips on a system. Although coreId's are usually assigned
2047 // [0 .. coresPerPkg-1] and threadId's are usually assigned
2048 // [0..threadsPerCore-1], we don't want to make any such assumptions.
2049 //
2050 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2051 // total # packages) are at this point - we want to determine that now. We
2052 // only have an upper bound on the first two figures.
2053 unsigned *counts =
2054 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2055 unsigned *maxCt =
2056 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2057 unsigned *totals =
2058 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2059 unsigned *lastId =
2060 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2061
2062 bool assign_thread_ids = false;
2063 unsigned threadIdCt;
2064 unsigned index;
2065
2066restart_radix_check:
2067 threadIdCt = 0;
2068
2069 // Initialize the counter arrays with data from threadInfo[0].
2070 if (assign_thread_ids) {
2071 if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2072 threadInfo[0][threadIdIndex] = threadIdCt++;
2073 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2074 threadIdCt = threadInfo[0][threadIdIndex] + 1;
2075 }
2076 }
2077 for (index = 0; index <= maxIndex; index++) {
2078 counts[index] = 1;
2079 maxCt[index] = 1;
2080 totals[index] = 1;
2081 lastId[index] = threadInfo[0][index];
2082 ;
2083 }
2084
2085 // Run through the rest of the OS procs.
2086 for (i = 1; i < num_avail; i++) {
2087 // Find the most significant index whose id differs from the id for the
2088 // previous OS proc.
2089 for (index = maxIndex; index >= threadIdIndex; index--) {
2090 if (assign_thread_ids && (index == threadIdIndex)) {
2091 // Auto-assign the thread id field if it wasn't specified.
2092 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2093 threadInfo[i][threadIdIndex] = threadIdCt++;
2094 }
Jonathan Peyton642688b2017-06-01 16:46:36 +00002095 // Apparently the thread id field was specified for some entries and not
Jonathan Peyton30419822017-05-12 18:01:32 +00002096 // others. Start the thread id counter off at the next higher thread id.
2097 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2098 threadIdCt = threadInfo[i][threadIdIndex] + 1;
2099 }
2100 }
2101 if (threadInfo[i][index] != lastId[index]) {
2102 // Run through all indices which are less significant, and reset the
2103 // counts to 1. At all levels up to and including index, we need to
2104 // increment the totals and record the last id.
2105 unsigned index2;
2106 for (index2 = threadIdIndex; index2 < index; index2++) {
2107 totals[index2]++;
2108 if (counts[index2] > maxCt[index2]) {
2109 maxCt[index2] = counts[index2];
2110 }
2111 counts[index2] = 1;
2112 lastId[index2] = threadInfo[i][index2];
2113 }
2114 counts[index]++;
2115 totals[index]++;
2116 lastId[index] = threadInfo[i][index];
2117
2118 if (assign_thread_ids && (index > threadIdIndex)) {
2119
2120#if KMP_MIC && REDUCE_TEAM_SIZE
2121 // The default team size is the total #threads in the machine
2122 // minus 1 thread for every core that has 3 or more threads.
2123 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2124#endif // KMP_MIC && REDUCE_TEAM_SIZE
2125
2126 // Restart the thread counter, as we are on a new core.
2127 threadIdCt = 0;
2128
2129 // Auto-assign the thread id field if it wasn't specified.
2130 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2131 threadInfo[i][threadIdIndex] = threadIdCt++;
2132 }
2133
2134 // Aparrently the thread id field was specified for some entries and
2135 // not others. Start the thread id counter off at the next higher
2136 // thread id.
2137 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2138 threadIdCt = threadInfo[i][threadIdIndex] + 1;
2139 }
2140 }
2141 break;
2142 }
2143 }
2144 if (index < threadIdIndex) {
2145 // If thread ids were specified, it is an error if they are not unique.
2146 // Also, check that we waven't already restarted the loop (to be safe -
2147 // shouldn't need to).
2148 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00002149 __kmp_free(lastId);
2150 __kmp_free(totals);
2151 __kmp_free(maxCt);
2152 __kmp_free(counts);
2153 CLEANUP_THREAD_INFO;
Jonathan Peyton30419822017-05-12 18:01:32 +00002154 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2155 return -1;
2156 }
2157
2158 // If the thread ids were not specified and we see entries entries that
2159 // are duplicates, start the loop over and assign the thread ids manually.
2160 assign_thread_ids = true;
2161 goto restart_radix_check;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002162 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002163 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002164
Jonathan Peyton30419822017-05-12 18:01:32 +00002165#if KMP_MIC && REDUCE_TEAM_SIZE
2166 // The default team size is the total #threads in the machine
2167 // minus 1 thread for every core that has 3 or more threads.
2168 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2169#endif // KMP_MIC && REDUCE_TEAM_SIZE
2170
2171 for (index = threadIdIndex; index <= maxIndex; index++) {
2172 if (counts[index] > maxCt[index]) {
2173 maxCt[index] = counts[index];
Jim Cownie5e8470a2013-09-27 10:38:44 +00002174 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002175 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002176
Jonathan Peyton30419822017-05-12 18:01:32 +00002177 __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2178 nCoresPerPkg = maxCt[coreIdIndex];
2179 nPackages = totals[pkgIdIndex];
2180
2181 // Check to see if the machine topology is uniform
2182 unsigned prod = totals[maxIndex];
2183 for (index = threadIdIndex; index < maxIndex; index++) {
2184 prod *= maxCt[index];
2185 }
2186 bool uniform = (prod == totals[threadIdIndex]);
2187
2188 // When affinity is off, this routine will still be called to set
2189 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2190 // Make sure all these vars are set correctly, and return now if affinity is
2191 // not enabled.
2192 __kmp_ncores = totals[coreIdIndex];
2193
2194 if (__kmp_affinity_verbose) {
2195 if (!KMP_AFFINITY_CAPABLE()) {
2196 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2197 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2198 if (uniform) {
2199 KMP_INFORM(Uniform, "KMP_AFFINITY");
2200 } else {
2201 KMP_INFORM(NonUniform, "KMP_AFFINITY");
2202 }
2203 } else {
2204 char buf[KMP_AFFIN_MASK_PRINT_LEN];
2205 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2206 __kmp_affin_fullMask);
2207 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2208 if (__kmp_affinity_respect_mask) {
2209 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2210 } else {
2211 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2212 }
2213 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2214 if (uniform) {
2215 KMP_INFORM(Uniform, "KMP_AFFINITY");
2216 } else {
2217 KMP_INFORM(NonUniform, "KMP_AFFINITY");
2218 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002219 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002220 kmp_str_buf_t buf;
2221 __kmp_str_buf_init(&buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002222
Jonathan Peyton30419822017-05-12 18:01:32 +00002223 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2224 for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2225 __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002226 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002227 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
2228 maxCt[threadIdIndex], __kmp_ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002229
Jonathan Peyton30419822017-05-12 18:01:32 +00002230 __kmp_str_buf_free(&buf);
2231 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002232
Jonathan Peyton30419822017-05-12 18:01:32 +00002233#if KMP_MIC && REDUCE_TEAM_SIZE
2234 // Set the default team size.
2235 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2236 __kmp_dflt_team_nth = teamSize;
2237 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
2238 "__kmp_dflt_team_nth = %d\n",
2239 __kmp_dflt_team_nth));
2240 }
2241#endif // KMP_MIC && REDUCE_TEAM_SIZE
Jim Cownie5e8470a2013-09-27 10:38:44 +00002242
Jonathan Peyton30419822017-05-12 18:01:32 +00002243 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
2244 KMP_DEBUG_ASSERT(num_avail == __kmp_avail_proc);
2245 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
2246 for (i = 0; i < num_avail; ++i) { // fill the os indices
2247 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
2248 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002249
Jonathan Peyton30419822017-05-12 18:01:32 +00002250 if (__kmp_affinity_type == affinity_none) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00002251 __kmp_free(lastId);
2252 __kmp_free(totals);
2253 __kmp_free(maxCt);
2254 __kmp_free(counts);
2255 CLEANUP_THREAD_INFO;
Jonathan Peyton30419822017-05-12 18:01:32 +00002256 return 0;
2257 }
2258
2259 // Count the number of levels which have more nodes at that level than at the
2260 // parent's level (with there being an implicit root node of the top level).
2261 // This is equivalent to saying that there is at least one node at this level
2262 // which has a sibling. These levels are in the map, and the package level is
2263 // always in the map.
2264 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2265 int level = 0;
2266 for (index = threadIdIndex; index < maxIndex; index++) {
2267 KMP_ASSERT(totals[index] >= totals[index + 1]);
2268 inMap[index] = (totals[index] > totals[index + 1]);
2269 }
2270 inMap[maxIndex] = (totals[maxIndex] > 1);
2271 inMap[pkgIdIndex] = true;
2272
2273 int depth = 0;
2274 for (index = threadIdIndex; index <= maxIndex; index++) {
2275 if (inMap[index]) {
2276 depth++;
2277 }
2278 }
2279 KMP_ASSERT(depth > 0);
2280
2281 // Construct the data structure that is to be returned.
2282 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2283 int pkgLevel = -1;
2284 int coreLevel = -1;
2285 int threadLevel = -1;
2286
2287 for (i = 0; i < num_avail; ++i) {
2288 Address addr(depth);
2289 unsigned os = threadInfo[i][osIdIndex];
2290 int src_index;
2291 int dst_index = 0;
2292
2293 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2294 if (!inMap[src_index]) {
2295 continue;
2296 }
2297 addr.labels[dst_index] = threadInfo[i][src_index];
2298 if (src_index == pkgIdIndex) {
2299 pkgLevel = dst_index;
2300 } else if (src_index == coreIdIndex) {
2301 coreLevel = dst_index;
2302 } else if (src_index == threadIdIndex) {
2303 threadLevel = dst_index;
2304 }
2305 dst_index++;
2306 }
2307 (*address2os)[i] = AddrUnsPair(addr, os);
2308 }
2309
2310 if (__kmp_affinity_gran_levels < 0) {
2311 // Set the granularity level based on what levels are modeled
2312 // in the machine topology map.
2313 unsigned src_index;
2314 __kmp_affinity_gran_levels = 0;
2315 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2316 if (!inMap[src_index]) {
2317 continue;
2318 }
2319 switch (src_index) {
2320 case threadIdIndex:
2321 if (__kmp_affinity_gran > affinity_gran_thread) {
2322 __kmp_affinity_gran_levels++;
2323 }
2324
2325 break;
2326 case coreIdIndex:
2327 if (__kmp_affinity_gran > affinity_gran_core) {
2328 __kmp_affinity_gran_levels++;
2329 }
2330 break;
2331
2332 case pkgIdIndex:
2333 if (__kmp_affinity_gran > affinity_gran_package) {
2334 __kmp_affinity_gran_levels++;
2335 }
2336 break;
2337 }
2338 }
2339 }
2340
2341 if (__kmp_affinity_verbose) {
2342 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2343 coreLevel, threadLevel);
2344 }
2345
2346 __kmp_free(inMap);
2347 __kmp_free(lastId);
2348 __kmp_free(totals);
2349 __kmp_free(maxCt);
2350 __kmp_free(counts);
2351 CLEANUP_THREAD_INFO;
2352 return depth;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002353}
2354
Jim Cownie5e8470a2013-09-27 10:38:44 +00002355// Create and return a table of affinity masks, indexed by OS thread ID.
2356// This routine handles OR'ing together all the affinity masks of threads
2357// that are sufficiently close, if granularity > fine.
Jonathan Peyton30419822017-05-12 18:01:32 +00002358static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
2359 unsigned *numUnique,
2360 AddrUnsPair *address2os,
2361 unsigned numAddrs) {
2362 // First form a table of affinity masks in order of OS thread id.
2363 unsigned depth;
2364 unsigned maxOsId;
2365 unsigned i;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002366
Jonathan Peyton30419822017-05-12 18:01:32 +00002367 KMP_ASSERT(numAddrs > 0);
2368 depth = address2os[0].first.depth;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002369
Jonathan Peyton30419822017-05-12 18:01:32 +00002370 maxOsId = 0;
2371 for (i = 0; i < numAddrs; i++) {
2372 unsigned osId = address2os[i].second;
2373 if (osId > maxOsId) {
2374 maxOsId = osId;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002375 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002376 }
2377 kmp_affin_mask_t *osId2Mask;
2378 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
Jim Cownie5e8470a2013-09-27 10:38:44 +00002379
Jonathan Peyton30419822017-05-12 18:01:32 +00002380 // Sort the address2os table according to physical order. Doing so will put
2381 // all threads on the same core/package/node in consecutive locations.
2382 qsort(address2os, numAddrs, sizeof(*address2os),
2383 __kmp_affinity_cmp_Address_labels);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002384
Jonathan Peyton30419822017-05-12 18:01:32 +00002385 KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2386 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2387 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2388 }
2389 if (__kmp_affinity_gran_levels >= (int)depth) {
2390 if (__kmp_affinity_verbose ||
2391 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2392 KMP_WARNING(AffThreadsMayMigrate);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002393 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002394 }
2395
2396 // Run through the table, forming the masks for all threads on each core.
2397 // Threads on the same core will have identical "Address" objects, not
2398 // considering the last level, which must be the thread id. All threads on a
2399 // core will appear consecutively.
2400 unsigned unique = 0;
2401 unsigned j = 0; // index of 1st thread on core
2402 unsigned leader = 0;
2403 Address *leaderAddr = &(address2os[0].first);
2404 kmp_affin_mask_t *sum;
2405 KMP_CPU_ALLOC_ON_STACK(sum);
2406 KMP_CPU_ZERO(sum);
2407 KMP_CPU_SET(address2os[0].second, sum);
2408 for (i = 1; i < numAddrs; i++) {
2409 // If this thread is sufficiently close to the leader (within the
2410 // granularity setting), then set the bit for this os thread in the
2411 // affinity mask for this group, and go on to the next thread.
2412 if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) {
2413 KMP_CPU_SET(address2os[i].second, sum);
2414 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002415 }
2416
Jonathan Peyton30419822017-05-12 18:01:32 +00002417 // For every thread in this group, copy the mask to the thread's entry in
2418 // the osId2Mask table. Mark the first address as a leader.
Jim Cownie5e8470a2013-09-27 10:38:44 +00002419 for (; j < i; j++) {
Jonathan Peyton30419822017-05-12 18:01:32 +00002420 unsigned osId = address2os[j].second;
2421 KMP_DEBUG_ASSERT(osId <= maxOsId);
2422 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2423 KMP_CPU_COPY(mask, sum);
2424 address2os[j].first.leader = (j == leader);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002425 }
2426 unique++;
2427
Jonathan Peyton30419822017-05-12 18:01:32 +00002428 // Start a new mask.
2429 leader = i;
2430 leaderAddr = &(address2os[i].first);
2431 KMP_CPU_ZERO(sum);
2432 KMP_CPU_SET(address2os[i].second, sum);
2433 }
2434
2435 // For every thread in last group, copy the mask to the thread's
2436 // entry in the osId2Mask table.
2437 for (; j < i; j++) {
2438 unsigned osId = address2os[j].second;
2439 KMP_DEBUG_ASSERT(osId <= maxOsId);
2440 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2441 KMP_CPU_COPY(mask, sum);
2442 address2os[j].first.leader = (j == leader);
2443 }
2444 unique++;
2445 KMP_CPU_FREE_FROM_STACK(sum);
2446
2447 *maxIndex = maxOsId;
2448 *numUnique = unique;
2449 return osId2Mask;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002450}
2451
Jim Cownie5e8470a2013-09-27 10:38:44 +00002452// Stuff for the affinity proclist parsers. It's easier to declare these vars
2453// as file-static than to try and pass them through the calling sequence of
2454// the recursive-descent OMP_PLACES parser.
Jim Cownie5e8470a2013-09-27 10:38:44 +00002455static kmp_affin_mask_t *newMasks;
2456static int numNewMasks;
2457static int nextNewMask;
2458
Jonathan Peyton30419822017-05-12 18:01:32 +00002459#define ADD_MASK(_mask) \
2460 { \
2461 if (nextNewMask >= numNewMasks) { \
2462 int i; \
2463 numNewMasks *= 2; \
2464 kmp_affin_mask_t *temp; \
2465 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
2466 for (i = 0; i < numNewMasks / 2; i++) { \
2467 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
2468 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
2469 KMP_CPU_COPY(dest, src); \
2470 } \
2471 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
2472 newMasks = temp; \
2473 } \
2474 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
2475 nextNewMask++; \
2476 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002477
Jonathan Peyton30419822017-05-12 18:01:32 +00002478#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
2479 { \
2480 if (((_osId) > _maxOsId) || \
2481 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
2482 if (__kmp_affinity_verbose || \
2483 (__kmp_affinity_warnings && \
2484 (__kmp_affinity_type != affinity_none))) { \
2485 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
2486 } \
2487 } else { \
2488 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
2489 } \
2490 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002491
Jim Cownie5e8470a2013-09-27 10:38:44 +00002492// Re-parse the proclist (for the explicit affinity type), and form the list
2493// of affinity newMasks indexed by gtid.
Jonathan Peyton30419822017-05-12 18:01:32 +00002494static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2495 unsigned int *out_numMasks,
2496 const char *proclist,
2497 kmp_affin_mask_t *osId2Mask,
2498 int maxOsId) {
2499 int i;
2500 const char *scan = proclist;
2501 const char *next = proclist;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002502
Jonathan Peyton30419822017-05-12 18:01:32 +00002503 // We use malloc() for the temporary mask vector, so that we can use
2504 // realloc() to extend it.
2505 numNewMasks = 2;
2506 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2507 nextNewMask = 0;
2508 kmp_affin_mask_t *sumMask;
2509 KMP_CPU_ALLOC(sumMask);
2510 int setSize = 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002511
Jonathan Peyton30419822017-05-12 18:01:32 +00002512 for (;;) {
2513 int start, end, stride;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002514
Jonathan Peyton30419822017-05-12 18:01:32 +00002515 SKIP_WS(scan);
2516 next = scan;
2517 if (*next == '\0') {
2518 break;
2519 }
2520
2521 if (*next == '{') {
2522 int num;
2523 setSize = 0;
2524 next++; // skip '{'
2525 SKIP_WS(next);
2526 scan = next;
2527
2528 // Read the first integer in the set.
2529 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
2530 SKIP_DIGITS(next);
2531 num = __kmp_str_to_int(scan, *next);
2532 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2533
2534 // Copy the mask for that osId to the sum (union) mask.
2535 if ((num > maxOsId) ||
2536 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2537 if (__kmp_affinity_verbose ||
2538 (__kmp_affinity_warnings &&
2539 (__kmp_affinity_type != affinity_none))) {
2540 KMP_WARNING(AffIgnoreInvalidProcID, num);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002541 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002542 KMP_CPU_ZERO(sumMask);
2543 } else {
2544 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2545 setSize = 1;
2546 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002547
Jonathan Peyton30419822017-05-12 18:01:32 +00002548 for (;;) {
2549 // Check for end of set.
Jim Cownie5e8470a2013-09-27 10:38:44 +00002550 SKIP_WS(next);
Jonathan Peyton30419822017-05-12 18:01:32 +00002551 if (*next == '}') {
2552 next++; // skip '}'
2553 break;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002554 }
2555
Jim Cownie5e8470a2013-09-27 10:38:44 +00002556 // Skip optional comma.
Jim Cownie5e8470a2013-09-27 10:38:44 +00002557 if (*next == ',') {
Jonathan Peyton30419822017-05-12 18:01:32 +00002558 next++;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002559 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002560 SKIP_WS(next);
2561
2562 // Read the next integer in the set.
Jim Cownie5e8470a2013-09-27 10:38:44 +00002563 scan = next;
Jonathan Peyton30419822017-05-12 18:01:32 +00002564 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2565
2566 SKIP_DIGITS(next);
2567 num = __kmp_str_to_int(scan, *next);
2568 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2569
2570 // Add the mask for that osId to the sum mask.
2571 if ((num > maxOsId) ||
2572 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2573 if (__kmp_affinity_verbose ||
2574 (__kmp_affinity_warnings &&
2575 (__kmp_affinity_type != affinity_none))) {
2576 KMP_WARNING(AffIgnoreInvalidProcID, num);
2577 }
2578 } else {
2579 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2580 setSize++;
2581 }
2582 }
2583 if (setSize > 0) {
2584 ADD_MASK(sumMask);
2585 }
2586
2587 SKIP_WS(next);
2588 if (*next == ',') {
2589 next++;
2590 }
2591 scan = next;
2592 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002593 }
2594
Jonathan Peyton30419822017-05-12 18:01:32 +00002595 // Read the first integer.
2596 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2597 SKIP_DIGITS(next);
2598 start = __kmp_str_to_int(scan, *next);
2599 KMP_ASSERT2(start >= 0, "bad explicit proc list");
2600 SKIP_WS(next);
2601
2602 // If this isn't a range, then add a mask to the list and go on.
2603 if (*next != '-') {
2604 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2605
2606 // Skip optional comma.
2607 if (*next == ',') {
2608 next++;
2609 }
2610 scan = next;
2611 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002612 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002613
2614 // This is a range. Skip over the '-' and read in the 2nd int.
2615 next++; // skip '-'
2616 SKIP_WS(next);
2617 scan = next;
2618 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2619 SKIP_DIGITS(next);
2620 end = __kmp_str_to_int(scan, *next);
2621 KMP_ASSERT2(end >= 0, "bad explicit proc list");
2622
2623 // Check for a stride parameter
2624 stride = 1;
2625 SKIP_WS(next);
2626 if (*next == ':') {
2627 // A stride is specified. Skip over the ':" and read the 3rd int.
2628 int sign = +1;
2629 next++; // skip ':'
2630 SKIP_WS(next);
2631 scan = next;
2632 if (*next == '-') {
2633 sign = -1;
2634 next++;
2635 SKIP_WS(next);
2636 scan = next;
2637 }
2638 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2639 SKIP_DIGITS(next);
2640 stride = __kmp_str_to_int(scan, *next);
2641 KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2642 stride *= sign;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002643 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002644
2645 // Do some range checks.
2646 KMP_ASSERT2(stride != 0, "bad explicit proc list");
2647 if (stride > 0) {
2648 KMP_ASSERT2(start <= end, "bad explicit proc list");
2649 } else {
2650 KMP_ASSERT2(start >= end, "bad explicit proc list");
2651 }
2652 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2653
2654 // Add the mask for each OS proc # to the list.
2655 if (stride > 0) {
2656 do {
2657 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2658 start += stride;
2659 } while (start <= end);
2660 } else {
2661 do {
2662 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2663 start += stride;
2664 } while (start >= end);
2665 }
2666
2667 // Skip optional comma.
2668 SKIP_WS(next);
2669 if (*next == ',') {
2670 next++;
2671 }
2672 scan = next;
2673 }
2674
2675 *out_numMasks = nextNewMask;
2676 if (nextNewMask == 0) {
2677 *out_masks = NULL;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002678 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
Jonathan Peyton30419822017-05-12 18:01:32 +00002679 return;
2680 }
2681 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
2682 for (i = 0; i < nextNewMask; i++) {
2683 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
2684 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
2685 KMP_CPU_COPY(dest, src);
2686 }
2687 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
2688 KMP_CPU_FREE(sumMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002689}
2690
Jonathan Peyton30419822017-05-12 18:01:32 +00002691#if OMP_40_ENABLED
Jim Cownie5e8470a2013-09-27 10:38:44 +00002692
2693/*-----------------------------------------------------------------------------
Jim Cownie5e8470a2013-09-27 10:38:44 +00002694Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
2695places. Again, Here is the grammar:
2696
2697place_list := place
2698place_list := place , place_list
2699place := num
2700place := place : num
2701place := place : num : signed
2702place := { subplacelist }
2703place := ! place // (lowest priority)
2704subplace_list := subplace
2705subplace_list := subplace , subplace_list
2706subplace := num
2707subplace := num : num
2708subplace := num : num : signed
2709signed := num
2710signed := + signed
2711signed := - signed
Jim Cownie5e8470a2013-09-27 10:38:44 +00002712-----------------------------------------------------------------------------*/
2713
Jonathan Peyton30419822017-05-12 18:01:32 +00002714static void __kmp_process_subplace_list(const char **scan,
2715 kmp_affin_mask_t *osId2Mask,
2716 int maxOsId, kmp_affin_mask_t *tempMask,
2717 int *setSize) {
2718 const char *next;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002719
Jonathan Peyton30419822017-05-12 18:01:32 +00002720 for (;;) {
2721 int start, count, stride, i;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002722
Jonathan Peyton30419822017-05-12 18:01:32 +00002723 // Read in the starting proc id
Jim Cownie5e8470a2013-09-27 10:38:44 +00002724 SKIP_WS(*scan);
Jonathan Peyton30419822017-05-12 18:01:32 +00002725 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
2726 next = *scan;
2727 SKIP_DIGITS(next);
2728 start = __kmp_str_to_int(*scan, *next);
2729 KMP_ASSERT(start >= 0);
2730 *scan = next;
2731
2732 // valid follow sets are ',' ':' and '}'
2733 SKIP_WS(*scan);
2734 if (**scan == '}' || **scan == ',') {
2735 if ((start > maxOsId) ||
2736 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
2737 if (__kmp_affinity_verbose ||
2738 (__kmp_affinity_warnings &&
2739 (__kmp_affinity_type != affinity_none))) {
2740 KMP_WARNING(AffIgnoreInvalidProcID, start);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002741 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002742 } else {
2743 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
2744 (*setSize)++;
2745 }
2746 if (**scan == '}') {
2747 break;
2748 }
2749 (*scan)++; // skip ','
2750 continue;
2751 }
2752 KMP_ASSERT2(**scan == ':', "bad explicit places list");
2753 (*scan)++; // skip ':'
2754
2755 // Read count parameter
2756 SKIP_WS(*scan);
2757 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
2758 next = *scan;
2759 SKIP_DIGITS(next);
2760 count = __kmp_str_to_int(*scan, *next);
2761 KMP_ASSERT(count >= 0);
2762 *scan = next;
2763
2764 // valid follow sets are ',' ':' and '}'
2765 SKIP_WS(*scan);
2766 if (**scan == '}' || **scan == ',') {
2767 for (i = 0; i < count; i++) {
2768 if ((start > maxOsId) ||
2769 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
2770 if (__kmp_affinity_verbose ||
2771 (__kmp_affinity_warnings &&
2772 (__kmp_affinity_type != affinity_none))) {
2773 KMP_WARNING(AffIgnoreInvalidProcID, start);
2774 }
2775 break; // don't proliferate warnings for large count
2776 } else {
2777 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
2778 start++;
2779 (*setSize)++;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002780 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002781 }
2782 if (**scan == '}') {
2783 break;
2784 }
2785 (*scan)++; // skip ','
2786 continue;
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002787 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002788 KMP_ASSERT2(**scan == ':', "bad explicit places list");
2789 (*scan)++; // skip ':'
Jim Cownie5e8470a2013-09-27 10:38:44 +00002790
Jonathan Peyton30419822017-05-12 18:01:32 +00002791 // Read stride parameter
2792 int sign = +1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002793 for (;;) {
Jonathan Peyton30419822017-05-12 18:01:32 +00002794 SKIP_WS(*scan);
2795 if (**scan == '+') {
2796 (*scan)++; // skip '+'
2797 continue;
2798 }
2799 if (**scan == '-') {
2800 sign *= -1;
2801 (*scan)++; // skip '-'
2802 continue;
2803 }
2804 break;
2805 }
2806 SKIP_WS(*scan);
2807 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
2808 next = *scan;
2809 SKIP_DIGITS(next);
2810 stride = __kmp_str_to_int(*scan, *next);
2811 KMP_ASSERT(stride >= 0);
2812 *scan = next;
2813 stride *= sign;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002814
Jonathan Peyton30419822017-05-12 18:01:32 +00002815 // valid follow sets are ',' and '}'
2816 SKIP_WS(*scan);
2817 if (**scan == '}' || **scan == ',') {
2818 for (i = 0; i < count; i++) {
2819 if ((start > maxOsId) ||
2820 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
2821 if (__kmp_affinity_verbose ||
2822 (__kmp_affinity_warnings &&
2823 (__kmp_affinity_type != affinity_none))) {
2824 KMP_WARNING(AffIgnoreInvalidProcID, start);
2825 }
2826 break; // don't proliferate warnings for large count
2827 } else {
2828 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
2829 start += stride;
2830 (*setSize)++;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002831 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002832 }
2833 if (**scan == '}') {
2834 break;
2835 }
2836 (*scan)++; // skip ','
2837 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002838 }
2839
Jonathan Peyton30419822017-05-12 18:01:32 +00002840 KMP_ASSERT2(0, "bad explicit places list");
2841 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002842}
2843
Jonathan Peyton30419822017-05-12 18:01:32 +00002844static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
2845 int maxOsId, kmp_affin_mask_t *tempMask,
2846 int *setSize) {
2847 const char *next;
2848
2849 // valid follow sets are '{' '!' and num
2850 SKIP_WS(*scan);
2851 if (**scan == '{') {
2852 (*scan)++; // skip '{'
2853 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
2854 KMP_ASSERT2(**scan == '}', "bad explicit places list");
2855 (*scan)++; // skip '}'
2856 } else if (**scan == '!') {
2857 (*scan)++; // skip '!'
2858 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
2859 KMP_CPU_COMPLEMENT(maxOsId, tempMask);
2860 } else if ((**scan >= '0') && (**scan <= '9')) {
2861 next = *scan;
2862 SKIP_DIGITS(next);
2863 int num = __kmp_str_to_int(*scan, *next);
2864 KMP_ASSERT(num >= 0);
2865 if ((num > maxOsId) ||
2866 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2867 if (__kmp_affinity_verbose ||
2868 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2869 KMP_WARNING(AffIgnoreInvalidProcID, num);
2870 }
2871 } else {
2872 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
2873 (*setSize)++;
2874 }
2875 *scan = next; // skip num
2876 } else {
2877 KMP_ASSERT2(0, "bad explicit places list");
2878 }
2879}
2880
2881// static void
2882void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
2883 unsigned int *out_numMasks,
2884 const char *placelist,
2885 kmp_affin_mask_t *osId2Mask,
2886 int maxOsId) {
2887 int i, j, count, stride, sign;
2888 const char *scan = placelist;
2889 const char *next = placelist;
2890
2891 numNewMasks = 2;
2892 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2893 nextNewMask = 0;
2894
2895 // tempMask is modified based on the previous or initial
2896 // place to form the current place
2897 // previousMask contains the previous place
2898 kmp_affin_mask_t *tempMask;
2899 kmp_affin_mask_t *previousMask;
2900 KMP_CPU_ALLOC(tempMask);
2901 KMP_CPU_ZERO(tempMask);
2902 KMP_CPU_ALLOC(previousMask);
2903 KMP_CPU_ZERO(previousMask);
2904 int setSize = 0;
2905
2906 for (;;) {
2907 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
2908
2909 // valid follow sets are ',' ':' and EOL
2910 SKIP_WS(scan);
2911 if (*scan == '\0' || *scan == ',') {
2912 if (setSize > 0) {
2913 ADD_MASK(tempMask);
2914 }
2915 KMP_CPU_ZERO(tempMask);
2916 setSize = 0;
2917 if (*scan == '\0') {
2918 break;
2919 }
2920 scan++; // skip ','
2921 continue;
2922 }
2923
2924 KMP_ASSERT2(*scan == ':', "bad explicit places list");
2925 scan++; // skip ':'
2926
2927 // Read count parameter
2928 SKIP_WS(scan);
2929 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
2930 next = scan;
2931 SKIP_DIGITS(next);
2932 count = __kmp_str_to_int(scan, *next);
2933 KMP_ASSERT(count >= 0);
2934 scan = next;
2935
2936 // valid follow sets are ',' ':' and EOL
2937 SKIP_WS(scan);
2938 if (*scan == '\0' || *scan == ',') {
2939 stride = +1;
2940 } else {
2941 KMP_ASSERT2(*scan == ':', "bad explicit places list");
2942 scan++; // skip ':'
2943
2944 // Read stride parameter
2945 sign = +1;
2946 for (;;) {
2947 SKIP_WS(scan);
2948 if (*scan == '+') {
2949 scan++; // skip '+'
2950 continue;
2951 }
2952 if (*scan == '-') {
2953 sign *= -1;
2954 scan++; // skip '-'
2955 continue;
2956 }
2957 break;
2958 }
2959 SKIP_WS(scan);
2960 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
2961 next = scan;
2962 SKIP_DIGITS(next);
2963 stride = __kmp_str_to_int(scan, *next);
2964 KMP_DEBUG_ASSERT(stride >= 0);
2965 scan = next;
2966 stride *= sign;
2967 }
2968
2969 // Add places determined by initial_place : count : stride
2970 for (i = 0; i < count; i++) {
2971 if (setSize == 0) {
2972 break;
2973 }
2974 // Add the current place, then build the next place (tempMask) from that
2975 KMP_CPU_COPY(previousMask, tempMask);
2976 ADD_MASK(previousMask);
2977 KMP_CPU_ZERO(tempMask);
2978 setSize = 0;
2979 KMP_CPU_SET_ITERATE(j, previousMask) {
2980 if (!KMP_CPU_ISSET(j, previousMask)) {
2981 continue;
2982 }
2983 if ((j + stride > maxOsId) || (j + stride < 0) ||
2984 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
2985 (!KMP_CPU_ISSET(j + stride,
2986 KMP_CPU_INDEX(osId2Mask, j + stride)))) {
2987 if ((__kmp_affinity_verbose ||
2988 (__kmp_affinity_warnings &&
2989 (__kmp_affinity_type != affinity_none))) &&
2990 i < count - 1) {
2991 KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
2992 }
2993 continue;
2994 }
2995 KMP_CPU_SET(j + stride, tempMask);
2996 setSize++;
2997 }
2998 }
2999 KMP_CPU_ZERO(tempMask);
3000 setSize = 0;
3001
3002 // valid follow sets are ',' and EOL
3003 SKIP_WS(scan);
3004 if (*scan == '\0') {
3005 break;
3006 }
3007 if (*scan == ',') {
3008 scan++; // skip ','
3009 continue;
3010 }
3011
3012 KMP_ASSERT2(0, "bad explicit places list");
3013 }
3014
3015 *out_numMasks = nextNewMask;
3016 if (nextNewMask == 0) {
3017 *out_masks = NULL;
3018 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3019 return;
3020 }
3021 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3022 KMP_CPU_FREE(tempMask);
3023 KMP_CPU_FREE(previousMask);
3024 for (i = 0; i < nextNewMask; i++) {
3025 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3026 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3027 KMP_CPU_COPY(dest, src);
3028 }
3029 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3030}
3031
3032#endif /* OMP_40_ENABLED */
Jim Cownie5e8470a2013-09-27 10:38:44 +00003033
3034#undef ADD_MASK
3035#undef ADD_MASK_OSID
3036
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003037#if KMP_USE_HWLOC
Jonathan Peyton30419822017-05-12 18:01:32 +00003038static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o,
3039 hwloc_obj_type_t type,
3040 hwloc_obj_t* f) {
3041 if (!hwloc_compare_types(o->type, type)) {
3042 if (*f == NULL)
3043 *f = o; // output first descendant found
3044 return 1;
3045 }
3046 int sum = 0;
3047 for (unsigned i = 0; i < o->arity; i++)
3048 sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f);
3049 return sum; // will be 0 if no one found (as PU arity is 0)
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003050}
3051
Jonathan Peyton30419822017-05-12 18:01:32 +00003052static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t,
3053 hwloc_obj_t o, unsigned depth,
3054 hwloc_obj_t* f) {
3055 if (o->depth == depth) {
3056 if (*f == NULL)
3057 *f = o; // output first descendant found
3058 return 1;
3059 }
3060 int sum = 0;
3061 for (unsigned i = 0; i < o->arity; i++)
3062 sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f);
3063 return sum; // will be 0 if no one found (as PU arity is 0)
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003064}
3065
Jonathan Peyton30419822017-05-12 18:01:32 +00003066static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) {
3067 // skip PUs descendants of the object o
3068 int skipped = 0;
3069 hwloc_obj_t hT = NULL;
3070 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3071 for (int i = 0; i < N; ++i) {
3072 KMP_DEBUG_ASSERT(hT);
3073 unsigned idx = hT->os_index;
3074 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3075 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3076 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3077 ++skipped;
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003078 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003079 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3080 }
3081 return skipped; // count number of skipped units
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003082}
3083
Jonathan Peyton30419822017-05-12 18:01:32 +00003084static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) {
3085 // check if obj has PUs present in fullMask
3086 hwloc_obj_t hT = NULL;
3087 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3088 for (int i = 0; i < N; ++i) {
3089 KMP_DEBUG_ASSERT(hT);
3090 unsigned idx = hT->os_index;
3091 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask))
3092 return 1; // found PU
3093 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3094 }
3095 return 0; // no PUs found
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003096}
3097#endif // KMP_USE_HWLOC
3098
Jonathan Peyton30419822017-05-12 18:01:32 +00003099static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) {
3100 AddrUnsPair *newAddr;
3101 if (__kmp_hws_requested == 0)
3102 goto _exit; // no topology limiting actions requested, exit
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003103#if KMP_USE_HWLOC
Jonathan Peyton30419822017-05-12 18:01:32 +00003104 if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3105 // Number of subobjects calculated dynamically, this works fine for
3106 // any non-uniform topology.
3107 // L2 cache objects are determined by depth, other objects - by type.
3108 hwloc_topology_t tp = __kmp_hwloc_topology;
3109 int nS=0, nN=0, nL=0, nC=0, nT=0; // logical index including skipped
3110 int nCr=0, nTr=0; // number of requested units
3111 int nPkg=0, nCo=0, n_new=0, n_old = 0, nCpP=0, nTpC=0; // counters
3112 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
3113 int L2depth, idx;
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003114
Jonathan Peyton30419822017-05-12 18:01:32 +00003115 // check support of extensions ----------------------------------
3116 int numa_support = 0, tile_support = 0;
3117 if (__kmp_pu_os_idx)
3118 hT = hwloc_get_pu_obj_by_os_index(tp,
3119 __kmp_pu_os_idx[__kmp_avail_proc - 1]);
3120 else
3121 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1);
3122 if (hT == NULL) { // something's gone wrong
3123 KMP_WARNING(AffHWSubsetUnsupported);
3124 goto _exit;
3125 }
3126 // check NUMA node
3127 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
3128 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
3129 if (hN != NULL && hN->depth > hS->depth) {
3130 numa_support = 1; // 1 in case socket includes node(s)
3131 } else if (__kmp_hws_node.num > 0) {
3132 // don't support sockets inside NUMA node (no such HW found for testing)
3133 KMP_WARNING(AffHWSubsetUnsupported);
3134 goto _exit;
3135 }
3136 // check L2 cahce, get object by depth because of multiple caches
3137 L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
3138 hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT);
3139 if (hL != NULL && __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3140 &hC) > 1) {
3141 tile_support = 1; // no sense to count L2 if it includes single core
3142 } else if (__kmp_hws_tile.num > 0) {
3143 if (__kmp_hws_core.num == 0) {
3144 __kmp_hws_core = __kmp_hws_tile; // replace L2 with core
3145 __kmp_hws_tile.num = 0;
3146 } else {
3147 // L2 and core are both requested, but represent same object
3148 KMP_WARNING(AffHWSubsetInvalid);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003149 goto _exit;
3150 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003151 }
3152 // end of check of extensions -----------------------------------
3153
3154 // fill in unset items, validate settings -----------------------
3155 if (__kmp_hws_socket.num == 0)
3156 __kmp_hws_socket.num = nPackages; // use all available sockets
3157 if (__kmp_hws_socket.offset >= nPackages) {
3158 KMP_WARNING(AffHWSubsetManySockets);
3159 goto _exit;
3160 }
3161 if (numa_support) {
3162 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
3163 &hN); // num nodes in socket
3164 if (__kmp_hws_node.num == 0)
3165 __kmp_hws_node.num = NN; // use all available nodes
3166 if (__kmp_hws_node.offset >= NN) {
3167 KMP_WARNING(AffHWSubsetManyNodes);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003168 goto _exit;
3169 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003170 if (tile_support) {
3171 // get num tiles in node
3172 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3173 if (__kmp_hws_tile.num == 0) {
3174 __kmp_hws_tile.num = NL + 1;
3175 } // use all available tiles, some node may have more tiles, thus +1
3176 if (__kmp_hws_tile.offset >= NL) {
3177 KMP_WARNING(AffHWSubsetManyTiles);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003178 goto _exit;
3179 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003180 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3181 &hC); // num cores in tile
3182 if (__kmp_hws_core.num == 0)
3183 __kmp_hws_core.num = NC; // use all available cores
3184 if (__kmp_hws_core.offset >= NC) {
3185 KMP_WARNING(AffHWSubsetManyCores);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003186 goto _exit;
Jonathan Peyton30419822017-05-12 18:01:32 +00003187 }
3188 } else { // tile_support
3189 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
3190 &hC); // num cores in node
3191 if (__kmp_hws_core.num == 0)
3192 __kmp_hws_core.num = NC; // use all available cores
3193 if (__kmp_hws_core.offset >= NC) {
3194 KMP_WARNING(AffHWSubsetManyCores);
3195 goto _exit;
3196 }
3197 } // tile_support
3198 } else { // numa_support
3199 if (tile_support) {
3200 // get num tiles in socket
3201 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3202 if (__kmp_hws_tile.num == 0)
3203 __kmp_hws_tile.num = NL; // use all available tiles
3204 if (__kmp_hws_tile.offset >= NL) {
3205 KMP_WARNING(AffHWSubsetManyTiles);
3206 goto _exit;
3207 }
3208 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3209 &hC); // num cores in tile
3210 if (__kmp_hws_core.num == 0)
3211 __kmp_hws_core.num = NC; // use all available cores
3212 if (__kmp_hws_core.offset >= NC) {
3213 KMP_WARNING(AffHWSubsetManyCores);
3214 goto _exit;
3215 }
3216 } else { // tile_support
3217 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
3218 &hC); // num cores in socket
3219 if (__kmp_hws_core.num == 0)
3220 __kmp_hws_core.num = NC; // use all available cores
3221 if (__kmp_hws_core.offset >= NC) {
3222 KMP_WARNING(AffHWSubsetManyCores);
3223 goto _exit;
3224 }
3225 } // tile_support
3226 }
3227 if (__kmp_hws_proc.num == 0)
3228 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs
3229 if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) {
3230 KMP_WARNING(AffHWSubsetManyProcs);
3231 goto _exit;
3232 }
3233 // end of validation --------------------------------------------
3234
3235 if (pAddr) // pAddr is NULL in case of affinity_none
3236 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
3237 __kmp_avail_proc); // max size
3238 // main loop to form HW subset ----------------------------------
3239 hS = NULL;
3240 int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE);
3241 for (int s = 0; s < NP; ++s) {
3242 // Check Socket -----------------------------------------------
3243 hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS);
3244 if (!__kmp_hwloc_obj_has_PUs(tp, hS))
3245 continue; // skip socket if all PUs are out of fullMask
3246 ++nS; // only count objects those have PUs in affinity mask
3247 if (nS <= __kmp_hws_socket.offset ||
3248 nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) {
3249 n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket
3250 continue; // move to next socket
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003251 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003252 nCr = 0; // count number of cores per socket
3253 // socket requested, go down the topology tree
3254 // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile)
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003255 if (numa_support) {
Jonathan Peyton30419822017-05-12 18:01:32 +00003256 nN = 0;
3257 hN = NULL;
3258 // num nodes in current socket
3259 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
3260 &hN);
3261 for (int n = 0; n < NN; ++n) {
3262 // Check NUMA Node ----------------------------------------
3263 if (!__kmp_hwloc_obj_has_PUs(tp, hN)) {
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003264 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
Jonathan Peyton30419822017-05-12 18:01:32 +00003265 continue; // skip node if all PUs are out of fullMask
3266 }
3267 ++nN;
3268 if (nN <= __kmp_hws_node.offset ||
3269 nN > __kmp_hws_node.num + __kmp_hws_node.offset) {
3270 // skip node as not requested
3271 n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node
3272 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3273 continue; // move to next node
3274 }
3275 // node requested, go down the topology tree
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003276 if (tile_support) {
3277 nL = 0;
3278 hL = NULL;
Jonathan Peyton30419822017-05-12 18:01:32 +00003279 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003280 for (int l = 0; l < NL; ++l) {
3281 // Check L2 (tile) ------------------------------------
3282 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3283 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3284 continue; // skip tile if all PUs are out of fullMask
3285 }
3286 ++nL;
3287 if (nL <= __kmp_hws_tile.offset ||
3288 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3289 // skip tile as not requested
3290 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3291 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3292 continue; // move to next tile
3293 }
3294 // tile requested, go down the topology tree
3295 nC = 0;
3296 hC = NULL;
Jonathan Peyton30419822017-05-12 18:01:32 +00003297 // num cores in current tile
3298 int NC = __kmp_hwloc_count_children_by_type(tp, hL,
3299 HWLOC_OBJ_CORE, &hC);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003300 for (int c = 0; c < NC; ++c) {
3301 // Check Core ---------------------------------------
3302 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3303 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3304 continue; // skip core if all PUs are out of fullMask
3305 }
3306 ++nC;
3307 if (nC <= __kmp_hws_core.offset ||
3308 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3309 // skip node as not requested
3310 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3311 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3312 continue; // move to next node
3313 }
3314 // core requested, go down to PUs
3315 nT = 0;
3316 nTr = 0;
3317 hT = NULL;
Jonathan Peyton30419822017-05-12 18:01:32 +00003318 // num procs in current core
3319 int NT = __kmp_hwloc_count_children_by_type(tp, hC,
3320 HWLOC_OBJ_PU, &hT);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003321 for (int t = 0; t < NT; ++t) {
3322 // Check PU ---------------------------------------
3323 idx = hT->os_index;
3324 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3325 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3326 continue; // skip PU if not in fullMask
3327 }
3328 ++nT;
3329 if (nT <= __kmp_hws_proc.offset ||
3330 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3331 // skip PU
3332 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3333 ++n_old;
3334 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3335 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3336 continue; // move to next node
3337 }
3338 ++nTr;
3339 if (pAddr) // collect requested thread's data
3340 newAddr[n_new] = (*pAddr)[n_old];
3341 ++n_new;
3342 ++n_old;
3343 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3344 } // threads loop
3345 if (nTr > 0) {
3346 ++nCr; // num cores per socket
3347 ++nCo; // total num cores
3348 if (nTr > nTpC)
3349 nTpC = nTr; // calc max threads per core
3350 }
3351 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3352 } // cores loop
3353 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3354 } // tiles loop
3355 } else { // tile_support
3356 // no tiles, check cores
3357 nC = 0;
3358 hC = NULL;
Jonathan Peyton30419822017-05-12 18:01:32 +00003359 // num cores in current node
3360 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
3361 &hC);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003362 for (int c = 0; c < NC; ++c) {
Jonathan Peyton30419822017-05-12 18:01:32 +00003363 // Check Core ---------------------------------------
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003364 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3365 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3366 continue; // skip core if all PUs are out of fullMask
3367 }
3368 ++nC;
3369 if (nC <= __kmp_hws_core.offset ||
3370 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3371 // skip node as not requested
3372 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3373 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3374 continue; // move to next node
3375 }
3376 // core requested, go down to PUs
3377 nT = 0;
3378 nTr = 0;
3379 hT = NULL;
Jonathan Peyton30419822017-05-12 18:01:32 +00003380 int NT = __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU,
3381 &hT);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003382 for (int t = 0; t < NT; ++t) {
3383 // Check PU ---------------------------------------
3384 idx = hT->os_index;
3385 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3386 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3387 continue; // skip PU if not in fullMask
3388 }
3389 ++nT;
3390 if (nT <= __kmp_hws_proc.offset ||
3391 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3392 // skip PU
3393 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3394 ++n_old;
3395 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3396 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3397 continue; // move to next node
3398 }
3399 ++nTr;
3400 if (pAddr) // collect requested thread's data
3401 newAddr[n_new] = (*pAddr)[n_old];
3402 ++n_new;
3403 ++n_old;
3404 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3405 } // threads loop
3406 if (nTr > 0) {
3407 ++nCr; // num cores per socket
3408 ++nCo; // total num cores
3409 if (nTr > nTpC)
3410 nTpC = nTr; // calc max threads per core
3411 }
3412 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3413 } // cores loop
3414 } // tiles support
Jonathan Peyton30419822017-05-12 18:01:32 +00003415 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3416 } // nodes loop
3417 } else { // numa_support
3418 // no NUMA support
3419 if (tile_support) {
3420 nL = 0;
3421 hL = NULL;
3422 // num tiles in current socket
3423 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3424 for (int l = 0; l < NL; ++l) {
3425 // Check L2 (tile) ------------------------------------
3426 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3427 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3428 continue; // skip tile if all PUs are out of fullMask
3429 }
3430 ++nL;
3431 if (nL <= __kmp_hws_tile.offset ||
3432 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3433 // skip tile as not requested
3434 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3435 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3436 continue; // move to next tile
3437 }
3438 // tile requested, go down the topology tree
3439 nC = 0;
3440 hC = NULL;
3441 // num cores per tile
3442 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3443 &hC);
3444 for (int c = 0; c < NC; ++c) {
3445 // Check Core ---------------------------------------
3446 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3447 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3448 continue; // skip core if all PUs are out of fullMask
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003449 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003450 ++nC;
3451 if (nC <= __kmp_hws_core.offset ||
3452 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3453 // skip node as not requested
3454 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3455 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3456 continue; // move to next node
3457 }
3458 // core requested, go down to PUs
3459 nT = 0;
3460 nTr = 0;
3461 hT = NULL;
3462 // num procs per core
3463 int NT = __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU,
3464 &hT);
3465 for (int t = 0; t < NT; ++t) {
3466 // Check PU ---------------------------------------
3467 idx = hT->os_index;
3468 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3469 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3470 continue; // skip PU if not in fullMask
3471 }
3472 ++nT;
3473 if (nT <= __kmp_hws_proc.offset ||
3474 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3475 // skip PU
3476 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3477 ++n_old;
3478 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3479 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3480 continue; // move to next node
3481 }
3482 ++nTr;
3483 if (pAddr) // collect requested thread's data
3484 newAddr[n_new] = (*pAddr)[n_old];
3485 ++n_new;
3486 ++n_old;
3487 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3488 } // threads loop
3489 if (nTr > 0) {
3490 ++nCr; // num cores per socket
3491 ++nCo; // total num cores
3492 if (nTr > nTpC)
3493 nTpC = nTr; // calc max threads per core
3494 }
3495 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3496 } // cores loop
3497 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3498 } // tiles loop
3499 } else { // tile_support
3500 // no tiles, check cores
3501 nC = 0;
3502 hC = NULL;
3503 // num cores in socket
3504 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
3505 &hC);
3506 for (int c = 0; c < NC; ++c) {
3507 // Check Core -------------------------------------------
3508 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3509 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3510 continue; // skip core if all PUs are out of fullMask
3511 }
3512 ++nC;
3513 if (nC <= __kmp_hws_core.offset ||
3514 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3515 // skip node as not requested
3516 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3517 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3518 continue; // move to next node
3519 }
3520 // core requested, go down to PUs
3521 nT = 0;
3522 nTr = 0;
3523 hT = NULL;
3524 // num procs per core
3525 int NT = __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU,
3526 &hT);
3527 for (int t = 0; t < NT; ++t) {
3528 // Check PU ---------------------------------------
3529 idx = hT->os_index;
3530 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3531 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3532 continue; // skip PU if not in fullMask
3533 }
3534 ++nT;
3535 if (nT <= __kmp_hws_proc.offset ||
3536 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3537 // skip PU
3538 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3539 ++n_old;
3540 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3541 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3542 continue; // move to next node
3543 }
3544 ++nTr;
3545 if (pAddr) // collect requested thread's data
3546 newAddr[n_new] = (*pAddr)[n_old];
3547 ++n_new;
3548 ++n_old;
3549 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3550 } // threads loop
3551 if (nTr > 0) {
3552 ++nCr; // num cores per socket
3553 ++nCo; // total num cores
3554 if (nTr > nTpC)
3555 nTpC = nTr; // calc max threads per core
3556 }
3557 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3558 } // cores loop
3559 } // tiles support
3560 } // numa_support
3561 if (nCr > 0) { // found cores?
3562 ++nPkg; // num sockets
3563 if (nCr > nCpP)
3564 nCpP = nCr; // calc max cores per socket
3565 }
3566 } // sockets loop
3567
3568 // check the subset is valid
3569 KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc);
3570 KMP_DEBUG_ASSERT(nPkg > 0);
3571 KMP_DEBUG_ASSERT(nCpP > 0);
3572 KMP_DEBUG_ASSERT(nTpC > 0);
3573 KMP_DEBUG_ASSERT(nCo > 0);
3574 KMP_DEBUG_ASSERT(nPkg <= nPackages);
3575 KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg);
3576 KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore);
3577 KMP_DEBUG_ASSERT(nCo <= __kmp_ncores);
3578
3579 nPackages = nPkg; // correct num sockets
3580 nCoresPerPkg = nCpP; // correct num cores per socket
3581 __kmp_nThreadsPerCore = nTpC; // correct num threads per core
3582 __kmp_avail_proc = n_new; // correct num procs
3583 __kmp_ncores = nCo; // correct num cores
3584 // hwloc topology method end
3585 } else
3586#endif // KMP_USE_HWLOC
3587 {
3588 int n_old = 0, n_new = 0, proc_num = 0;
3589 if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) {
3590 KMP_WARNING(AffHWSubsetNoHWLOC);
3591 goto _exit;
3592 }
3593 if (__kmp_hws_socket.num == 0)
3594 __kmp_hws_socket.num = nPackages; // use all available sockets
3595 if (__kmp_hws_core.num == 0)
3596 __kmp_hws_core.num = nCoresPerPkg; // use all available cores
3597 if (__kmp_hws_proc.num == 0 ||
3598 __kmp_hws_proc.num > __kmp_nThreadsPerCore)
3599 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts
3600 if ( !__kmp_affinity_uniform_topology() ) {
3601 KMP_WARNING( AffHWSubsetNonUniform );
3602 goto _exit; // don't support non-uniform topology
3603 }
3604 if ( depth > 3 ) {
3605 KMP_WARNING( AffHWSubsetNonThreeLevel );
3606 goto _exit; // don't support not-3-level topology
3607 }
3608 if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) {
3609 KMP_WARNING(AffHWSubsetManySockets);
3610 goto _exit;
3611 }
3612 if ( __kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg ) {
3613 KMP_WARNING( AffHWSubsetManyCores );
3614 goto _exit;
3615 }
3616 // Form the requested subset
3617 if (pAddr) // pAddr is NULL in case of affinity_none
3618 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
3619 __kmp_hws_socket.num *
3620 __kmp_hws_core.num *
3621 __kmp_hws_proc.num);
3622 for (int i = 0; i < nPackages; ++i) {
3623 if (i < __kmp_hws_socket.offset ||
3624 i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) {
3625 // skip not-requested socket
3626 n_old += nCoresPerPkg * __kmp_nThreadsPerCore;
3627 if (__kmp_pu_os_idx != NULL) {
3628 // walk through skipped socket
3629 for (int j = 0; j < nCoresPerPkg; ++j) {
3630 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3631 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3632 ++proc_num;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003633 }
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003634 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003635 }
3636 } else {
3637 // walk through requested socket
3638 for (int j = 0; j < nCoresPerPkg; ++j) {
3639 if (j < __kmp_hws_core.offset ||
3640 j >= __kmp_hws_core.offset + __kmp_hws_core.num)
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003641 { // skip not-requested core
3642 n_old += __kmp_nThreadsPerCore;
3643 if (__kmp_pu_os_idx != NULL) {
3644 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3645 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3646 ++proc_num;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003647 }
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003648 }
3649 } else {
Jonathan Peyton30419822017-05-12 18:01:32 +00003650 // walk through requested core
3651 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3652 if (k < __kmp_hws_proc.num) {
3653 if (pAddr) // collect requested thread's data
3654 newAddr[n_new] = (*pAddr)[n_old];
3655 n_new++;
3656 } else {
3657 if (__kmp_pu_os_idx != NULL)
3658 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003659 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003660 n_old++;
3661 ++proc_num;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003662 }
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003663 }
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003664 }
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003665 }
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003666 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003667 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
3668 KMP_DEBUG_ASSERT(n_new == __kmp_hws_socket.num * __kmp_hws_core.num *
3669 __kmp_hws_proc.num);
3670 nPackages = __kmp_hws_socket.num; // correct nPackages
3671 nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg
3672 __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore
3673 __kmp_avail_proc = n_new; // correct avail_proc
3674 __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores
3675 } // non-hwloc topology method
3676 if (pAddr) {
3677 __kmp_free( *pAddr );
3678 *pAddr = newAddr; // replace old topology with new one
3679 }
3680 if (__kmp_affinity_verbose) {
3681 char m[KMP_AFFIN_MASK_PRINT_LEN];
3682 __kmp_affinity_print_mask(m,KMP_AFFIN_MASK_PRINT_LEN,__kmp_affin_fullMask);
3683 if (__kmp_affinity_respect_mask) {
3684 KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m);
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00003685 } else {
Jonathan Peyton30419822017-05-12 18:01:32 +00003686 KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m);
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00003687 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003688 KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc);
3689 kmp_str_buf_t buf;
3690 __kmp_str_buf_init(&buf);
3691 __kmp_str_buf_print(&buf, "%d", nPackages);
3692 KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg,
3693 __kmp_nThreadsPerCore, __kmp_ncores);
3694 __kmp_str_buf_free(&buf);
3695 }
3696 _exit:
3697 if (__kmp_pu_os_idx != NULL) {
3698 __kmp_free(__kmp_pu_os_idx);
3699 __kmp_pu_os_idx = NULL;
3700 }
3701}
3702
3703// This function figures out the deepest level at which there is at least one
3704// cluster/core with more than one processing unit bound to it.
3705static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os,
3706 int nprocs, int bottom_level) {
3707 int core_level = 0;
3708
3709 for (int i = 0; i < nprocs; i++) {
3710 for (int j = bottom_level; j > 0; j--) {
3711 if (address2os[i].first.labels[j] > 0) {
3712 if (core_level < (j - 1)) {
3713 core_level = j - 1;
3714 }
3715 }
3716 }
3717 }
3718 return core_level;
3719}
3720
3721// This function counts number of clusters/cores at given level.
3722static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os,
3723 int nprocs, int bottom_level,
3724 int core_level) {
3725 int ncores = 0;
3726 int i, j;
3727
3728 j = bottom_level;
3729 for (i = 0; i < nprocs; i++) {
3730 for (j = bottom_level; j > core_level; j--) {
3731 if ((i + 1) < nprocs) {
3732 if (address2os[i + 1].first.labels[j] > 0) {
3733 break;
3734 }
3735 }
3736 }
3737 if (j == core_level) {
3738 ncores++;
3739 }
3740 }
3741 if (j > core_level) {
3742 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one
3743 // core. May occur when called from __kmp_affinity_find_core().
3744 ncores++;
3745 }
3746 return ncores;
3747}
3748
3749// This function finds to which cluster/core given processing unit is bound.
3750static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc,
3751 int bottom_level, int core_level) {
3752 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level,
3753 core_level) - 1;
3754}
3755
3756// This function finds maximal number of processing units bound to a
3757// cluster/core at given level.
3758static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os,
3759 int nprocs, int bottom_level,
3760 int core_level) {
3761 int maxprocpercore = 0;
3762
3763 if (core_level < bottom_level) {
3764 for (int i = 0; i < nprocs; i++) {
3765 int percore = address2os[i].first.labels[core_level + 1] + 1;
3766
3767 if (percore > maxprocpercore) {
3768 maxprocpercore = percore;
3769 }
3770 }
3771 } else {
3772 maxprocpercore = 1;
3773 }
3774 return maxprocpercore;
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00003775}
Jim Cownie5e8470a2013-09-27 10:38:44 +00003776
3777static AddrUnsPair *address2os = NULL;
Jonathan Peyton30419822017-05-12 18:01:32 +00003778static int *procarr = NULL;
3779static int __kmp_aff_depth = 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003780
Jonathan Peyton30419822017-05-12 18:01:32 +00003781#define KMP_EXIT_AFF_NONE \
3782 KMP_ASSERT(__kmp_affinity_type == affinity_none); \
3783 KMP_ASSERT(address2os == NULL); \
3784 __kmp_apply_thread_places(NULL, 0); \
3785 return;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003786
Jonathan Peyton30419822017-05-12 18:01:32 +00003787static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) {
3788 const Address *aa = (const Address *)&(((AddrUnsPair *)a)->first);
3789 const Address *bb = (const Address *)&(((AddrUnsPair *)b)->first);
3790 unsigned depth = aa->depth;
3791 unsigned i;
3792 KMP_DEBUG_ASSERT(depth == bb->depth);
3793 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
3794 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
3795 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
3796 int j = depth - i - 1;
3797 if (aa->childNums[j] < bb->childNums[j])
3798 return -1;
3799 if (aa->childNums[j] > bb->childNums[j])
3800 return 1;
3801 }
3802 for (; i < depth; i++) {
3803 int j = i - __kmp_affinity_compact;
3804 if (aa->childNums[j] < bb->childNums[j])
3805 return -1;
3806 if (aa->childNums[j] > bb->childNums[j])
3807 return 1;
3808 }
3809 return 0;
Jonathan Peytone6abe522016-09-02 20:54:58 +00003810}
3811
Jonathan Peyton30419822017-05-12 18:01:32 +00003812static void __kmp_aux_affinity_initialize(void) {
3813 if (__kmp_affinity_masks != NULL) {
3814 KMP_ASSERT(__kmp_affin_fullMask != NULL);
3815 return;
3816 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003817
Jonathan Peyton30419822017-05-12 18:01:32 +00003818 // Create the "full" mask - this defines all of the processors that we
3819 // consider to be in the machine model. If respect is set, then it is the
3820 // initialization thread's affinity mask. Otherwise, it is all processors that
3821 // we know about on the machine.
3822 if (__kmp_affin_fullMask == NULL) {
3823 KMP_CPU_ALLOC(__kmp_affin_fullMask);
3824 }
3825 if (KMP_AFFINITY_CAPABLE()) {
3826 if (__kmp_affinity_respect_mask) {
3827 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003828
Jonathan Peyton30419822017-05-12 18:01:32 +00003829 // Count the number of available processors.
3830 unsigned i;
3831 __kmp_avail_proc = 0;
3832 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
3833 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
3834 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003835 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003836 __kmp_avail_proc++;
3837 }
3838 if (__kmp_avail_proc > __kmp_xproc) {
3839 if (__kmp_affinity_verbose ||
3840 (__kmp_affinity_warnings &&
3841 (__kmp_affinity_type != affinity_none))) {
3842 KMP_WARNING(ErrorInitializeAffinity);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003843 }
3844 __kmp_affinity_type = affinity_none;
Andrey Churbanov1f037e42015-03-10 09:15:26 +00003845 KMP_AFFINITY_DISABLE();
Jim Cownie5e8470a2013-09-27 10:38:44 +00003846 return;
Jonathan Peyton30419822017-05-12 18:01:32 +00003847 }
3848 } else {
3849 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
3850 __kmp_avail_proc = __kmp_xproc;
3851 }
3852 }
3853
3854 int depth = -1;
3855 kmp_i18n_id_t msg_id = kmp_i18n_null;
3856
3857 // For backward compatibility, setting KMP_CPUINFO_FILE =>
3858 // KMP_TOPOLOGY_METHOD=cpuinfo
3859 if ((__kmp_cpuinfo_file != NULL) &&
3860 (__kmp_affinity_top_method == affinity_top_method_all)) {
3861 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
3862 }
3863
3864 if (__kmp_affinity_top_method == affinity_top_method_all) {
3865 // In the default code path, errors are not fatal - we just try using
3866 // another method. We only emit a warning message if affinity is on, or the
3867 // verbose flag is set, an the nowarnings flag was not set.
3868 const char *file_name = NULL;
3869 int line = 0;
3870#if KMP_USE_HWLOC
3871 if (depth < 0 &&
3872 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3873 if (__kmp_affinity_verbose) {
3874 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
3875 }
3876 if (!__kmp_hwloc_error) {
3877 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
3878 if (depth == 0) {
3879 KMP_EXIT_AFF_NONE;
3880 } else if (depth < 0 && __kmp_affinity_verbose) {
3881 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3882 }
3883 } else if (__kmp_affinity_verbose) {
3884 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3885 }
3886 }
3887#endif
3888
3889#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3890
3891 if (depth < 0) {
3892 if (__kmp_affinity_verbose) {
3893 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
3894 }
3895
3896 file_name = NULL;
3897 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
3898 if (depth == 0) {
3899 KMP_EXIT_AFF_NONE;
3900 }
3901
3902 if (depth < 0) {
3903 if (__kmp_affinity_verbose) {
3904 if (msg_id != kmp_i18n_null) {
3905 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY",
3906 __kmp_i18n_catgets(msg_id),
3907 KMP_I18N_STR(DecodingLegacyAPIC));
3908 } else {
3909 KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
3910 KMP_I18N_STR(DecodingLegacyAPIC));
3911 }
3912 }
3913
3914 file_name = NULL;
3915 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
3916 if (depth == 0) {
3917 KMP_EXIT_AFF_NONE;
3918 }
3919 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003920 }
3921
Jonathan Peyton30419822017-05-12 18:01:32 +00003922#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
Jim Cownie5e8470a2013-09-27 10:38:44 +00003923
Jonathan Peyton30419822017-05-12 18:01:32 +00003924#if KMP_OS_LINUX
Jim Cownie5e8470a2013-09-27 10:38:44 +00003925
Jonathan Peyton30419822017-05-12 18:01:32 +00003926 if (depth < 0) {
3927 if (__kmp_affinity_verbose) {
3928 if (msg_id != kmp_i18n_null) {
3929 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY",
3930 __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
Jim Cownie5e8470a2013-09-27 10:38:44 +00003931 } else {
Jonathan Peyton30419822017-05-12 18:01:32 +00003932 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
Jim Cownie5e8470a2013-09-27 10:38:44 +00003933 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003934 }
3935
3936 FILE *f = fopen("/proc/cpuinfo", "r");
3937 if (f == NULL) {
3938 msg_id = kmp_i18n_str_CantOpenCpuinfo;
3939 } else {
3940 file_name = "/proc/cpuinfo";
3941 depth =
3942 __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
3943 fclose(f);
3944 if (depth == 0) {
3945 KMP_EXIT_AFF_NONE;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003946 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003947 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003948 }
3949
Jonathan Peyton30419822017-05-12 18:01:32 +00003950#endif /* KMP_OS_LINUX */
3951
3952#if KMP_GROUP_AFFINITY
3953
3954 if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
3955 if (__kmp_affinity_verbose) {
3956 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
3957 }
3958
3959 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
3960 KMP_ASSERT(depth != 0);
3961 }
3962
3963#endif /* KMP_GROUP_AFFINITY */
3964
3965 if (depth < 0) {
3966 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
3967 if (file_name == NULL) {
3968 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
3969 } else if (line == 0) {
3970 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
3971 } else {
3972 KMP_INFORM(UsingFlatOSFileLine, file_name, line,
3973 __kmp_i18n_catgets(msg_id));
3974 }
3975 }
3976 // FIXME - print msg if msg_id = kmp_i18n_null ???
3977
3978 file_name = "";
3979 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
3980 if (depth == 0) {
3981 KMP_EXIT_AFF_NONE;
3982 }
3983 KMP_ASSERT(depth > 0);
3984 KMP_ASSERT(address2os != NULL);
3985 }
3986 }
3987
3988// If the user has specified that a paricular topology discovery method is to be
3989// used, then we abort if that method fails. The exception is group affinity,
3990// which might have been implicitly set.
3991
3992#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3993
3994 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
3995 if (__kmp_affinity_verbose) {
3996 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
3997 }
3998
3999 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4000 if (depth == 0) {
4001 KMP_EXIT_AFF_NONE;
4002 }
4003 if (depth < 0) {
4004 KMP_ASSERT(msg_id != kmp_i18n_null);
4005 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4006 }
4007 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4008 if (__kmp_affinity_verbose) {
4009 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
4010 }
4011
4012 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4013 if (depth == 0) {
4014 KMP_EXIT_AFF_NONE;
4015 }
4016 if (depth < 0) {
4017 KMP_ASSERT(msg_id != kmp_i18n_null);
4018 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4019 }
4020 }
4021
4022#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4023
4024 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4025 const char *filename;
4026 if (__kmp_cpuinfo_file != NULL) {
4027 filename = __kmp_cpuinfo_file;
4028 } else {
4029 filename = "/proc/cpuinfo";
4030 }
4031
4032 if (__kmp_affinity_verbose) {
4033 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
4034 }
4035
4036 FILE *f = fopen(filename, "r");
4037 if (f == NULL) {
4038 int code = errno;
4039 if (__kmp_cpuinfo_file != NULL) {
4040 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantOpenFileForReading, filename),
4041 KMP_ERR(code), KMP_HNT(NameComesFrom_CPUINFO_FILE),
4042 __kmp_msg_null);
4043 } else {
4044 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantOpenFileForReading, filename),
4045 KMP_ERR(code), __kmp_msg_null);
4046 }
4047 }
4048 int line = 0;
4049 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4050 fclose(f);
4051 if (depth < 0) {
4052 KMP_ASSERT(msg_id != kmp_i18n_null);
4053 if (line > 0) {
4054 KMP_FATAL(FileLineMsgExiting, filename, line,
4055 __kmp_i18n_catgets(msg_id));
4056 } else {
4057 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4058 }
4059 }
4060 if (__kmp_affinity_type == affinity_none) {
4061 KMP_ASSERT(depth == 0);
4062 KMP_EXIT_AFF_NONE;
4063 }
4064 }
4065
4066#if KMP_GROUP_AFFINITY
4067
4068 else if (__kmp_affinity_top_method == affinity_top_method_group) {
4069 if (__kmp_affinity_verbose) {
4070 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4071 }
4072
4073 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4074 KMP_ASSERT(depth != 0);
4075 if (depth < 0) {
4076 KMP_ASSERT(msg_id != kmp_i18n_null);
4077 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4078 }
4079 }
4080
4081#endif /* KMP_GROUP_AFFINITY */
4082
4083 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4084 if (__kmp_affinity_verbose) {
4085 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
4086 }
4087
4088 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4089 if (depth == 0) {
4090 KMP_EXIT_AFF_NONE;
4091 }
4092 // should not fail
4093 KMP_ASSERT(depth > 0);
4094 KMP_ASSERT(address2os != NULL);
4095 }
4096
4097#if KMP_USE_HWLOC
4098 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4099 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4100 if (__kmp_affinity_verbose) {
4101 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4102 }
4103 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4104 if (depth == 0) {
4105 KMP_EXIT_AFF_NONE;
4106 }
4107 }
4108#endif // KMP_USE_HWLOC
4109
4110 if (address2os == NULL) {
4111 if (KMP_AFFINITY_CAPABLE() &&
4112 (__kmp_affinity_verbose ||
4113 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
4114 KMP_WARNING(ErrorInitializeAffinity);
4115 }
4116 __kmp_affinity_type = affinity_none;
4117 KMP_AFFINITY_DISABLE();
4118 return;
4119 }
4120
4121 __kmp_apply_thread_places(&address2os, depth);
4122
4123 // Create the table of masks, indexed by thread Id.
4124 unsigned maxIndex;
4125 unsigned numUnique;
4126 kmp_affin_mask_t *osId2Mask =
4127 __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc);
4128 if (__kmp_affinity_gran_levels == 0) {
4129 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4130 }
4131
4132 // Set the childNums vector in all Address objects. This must be done before
4133 // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into
4134 // account the setting of __kmp_affinity_compact.
4135 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
4136
4137 switch (__kmp_affinity_type) {
4138
4139 case affinity_explicit:
4140 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
4141#if OMP_40_ENABLED
4142 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
4143#endif
4144 {
4145 __kmp_affinity_process_proclist(
4146 &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4147 __kmp_affinity_proclist, osId2Mask, maxIndex);
4148 }
4149#if OMP_40_ENABLED
4150 else {
4151 __kmp_affinity_process_placelist(
4152 &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4153 __kmp_affinity_proclist, osId2Mask, maxIndex);
4154 }
4155#endif
4156 if (__kmp_affinity_num_masks == 0) {
4157 if (__kmp_affinity_verbose ||
4158 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
4159 KMP_WARNING(AffNoValidProcID);
4160 }
4161 __kmp_affinity_type = affinity_none;
4162 return;
4163 }
4164 break;
4165
4166 // The other affinity types rely on sorting the Addresses according to some
4167 // permutation of the machine topology tree. Set __kmp_affinity_compact and
4168 // __kmp_affinity_offset appropriately, then jump to a common code fragment
4169 // to do the sort and create the array of affinity masks.
4170
4171 case affinity_logical:
4172 __kmp_affinity_compact = 0;
4173 if (__kmp_affinity_offset) {
4174 __kmp_affinity_offset =
4175 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4176 }
4177 goto sortAddresses;
4178
4179 case affinity_physical:
4180 if (__kmp_nThreadsPerCore > 1) {
4181 __kmp_affinity_compact = 1;
4182 if (__kmp_affinity_compact >= depth) {
4183 __kmp_affinity_compact = 0;
4184 }
4185 } else {
4186 __kmp_affinity_compact = 0;
4187 }
4188 if (__kmp_affinity_offset) {
4189 __kmp_affinity_offset =
4190 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4191 }
4192 goto sortAddresses;
4193
4194 case affinity_scatter:
4195 if (__kmp_affinity_compact >= depth) {
4196 __kmp_affinity_compact = 0;
4197 } else {
4198 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
4199 }
4200 goto sortAddresses;
4201
4202 case affinity_compact:
4203 if (__kmp_affinity_compact >= depth) {
4204 __kmp_affinity_compact = depth - 1;
4205 }
4206 goto sortAddresses;
4207
4208 case affinity_balanced:
4209 if (depth <= 1) {
4210 if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4211 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4212 }
4213 __kmp_affinity_type = affinity_none;
4214 return;
4215 } else if (__kmp_affinity_uniform_topology()) {
4216 break;
4217 } else { // Non-uniform topology
4218
4219 // Save the depth for further usage
4220 __kmp_aff_depth = depth;
4221
4222 int core_level = __kmp_affinity_find_core_level(
4223 address2os, __kmp_avail_proc, depth - 1);
4224 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
4225 depth - 1, core_level);
4226 int maxprocpercore = __kmp_affinity_max_proc_per_core(
4227 address2os, __kmp_avail_proc, depth - 1, core_level);
4228
4229 int nproc = ncores * maxprocpercore;
4230 if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4231 if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4232 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4233 }
4234 __kmp_affinity_type = affinity_none;
4235 return;
4236 }
4237
4238 procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4239 for (int i = 0; i < nproc; i++) {
4240 procarr[i] = -1;
4241 }
4242
4243 int lastcore = -1;
4244 int inlastcore = 0;
4245 for (int i = 0; i < __kmp_avail_proc; i++) {
4246 int proc = address2os[i].second;
4247 int core =
4248 __kmp_affinity_find_core(address2os, i, depth - 1, core_level);
4249
4250 if (core == lastcore) {
4251 inlastcore++;
4252 } else {
4253 inlastcore = 0;
4254 }
4255 lastcore = core;
4256
4257 procarr[core * maxprocpercore + inlastcore] = proc;
4258 }
4259
4260 break;
4261 }
4262
4263 sortAddresses:
4264 // Allocate the gtid->affinity mask table.
4265 if (__kmp_affinity_dups) {
4266 __kmp_affinity_num_masks = __kmp_avail_proc;
4267 } else {
4268 __kmp_affinity_num_masks = numUnique;
4269 }
4270
4271#if OMP_40_ENABLED
4272 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4273 (__kmp_affinity_num_places > 0) &&
4274 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
4275 __kmp_affinity_num_masks = __kmp_affinity_num_places;
4276 }
4277#endif
4278
4279 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4280
4281 // Sort the address2os table according to the current setting of
4282 // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
4283 qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
4284 __kmp_affinity_cmp_Address_child_num);
4285 {
4286 int i;
4287 unsigned j;
4288 for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
4289 if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) {
4290 continue;
4291 }
4292 unsigned osId = address2os[i].second;
4293 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
4294 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
4295 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4296 KMP_CPU_COPY(dest, src);
4297 if (++j >= __kmp_affinity_num_masks) {
4298 break;
4299 }
4300 }
4301 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
4302 }
4303 break;
4304
4305 default:
4306 KMP_ASSERT2(0, "Unexpected affinity setting");
4307 }
4308
4309 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
4310 machine_hierarchy.init(address2os, __kmp_avail_proc);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004311}
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00004312#undef KMP_EXIT_AFF_NONE
Jim Cownie5e8470a2013-09-27 10:38:44 +00004313
Jonathan Peyton30419822017-05-12 18:01:32 +00004314void __kmp_affinity_initialize(void) {
4315 // Much of the code above was written assumming that if a machine was not
4316 // affinity capable, then __kmp_affinity_type == affinity_none. We now
4317 // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4318 // There are too many checks for __kmp_affinity_type == affinity_none
4319 // in this code. Instead of trying to change them all, check if
4320 // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4321 // affinity_none, call the real initialization routine, then restore
4322 // __kmp_affinity_type to affinity_disabled.
4323 int disabled = (__kmp_affinity_type == affinity_disabled);
4324 if (!KMP_AFFINITY_CAPABLE()) {
4325 KMP_ASSERT(disabled);
4326 }
4327 if (disabled) {
4328 __kmp_affinity_type = affinity_none;
4329 }
4330 __kmp_aux_affinity_initialize();
4331 if (disabled) {
4332 __kmp_affinity_type = affinity_disabled;
4333 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004334}
4335
Jonathan Peyton30419822017-05-12 18:01:32 +00004336void __kmp_affinity_uninitialize(void) {
4337 if (__kmp_affinity_masks != NULL) {
4338 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4339 __kmp_affinity_masks = NULL;
4340 }
4341 if (__kmp_affin_fullMask != NULL) {
4342 KMP_CPU_FREE(__kmp_affin_fullMask);
4343 __kmp_affin_fullMask = NULL;
4344 }
4345 __kmp_affinity_num_masks = 0;
4346 __kmp_affinity_type = affinity_default;
4347#if OMP_40_ENABLED
4348 __kmp_affinity_num_places = 0;
4349#endif
4350 if (__kmp_affinity_proclist != NULL) {
4351 __kmp_free(__kmp_affinity_proclist);
4352 __kmp_affinity_proclist = NULL;
4353 }
4354 if (address2os != NULL) {
4355 __kmp_free(address2os);
4356 address2os = NULL;
4357 }
4358 if (procarr != NULL) {
4359 __kmp_free(procarr);
4360 procarr = NULL;
4361 }
4362#if KMP_USE_HWLOC
4363 if (__kmp_hwloc_topology != NULL) {
4364 hwloc_topology_destroy(__kmp_hwloc_topology);
4365 __kmp_hwloc_topology = NULL;
4366 }
4367#endif
4368 KMPAffinity::destroy_api();
Jim Cownie5e8470a2013-09-27 10:38:44 +00004369}
4370
Jonathan Peyton30419822017-05-12 18:01:32 +00004371void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4372 if (!KMP_AFFINITY_CAPABLE()) {
4373 return;
4374 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004375
Jonathan Peyton30419822017-05-12 18:01:32 +00004376 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4377 if (th->th.th_affin_mask == NULL) {
4378 KMP_CPU_ALLOC(th->th.th_affin_mask);
4379 } else {
4380 KMP_CPU_ZERO(th->th.th_affin_mask);
4381 }
4382
4383 // Copy the thread mask to the kmp_info_t strucuture. If
4384 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
4385 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
4386 // then the full mask is the same as the mask of the initialization thread.
4387 kmp_affin_mask_t *mask;
4388 int i;
4389
4390#if OMP_40_ENABLED
4391 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
4392#endif
4393 {
4394 if ((__kmp_affinity_type == affinity_none) ||
4395 (__kmp_affinity_type == affinity_balanced)) {
4396#if KMP_GROUP_AFFINITY
4397 if (__kmp_num_proc_groups > 1) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004398 return;
Jonathan Peyton30419822017-05-12 18:01:32 +00004399 }
4400#endif
4401 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4402 i = KMP_PLACE_ALL;
4403 mask = __kmp_affin_fullMask;
4404 } else {
4405 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4406 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4407 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004408 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004409 }
4410#if OMP_40_ENABLED
4411 else {
4412 if ((!isa_root) ||
4413 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
4414#if KMP_GROUP_AFFINITY
4415 if (__kmp_num_proc_groups > 1) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004416 return;
Jonathan Peyton30419822017-05-12 18:01:32 +00004417 }
4418#endif
4419 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4420 i = KMP_PLACE_ALL;
4421 mask = __kmp_affin_fullMask;
4422 } else {
4423 // int i = some hash function or just a counter that doesn't
4424 // always start at 0. Use gtid for now.
4425 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4426 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4427 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004428 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004429 }
4430#endif
Jim Cownie5e8470a2013-09-27 10:38:44 +00004431
Jonathan Peyton30419822017-05-12 18:01:32 +00004432#if OMP_40_ENABLED
4433 th->th.th_current_place = i;
4434 if (isa_root) {
4435 th->th.th_new_place = i;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004436 th->th.th_first_place = 0;
4437 th->th.th_last_place = __kmp_affinity_num_masks - 1;
Jonathan Peyton30419822017-05-12 18:01:32 +00004438 }
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004439
Jonathan Peyton30419822017-05-12 18:01:32 +00004440 if (i == KMP_PLACE_ALL) {
4441 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4442 gtid));
4443 } else {
4444 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4445 gtid, i));
4446 }
4447#else
4448 if (i == -1) {
4449 KA_TRACE(
4450 100,
4451 ("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n",
4452 gtid));
4453 } else {
4454 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
4455 gtid, i));
4456 }
4457#endif /* OMP_40_ENABLED */
Jim Cownie5e8470a2013-09-27 10:38:44 +00004458
Jonathan Peyton30419822017-05-12 18:01:32 +00004459 KMP_CPU_COPY(th->th.th_affin_mask, mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004460
Jonathan Peyton30419822017-05-12 18:01:32 +00004461 if (__kmp_affinity_verbose) {
4462 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4463 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4464 th->th.th_affin_mask);
4465 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4466 __kmp_gettid(), gtid, buf);
4467 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004468
Jonathan Peyton30419822017-05-12 18:01:32 +00004469#if KMP_OS_WINDOWS
4470 // On Windows* OS, the process affinity mask might have changed. If the user
4471 // didn't request affinity and this call fails, just continue silently.
4472 // See CQ171393.
4473 if (__kmp_affinity_type == affinity_none) {
4474 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4475 } else
Jonathan Peyton7c465a52016-09-12 19:02:53 +00004476#endif
Jonathan Peyton30419822017-05-12 18:01:32 +00004477 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
Jonathan Peyton7c465a52016-09-12 19:02:53 +00004478}
4479
Jonathan Peyton30419822017-05-12 18:01:32 +00004480#if OMP_40_ENABLED
Jim Cownie5e8470a2013-09-27 10:38:44 +00004481
Jonathan Peyton30419822017-05-12 18:01:32 +00004482void __kmp_affinity_set_place(int gtid) {
4483 int retval;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004484
Jonathan Peyton30419822017-05-12 18:01:32 +00004485 if (!KMP_AFFINITY_CAPABLE()) {
4486 return;
4487 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004488
Jonathan Peyton30419822017-05-12 18:01:32 +00004489 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4490
4491 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4492 "place = %d)\n",
4493 gtid, th->th.th_new_place, th->th.th_current_place));
4494
4495 // Check that the new place is within this thread's partition.
4496 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4497 KMP_ASSERT(th->th.th_new_place >= 0);
4498 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4499 if (th->th.th_first_place <= th->th.th_last_place) {
4500 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4501 (th->th.th_new_place <= th->th.th_last_place));
4502 } else {
4503 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4504 (th->th.th_new_place >= th->th.th_last_place));
4505 }
4506
4507 // Copy the thread mask to the kmp_info_t strucuture,
4508 // and set this thread's affinity.
4509 kmp_affin_mask_t *mask =
4510 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4511 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4512 th->th.th_current_place = th->th.th_new_place;
4513
4514 if (__kmp_affinity_verbose) {
4515 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4516 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4517 th->th.th_affin_mask);
4518 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4519 __kmp_gettid(), gtid, buf);
4520 }
4521 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4522}
4523
4524#endif /* OMP_40_ENABLED */
4525
4526int __kmp_aux_set_affinity(void **mask) {
4527 int gtid;
4528 kmp_info_t *th;
4529 int retval;
4530
4531 if (!KMP_AFFINITY_CAPABLE()) {
4532 return -1;
4533 }
4534
4535 gtid = __kmp_entry_gtid();
4536 KA_TRACE(1000, ; {
4537 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4538 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4539 (kmp_affin_mask_t *)(*mask));
4540 __kmp_debug_printf(
4541 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid,
4542 buf);
4543 });
4544
4545 if (__kmp_env_consistency_check) {
4546 if ((mask == NULL) || (*mask == NULL)) {
4547 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4548 } else {
4549 unsigned proc;
4550 int num_procs = 0;
4551
4552 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4553 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4554 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
Jim Cownie5e8470a2013-09-27 10:38:44 +00004555 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004556 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4557 continue;
4558 }
4559 num_procs++;
4560 }
4561 if (num_procs == 0) {
4562 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4563 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004564
Jonathan Peyton30419822017-05-12 18:01:32 +00004565#if KMP_GROUP_AFFINITY
4566 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4567 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4568 }
4569#endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +00004570 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004571 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004572
Jonathan Peyton30419822017-05-12 18:01:32 +00004573 th = __kmp_threads[gtid];
4574 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4575 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4576 if (retval == 0) {
4577 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4578 }
4579
4580#if OMP_40_ENABLED
4581 th->th.th_current_place = KMP_PLACE_UNDEFINED;
4582 th->th.th_new_place = KMP_PLACE_UNDEFINED;
4583 th->th.th_first_place = 0;
4584 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4585
4586 // Turn off 4.0 affinity for the current tread at this parallel level.
4587 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4588#endif
4589
4590 return retval;
4591}
4592
4593int __kmp_aux_get_affinity(void **mask) {
4594 int gtid;
4595 int retval;
4596 kmp_info_t *th;
4597
4598 if (!KMP_AFFINITY_CAPABLE()) {
4599 return -1;
4600 }
4601
4602 gtid = __kmp_entry_gtid();
4603 th = __kmp_threads[gtid];
4604 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4605
4606 KA_TRACE(1000, ; {
4607 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4608 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4609 th->th.th_affin_mask);
4610 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n",
4611 gtid, buf);
4612 });
4613
4614 if (__kmp_env_consistency_check) {
4615 if ((mask == NULL) || (*mask == NULL)) {
4616 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4617 }
4618 }
4619
4620#if !KMP_OS_WINDOWS
4621
4622 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4623 KA_TRACE(1000, ; {
4624 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4625 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4626 (kmp_affin_mask_t *)(*mask));
4627 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n",
4628 gtid, buf);
4629 });
4630 return retval;
4631
4632#else
4633
4634 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4635 return 0;
4636
4637#endif /* KMP_OS_WINDOWS */
4638}
4639
4640int __kmp_aux_get_affinity_max_proc() {
4641 if (!KMP_AFFINITY_CAPABLE()) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004642 return 0;
Jonathan Peyton30419822017-05-12 18:01:32 +00004643 }
4644#if KMP_GROUP_AFFINITY
4645 if (__kmp_num_proc_groups > 1) {
4646 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4647 }
4648#endif
4649 return __kmp_xproc;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004650}
4651
Jonathan Peyton30419822017-05-12 18:01:32 +00004652int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4653 int retval;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004654
Jonathan Peyton30419822017-05-12 18:01:32 +00004655 if (!KMP_AFFINITY_CAPABLE()) {
4656 return -1;
4657 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004658
Jonathan Peyton30419822017-05-12 18:01:32 +00004659 KA_TRACE(1000, ; {
4660 int gtid = __kmp_entry_gtid();
4661 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4662 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4663 (kmp_affin_mask_t *)(*mask));
4664 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
4665 "affinity mask for thread %d = %s\n",
4666 proc, gtid, buf);
4667 });
4668
4669 if (__kmp_env_consistency_check) {
4670 if ((mask == NULL) || (*mask == NULL)) {
4671 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
Jim Cownie5e8470a2013-09-27 10:38:44 +00004672 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004673 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004674
Jonathan Peyton30419822017-05-12 18:01:32 +00004675 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4676 return -1;
4677 }
4678 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4679 return -2;
4680 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004681
Jonathan Peyton30419822017-05-12 18:01:32 +00004682 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4683 return 0;
4684}
4685
4686int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
4687 int retval;
4688
4689 if (!KMP_AFFINITY_CAPABLE()) {
4690 return -1;
4691 }
4692
4693 KA_TRACE(1000, ; {
4694 int gtid = __kmp_entry_gtid();
4695 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4696 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4697 (kmp_affin_mask_t *)(*mask));
4698 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
4699 "affinity mask for thread %d = %s\n",
4700 proc, gtid, buf);
4701 });
4702
4703 if (__kmp_env_consistency_check) {
4704 if ((mask == NULL) || (*mask == NULL)) {
4705 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
Jim Cownie5e8470a2013-09-27 10:38:44 +00004706 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004707 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004708
Jonathan Peyton30419822017-05-12 18:01:32 +00004709 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4710 return -1;
4711 }
4712 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4713 return -2;
4714 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004715
Jonathan Peyton30419822017-05-12 18:01:32 +00004716 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
4717 return 0;
4718}
4719
4720int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
4721 int retval;
4722
4723 if (!KMP_AFFINITY_CAPABLE()) {
4724 return -1;
4725 }
4726
4727 KA_TRACE(1000, ; {
4728 int gtid = __kmp_entry_gtid();
4729 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4730 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4731 (kmp_affin_mask_t *)(*mask));
4732 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
4733 "affinity mask for thread %d = %s\n",
4734 proc, gtid, buf);
4735 });
4736
4737 if (__kmp_env_consistency_check) {
4738 if ((mask == NULL) || (*mask == NULL)) {
4739 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
4740 }
4741 }
4742
4743 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4744 return -1;
4745 }
4746 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004747 return 0;
Jonathan Peyton30419822017-05-12 18:01:32 +00004748 }
4749
4750 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
Jim Cownie5e8470a2013-09-27 10:38:44 +00004751}
4752
Jim Cownie5e8470a2013-09-27 10:38:44 +00004753// Dynamic affinity settings - Affinity balanced
Jonathan Peyton30419822017-05-12 18:01:32 +00004754void __kmp_balanced_affinity(int tid, int nthreads) {
4755 bool fine_gran = true;
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004756
Jonathan Peyton30419822017-05-12 18:01:32 +00004757 switch (__kmp_affinity_gran) {
4758 case affinity_gran_fine:
4759 case affinity_gran_thread:
4760 break;
4761 case affinity_gran_core:
4762 if (__kmp_nThreadsPerCore > 1) {
4763 fine_gran = false;
4764 }
4765 break;
4766 case affinity_gran_package:
4767 if (nCoresPerPkg > 1) {
4768 fine_gran = false;
4769 }
4770 break;
4771 default:
4772 fine_gran = false;
4773 }
4774
4775 if (__kmp_affinity_uniform_topology()) {
4776 int coreID;
4777 int threadID;
4778 // Number of hyper threads per core in HT machine
4779 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
4780 // Number of cores
4781 int ncores = __kmp_ncores;
4782 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
4783 __kmp_nth_per_core = __kmp_avail_proc / nPackages;
4784 ncores = nPackages;
4785 }
4786 // How many threads will be bound to each core
4787 int chunk = nthreads / ncores;
4788 // How many cores will have an additional thread bound to it - "big cores"
4789 int big_cores = nthreads % ncores;
4790 // Number of threads on the big cores
4791 int big_nth = (chunk + 1) * big_cores;
4792 if (tid < big_nth) {
4793 coreID = tid / (chunk + 1);
4794 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
4795 } else { // tid >= big_nth
4796 coreID = (tid - big_cores) / chunk;
4797 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004798 }
4799
Jonathan Peyton30419822017-05-12 18:01:32 +00004800 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
4801 "Illegal set affinity operation when not capable");
4802
4803 kmp_affin_mask_t *mask;
4804 KMP_CPU_ALLOC_ON_STACK(mask);
4805 KMP_CPU_ZERO(mask);
4806
4807 if (fine_gran) {
4808 int osID = address2os[coreID * __kmp_nth_per_core + threadID].second;
4809 KMP_CPU_SET(osID, mask);
4810 } else {
4811 for (int i = 0; i < __kmp_nth_per_core; i++) {
4812 int osID;
4813 osID = address2os[coreID * __kmp_nth_per_core + i].second;
4814 KMP_CPU_SET(osID, mask);
4815 }
4816 }
4817 if (__kmp_affinity_verbose) {
4818 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4819 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
4820 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4821 __kmp_gettid(), tid, buf);
4822 }
4823 __kmp_set_system_affinity(mask, TRUE);
4824 KMP_CPU_FREE_FROM_STACK(mask);
4825 } else { // Non-uniform topology
4826
4827 kmp_affin_mask_t *mask;
4828 KMP_CPU_ALLOC_ON_STACK(mask);
4829 KMP_CPU_ZERO(mask);
4830
4831 int core_level = __kmp_affinity_find_core_level(
4832 address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
4833 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
4834 __kmp_aff_depth - 1, core_level);
4835 int nth_per_core = __kmp_affinity_max_proc_per_core(
4836 address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
4837
4838 // For performance gain consider the special case nthreads ==
4839 // __kmp_avail_proc
4840 if (nthreads == __kmp_avail_proc) {
4841 if (fine_gran) {
4842 int osID = address2os[tid].second;
4843 KMP_CPU_SET(osID, mask);
4844 } else {
4845 int core = __kmp_affinity_find_core(address2os, tid,
4846 __kmp_aff_depth - 1, core_level);
4847 for (int i = 0; i < __kmp_avail_proc; i++) {
4848 int osID = address2os[i].second;
4849 if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1,
4850 core_level) == core) {
4851 KMP_CPU_SET(osID, mask);
4852 }
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004853 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004854 }
4855 } else if (nthreads <= ncores) {
4856
4857 int core = 0;
4858 for (int i = 0; i < ncores; i++) {
4859 // Check if this core from procarr[] is in the mask
4860 int in_mask = 0;
4861 for (int j = 0; j < nth_per_core; j++) {
4862 if (procarr[i * nth_per_core + j] != -1) {
4863 in_mask = 1;
4864 break;
4865 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004866 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004867 if (in_mask) {
4868 if (tid == core) {
4869 for (int j = 0; j < nth_per_core; j++) {
4870 int osID = procarr[i * nth_per_core + j];
4871 if (osID != -1) {
4872 KMP_CPU_SET(osID, mask);
4873 // For fine granularity it is enough to set the first available
4874 // osID for this core
4875 if (fine_gran) {
4876 break;
4877 }
4878 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004879 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004880 break;
4881 } else {
4882 core++;
4883 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004884 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004885 }
4886 } else { // nthreads > ncores
4887 // Array to save the number of processors at each core
4888 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
4889 // Array to save the number of cores with "x" available processors;
4890 int *ncores_with_x_procs =
4891 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
4892 // Array to save the number of cores with # procs from x to nth_per_core
4893 int *ncores_with_x_to_max_procs =
4894 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
4895
4896 for (int i = 0; i <= nth_per_core; i++) {
4897 ncores_with_x_procs[i] = 0;
4898 ncores_with_x_to_max_procs[i] = 0;
4899 }
4900
4901 for (int i = 0; i < ncores; i++) {
4902 int cnt = 0;
4903 for (int j = 0; j < nth_per_core; j++) {
4904 if (procarr[i * nth_per_core + j] != -1) {
4905 cnt++;
4906 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004907 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004908 nproc_at_core[i] = cnt;
4909 ncores_with_x_procs[cnt]++;
4910 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004911
Jonathan Peyton30419822017-05-12 18:01:32 +00004912 for (int i = 0; i <= nth_per_core; i++) {
4913 for (int j = i; j <= nth_per_core; j++) {
4914 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
4915 }
4916 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004917
Jonathan Peyton30419822017-05-12 18:01:32 +00004918 // Max number of processors
4919 int nproc = nth_per_core * ncores;
4920 // An array to keep number of threads per each context
4921 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4922 for (int i = 0; i < nproc; i++) {
4923 newarr[i] = 0;
4924 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004925
Jonathan Peyton30419822017-05-12 18:01:32 +00004926 int nth = nthreads;
4927 int flag = 0;
4928 while (nth > 0) {
4929 for (int j = 1; j <= nth_per_core; j++) {
4930 int cnt = ncores_with_x_to_max_procs[j];
4931 for (int i = 0; i < ncores; i++) {
4932 // Skip the core with 0 processors
4933 if (nproc_at_core[i] == 0) {
4934 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004935 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004936 for (int k = 0; k < nth_per_core; k++) {
4937 if (procarr[i * nth_per_core + k] != -1) {
4938 if (newarr[i * nth_per_core + k] == 0) {
4939 newarr[i * nth_per_core + k] = 1;
4940 cnt--;
4941 nth--;
4942 break;
4943 } else {
4944 if (flag != 0) {
4945 newarr[i * nth_per_core + k]++;
4946 cnt--;
4947 nth--;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004948 break;
Jonathan Peyton30419822017-05-12 18:01:32 +00004949 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004950 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004951 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004952 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004953 if (cnt == 0 || nth == 0) {
4954 break;
4955 }
4956 }
4957 if (nth == 0) {
4958 break;
4959 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004960 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004961 flag = 1;
4962 }
4963 int sum = 0;
4964 for (int i = 0; i < nproc; i++) {
4965 sum += newarr[i];
4966 if (sum > tid) {
4967 if (fine_gran) {
4968 int osID = procarr[i];
4969 KMP_CPU_SET(osID, mask);
4970 } else {
4971 int coreID = i / nth_per_core;
4972 for (int ii = 0; ii < nth_per_core; ii++) {
4973 int osID = procarr[coreID * nth_per_core + ii];
4974 if (osID != -1) {
4975 KMP_CPU_SET(osID, mask);
4976 }
4977 }
4978 }
4979 break;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004980 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004981 }
4982 __kmp_free(newarr);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004983 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004984
4985 if (__kmp_affinity_verbose) {
4986 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4987 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
4988 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4989 __kmp_gettid(), tid, buf);
4990 }
4991 __kmp_set_system_affinity(mask, TRUE);
4992 KMP_CPU_FREE_FROM_STACK(mask);
4993 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004994}
4995
Jonathan Peyton3076fa42016-01-12 17:21:55 +00004996#if KMP_OS_LINUX
4997// We don't need this entry for Windows because
4998// there is GetProcessAffinityMask() api
4999//
5000// The intended usage is indicated by these steps:
5001// 1) The user gets the current affinity mask
5002// 2) Then sets the affinity by calling this function
5003// 3) Error check the return value
5004// 4) Use non-OpenMP parallelization
5005// 5) Reset the affinity to what was stored in step 1)
5006#ifdef __cplusplus
5007extern "C"
5008#endif
Jonathan Peyton30419822017-05-12 18:01:32 +00005009 int
5010 kmp_set_thread_affinity_mask_initial()
Jonathan Peyton3076fa42016-01-12 17:21:55 +00005011// the function returns 0 on success,
5012// -1 if we cannot bind thread
5013// >0 (errno) if an error happened during binding
5014{
Jonathan Peyton30419822017-05-12 18:01:32 +00005015 int gtid = __kmp_get_gtid();
5016 if (gtid < 0) {
5017 // Do not touch non-omp threads
5018 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5019 "non-omp thread, returning\n"));
5020 return -1;
5021 }
5022 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5023 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5024 "affinity not initialized, returning\n"));
5025 return -1;
5026 }
5027 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5028 "set full mask for thread %d\n",
5029 gtid));
5030 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5031 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
Jonathan Peyton3076fa42016-01-12 17:21:55 +00005032}
5033#endif
5034
Alp Toker763b9392014-02-28 09:42:41 +00005035#endif // KMP_AFFINITY_SUPPORTED