blob: d94e31d4875e2fadd1aa9dce889005c7485176ae [file] [log] [blame]
Chris Lattnerd43023a2002-08-02 16:43:03 +00001//===- Dominators.cpp - Dominator Calculation -----------------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner081aabc2001-07-02 05:46:38 +00009//
Chris Lattnerd43023a2002-08-02 16:43:03 +000010// This file implements simple dominator construction algorithms for finding
11// forward dominators. Postdominators are available in libanalysis, but are not
12// included in libvmcore, because it's not needed. Forward dominators are
13// needed to support the Verifier pass.
Chris Lattner081aabc2001-07-02 05:46:38 +000014//
15//===----------------------------------------------------------------------===//
16
Chandler Carruth5ad5f152014-01-13 09:26:24 +000017#include "llvm/IR/Dominators.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000018#include "llvm/ADT/DepthFirstIterator.h"
Devang Patel5a1bd402007-03-27 20:50:46 +000019#include "llvm/ADT/SmallPtrSet.h"
Chris Lattnerc63d4c22007-08-08 05:51:24 +000020#include "llvm/ADT/SmallVector.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000021#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000022#include "llvm/IR/Instructions.h"
Chandler Carruth64764b42015-01-14 10:19:28 +000023#include "llvm/IR/PassManager.h"
Dan Gohman4dbb3012009-09-28 00:27:48 +000024#include "llvm/Support/CommandLine.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000025#include "llvm/Support/Compiler.h"
26#include "llvm/Support/Debug.h"
Chandler Carruthe509db42014-01-13 10:52:56 +000027#include "llvm/Support/GenericDomTreeConstruction.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include "llvm/Support/raw_ostream.h"
Chris Lattnerc5e0be62004-06-05 00:24:59 +000029#include <algorithm>
Chris Lattner189d19f2003-11-21 20:23:48 +000030using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000031
Dan Gohman4dbb3012009-09-28 00:27:48 +000032// Always verify dominfo if expensive checking is enabled.
33#ifdef XDEBUG
Dan Gohmanb29cda92010-04-15 17:08:50 +000034static bool VerifyDomInfo = true;
Dan Gohman4dbb3012009-09-28 00:27:48 +000035#else
Dan Gohmanb29cda92010-04-15 17:08:50 +000036static bool VerifyDomInfo = false;
Dan Gohman4dbb3012009-09-28 00:27:48 +000037#endif
38static cl::opt<bool,true>
39VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
40 cl::desc("Verify dominator info (time consuming)"));
41
Rafael Espindolacc80cde2012-08-16 15:09:43 +000042bool BasicBlockEdge::isSingleEdge() const {
43 const TerminatorInst *TI = Start->getTerminator();
44 unsigned NumEdgesToEnd = 0;
45 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
46 if (TI->getSuccessor(i) == End)
47 ++NumEdgesToEnd;
48 if (NumEdgesToEnd >= 2)
49 return false;
50 }
51 assert(NumEdgesToEnd == 1);
52 return true;
Rafael Espindola11870772012-08-10 14:05:55 +000053}
54
Chris Lattnerc385beb2001-07-06 16:58:22 +000055//===----------------------------------------------------------------------===//
Owen Andersonf35a1db2007-04-15 08:47:27 +000056// DominatorTree Implementation
Chris Lattner00f51672003-12-07 00:38:08 +000057//===----------------------------------------------------------------------===//
58//
Owen Anderson84c357f2007-09-23 21:31:44 +000059// Provide public access to DominatorTree information. Implementation details
Chandler Carruthe509db42014-01-13 10:52:56 +000060// can be found in Dominators.h, GenericDomTree.h, and
61// GenericDomTreeConstruction.h.
Chris Lattner00f51672003-12-07 00:38:08 +000062//
63//===----------------------------------------------------------------------===//
64
Benjamin Kramera667d1a2015-07-13 17:21:31 +000065template class llvm::DomTreeNodeBase<BasicBlock>;
66template class llvm::DominatorTreeBase<BasicBlock>;
Owen Anderson41878012007-10-16 19:59:25 +000067
Benjamin Kramera667d1a2015-07-13 17:21:31 +000068template void llvm::Calculate<Function, BasicBlock *>(
69 DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
70template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
71 DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
72 Function &F);
Rafael Espindola30616362014-02-14 22:36:16 +000073
Rafael Espindola94df2672012-02-26 02:19:19 +000074// dominates - Return true if Def dominates a use in User. This performs
75// the special checks necessary if Def and User are in the same basic block.
76// Note that Def doesn't dominate a use in Def itself!
77bool DominatorTree::dominates(const Instruction *Def,
78 const Instruction *User) const {
79 const BasicBlock *UseBB = User->getParent();
80 const BasicBlock *DefBB = Def->getParent();
Rafael Espindola082d4822012-02-18 19:46:02 +000081
Rafael Espindolaa53c46a2012-03-30 16:46:21 +000082 // Any unreachable use is dominated, even if Def == User.
83 if (!isReachableFromEntry(UseBB))
84 return true;
85
86 // Unreachable definitions don't dominate anything.
87 if (!isReachableFromEntry(DefBB))
88 return false;
Rafael Espindola082d4822012-02-18 19:46:02 +000089
Rafael Espindola94df2672012-02-26 02:19:19 +000090 // An instruction doesn't dominate a use in itself.
91 if (Def == User)
Chris Lattner22151ce2009-09-21 22:30:50 +000092 return false;
Rafael Espindola082d4822012-02-18 19:46:02 +000093
David Majnemer0bc0eef2015-08-15 02:46:08 +000094 // The value defined by an invoke/catchpad dominates an instruction only if
Rafael Espindola94df2672012-02-26 02:19:19 +000095 // it dominates every instruction in UseBB.
96 // A PHI is dominated only if the instruction dominates every possible use
97 // in the UseBB.
David Majnemer0bc0eef2015-08-15 02:46:08 +000098 if (isa<InvokeInst>(Def) || isa<CatchPadInst>(Def) || isa<PHINode>(User))
Rafael Espindola94df2672012-02-26 02:19:19 +000099 return dominates(Def, UseBB);
100
101 if (DefBB != UseBB)
102 return dominates(DefBB, UseBB);
103
104 // Loop through the basic block until we find Def or User.
105 BasicBlock::const_iterator I = DefBB->begin();
106 for (; &*I != Def && &*I != User; ++I)
Chris Lattner22151ce2009-09-21 22:30:50 +0000107 /*empty*/;
Rafael Espindola082d4822012-02-18 19:46:02 +0000108
Rafael Espindola94df2672012-02-26 02:19:19 +0000109 return &*I == Def;
110}
111
112// true if Def would dominate a use in any instruction in UseBB.
113// note that dominates(Def, Def->getParent()) is false.
114bool DominatorTree::dominates(const Instruction *Def,
115 const BasicBlock *UseBB) const {
116 const BasicBlock *DefBB = Def->getParent();
117
Rafael Espindolaa53c46a2012-03-30 16:46:21 +0000118 // Any unreachable use is dominated, even if DefBB == UseBB.
119 if (!isReachableFromEntry(UseBB))
120 return true;
121
122 // Unreachable definitions don't dominate anything.
123 if (!isReachableFromEntry(DefBB))
124 return false;
Rafael Espindola94df2672012-02-26 02:19:19 +0000125
126 if (DefBB == UseBB)
127 return false;
128
David Majnemer0bc0eef2015-08-15 02:46:08 +0000129 // Invoke/CatchPad results are only usable in the normal destination, not in
130 // the exceptional destination.
131 if (const auto *II = dyn_cast<InvokeInst>(Def)) {
132 BasicBlock *NormalDest = II->getNormalDest();
133 BasicBlockEdge E(DefBB, NormalDest);
134 return dominates(E, UseBB);
135 }
136 if (const auto *CPI = dyn_cast<CatchPadInst>(Def)) {
137 BasicBlock *NormalDest = CPI->getNormalDest();
138 BasicBlockEdge E(DefBB, NormalDest);
139 return dominates(E, UseBB);
140 }
Rafael Espindola94df2672012-02-26 02:19:19 +0000141
David Majnemer0bc0eef2015-08-15 02:46:08 +0000142 return dominates(DefBB, UseBB);
Rafael Espindola59564072012-08-07 17:30:46 +0000143}
144
145bool DominatorTree::dominates(const BasicBlockEdge &BBE,
146 const BasicBlock *UseBB) const {
Rafael Espindola9a167352012-08-17 18:21:28 +0000147 // Assert that we have a single edge. We could handle them by simply
148 // returning false, but since isSingleEdge is linear on the number of
149 // edges, the callers can normally handle them more efficiently.
Piotr Padlewski28ffcbe2015-09-02 19:59:59 +0000150 assert(BBE.isSingleEdge() &&
151 "This function is not efficient in handling multiple edges");
Rafael Espindola9a167352012-08-17 18:21:28 +0000152
Rafael Espindola59564072012-08-07 17:30:46 +0000153 // If the BB the edge ends in doesn't dominate the use BB, then the
154 // edge also doesn't.
155 const BasicBlock *Start = BBE.getStart();
156 const BasicBlock *End = BBE.getEnd();
157 if (!dominates(End, UseBB))
Rafael Espindola94df2672012-02-26 02:19:19 +0000158 return false;
159
Rafael Espindola59564072012-08-07 17:30:46 +0000160 // Simple case: if the end BB has a single predecessor, the fact that it
161 // dominates the use block implies that the edge also does.
162 if (End->getSinglePredecessor())
Rafael Espindola94df2672012-02-26 02:19:19 +0000163 return true;
164
165 // The normal edge from the invoke is critical. Conceptually, what we would
166 // like to do is split it and check if the new block dominates the use.
167 // With X being the new block, the graph would look like:
168 //
169 // DefBB
170 // /\ . .
171 // / \ . .
172 // / \ . .
173 // / \ | |
174 // A X B C
175 // | \ | /
176 // . \|/
177 // . NormalDest
178 // .
179 //
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000180 // Given the definition of dominance, NormalDest is dominated by X iff X
Rafael Espindola94df2672012-02-26 02:19:19 +0000181 // dominates all of NormalDest's predecessors (X, B, C in the example). X
182 // trivially dominates itself, so we only have to find if it dominates the
183 // other predecessors. Since the only way out of X is via NormalDest, X can
184 // only properly dominate a node if NormalDest dominates that node too.
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +0000185 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
186 PI != E; ++PI) {
187 const BasicBlock *BB = *PI;
Rafael Espindola59564072012-08-07 17:30:46 +0000188 if (BB == Start)
Rafael Espindola94df2672012-02-26 02:19:19 +0000189 continue;
190
Rafael Espindola59564072012-08-07 17:30:46 +0000191 if (!dominates(End, BB))
Rafael Espindola94df2672012-02-26 02:19:19 +0000192 return false;
193 }
194 return true;
Chris Lattner22151ce2009-09-21 22:30:50 +0000195}
Dan Gohman73273272012-04-12 23:31:46 +0000196
Chandler Carruth73523022014-01-13 13:07:17 +0000197bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
Rafael Espindola9a167352012-08-17 18:21:28 +0000198 // Assert that we have a single edge. We could handle them by simply
199 // returning false, but since isSingleEdge is linear on the number of
200 // edges, the callers can normally handle them more efficiently.
Piotr Padlewski28ffcbe2015-09-02 19:59:59 +0000201 assert(BBE.isSingleEdge() &&
202 "This function is not efficient in handling multiple edges");
Rafael Espindola9a167352012-08-17 18:21:28 +0000203
Rafael Espindola59564072012-08-07 17:30:46 +0000204 Instruction *UserInst = cast<Instruction>(U.getUser());
205 // A PHI in the end of the edge is dominated by it.
206 PHINode *PN = dyn_cast<PHINode>(UserInst);
207 if (PN && PN->getParent() == BBE.getEnd() &&
208 PN->getIncomingBlock(U) == BBE.getStart())
209 return true;
210
211 // Otherwise use the edge-dominates-block query, which
212 // handles the crazy critical edge cases properly.
213 const BasicBlock *UseBB;
214 if (PN)
215 UseBB = PN->getIncomingBlock(U);
216 else
217 UseBB = UserInst->getParent();
218 return dominates(BBE, UseBB);
219}
220
Chandler Carruth73523022014-01-13 13:07:17 +0000221bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
Rafael Espindola59564072012-08-07 17:30:46 +0000222 Instruction *UserInst = cast<Instruction>(U.getUser());
Dan Gohman73273272012-04-12 23:31:46 +0000223 const BasicBlock *DefBB = Def->getParent();
224
225 // Determine the block in which the use happens. PHI nodes use
226 // their operands on edges; simulate this by thinking of the use
227 // happening at the end of the predecessor block.
228 const BasicBlock *UseBB;
229 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
230 UseBB = PN->getIncomingBlock(U);
231 else
232 UseBB = UserInst->getParent();
233
234 // Any unreachable use is dominated, even if Def == User.
235 if (!isReachableFromEntry(UseBB))
236 return true;
237
238 // Unreachable definitions don't dominate anything.
239 if (!isReachableFromEntry(DefBB))
240 return false;
241
David Majnemer0bc0eef2015-08-15 02:46:08 +0000242 // Invoke/CatchPad instructions define their return values on the edges
Dan Gohman73273272012-04-12 23:31:46 +0000243 // to their normal successors, so we have to handle them specially.
244 // Among other things, this means they don't dominate anything in
245 // their own block, except possibly a phi, so we don't need to
246 // walk the block in any case.
247 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
Rafael Espindola59564072012-08-07 17:30:46 +0000248 BasicBlock *NormalDest = II->getNormalDest();
249 BasicBlockEdge E(DefBB, NormalDest);
250 return dominates(E, U);
Dan Gohman73273272012-04-12 23:31:46 +0000251 }
David Majnemer0bc0eef2015-08-15 02:46:08 +0000252 if (const auto *CPI = dyn_cast<CatchPadInst>(Def)) {
253 BasicBlock *NormalDest = CPI->getNormalDest();
254 BasicBlockEdge E(DefBB, NormalDest);
255 return dominates(E, U);
256 }
Dan Gohman73273272012-04-12 23:31:46 +0000257
258 // If the def and use are in different blocks, do a simple CFG dominator
259 // tree query.
260 if (DefBB != UseBB)
261 return dominates(DefBB, UseBB);
262
263 // Ok, def and use are in the same block. If the def is an invoke, it
264 // doesn't dominate anything in the block. If it's a PHI, it dominates
265 // everything in the block.
266 if (isa<PHINode>(UserInst))
267 return true;
268
269 // Otherwise, just loop through the basic block until we find Def or User.
270 BasicBlock::const_iterator I = DefBB->begin();
271 for (; &*I != Def && &*I != UserInst; ++I)
272 /*empty*/;
273
274 return &*I != UserInst;
275}
276
277bool DominatorTree::isReachableFromEntry(const Use &U) const {
278 Instruction *I = dyn_cast<Instruction>(U.getUser());
279
280 // ConstantExprs aren't really reachable from the entry block, but they
281 // don't need to be treated like unreachable code either.
282 if (!I) return true;
283
284 // PHI nodes use their operands on their incoming edges.
285 if (PHINode *PN = dyn_cast<PHINode>(I))
286 return isReachableFromEntry(PN->getIncomingBlock(U));
287
288 // Everything else uses their operands in their own block.
289 return isReachableFromEntry(I->getParent());
290}
Chandler Carruth73523022014-01-13 13:07:17 +0000291
292void DominatorTree::verifyDomTree() const {
Chandler Carruth73523022014-01-13 13:07:17 +0000293 Function &F = *getRoot()->getParent();
294
295 DominatorTree OtherDT;
296 OtherDT.recalculate(F);
297 if (compare(OtherDT)) {
298 errs() << "DominatorTree is not up to date!\nComputed:\n";
299 print(errs());
300 errs() << "\nActual:\n";
301 OtherDT.print(errs());
302 abort();
303 }
304}
305
306//===----------------------------------------------------------------------===//
Chandler Carruth64764b42015-01-14 10:19:28 +0000307// DominatorTreeAnalysis and related pass implementations
308//===----------------------------------------------------------------------===//
309//
310// This implements the DominatorTreeAnalysis which is used with the new pass
311// manager. It also implements some methods from utility passes.
312//
313//===----------------------------------------------------------------------===//
314
315DominatorTree DominatorTreeAnalysis::run(Function &F) {
316 DominatorTree DT;
317 DT.recalculate(F);
318 return DT;
319}
320
321char DominatorTreeAnalysis::PassID;
322
323DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
324
325PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
326 FunctionAnalysisManager *AM) {
327 OS << "DominatorTree for function: " << F.getName() << "\n";
328 AM->getResult<DominatorTreeAnalysis>(F).print(OS);
329
330 return PreservedAnalyses::all();
331}
332
333PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
334 FunctionAnalysisManager *AM) {
335 AM->getResult<DominatorTreeAnalysis>(F).verifyDomTree();
336
337 return PreservedAnalyses::all();
338}
339
340//===----------------------------------------------------------------------===//
Chandler Carruth73523022014-01-13 13:07:17 +0000341// DominatorTreeWrapperPass Implementation
342//===----------------------------------------------------------------------===//
343//
Chandler Carruth64764b42015-01-14 10:19:28 +0000344// The implementation details of the wrapper pass that holds a DominatorTree
345// suitable for use with the legacy pass manager.
Chandler Carruth73523022014-01-13 13:07:17 +0000346//
347//===----------------------------------------------------------------------===//
348
349char DominatorTreeWrapperPass::ID = 0;
350INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
351 "Dominator Tree Construction", true, true)
352
353bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
354 DT.recalculate(F);
355 return false;
356}
357
Adam Nemete340f852015-05-06 08:18:41 +0000358void DominatorTreeWrapperPass::verifyAnalysis() const {
359 if (VerifyDomInfo)
360 DT.verifyDomTree();
361}
Chandler Carruth73523022014-01-13 13:07:17 +0000362
363void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
364 DT.print(OS);
365}
366