blob: 0d553d32f31d6a5f53a3b45757f055598a9028fd [file] [log] [blame]
Nate Begeman6cca84e2005-10-16 05:39:50 +00001//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
Chris Lattner43ff01e2005-08-17 19:33:03 +00002//
3// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattner43ff01e2005-08-17 19:33:03 +00007//
8//===----------------------------------------------------------------------===//
9//
Nate Begeman6cca84e2005-10-16 05:39:50 +000010// This file defines a pattern matching instruction selector for PowerPC,
Chris Lattner43ff01e2005-08-17 19:33:03 +000011// converting from a legalized dag to a PPC dag.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattnerbfca1ab2005-10-14 23:51:18 +000015#include "PPC.h"
Evan Cheng11424442011-07-26 00:24:13 +000016#include "MCTargetDesc/PPCPredicates.h"
Hal Finkel3ee2af72014-07-18 23:29:49 +000017#include "PPCMachineFunctionInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000018#include "PPCTargetMachine.h"
Chris Lattner45640392005-08-19 22:38:53 +000019#include "llvm/CodeGen/MachineFunction.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000020#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattnera10fff52007-12-31 04:13:23 +000021#include "llvm/CodeGen/MachineRegisterInfo.h"
Chris Lattner43ff01e2005-08-17 19:33:03 +000022#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SelectionDAGISel.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000024#include "llvm/IR/Constants.h"
25#include "llvm/IR/Function.h"
Chandler Carruth1fe21fc2013-01-19 08:03:47 +000026#include "llvm/IR/GlobalAlias.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/GlobalValue.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/Intrinsics.h"
Justin Hibbitsa88b6052014-11-12 15:16:30 +000030#include "llvm/IR/Module.h"
Hal Finkel940ab932014-02-28 00:27:01 +000031#include "llvm/Support/CommandLine.h"
Chris Lattner43ff01e2005-08-17 19:33:03 +000032#include "llvm/Support/Debug.h"
Torok Edwinfb8d6d52009-07-08 20:53:28 +000033#include "llvm/Support/ErrorHandling.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000034#include "llvm/Support/MathExtras.h"
Torok Edwinfb8d6d52009-07-08 20:53:28 +000035#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000036#include "llvm/Target/TargetOptions.h"
Chris Lattner43ff01e2005-08-17 19:33:03 +000037using namespace llvm;
38
Chandler Carruth84e68b22014-04-22 02:41:26 +000039#define DEBUG_TYPE "ppc-codegen"
40
Hal Finkel940ab932014-02-28 00:27:01 +000041// FIXME: Remove this once the bug has been fixed!
42cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
43cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
44
Benjamin Kramer970eac42015-02-06 17:51:54 +000045static cl::opt<bool>
46 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
47 cl::desc("use aggressive ppc isel for bit permutations"),
48 cl::Hidden);
49static cl::opt<bool> BPermRewriterNoMasking(
50 "ppc-bit-perm-rewriter-stress-rotates",
51 cl::desc("stress rotate selection in aggressive ppc isel for "
52 "bit permutations"),
53 cl::Hidden);
Hal Finkelc58ce412015-01-01 02:53:29 +000054
Krzysztof Parzyszek2680b532013-02-13 17:40:07 +000055namespace llvm {
56 void initializePPCDAGToDAGISelPass(PassRegistry&);
57}
58
Chris Lattner43ff01e2005-08-17 19:33:03 +000059namespace {
Chris Lattner43ff01e2005-08-17 19:33:03 +000060 //===--------------------------------------------------------------------===//
Nate Begeman0b71e002005-10-18 00:28:58 +000061 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
Chris Lattner43ff01e2005-08-17 19:33:03 +000062 /// instructions for SelectionDAG operations.
63 ///
Nick Lewycky02d5f772009-10-25 06:33:48 +000064 class PPCDAGToDAGISel : public SelectionDAGISel {
Dan Gohman21cea8a2010-04-17 15:26:15 +000065 const PPCTargetMachine &TM;
Eric Christopher1b8e7632014-05-22 01:07:24 +000066 const PPCSubtarget *PPCSubTarget;
Eric Christophercccae792015-01-30 22:02:31 +000067 const PPCTargetLowering *PPCLowering;
Chris Lattner45640392005-08-19 22:38:53 +000068 unsigned GlobalBaseReg;
Chris Lattner43ff01e2005-08-17 19:33:03 +000069 public:
Dan Gohman56e3f632008-07-07 18:00:37 +000070 explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
Eric Christophercccae792015-01-30 22:02:31 +000071 : SelectionDAGISel(tm), TM(tm) {
Krzysztof Parzyszek2680b532013-02-13 17:40:07 +000072 initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
73 }
Andrew Trickc416ba62010-12-24 04:28:06 +000074
Craig Topper0d3fa922014-04-29 07:57:37 +000075 bool runOnMachineFunction(MachineFunction &MF) override {
Chris Lattner45640392005-08-19 22:38:53 +000076 // Make sure we re-emit a set of the global base reg if necessary
77 GlobalBaseReg = 0;
Eric Christophercccae792015-01-30 22:02:31 +000078 PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
79 PPCLowering = PPCSubTarget->getTargetLowering();
Dan Gohman5ea74d52009-07-31 18:16:33 +000080 SelectionDAGISel::runOnMachineFunction(MF);
Andrew Trickc416ba62010-12-24 04:28:06 +000081
Eric Christopher1b8e7632014-05-22 01:07:24 +000082 if (!PPCSubTarget->isSVR4ABI())
Bill Schmidt38d94582012-10-10 20:54:15 +000083 InsertVRSaveCode(MF);
84
Chris Lattner1678a6c2006-03-16 18:25:23 +000085 return true;
Chris Lattner45640392005-08-19 22:38:53 +000086 }
Andrew Trickc416ba62010-12-24 04:28:06 +000087
Hal Finkel4edc66b2015-01-03 01:16:37 +000088 void PreprocessISelDAG() override;
Craig Topper0d3fa922014-04-29 07:57:37 +000089 void PostprocessISelDAG() override;
Bill Schmidtf5b474c2013-02-21 00:38:25 +000090
Chris Lattner43ff01e2005-08-17 19:33:03 +000091 /// getI32Imm - Return a target constant with the specified value, of type
92 /// i32.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +000093 inline SDValue getI32Imm(unsigned Imm) {
Owen Anderson9f944592009-08-11 20:47:22 +000094 return CurDAG->getTargetConstant(Imm, MVT::i32);
Chris Lattner43ff01e2005-08-17 19:33:03 +000095 }
Chris Lattner45640392005-08-19 22:38:53 +000096
Chris Lattner97b3da12006-06-27 00:04:13 +000097 /// getI64Imm - Return a target constant with the specified value, of type
98 /// i64.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +000099 inline SDValue getI64Imm(uint64_t Imm) {
Owen Anderson9f944592009-08-11 20:47:22 +0000100 return CurDAG->getTargetConstant(Imm, MVT::i64);
Chris Lattner97b3da12006-06-27 00:04:13 +0000101 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000102
Chris Lattner97b3da12006-06-27 00:04:13 +0000103 /// getSmallIPtrImm - Return a target constant of pointer type.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000104 inline SDValue getSmallIPtrImm(unsigned Imm) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000105 return CurDAG->getTargetConstant(Imm, PPCLowering->getPointerTy());
Chris Lattner97b3da12006-06-27 00:04:13 +0000106 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000107
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000108 /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
Nate Begemand31efd12006-09-22 05:01:56 +0000109 /// with any number of 0s on either side. The 1s are allowed to wrap from
110 /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
111 /// 0x0F0F0000 is not, since all 1s are not contiguous.
112 static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
113
114
115 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
116 /// rotate and mask opcode and mask operation.
Dale Johannesen86dcae12009-11-24 01:09:07 +0000117 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
Nate Begemand31efd12006-09-22 05:01:56 +0000118 unsigned &SH, unsigned &MB, unsigned &ME);
Andrew Trickc416ba62010-12-24 04:28:06 +0000119
Chris Lattner45640392005-08-19 22:38:53 +0000120 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
121 /// base register. Return the virtual register that holds this value.
Evan Cheng61413a32006-08-26 05:34:46 +0000122 SDNode *getGlobalBaseReg();
Andrew Trickc416ba62010-12-24 04:28:06 +0000123
Hal Finkelb5e9b042014-12-11 22:51:06 +0000124 SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
125
Chris Lattner43ff01e2005-08-17 19:33:03 +0000126 // Select - Convert the specified operand from a target-independent to a
127 // target-specific node if it hasn't already been changed.
Craig Topper0d3fa922014-04-29 07:57:37 +0000128 SDNode *Select(SDNode *N) override;
Andrew Trickc416ba62010-12-24 04:28:06 +0000129
Nate Begeman93c4bc62005-08-19 00:38:14 +0000130 SDNode *SelectBitfieldInsert(SDNode *N);
Hal Finkel8adf2252014-12-16 05:51:41 +0000131 SDNode *SelectBitPermutation(SDNode *N);
Nate Begeman93c4bc62005-08-19 00:38:14 +0000132
Chris Lattner2a1823d2005-08-21 18:50:37 +0000133 /// SelectCC - Select a comparison of the specified values with the
134 /// specified condition code, returning the CR# of the expression.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000135 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
Chris Lattner2a1823d2005-08-21 18:50:37 +0000136
Nate Begeman8e6a8af2005-12-19 23:25:09 +0000137 /// SelectAddrImm - Returns true if the address N can be represented by
138 /// a base register plus a signed 16-bit displacement [r+imm].
Chris Lattner0e023ea2010-09-21 20:31:19 +0000139 bool SelectAddrImm(SDValue N, SDValue &Disp,
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000140 SDValue &Base) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000141 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
Chris Lattnera801fced2006-11-08 02:15:41 +0000142 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000143
Chris Lattner6f5840c2006-11-16 00:41:37 +0000144 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
Ulrich Weigandd1b99d32013-03-22 14:58:17 +0000145 /// immediate field. Note that the operand at this point is already the
146 /// result of a prior SelectAddressRegImm call.
Chris Lattner0e023ea2010-09-21 20:31:19 +0000147 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
Ulrich Weigandd1b99d32013-03-22 14:58:17 +0000148 if (N.getOpcode() == ISD::TargetConstant ||
Hal Finkela86b0f22012-06-21 20:10:48 +0000149 N.getOpcode() == ISD::TargetGlobalAddress) {
Hal Finkel1cc27e42012-06-19 02:34:32 +0000150 Out = N;
151 return true;
152 }
153
154 return false;
155 }
156
Nate Begeman8e6a8af2005-12-19 23:25:09 +0000157 /// SelectAddrIdx - Given the specified addressed, check to see if it can be
158 /// represented as an indexed [r+r] operation. Returns false if it can
159 /// be represented by [r+imm], which are preferred.
Chris Lattner0e023ea2010-09-21 20:31:19 +0000160 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000161 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
Chris Lattnera801fced2006-11-08 02:15:41 +0000162 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000163
Nate Begeman8e6a8af2005-12-19 23:25:09 +0000164 /// SelectAddrIdxOnly - Given the specified addressed, force it to be
165 /// represented as an indexed [r+r] operation.
Chris Lattner0e023ea2010-09-21 20:31:19 +0000166 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000167 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
Chris Lattnera801fced2006-11-08 02:15:41 +0000168 }
Chris Lattnerc5292ec2005-08-21 22:31:09 +0000169
Ulrich Weigand9d980cb2013-05-16 17:58:02 +0000170 /// SelectAddrImmX4 - Returns true if the address N can be represented by
171 /// a base register plus a signed 16-bit displacement that is a multiple of 4.
172 /// Suitable for use by STD and friends.
173 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000174 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
Chris Lattnera801fced2006-11-08 02:15:41 +0000175 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000176
Hal Finkel756810f2013-03-21 21:37:52 +0000177 // Select an address into a single register.
178 bool SelectAddr(SDValue N, SDValue &Base) {
179 Base = N;
180 return true;
181 }
182
Chris Lattnera1ec1dd2006-02-24 02:13:12 +0000183 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
Dale Johannesen4a50e682009-08-18 00:18:39 +0000184 /// inline asm expressions. It is always correct to compute the value into
185 /// a register. The case of adding a (possibly relocatable) constant to a
186 /// register can be improved, but it is wrong to substitute Reg+Reg for
187 /// Reg in an asm, because the load or store opcode would have to change.
Hal Finkeld4338382014-12-03 23:40:13 +0000188 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
Craig Topper0d3fa922014-04-29 07:57:37 +0000189 char ConstraintCode,
190 std::vector<SDValue> &OutOps) override {
Hal Finkeld4338382014-12-03 23:40:13 +0000191 // We need to make sure that this one operand does not end up in r0
192 // (because we might end up lowering this as 0(%op)).
Eric Christophercccae792015-01-30 22:02:31 +0000193 const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
Hal Finkeld4338382014-12-03 23:40:13 +0000194 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
195 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
196 SDValue NewOp =
197 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
198 SDLoc(Op), Op.getValueType(),
199 Op, RC), 0);
200
201 OutOps.push_back(NewOp);
Chris Lattnera1ec1dd2006-02-24 02:13:12 +0000202 return false;
203 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000204
Dan Gohman5ea74d52009-07-31 18:16:33 +0000205 void InsertVRSaveCode(MachineFunction &MF);
Chris Lattner1678a6c2006-03-16 18:25:23 +0000206
Craig Topper0d3fa922014-04-29 07:57:37 +0000207 const char *getPassName() const override {
Chris Lattner43ff01e2005-08-17 19:33:03 +0000208 return "PowerPC DAG->DAG Pattern Instruction Selection";
Andrew Trickc416ba62010-12-24 04:28:06 +0000209 }
210
Chris Lattner03e08ee2005-09-13 22:03:06 +0000211// Include the pieces autogenerated from the target description.
Chris Lattner0921e3b2005-10-14 23:37:35 +0000212#include "PPCGenDAGISel.inc"
Andrew Trickc416ba62010-12-24 04:28:06 +0000213
Chris Lattner259e6c72005-10-06 18:45:51 +0000214private:
Dan Gohmanea6f91f2010-01-05 01:24:18 +0000215 SDNode *SelectSETCC(SDNode *N);
Hal Finkel940ab932014-02-28 00:27:01 +0000216
217 void PeepholePPC64();
Hal Finkel4c6658f2014-12-12 23:59:36 +0000218 void PeepholePPC64ZExt();
Eric Christopher02e18042014-05-14 00:31:15 +0000219 void PeepholeCROps();
Hal Finkelb9989152014-02-28 06:11:16 +0000220
Hal Finkel4edc66b2015-01-03 01:16:37 +0000221 SDValue combineToCMPB(SDNode *N);
Hal Finkel200d2ad2015-01-05 21:10:24 +0000222 void foldBoolExts(SDValue &Res, SDNode *&N);
Hal Finkel4edc66b2015-01-03 01:16:37 +0000223
Hal Finkelb9989152014-02-28 06:11:16 +0000224 bool AllUsersSelectZero(SDNode *N);
225 void SwapAllSelectUsers(SDNode *N);
Chris Lattner43ff01e2005-08-17 19:33:03 +0000226 };
227}
228
Chris Lattner1678a6c2006-03-16 18:25:23 +0000229/// InsertVRSaveCode - Once the entire function has been instruction selected,
230/// all virtual registers are created and all machine instructions are built,
231/// check to see if we need to save/restore VRSAVE. If so, do it.
Dan Gohman5ea74d52009-07-31 18:16:33 +0000232void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
Chris Lattner02e2c182006-03-13 21:52:10 +0000233 // Check to see if this function uses vector registers, which means we have to
Andrew Trickc416ba62010-12-24 04:28:06 +0000234 // save and restore the VRSAVE register and update it with the regs we use.
Chris Lattner02e2c182006-03-13 21:52:10 +0000235 //
Dan Gohman4a618822010-02-10 16:03:48 +0000236 // In this case, there will be virtual registers of vector type created
Chris Lattner02e2c182006-03-13 21:52:10 +0000237 // by the scheduler. Detect them now.
Chris Lattner02e2c182006-03-13 21:52:10 +0000238 bool HasVectorVReg = false;
Jakob Stoklund Olesen4a7b48d2011-01-08 23:11:11 +0000239 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
240 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
241 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
Chris Lattner02e2c182006-03-13 21:52:10 +0000242 HasVectorVReg = true;
243 break;
244 }
Jakob Stoklund Olesen4a7b48d2011-01-08 23:11:11 +0000245 }
Chris Lattner1678a6c2006-03-16 18:25:23 +0000246 if (!HasVectorVReg) return; // nothing to do.
Andrew Trickc416ba62010-12-24 04:28:06 +0000247
Chris Lattner02e2c182006-03-13 21:52:10 +0000248 // If we have a vector register, we want to emit code into the entry and exit
249 // blocks to save and restore the VRSAVE register. We do this here (instead
250 // of marking all vector instructions as clobbering VRSAVE) for two reasons:
251 //
252 // 1. This (trivially) reduces the load on the register allocator, by not
253 // having to represent the live range of the VRSAVE register.
254 // 2. This (more significantly) allows us to create a temporary virtual
255 // register to hold the saved VRSAVE value, allowing this temporary to be
256 // register allocated, instead of forcing it to be spilled to the stack.
Chris Lattner1678a6c2006-03-16 18:25:23 +0000257
258 // Create two vregs - one to hold the VRSAVE register that is live-in to the
259 // function and one for the value after having bits or'd into it.
Chris Lattnera10fff52007-12-31 04:13:23 +0000260 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
261 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
Andrew Trickc416ba62010-12-24 04:28:06 +0000262
Eric Christophercccae792015-01-30 22:02:31 +0000263 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
Chris Lattner1678a6c2006-03-16 18:25:23 +0000264 MachineBasicBlock &EntryBB = *Fn.begin();
Chris Lattner6f306d72010-04-02 20:16:16 +0000265 DebugLoc dl;
Chris Lattner1678a6c2006-03-16 18:25:23 +0000266 // Emit the following code into the entry block:
267 // InVRSAVE = MFVRSAVE
268 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
269 // MTVRSAVE UpdatedVRSAVE
270 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
Dale Johannesene9f623e2009-02-13 02:27:39 +0000271 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
272 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
Chris Lattnera98c6792008-01-07 01:56:04 +0000273 UpdatedVRSAVE).addReg(InVRSAVE);
Dale Johannesene9f623e2009-02-13 02:27:39 +0000274 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
Andrew Trickc416ba62010-12-24 04:28:06 +0000275
Chris Lattner1678a6c2006-03-16 18:25:23 +0000276 // Find all return blocks, outputting a restore in each epilog.
Chris Lattner1678a6c2006-03-16 18:25:23 +0000277 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
Evan Cheng7f8e5632011-12-07 07:15:52 +0000278 if (!BB->empty() && BB->back().isReturn()) {
Chris Lattner1678a6c2006-03-16 18:25:23 +0000279 IP = BB->end(); --IP;
Andrew Trickc416ba62010-12-24 04:28:06 +0000280
Chris Lattner1678a6c2006-03-16 18:25:23 +0000281 // Skip over all terminator instructions, which are part of the return
282 // sequence.
283 MachineBasicBlock::iterator I2 = IP;
Evan Cheng7f8e5632011-12-07 07:15:52 +0000284 while (I2 != BB->begin() && (--I2)->isTerminator())
Chris Lattner1678a6c2006-03-16 18:25:23 +0000285 IP = I2;
Andrew Trickc416ba62010-12-24 04:28:06 +0000286
Chris Lattner1678a6c2006-03-16 18:25:23 +0000287 // Emit: MTVRSAVE InVRSave
Dale Johannesene9f623e2009-02-13 02:27:39 +0000288 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
Andrew Trickc416ba62010-12-24 04:28:06 +0000289 }
Chris Lattner02e2c182006-03-13 21:52:10 +0000290 }
Chris Lattner259e6c72005-10-06 18:45:51 +0000291}
Chris Lattner8ae95252005-09-03 01:17:22 +0000292
Chris Lattner1678a6c2006-03-16 18:25:23 +0000293
Chris Lattner45640392005-08-19 22:38:53 +0000294/// getGlobalBaseReg - Output the instructions required to put the
295/// base address to use for accessing globals into a register.
296///
Evan Cheng61413a32006-08-26 05:34:46 +0000297SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
Chris Lattner45640392005-08-19 22:38:53 +0000298 if (!GlobalBaseReg) {
Eric Christophercccae792015-01-30 22:02:31 +0000299 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
Chris Lattner45640392005-08-19 22:38:53 +0000300 // Insert the set of GlobalBaseReg into the first MBB of the function
Dan Gohmanfca89682009-08-15 02:07:36 +0000301 MachineBasicBlock &FirstMBB = MF->front();
Chris Lattner45640392005-08-19 22:38:53 +0000302 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000303 const Module *M = MF->getFunction()->getParent();
Chris Lattner6f306d72010-04-02 20:16:16 +0000304 DebugLoc dl;
Chris Lattner97b3da12006-06-27 00:04:13 +0000305
Eric Christopher1b8e7632014-05-22 01:07:24 +0000306 if (PPCLowering->getPointerTy() == MVT::i32) {
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000307 if (PPCSubTarget->isTargetELF()) {
Hal Finkel3ee2af72014-07-18 23:29:49 +0000308 GlobalBaseReg = PPC::R30;
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000309 if (M->getPICLevel() == PICLevel::Small) {
310 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
311 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
Justin Hibbits98a532d2015-01-08 15:47:19 +0000312 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000313 } else {
314 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
315 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
316 unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
317 BuildMI(FirstMBB, MBBI, dl,
318 TII.get(PPC::UpdateGBR)).addReg(GlobalBaseReg)
319 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
320 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
321 }
322 } else {
Hal Finkel3ee2af72014-07-18 23:29:49 +0000323 GlobalBaseReg =
324 RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000325 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
326 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
Hal Finkel3ee2af72014-07-18 23:29:49 +0000327 }
Chris Lattnerb5429252006-11-14 18:43:11 +0000328 } else {
Hal Finkel6daf2aa2014-03-06 01:28:23 +0000329 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
Cameron Zwarichdadd7332011-05-19 02:56:28 +0000330 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
Dale Johannesene9f623e2009-02-13 02:27:39 +0000331 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
Chris Lattnerb5429252006-11-14 18:43:11 +0000332 }
Chris Lattner45640392005-08-19 22:38:53 +0000333 }
Gabor Greif81d6a382008-08-31 15:37:04 +0000334 return CurDAG->getRegister(GlobalBaseReg,
Eric Christopher1b8e7632014-05-22 01:07:24 +0000335 PPCLowering->getPointerTy()).getNode();
Chris Lattner97b3da12006-06-27 00:04:13 +0000336}
337
338/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
339/// or 64-bit immediate, and if the value can be accurately represented as a
340/// sign extension from a 16-bit value. If so, this returns true and the
341/// immediate.
342static bool isIntS16Immediate(SDNode *N, short &Imm) {
343 if (N->getOpcode() != ISD::Constant)
344 return false;
345
Dan Gohmaneffb8942008-09-12 16:56:44 +0000346 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
Owen Anderson9f944592009-08-11 20:47:22 +0000347 if (N->getValueType(0) == MVT::i32)
Dan Gohmaneffb8942008-09-12 16:56:44 +0000348 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
Chris Lattner97b3da12006-06-27 00:04:13 +0000349 else
Dan Gohmaneffb8942008-09-12 16:56:44 +0000350 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
Chris Lattner97b3da12006-06-27 00:04:13 +0000351}
352
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000353static bool isIntS16Immediate(SDValue Op, short &Imm) {
Gabor Greiff304a7a2008-08-28 21:40:38 +0000354 return isIntS16Immediate(Op.getNode(), Imm);
Chris Lattner45640392005-08-19 22:38:53 +0000355}
356
357
Chris Lattner97b3da12006-06-27 00:04:13 +0000358/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
359/// operand. If so Imm will receive the 32-bit value.
360static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
Owen Anderson9f944592009-08-11 20:47:22 +0000361 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
Dan Gohmaneffb8942008-09-12 16:56:44 +0000362 Imm = cast<ConstantSDNode>(N)->getZExtValue();
Nate Begeman72d6f882005-08-18 05:00:13 +0000363 return true;
364 }
365 return false;
366}
367
Chris Lattner97b3da12006-06-27 00:04:13 +0000368/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
369/// operand. If so Imm will receive the 64-bit value.
370static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
Owen Anderson9f944592009-08-11 20:47:22 +0000371 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
Dan Gohmaneffb8942008-09-12 16:56:44 +0000372 Imm = cast<ConstantSDNode>(N)->getZExtValue();
Chris Lattner97b3da12006-06-27 00:04:13 +0000373 return true;
374 }
375 return false;
376}
377
378// isInt32Immediate - This method tests to see if a constant operand.
379// If so Imm will receive the 32 bit value.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000380static bool isInt32Immediate(SDValue N, unsigned &Imm) {
Gabor Greiff304a7a2008-08-28 21:40:38 +0000381 return isInt32Immediate(N.getNode(), Imm);
Chris Lattner97b3da12006-06-27 00:04:13 +0000382}
383
384
385// isOpcWithIntImmediate - This method tests to see if the node is a specific
386// opcode and that it has a immediate integer right operand.
387// If so Imm will receive the 32 bit value.
388static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
Gabor Greif81d6a382008-08-31 15:37:04 +0000389 return N->getOpcode() == Opc
390 && isInt32Immediate(N->getOperand(1).getNode(), Imm);
Chris Lattner97b3da12006-06-27 00:04:13 +0000391}
392
Hal Finkelb5e9b042014-12-11 22:51:06 +0000393SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
394 SDLoc dl(SN);
395 int FI = cast<FrameIndexSDNode>(N)->getIndex();
396 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
397 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
398 if (SN->hasOneUse())
399 return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
400 getSmallIPtrImm(Offset));
401 return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
402 getSmallIPtrImm(Offset));
403}
404
Nate Begemand31efd12006-09-22 05:01:56 +0000405bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
Hal Finkelff3ea802013-07-11 16:31:51 +0000406 if (!Val)
407 return false;
408
Nate Begemanb3821a32005-08-18 07:30:46 +0000409 if (isShiftedMask_32(Val)) {
410 // look for the first non-zero bit
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000411 MB = countLeadingZeros(Val);
Nate Begemanb3821a32005-08-18 07:30:46 +0000412 // look for the first zero bit after the run of ones
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000413 ME = countLeadingZeros((Val - 1) ^ Val);
Nate Begemanb3821a32005-08-18 07:30:46 +0000414 return true;
Chris Lattner666512c2005-08-25 04:47:18 +0000415 } else {
416 Val = ~Val; // invert mask
417 if (isShiftedMask_32(Val)) {
418 // effectively look for the first zero bit
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000419 ME = countLeadingZeros(Val) - 1;
Chris Lattner666512c2005-08-25 04:47:18 +0000420 // effectively look for the first one bit after the run of zeros
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000421 MB = countLeadingZeros((Val - 1) ^ Val) + 1;
Chris Lattner666512c2005-08-25 04:47:18 +0000422 return true;
423 }
Nate Begemanb3821a32005-08-18 07:30:46 +0000424 }
425 // no run present
426 return false;
427}
428
Andrew Trickc416ba62010-12-24 04:28:06 +0000429bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
430 bool isShiftMask, unsigned &SH,
Nate Begemand31efd12006-09-22 05:01:56 +0000431 unsigned &MB, unsigned &ME) {
Nate Begeman92e77502005-10-19 00:05:37 +0000432 // Don't even go down this path for i64, since different logic will be
433 // necessary for rldicl/rldicr/rldimi.
Owen Anderson9f944592009-08-11 20:47:22 +0000434 if (N->getValueType(0) != MVT::i32)
Nate Begeman92e77502005-10-19 00:05:37 +0000435 return false;
436
Nate Begemanb3821a32005-08-18 07:30:46 +0000437 unsigned Shift = 32;
438 unsigned Indeterminant = ~0; // bit mask marking indeterminant results
439 unsigned Opcode = N->getOpcode();
Chris Lattnere413b602005-08-30 00:59:16 +0000440 if (N->getNumOperands() != 2 ||
Gabor Greiff304a7a2008-08-28 21:40:38 +0000441 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
Nate Begemanb3821a32005-08-18 07:30:46 +0000442 return false;
Andrew Trickc416ba62010-12-24 04:28:06 +0000443
Nate Begemanb3821a32005-08-18 07:30:46 +0000444 if (Opcode == ISD::SHL) {
445 // apply shift left to mask if it comes first
Dale Johannesen86dcae12009-11-24 01:09:07 +0000446 if (isShiftMask) Mask = Mask << Shift;
Nate Begemanb3821a32005-08-18 07:30:46 +0000447 // determine which bits are made indeterminant by shift
448 Indeterminant = ~(0xFFFFFFFFu << Shift);
Andrew Trickc416ba62010-12-24 04:28:06 +0000449 } else if (Opcode == ISD::SRL) {
Nate Begemanb3821a32005-08-18 07:30:46 +0000450 // apply shift right to mask if it comes first
Dale Johannesen86dcae12009-11-24 01:09:07 +0000451 if (isShiftMask) Mask = Mask >> Shift;
Nate Begemanb3821a32005-08-18 07:30:46 +0000452 // determine which bits are made indeterminant by shift
453 Indeterminant = ~(0xFFFFFFFFu >> Shift);
454 // adjust for the left rotate
455 Shift = 32 - Shift;
Nate Begemand31efd12006-09-22 05:01:56 +0000456 } else if (Opcode == ISD::ROTL) {
457 Indeterminant = 0;
Nate Begemanb3821a32005-08-18 07:30:46 +0000458 } else {
459 return false;
460 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000461
Nate Begemanb3821a32005-08-18 07:30:46 +0000462 // if the mask doesn't intersect any Indeterminant bits
463 if (Mask && !(Mask & Indeterminant)) {
Chris Lattnera2963392006-05-12 16:29:37 +0000464 SH = Shift & 31;
Nate Begemanb3821a32005-08-18 07:30:46 +0000465 // make sure the mask is still a mask (wrap arounds may not be)
466 return isRunOfOnes(Mask, MB, ME);
467 }
468 return false;
469}
470
Nate Begeman93c4bc62005-08-19 00:38:14 +0000471/// SelectBitfieldInsert - turn an or of two masked values into
472/// the rotate left word immediate then mask insert (rlwimi) instruction.
Nate Begeman0b71e002005-10-18 00:28:58 +0000473SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000474 SDValue Op0 = N->getOperand(0);
475 SDValue Op1 = N->getOperand(1);
Andrew Trickef9de2a2013-05-25 02:42:55 +0000476 SDLoc dl(N);
Andrew Trickc416ba62010-12-24 04:28:06 +0000477
Dan Gohmanf19609a2008-02-27 01:23:58 +0000478 APInt LKZ, LKO, RKZ, RKO;
Jay Foada0653a32014-05-14 21:14:37 +0000479 CurDAG->computeKnownBits(Op0, LKZ, LKO);
480 CurDAG->computeKnownBits(Op1, RKZ, RKO);
Andrew Trickc416ba62010-12-24 04:28:06 +0000481
Dan Gohmanf19609a2008-02-27 01:23:58 +0000482 unsigned TargetMask = LKZ.getZExtValue();
483 unsigned InsertMask = RKZ.getZExtValue();
Andrew Trickc416ba62010-12-24 04:28:06 +0000484
Nate Begeman9b6d4c22006-05-08 17:38:32 +0000485 if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
486 unsigned Op0Opc = Op0.getOpcode();
487 unsigned Op1Opc = Op1.getOpcode();
488 unsigned Value, SH = 0;
489 TargetMask = ~TargetMask;
490 InsertMask = ~InsertMask;
Nate Begeman1333cea2006-05-07 00:23:38 +0000491
Nate Begeman9b6d4c22006-05-08 17:38:32 +0000492 // If the LHS has a foldable shift and the RHS does not, then swap it to the
493 // RHS so that we can fold the shift into the insert.
Nate Begeman1333cea2006-05-07 00:23:38 +0000494 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
495 if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
496 Op0.getOperand(0).getOpcode() == ISD::SRL) {
497 if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
498 Op1.getOperand(0).getOpcode() != ISD::SRL) {
499 std::swap(Op0, Op1);
500 std::swap(Op0Opc, Op1Opc);
Nate Begeman9b6d4c22006-05-08 17:38:32 +0000501 std::swap(TargetMask, InsertMask);
Nate Begeman1333cea2006-05-07 00:23:38 +0000502 }
Nate Begeman93c4bc62005-08-19 00:38:14 +0000503 }
Nate Begeman9b6d4c22006-05-08 17:38:32 +0000504 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
505 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
506 Op1.getOperand(0).getOpcode() != ISD::SRL) {
507 std::swap(Op0, Op1);
508 std::swap(Op0Opc, Op1Opc);
509 std::swap(TargetMask, InsertMask);
510 }
Nate Begeman93c4bc62005-08-19 00:38:14 +0000511 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000512
Nate Begeman1333cea2006-05-07 00:23:38 +0000513 unsigned MB, ME;
Hal Finkelff3ea802013-07-11 16:31:51 +0000514 if (isRunOfOnes(InsertMask, MB, ME)) {
Dale Johannesen8495a502009-11-20 22:16:40 +0000515 SDValue Tmp1, Tmp2;
Nate Begeman1333cea2006-05-07 00:23:38 +0000516
517 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
Chris Lattner97b3da12006-06-27 00:04:13 +0000518 isInt32Immediate(Op1.getOperand(1), Value)) {
Nate Begeman1333cea2006-05-07 00:23:38 +0000519 Op1 = Op1.getOperand(0);
520 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
521 }
522 if (Op1Opc == ISD::AND) {
Hal Finkeld9963c72014-04-13 17:10:58 +0000523 // The AND mask might not be a constant, and we need to make sure that
524 // if we're going to fold the masking with the insert, all bits not
525 // know to be zero in the mask are known to be one.
526 APInt MKZ, MKO;
Jay Foada0653a32014-05-14 21:14:37 +0000527 CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
Hal Finkeld9963c72014-04-13 17:10:58 +0000528 bool CanFoldMask = InsertMask == MKO.getZExtValue();
529
Nate Begeman1333cea2006-05-07 00:23:38 +0000530 unsigned SHOpc = Op1.getOperand(0).getOpcode();
Hal Finkeld9963c72014-04-13 17:10:58 +0000531 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
Chris Lattner97b3da12006-06-27 00:04:13 +0000532 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
Eric Christopher02e18042014-05-14 00:31:15 +0000533 // Note that Value must be in range here (less than 32) because
534 // otherwise there would not be any bits set in InsertMask.
Nate Begeman1333cea2006-05-07 00:23:38 +0000535 Op1 = Op1.getOperand(0).getOperand(0);
536 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
Nate Begeman1333cea2006-05-07 00:23:38 +0000537 }
538 }
Dale Johannesen8495a502009-11-20 22:16:40 +0000539
Chris Lattnera2963392006-05-12 16:29:37 +0000540 SH &= 31;
Dale Johannesen8495a502009-11-20 22:16:40 +0000541 SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
Evan Chengc3acfc02006-08-27 08:14:06 +0000542 getI32Imm(ME) };
Michael Liaob53d8962013-04-19 22:22:57 +0000543 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
Nate Begeman93c4bc62005-08-19 00:38:14 +0000544 }
Nate Begeman93c4bc62005-08-19 00:38:14 +0000545 }
Craig Topper062a2ba2014-04-25 05:30:21 +0000546 return nullptr;
Nate Begeman93c4bc62005-08-19 00:38:14 +0000547}
548
Hal Finkelc58ce412015-01-01 02:53:29 +0000549// Predict the number of instructions that would be generated by calling
550// SelectInt64(N).
Hal Finkelca6375f2015-01-04 12:35:03 +0000551static unsigned SelectInt64CountDirect(int64_t Imm) {
Hal Finkelc58ce412015-01-01 02:53:29 +0000552 // Assume no remaining bits.
553 unsigned Remainder = 0;
554 // Assume no shift required.
555 unsigned Shift = 0;
556
557 // If it can't be represented as a 32 bit value.
558 if (!isInt<32>(Imm)) {
559 Shift = countTrailingZeros<uint64_t>(Imm);
560 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
561
562 // If the shifted value fits 32 bits.
563 if (isInt<32>(ImmSh)) {
564 // Go with the shifted value.
565 Imm = ImmSh;
566 } else {
567 // Still stuck with a 64 bit value.
568 Remainder = Imm;
569 Shift = 32;
570 Imm >>= 32;
571 }
572 }
573
574 // Intermediate operand.
575 unsigned Result = 0;
576
577 // Handle first 32 bits.
578 unsigned Lo = Imm & 0xFFFF;
579 unsigned Hi = (Imm >> 16) & 0xFFFF;
580
581 // Simple value.
582 if (isInt<16>(Imm)) {
583 // Just the Lo bits.
584 ++Result;
585 } else if (Lo) {
586 // Handle the Hi bits and Lo bits.
587 Result += 2;
588 } else {
589 // Just the Hi bits.
590 ++Result;
591 }
592
593 // If no shift, we're done.
594 if (!Shift) return Result;
595
596 // Shift for next step if the upper 32-bits were not zero.
597 if (Imm)
598 ++Result;
599
600 // Add in the last bits as required.
601 if ((Hi = (Remainder >> 16) & 0xFFFF))
602 ++Result;
603 if ((Lo = Remainder & 0xFFFF))
604 ++Result;
605
606 return Result;
607}
608
Hal Finkel241ba792015-01-04 15:43:55 +0000609static uint64_t Rot64(uint64_t Imm, unsigned R) {
610 return (Imm << R) | (Imm >> (64 - R));
611}
612
Hal Finkelca6375f2015-01-04 12:35:03 +0000613static unsigned SelectInt64Count(int64_t Imm) {
Hal Finkel241ba792015-01-04 15:43:55 +0000614 unsigned Count = SelectInt64CountDirect(Imm);
Hal Finkel2f618792015-01-05 03:41:38 +0000615 if (Count == 1)
616 return Count;
Hal Finkelca6375f2015-01-04 12:35:03 +0000617
Hal Finkel241ba792015-01-04 15:43:55 +0000618 for (unsigned r = 1; r < 63; ++r) {
Hal Finkel2f618792015-01-05 03:41:38 +0000619 uint64_t RImm = Rot64(Imm, r);
620 unsigned RCount = SelectInt64CountDirect(RImm) + 1;
621 Count = std::min(Count, RCount);
622
623 // See comments in SelectInt64 for an explanation of the logic below.
624 unsigned LS = findLastSet(RImm);
625 if (LS != r-1)
626 continue;
627
628 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
629 uint64_t RImmWithOnes = RImm | OnesMask;
630
631 RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
Hal Finkel241ba792015-01-04 15:43:55 +0000632 Count = std::min(Count, RCount);
633 }
Hal Finkelca6375f2015-01-04 12:35:03 +0000634
Hal Finkel241ba792015-01-04 15:43:55 +0000635 return Count;
Hal Finkelca6375f2015-01-04 12:35:03 +0000636}
637
Hal Finkelc58ce412015-01-01 02:53:29 +0000638// Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count
639// (above) needs to be kept in sync with this function.
Hal Finkelca6375f2015-01-04 12:35:03 +0000640static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
Hal Finkelc58ce412015-01-01 02:53:29 +0000641 // Assume no remaining bits.
642 unsigned Remainder = 0;
643 // Assume no shift required.
644 unsigned Shift = 0;
645
646 // If it can't be represented as a 32 bit value.
647 if (!isInt<32>(Imm)) {
648 Shift = countTrailingZeros<uint64_t>(Imm);
649 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
650
651 // If the shifted value fits 32 bits.
652 if (isInt<32>(ImmSh)) {
653 // Go with the shifted value.
654 Imm = ImmSh;
655 } else {
656 // Still stuck with a 64 bit value.
657 Remainder = Imm;
658 Shift = 32;
659 Imm >>= 32;
660 }
661 }
662
663 // Intermediate operand.
664 SDNode *Result;
665
666 // Handle first 32 bits.
667 unsigned Lo = Imm & 0xFFFF;
668 unsigned Hi = (Imm >> 16) & 0xFFFF;
669
670 auto getI32Imm = [CurDAG](unsigned Imm) {
671 return CurDAG->getTargetConstant(Imm, MVT::i32);
672 };
673
674 // Simple value.
675 if (isInt<16>(Imm)) {
676 // Just the Lo bits.
677 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
678 } else if (Lo) {
679 // Handle the Hi bits.
680 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
681 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
682 // And Lo bits.
683 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
684 SDValue(Result, 0), getI32Imm(Lo));
685 } else {
686 // Just the Hi bits.
687 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
688 }
689
690 // If no shift, we're done.
691 if (!Shift) return Result;
692
693 // Shift for next step if the upper 32-bits were not zero.
694 if (Imm) {
695 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
696 SDValue(Result, 0),
697 getI32Imm(Shift),
698 getI32Imm(63 - Shift));
699 }
700
701 // Add in the last bits as required.
702 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
703 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
704 SDValue(Result, 0), getI32Imm(Hi));
705 }
706 if ((Lo = Remainder & 0xFFFF)) {
707 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
708 SDValue(Result, 0), getI32Imm(Lo));
709 }
710
711 return Result;
712}
713
Hal Finkelca6375f2015-01-04 12:35:03 +0000714static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
Hal Finkel241ba792015-01-04 15:43:55 +0000715 unsigned Count = SelectInt64CountDirect(Imm);
Hal Finkel2f618792015-01-05 03:41:38 +0000716 if (Count == 1)
717 return SelectInt64Direct(CurDAG, dl, Imm);
718
Hal Finkel241ba792015-01-04 15:43:55 +0000719 unsigned RMin = 0;
Hal Finkelca6375f2015-01-04 12:35:03 +0000720
Hal Finkel2f618792015-01-05 03:41:38 +0000721 int64_t MatImm;
722 unsigned MaskEnd;
723
Hal Finkel241ba792015-01-04 15:43:55 +0000724 for (unsigned r = 1; r < 63; ++r) {
Hal Finkel2f618792015-01-05 03:41:38 +0000725 uint64_t RImm = Rot64(Imm, r);
726 unsigned RCount = SelectInt64CountDirect(RImm) + 1;
Hal Finkel241ba792015-01-04 15:43:55 +0000727 if (RCount < Count) {
728 Count = RCount;
729 RMin = r;
Hal Finkel2f618792015-01-05 03:41:38 +0000730 MatImm = RImm;
731 MaskEnd = 63;
732 }
733
734 // If the immediate to generate has many trailing zeros, it might be
735 // worthwhile to generate a rotated value with too many leading ones
736 // (because that's free with li/lis's sign-extension semantics), and then
737 // mask them off after rotation.
738
739 unsigned LS = findLastSet(RImm);
740 // We're adding (63-LS) higher-order ones, and we expect to mask them off
741 // after performing the inverse rotation by (64-r). So we need that:
742 // 63-LS == 64-r => LS == r-1
743 if (LS != r-1)
744 continue;
745
746 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
747 uint64_t RImmWithOnes = RImm | OnesMask;
748
749 RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
750 if (RCount < Count) {
751 Count = RCount;
752 RMin = r;
753 MatImm = RImmWithOnes;
754 MaskEnd = LS;
Hal Finkel241ba792015-01-04 15:43:55 +0000755 }
Hal Finkelca6375f2015-01-04 12:35:03 +0000756 }
757
Hal Finkel241ba792015-01-04 15:43:55 +0000758 if (!RMin)
759 return SelectInt64Direct(CurDAG, dl, Imm);
760
761 auto getI32Imm = [CurDAG](unsigned Imm) {
762 return CurDAG->getTargetConstant(Imm, MVT::i32);
763 };
764
Hal Finkel2f618792015-01-05 03:41:38 +0000765 SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0);
766 return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
767 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
Hal Finkelca6375f2015-01-04 12:35:03 +0000768}
769
Hal Finkelc58ce412015-01-01 02:53:29 +0000770// Select a 64-bit constant.
771static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) {
772 SDLoc dl(N);
773
774 // Get 64 bit value.
775 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
776 return SelectInt64(CurDAG, dl, Imm);
777}
778
Hal Finkel8adf2252014-12-16 05:51:41 +0000779namespace {
780class BitPermutationSelector {
781 struct ValueBit {
782 SDValue V;
783
784 // The bit number in the value, using a convention where bit 0 is the
785 // lowest-order bit.
786 unsigned Idx;
787
788 enum Kind {
789 ConstZero,
790 Variable
791 } K;
792
793 ValueBit(SDValue V, unsigned I, Kind K = Variable)
794 : V(V), Idx(I), K(K) {}
795 ValueBit(Kind K = Variable)
796 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
797
798 bool isZero() const {
799 return K == ConstZero;
800 }
801
802 bool hasValue() const {
803 return K == Variable;
804 }
805
806 SDValue getValue() const {
807 assert(hasValue() && "Cannot get the value of a constant bit");
808 return V;
809 }
810
811 unsigned getValueBitIndex() const {
812 assert(hasValue() && "Cannot get the value bit index of a constant bit");
813 return Idx;
814 }
815 };
816
817 // A bit group has the same underlying value and the same rotate factor.
818 struct BitGroup {
819 SDValue V;
820 unsigned RLAmt;
821 unsigned StartIdx, EndIdx;
822
Hal Finkelc58ce412015-01-01 02:53:29 +0000823 // This rotation amount assumes that the lower 32 bits of the quantity are
824 // replicated in the high 32 bits by the rotation operator (which is done
825 // by rlwinm and friends in 64-bit mode).
826 bool Repl32;
827 // Did converting to Repl32 == true change the rotation factor? If it did,
828 // it decreased it by 32.
829 bool Repl32CR;
830 // Was this group coalesced after setting Repl32 to true?
831 bool Repl32Coalesced;
832
Hal Finkel8adf2252014-12-16 05:51:41 +0000833 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
Hal Finkelc58ce412015-01-01 02:53:29 +0000834 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
835 Repl32Coalesced(false) {
Hal Finkel8adf2252014-12-16 05:51:41 +0000836 DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
837 " [" << S << ", " << E << "]\n");
838 }
839 };
840
841 // Information on each (Value, RLAmt) pair (like the number of groups
842 // associated with each) used to choose the lowering method.
843 struct ValueRotInfo {
844 SDValue V;
845 unsigned RLAmt;
846 unsigned NumGroups;
847 unsigned FirstGroupStartIdx;
Hal Finkelc58ce412015-01-01 02:53:29 +0000848 bool Repl32;
Hal Finkel8adf2252014-12-16 05:51:41 +0000849
850 ValueRotInfo()
Hal Finkelc58ce412015-01-01 02:53:29 +0000851 : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
852 Repl32(false) {}
Hal Finkel8adf2252014-12-16 05:51:41 +0000853
854 // For sorting (in reverse order) by NumGroups, and then by
855 // FirstGroupStartIdx.
856 bool operator < (const ValueRotInfo &Other) const {
Hal Finkelc58ce412015-01-01 02:53:29 +0000857 // We need to sort so that the non-Repl32 come first because, when we're
858 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
859 // masking operation.
860 if (Repl32 < Other.Repl32)
861 return true;
862 else if (Repl32 > Other.Repl32)
863 return false;
864 else if (NumGroups > Other.NumGroups)
Hal Finkel8adf2252014-12-16 05:51:41 +0000865 return true;
866 else if (NumGroups < Other.NumGroups)
867 return false;
868 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
869 return true;
870 return false;
871 }
872 };
873
874 // Return true if something interesting was deduced, return false if we're
875 // providing only a generic representation of V (or something else likewise
876 // uninteresting for instruction selection).
877 bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
878 switch (V.getOpcode()) {
879 default: break;
880 case ISD::ROTL:
881 if (isa<ConstantSDNode>(V.getOperand(1))) {
882 unsigned RotAmt = V.getConstantOperandVal(1);
883
884 SmallVector<ValueBit, 64> LHSBits(Bits.size());
885 getValueBits(V.getOperand(0), LHSBits);
886
887 for (unsigned i = 0; i < Bits.size(); ++i)
888 Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
889
890 return true;
891 }
892 break;
893 case ISD::SHL:
894 if (isa<ConstantSDNode>(V.getOperand(1))) {
895 unsigned ShiftAmt = V.getConstantOperandVal(1);
896
897 SmallVector<ValueBit, 64> LHSBits(Bits.size());
898 getValueBits(V.getOperand(0), LHSBits);
899
900 for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
901 Bits[i] = LHSBits[i - ShiftAmt];
902
903 for (unsigned i = 0; i < ShiftAmt; ++i)
904 Bits[i] = ValueBit(ValueBit::ConstZero);
905
906 return true;
907 }
908 break;
909 case ISD::SRL:
910 if (isa<ConstantSDNode>(V.getOperand(1))) {
911 unsigned ShiftAmt = V.getConstantOperandVal(1);
912
913 SmallVector<ValueBit, 64> LHSBits(Bits.size());
914 getValueBits(V.getOperand(0), LHSBits);
915
916 for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
917 Bits[i] = LHSBits[i + ShiftAmt];
918
919 for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
920 Bits[i] = ValueBit(ValueBit::ConstZero);
921
922 return true;
923 }
924 break;
925 case ISD::AND:
926 if (isa<ConstantSDNode>(V.getOperand(1))) {
927 uint64_t Mask = V.getConstantOperandVal(1);
928
929 SmallVector<ValueBit, 64> LHSBits(Bits.size());
930 bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
931
932 for (unsigned i = 0; i < Bits.size(); ++i)
933 if (((Mask >> i) & 1) == 1)
934 Bits[i] = LHSBits[i];
935 else
936 Bits[i] = ValueBit(ValueBit::ConstZero);
937
938 // Mark this as interesting, only if the LHS was also interesting. This
939 // prevents the overall procedure from matching a single immediate 'and'
940 // (which is non-optimal because such an and might be folded with other
941 // things if we don't select it here).
942 return LHSTrivial;
943 }
944 break;
945 case ISD::OR: {
946 SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
947 getValueBits(V.getOperand(0), LHSBits);
948 getValueBits(V.getOperand(1), RHSBits);
949
950 bool AllDisjoint = true;
951 for (unsigned i = 0; i < Bits.size(); ++i)
952 if (LHSBits[i].isZero())
953 Bits[i] = RHSBits[i];
954 else if (RHSBits[i].isZero())
955 Bits[i] = LHSBits[i];
956 else {
957 AllDisjoint = false;
958 break;
959 }
960
961 if (!AllDisjoint)
962 break;
963
964 return true;
965 }
966 }
967
968 for (unsigned i = 0; i < Bits.size(); ++i)
969 Bits[i] = ValueBit(V, i);
970
971 return false;
972 }
973
974 // For each value (except the constant ones), compute the left-rotate amount
975 // to get it from its original to final position.
976 void computeRotationAmounts() {
977 HasZeros = false;
978 RLAmt.resize(Bits.size());
979 for (unsigned i = 0; i < Bits.size(); ++i)
980 if (Bits[i].hasValue()) {
981 unsigned VBI = Bits[i].getValueBitIndex();
982 if (i >= VBI)
983 RLAmt[i] = i - VBI;
984 else
985 RLAmt[i] = Bits.size() - (VBI - i);
986 } else if (Bits[i].isZero()) {
987 HasZeros = true;
988 RLAmt[i] = UINT32_MAX;
989 } else {
990 llvm_unreachable("Unknown value bit type");
991 }
992 }
993
994 // Collect groups of consecutive bits with the same underlying value and
Hal Finkelc58ce412015-01-01 02:53:29 +0000995 // rotation factor. If we're doing late masking, we ignore zeros, otherwise
996 // they break up groups.
997 void collectBitGroups(bool LateMask) {
Hal Finkel8adf2252014-12-16 05:51:41 +0000998 BitGroups.clear();
999
1000 unsigned LastRLAmt = RLAmt[0];
1001 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1002 unsigned LastGroupStartIdx = 0;
1003 for (unsigned i = 1; i < Bits.size(); ++i) {
1004 unsigned ThisRLAmt = RLAmt[i];
1005 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
Hal Finkelc58ce412015-01-01 02:53:29 +00001006 if (LateMask && !ThisValue) {
1007 ThisValue = LastValue;
1008 ThisRLAmt = LastRLAmt;
1009 // If we're doing late masking, then the first bit group always starts
1010 // at zero (even if the first bits were zero).
1011 if (BitGroups.empty())
1012 LastGroupStartIdx = 0;
1013 }
Hal Finkel8adf2252014-12-16 05:51:41 +00001014
1015 // If this bit has the same underlying value and the same rotate factor as
1016 // the last one, then they're part of the same group.
1017 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1018 continue;
1019
1020 if (LastValue.getNode())
1021 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1022 i-1));
1023 LastRLAmt = ThisRLAmt;
1024 LastValue = ThisValue;
1025 LastGroupStartIdx = i;
1026 }
1027 if (LastValue.getNode())
1028 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1029 Bits.size()-1));
1030
1031 if (BitGroups.empty())
1032 return;
1033
1034 // We might be able to combine the first and last groups.
1035 if (BitGroups.size() > 1) {
1036 // If the first and last groups are the same, then remove the first group
1037 // in favor of the last group, making the ending index of the last group
1038 // equal to the ending index of the to-be-removed first group.
1039 if (BitGroups[0].StartIdx == 0 &&
1040 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1041 BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1042 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
Hal Finkelc58ce412015-01-01 02:53:29 +00001043 DEBUG(dbgs() << "\tcombining final bit group with inital one\n");
Hal Finkel8adf2252014-12-16 05:51:41 +00001044 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1045 BitGroups.erase(BitGroups.begin());
1046 }
1047 }
1048 }
1049
1050 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1051 // associated with each. If there is a degeneracy, pick the one that occurs
1052 // first (in the final value).
1053 void collectValueRotInfo() {
1054 ValueRots.clear();
1055
1056 for (auto &BG : BitGroups) {
Hal Finkelc58ce412015-01-01 02:53:29 +00001057 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1058 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
Hal Finkel8adf2252014-12-16 05:51:41 +00001059 VRI.V = BG.V;
1060 VRI.RLAmt = BG.RLAmt;
Hal Finkelc58ce412015-01-01 02:53:29 +00001061 VRI.Repl32 = BG.Repl32;
Hal Finkel8adf2252014-12-16 05:51:41 +00001062 VRI.NumGroups += 1;
1063 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1064 }
1065
1066 // Now that we've collected the various ValueRotInfo instances, we need to
1067 // sort them.
1068 ValueRotsVec.clear();
1069 for (auto &I : ValueRots) {
1070 ValueRotsVec.push_back(I.second);
1071 }
1072 std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
1073 }
1074
Hal Finkelc58ce412015-01-01 02:53:29 +00001075 // In 64-bit mode, rlwinm and friends have a rotation operator that
1076 // replicates the low-order 32 bits into the high-order 32-bits. The mask
1077 // indices of these instructions can only be in the lower 32 bits, so they
1078 // can only represent some 64-bit bit groups. However, when they can be used,
1079 // the 32-bit replication can be used to represent, as a single bit group,
1080 // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1081 // groups when possible. Returns true if any of the bit groups were
1082 // converted.
1083 void assignRepl32BitGroups() {
1084 // If we have bits like this:
1085 //
1086 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1087 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
1088 // Groups: | RLAmt = 8 | RLAmt = 40 |
1089 //
1090 // But, making use of a 32-bit operation that replicates the low-order 32
1091 // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1092 // of 8.
1093
1094 auto IsAllLow32 = [this](BitGroup & BG) {
1095 if (BG.StartIdx <= BG.EndIdx) {
1096 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1097 if (!Bits[i].hasValue())
1098 continue;
1099 if (Bits[i].getValueBitIndex() >= 32)
1100 return false;
1101 }
1102 } else {
1103 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1104 if (!Bits[i].hasValue())
1105 continue;
1106 if (Bits[i].getValueBitIndex() >= 32)
1107 return false;
1108 }
1109 for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1110 if (!Bits[i].hasValue())
1111 continue;
1112 if (Bits[i].getValueBitIndex() >= 32)
1113 return false;
1114 }
1115 }
1116
1117 return true;
1118 };
1119
1120 for (auto &BG : BitGroups) {
1121 if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1122 if (IsAllLow32(BG)) {
1123 if (BG.RLAmt >= 32) {
1124 BG.RLAmt -= 32;
1125 BG.Repl32CR = true;
1126 }
1127
1128 BG.Repl32 = true;
1129
1130 DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
1131 BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
1132 " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1133 }
1134 }
1135 }
1136
1137 // Now walk through the bit groups, consolidating where possible.
1138 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1139 // We might want to remove this bit group by merging it with the previous
1140 // group (which might be the ending group).
1141 auto IP = (I == BitGroups.begin()) ?
1142 std::prev(BitGroups.end()) : std::prev(I);
1143 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1144 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1145
1146 DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
1147 I->V.getNode() << " RLAmt = " << I->RLAmt <<
1148 " [" << I->StartIdx << ", " << I->EndIdx <<
1149 "] with group with range [" <<
1150 IP->StartIdx << ", " << IP->EndIdx << "]\n");
1151
1152 IP->EndIdx = I->EndIdx;
1153 IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1154 IP->Repl32Coalesced = true;
1155 I = BitGroups.erase(I);
1156 continue;
1157 } else {
1158 // There is a special case worth handling: If there is a single group
1159 // covering the entire upper 32 bits, and it can be merged with both
1160 // the next and previous groups (which might be the same group), then
1161 // do so. If it is the same group (so there will be only one group in
1162 // total), then we need to reverse the order of the range so that it
1163 // covers the entire 64 bits.
1164 if (I->StartIdx == 32 && I->EndIdx == 63) {
1165 assert(std::next(I) == BitGroups.end() &&
1166 "bit group ends at index 63 but there is another?");
1167 auto IN = BitGroups.begin();
1168
1169 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1170 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1171 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1172 IsAllLow32(*I)) {
1173
1174 DEBUG(dbgs() << "\tcombining bit group for " <<
1175 I->V.getNode() << " RLAmt = " << I->RLAmt <<
1176 " [" << I->StartIdx << ", " << I->EndIdx <<
1177 "] with 32-bit replicated groups with ranges [" <<
1178 IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
1179 IN->StartIdx << ", " << IN->EndIdx << "]\n");
1180
1181 if (IP == IN) {
1182 // There is only one other group; change it to cover the whole
1183 // range (backward, so that it can still be Repl32 but cover the
1184 // whole 64-bit range).
1185 IP->StartIdx = 31;
1186 IP->EndIdx = 30;
1187 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1188 IP->Repl32Coalesced = true;
1189 I = BitGroups.erase(I);
1190 } else {
1191 // There are two separate groups, one before this group and one
1192 // after us (at the beginning). We're going to remove this group,
1193 // but also the group at the very beginning.
1194 IP->EndIdx = IN->EndIdx;
1195 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1196 IP->Repl32Coalesced = true;
1197 I = BitGroups.erase(I);
1198 BitGroups.erase(BitGroups.begin());
1199 }
1200
1201 // This must be the last group in the vector (and we might have
1202 // just invalidated the iterator above), so break here.
1203 break;
1204 }
1205 }
1206 }
1207
1208 ++I;
1209 }
1210 }
1211
Hal Finkel8adf2252014-12-16 05:51:41 +00001212 SDValue getI32Imm(unsigned Imm) {
1213 return CurDAG->getTargetConstant(Imm, MVT::i32);
1214 }
1215
Hal Finkelc58ce412015-01-01 02:53:29 +00001216 uint64_t getZerosMask() {
1217 uint64_t Mask = 0;
1218 for (unsigned i = 0; i < Bits.size(); ++i) {
1219 if (Bits[i].hasValue())
1220 continue;
Hal Finkelddf8d7d2015-01-01 19:33:59 +00001221 Mask |= (UINT64_C(1) << i);
Hal Finkelc58ce412015-01-01 02:53:29 +00001222 }
1223
1224 return ~Mask;
1225 }
1226
Hal Finkel8adf2252014-12-16 05:51:41 +00001227 // Depending on the number of groups for a particular value, it might be
1228 // better to rotate, mask explicitly (using andi/andis), and then or the
1229 // result. Select this part of the result first.
Hal Finkelc58ce412015-01-01 02:53:29 +00001230 void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
1231 if (BPermRewriterNoMasking)
1232 return;
Hal Finkel8adf2252014-12-16 05:51:41 +00001233
1234 for (ValueRotInfo &VRI : ValueRotsVec) {
1235 unsigned Mask = 0;
1236 for (unsigned i = 0; i < Bits.size(); ++i) {
1237 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1238 continue;
1239 if (RLAmt[i] != VRI.RLAmt)
1240 continue;
1241 Mask |= (1u << i);
1242 }
1243
1244 // Compute the masks for andi/andis that would be necessary.
1245 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1246 assert((ANDIMask != 0 || ANDISMask != 0) &&
1247 "No set bits in mask for value bit groups");
1248 bool NeedsRotate = VRI.RLAmt != 0;
1249
1250 // We're trying to minimize the number of instructions. If we have one
1251 // group, using one of andi/andis can break even. If we have three
1252 // groups, we can use both andi and andis and break even (to use both
1253 // andi and andis we also need to or the results together). We need four
1254 // groups if we also need to rotate. To use andi/andis we need to do more
1255 // than break even because rotate-and-mask instructions tend to be easier
1256 // to schedule.
1257
1258 // FIXME: We've biased here against using andi/andis, which is right for
1259 // POWER cores, but not optimal everywhere. For example, on the A2,
1260 // andi/andis have single-cycle latency whereas the rotate-and-mask
1261 // instructions take two cycles, and it would be better to bias toward
1262 // andi/andis in break-even cases.
1263
1264 unsigned NumAndInsts = (unsigned) NeedsRotate +
1265 (unsigned) (ANDIMask != 0) +
1266 (unsigned) (ANDISMask != 0) +
1267 (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1268 (unsigned) (bool) Res;
Hal Finkelc58ce412015-01-01 02:53:29 +00001269
1270 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1271 " RL: " << VRI.RLAmt << ":" <<
1272 "\n\t\t\tisel using masking: " << NumAndInsts <<
1273 " using rotates: " << VRI.NumGroups << "\n");
1274
Hal Finkel8adf2252014-12-16 05:51:41 +00001275 if (NumAndInsts >= VRI.NumGroups)
1276 continue;
1277
Hal Finkelc58ce412015-01-01 02:53:29 +00001278 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1279
1280 if (InstCnt) *InstCnt += NumAndInsts;
1281
Hal Finkel8adf2252014-12-16 05:51:41 +00001282 SDValue VRot;
1283 if (VRI.RLAmt) {
1284 SDValue Ops[] =
1285 { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
1286 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1287 Ops), 0);
1288 } else {
1289 VRot = VRI.V;
1290 }
1291
1292 SDValue ANDIVal, ANDISVal;
1293 if (ANDIMask != 0)
1294 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1295 VRot, getI32Imm(ANDIMask)), 0);
1296 if (ANDISMask != 0)
1297 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1298 VRot, getI32Imm(ANDISMask)), 0);
1299
1300 SDValue TotalVal;
1301 if (!ANDIVal)
1302 TotalVal = ANDISVal;
1303 else if (!ANDISVal)
1304 TotalVal = ANDIVal;
1305 else
1306 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1307 ANDIVal, ANDISVal), 0);
1308
1309 if (!Res)
1310 Res = TotalVal;
1311 else
1312 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1313 Res, TotalVal), 0);
1314
1315 // Now, remove all groups with this underlying value and rotation
1316 // factor.
1317 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1318 if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
1319 I = BitGroups.erase(I);
1320 else
1321 ++I;
1322 }
1323 }
1324 }
1325
1326 // Instruction selection for the 32-bit case.
Hal Finkelc58ce412015-01-01 02:53:29 +00001327 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
Hal Finkel8adf2252014-12-16 05:51:41 +00001328 SDLoc dl(N);
1329 SDValue Res;
1330
Hal Finkelc58ce412015-01-01 02:53:29 +00001331 if (InstCnt) *InstCnt = 0;
1332
Hal Finkel8adf2252014-12-16 05:51:41 +00001333 // Take care of cases that should use andi/andis first.
Hal Finkelc58ce412015-01-01 02:53:29 +00001334 SelectAndParts32(dl, Res, InstCnt);
Hal Finkel8adf2252014-12-16 05:51:41 +00001335
1336 // If we've not yet selected a 'starting' instruction, and we have no zeros
1337 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1338 // number of groups), and start with this rotated value.
Hal Finkelc58ce412015-01-01 02:53:29 +00001339 if ((!HasZeros || LateMask) && !Res) {
Hal Finkel8adf2252014-12-16 05:51:41 +00001340 ValueRotInfo &VRI = ValueRotsVec[0];
1341 if (VRI.RLAmt) {
Hal Finkelc58ce412015-01-01 02:53:29 +00001342 if (InstCnt) *InstCnt += 1;
Hal Finkel8adf2252014-12-16 05:51:41 +00001343 SDValue Ops[] =
1344 { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
1345 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1346 } else {
1347 Res = VRI.V;
1348 }
1349
1350 // Now, remove all groups with this underlying value and rotation factor.
1351 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1352 if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
1353 I = BitGroups.erase(I);
1354 else
1355 ++I;
1356 }
1357 }
1358
Hal Finkelc58ce412015-01-01 02:53:29 +00001359 if (InstCnt) *InstCnt += BitGroups.size();
1360
Hal Finkel8adf2252014-12-16 05:51:41 +00001361 // Insert the other groups (one at a time).
1362 for (auto &BG : BitGroups) {
Hal Finkelc58ce412015-01-01 02:53:29 +00001363 if (!Res) {
Hal Finkel8adf2252014-12-16 05:51:41 +00001364 SDValue Ops[] =
1365 { BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
1366 getI32Imm(Bits.size() - BG.StartIdx - 1) };
1367 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1368 } else {
1369 SDValue Ops[] =
1370 { Res, BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
1371 getI32Imm(Bits.size() - BG.StartIdx - 1) };
1372 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1373 }
1374 }
1375
Hal Finkelc58ce412015-01-01 02:53:29 +00001376 if (LateMask) {
1377 unsigned Mask = (unsigned) getZerosMask();
1378
1379 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1380 assert((ANDIMask != 0 || ANDISMask != 0) &&
1381 "No set bits in zeros mask?");
1382
1383 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1384 (unsigned) (ANDISMask != 0) +
1385 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1386
1387 SDValue ANDIVal, ANDISVal;
1388 if (ANDIMask != 0)
1389 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1390 Res, getI32Imm(ANDIMask)), 0);
1391 if (ANDISMask != 0)
1392 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1393 Res, getI32Imm(ANDISMask)), 0);
1394
1395 if (!ANDIVal)
1396 Res = ANDISVal;
1397 else if (!ANDISVal)
1398 Res = ANDIVal;
1399 else
1400 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1401 ANDIVal, ANDISVal), 0);
1402 }
1403
Hal Finkel8adf2252014-12-16 05:51:41 +00001404 return Res.getNode();
1405 }
1406
Hal Finkelc58ce412015-01-01 02:53:29 +00001407 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1408 unsigned MaskStart, unsigned MaskEnd,
1409 bool IsIns) {
1410 // In the notation used by the instructions, 'start' and 'end' are reversed
1411 // because bits are counted from high to low order.
1412 unsigned InstMaskStart = 64 - MaskEnd - 1,
1413 InstMaskEnd = 64 - MaskStart - 1;
1414
1415 if (Repl32)
1416 return 1;
1417
1418 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1419 InstMaskEnd == 63 - RLAmt)
1420 return 1;
1421
1422 return 2;
1423 }
1424
1425 // For 64-bit values, not all combinations of rotates and masks are
1426 // available. Produce one if it is available.
1427 SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32,
1428 unsigned MaskStart, unsigned MaskEnd,
1429 unsigned *InstCnt = nullptr) {
1430 // In the notation used by the instructions, 'start' and 'end' are reversed
1431 // because bits are counted from high to low order.
1432 unsigned InstMaskStart = 64 - MaskEnd - 1,
1433 InstMaskEnd = 64 - MaskStart - 1;
1434
1435 if (InstCnt) *InstCnt += 1;
1436
1437 if (Repl32) {
1438 // This rotation amount assumes that the lower 32 bits of the quantity
1439 // are replicated in the high 32 bits by the rotation operator (which is
1440 // done by rlwinm and friends).
1441 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1442 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1443 SDValue Ops[] =
1444 { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
1445 getI32Imm(InstMaskEnd - 32) };
1446 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1447 Ops), 0);
1448 }
1449
1450 if (InstMaskEnd == 63) {
1451 SDValue Ops[] =
1452 { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
1453 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1454 }
1455
1456 if (InstMaskStart == 0) {
1457 SDValue Ops[] =
1458 { V, getI32Imm(RLAmt), getI32Imm(InstMaskEnd) };
1459 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1460 }
1461
1462 if (InstMaskEnd == 63 - RLAmt) {
1463 SDValue Ops[] =
1464 { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
1465 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1466 }
1467
1468 // We cannot do this with a single instruction, so we'll use two. The
1469 // problem is that we're not free to choose both a rotation amount and mask
1470 // start and end independently. We can choose an arbitrary mask start and
1471 // end, but then the rotation amount is fixed. Rotation, however, can be
1472 // inverted, and so by applying an "inverse" rotation first, we can get the
1473 // desired result.
1474 if (InstCnt) *InstCnt += 1;
1475
1476 // The rotation mask for the second instruction must be MaskStart.
1477 unsigned RLAmt2 = MaskStart;
1478 // The first instruction must rotate V so that the overall rotation amount
1479 // is RLAmt.
1480 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1481 if (RLAmt1)
1482 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1483 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
1484 }
1485
1486 // For 64-bit values, not all combinations of rotates and masks are
1487 // available. Produce a rotate-mask-and-insert if one is available.
1488 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt,
1489 bool Repl32, unsigned MaskStart,
1490 unsigned MaskEnd, unsigned *InstCnt = nullptr) {
1491 // In the notation used by the instructions, 'start' and 'end' are reversed
1492 // because bits are counted from high to low order.
1493 unsigned InstMaskStart = 64 - MaskEnd - 1,
1494 InstMaskEnd = 64 - MaskStart - 1;
1495
1496 if (InstCnt) *InstCnt += 1;
1497
1498 if (Repl32) {
1499 // This rotation amount assumes that the lower 32 bits of the quantity
1500 // are replicated in the high 32 bits by the rotation operator (which is
1501 // done by rlwinm and friends).
1502 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1503 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1504 SDValue Ops[] =
1505 { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
1506 getI32Imm(InstMaskEnd - 32) };
1507 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
1508 Ops), 0);
1509 }
1510
1511 if (InstMaskEnd == 63 - RLAmt) {
1512 SDValue Ops[] =
1513 { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
1514 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
1515 }
1516
1517 // We cannot do this with a single instruction, so we'll use two. The
1518 // problem is that we're not free to choose both a rotation amount and mask
1519 // start and end independently. We can choose an arbitrary mask start and
1520 // end, but then the rotation amount is fixed. Rotation, however, can be
1521 // inverted, and so by applying an "inverse" rotation first, we can get the
1522 // desired result.
1523 if (InstCnt) *InstCnt += 1;
1524
1525 // The rotation mask for the second instruction must be MaskStart.
1526 unsigned RLAmt2 = MaskStart;
1527 // The first instruction must rotate V so that the overall rotation amount
1528 // is RLAmt.
1529 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1530 if (RLAmt1)
1531 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1532 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
1533 }
1534
1535 void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
1536 if (BPermRewriterNoMasking)
1537 return;
1538
1539 // The idea here is the same as in the 32-bit version, but with additional
1540 // complications from the fact that Repl32 might be true. Because we
1541 // aggressively convert bit groups to Repl32 form (which, for small
1542 // rotation factors, involves no other change), and then coalesce, it might
1543 // be the case that a single 64-bit masking operation could handle both
1544 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
1545 // form allowed coalescing, then we must use a 32-bit rotaton in order to
1546 // completely capture the new combined bit group.
1547
1548 for (ValueRotInfo &VRI : ValueRotsVec) {
1549 uint64_t Mask = 0;
1550
1551 // We need to add to the mask all bits from the associated bit groups.
1552 // If Repl32 is false, we need to add bits from bit groups that have
1553 // Repl32 true, but are trivially convertable to Repl32 false. Such a
1554 // group is trivially convertable if it overlaps only with the lower 32
1555 // bits, and the group has not been coalesced.
1556 auto MatchingBG = [VRI](BitGroup &BG) {
1557 if (VRI.V != BG.V)
1558 return false;
1559
1560 unsigned EffRLAmt = BG.RLAmt;
1561 if (!VRI.Repl32 && BG.Repl32) {
1562 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
1563 !BG.Repl32Coalesced) {
1564 if (BG.Repl32CR)
1565 EffRLAmt += 32;
1566 } else {
1567 return false;
1568 }
1569 } else if (VRI.Repl32 != BG.Repl32) {
1570 return false;
1571 }
1572
1573 if (VRI.RLAmt != EffRLAmt)
1574 return false;
1575
1576 return true;
1577 };
1578
1579 for (auto &BG : BitGroups) {
1580 if (!MatchingBG(BG))
1581 continue;
1582
1583 if (BG.StartIdx <= BG.EndIdx) {
1584 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
Hal Finkelddf8d7d2015-01-01 19:33:59 +00001585 Mask |= (UINT64_C(1) << i);
Hal Finkelc58ce412015-01-01 02:53:29 +00001586 } else {
1587 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
Hal Finkelddf8d7d2015-01-01 19:33:59 +00001588 Mask |= (UINT64_C(1) << i);
Hal Finkelc58ce412015-01-01 02:53:29 +00001589 for (unsigned i = 0; i <= BG.EndIdx; ++i)
Hal Finkelddf8d7d2015-01-01 19:33:59 +00001590 Mask |= (UINT64_C(1) << i);
Hal Finkelc58ce412015-01-01 02:53:29 +00001591 }
1592 }
1593
1594 // We can use the 32-bit andi/andis technique if the mask does not
1595 // require any higher-order bits. This can save an instruction compared
1596 // to always using the general 64-bit technique.
1597 bool Use32BitInsts = isUInt<32>(Mask);
1598 // Compute the masks for andi/andis that would be necessary.
1599 unsigned ANDIMask = (Mask & UINT16_MAX),
1600 ANDISMask = (Mask >> 16) & UINT16_MAX;
1601
1602 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
1603
1604 unsigned NumAndInsts = (unsigned) NeedsRotate +
1605 (unsigned) (bool) Res;
1606 if (Use32BitInsts)
1607 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
1608 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1609 else
1610 NumAndInsts += SelectInt64Count(Mask) + /* and */ 1;
1611
1612 unsigned NumRLInsts = 0;
1613 bool FirstBG = true;
1614 for (auto &BG : BitGroups) {
1615 if (!MatchingBG(BG))
1616 continue;
1617 NumRLInsts +=
1618 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
1619 !FirstBG);
1620 FirstBG = false;
1621 }
1622
1623 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1624 " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
1625 "\n\t\t\tisel using masking: " << NumAndInsts <<
1626 " using rotates: " << NumRLInsts << "\n");
1627
1628 // When we'd use andi/andis, we bias toward using the rotates (andi only
1629 // has a record form, and is cracked on POWER cores). However, when using
1630 // general 64-bit constant formation, bias toward the constant form,
1631 // because that exposes more opportunities for CSE.
1632 if (NumAndInsts > NumRLInsts)
1633 continue;
1634 if (Use32BitInsts && NumAndInsts == NumRLInsts)
1635 continue;
1636
1637 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1638
1639 if (InstCnt) *InstCnt += NumAndInsts;
1640
1641 SDValue VRot;
1642 // We actually need to generate a rotation if we have a non-zero rotation
1643 // factor or, in the Repl32 case, if we care about any of the
1644 // higher-order replicated bits. In the latter case, we generate a mask
1645 // backward so that it actually includes the entire 64 bits.
1646 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
1647 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1648 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
1649 else
1650 VRot = VRI.V;
1651
1652 SDValue TotalVal;
1653 if (Use32BitInsts) {
1654 assert((ANDIMask != 0 || ANDISMask != 0) &&
1655 "No set bits in mask when using 32-bit ands for 64-bit value");
1656
1657 SDValue ANDIVal, ANDISVal;
1658 if (ANDIMask != 0)
1659 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1660 VRot, getI32Imm(ANDIMask)), 0);
1661 if (ANDISMask != 0)
1662 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1663 VRot, getI32Imm(ANDISMask)), 0);
1664
1665 if (!ANDIVal)
1666 TotalVal = ANDISVal;
1667 else if (!ANDISVal)
1668 TotalVal = ANDIVal;
1669 else
1670 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1671 ANDIVal, ANDISVal), 0);
1672 } else {
1673 TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
1674 TotalVal =
1675 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1676 VRot, TotalVal), 0);
1677 }
1678
1679 if (!Res)
1680 Res = TotalVal;
1681 else
1682 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1683 Res, TotalVal), 0);
1684
1685 // Now, remove all groups with this underlying value and rotation
1686 // factor.
1687 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1688 if (MatchingBG(*I))
1689 I = BitGroups.erase(I);
1690 else
1691 ++I;
1692 }
1693 }
1694 }
1695
1696 // Instruction selection for the 64-bit case.
1697 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
1698 SDLoc dl(N);
1699 SDValue Res;
1700
1701 if (InstCnt) *InstCnt = 0;
1702
1703 // Take care of cases that should use andi/andis first.
1704 SelectAndParts64(dl, Res, InstCnt);
1705
1706 // If we've not yet selected a 'starting' instruction, and we have no zeros
1707 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1708 // number of groups), and start with this rotated value.
1709 if ((!HasZeros || LateMask) && !Res) {
1710 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
1711 // groups will come first, and so the VRI representing the largest number
1712 // of groups might not be first (it might be the first Repl32 groups).
1713 unsigned MaxGroupsIdx = 0;
1714 if (!ValueRotsVec[0].Repl32) {
1715 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
1716 if (ValueRotsVec[i].Repl32) {
1717 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
1718 MaxGroupsIdx = i;
1719 break;
1720 }
1721 }
1722
1723 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
1724 bool NeedsRotate = false;
1725 if (VRI.RLAmt) {
1726 NeedsRotate = true;
1727 } else if (VRI.Repl32) {
1728 for (auto &BG : BitGroups) {
1729 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
1730 BG.Repl32 != VRI.Repl32)
1731 continue;
1732
1733 // We don't need a rotate if the bit group is confined to the lower
1734 // 32 bits.
1735 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
1736 continue;
1737
1738 NeedsRotate = true;
1739 break;
1740 }
1741 }
1742
1743 if (NeedsRotate)
1744 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1745 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
1746 InstCnt);
1747 else
1748 Res = VRI.V;
1749
1750 // Now, remove all groups with this underlying value and rotation factor.
1751 if (Res)
1752 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1753 if (I->V == VRI.V && I->RLAmt == VRI.RLAmt && I->Repl32 == VRI.Repl32)
1754 I = BitGroups.erase(I);
1755 else
1756 ++I;
1757 }
1758 }
1759
1760 // Because 64-bit rotates are more flexible than inserts, we might have a
1761 // preference regarding which one we do first (to save one instruction).
1762 if (!Res)
1763 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
1764 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1765 false) <
1766 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1767 true)) {
1768 if (I != BitGroups.begin()) {
1769 BitGroup BG = *I;
1770 BitGroups.erase(I);
1771 BitGroups.insert(BitGroups.begin(), BG);
1772 }
1773
1774 break;
1775 }
1776 }
1777
1778 // Insert the other groups (one at a time).
1779 for (auto &BG : BitGroups) {
1780 if (!Res)
1781 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
1782 BG.EndIdx, InstCnt);
1783 else
1784 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
1785 BG.StartIdx, BG.EndIdx, InstCnt);
1786 }
1787
1788 if (LateMask) {
1789 uint64_t Mask = getZerosMask();
1790
1791 // We can use the 32-bit andi/andis technique if the mask does not
1792 // require any higher-order bits. This can save an instruction compared
1793 // to always using the general 64-bit technique.
1794 bool Use32BitInsts = isUInt<32>(Mask);
1795 // Compute the masks for andi/andis that would be necessary.
1796 unsigned ANDIMask = (Mask & UINT16_MAX),
1797 ANDISMask = (Mask >> 16) & UINT16_MAX;
1798
1799 if (Use32BitInsts) {
1800 assert((ANDIMask != 0 || ANDISMask != 0) &&
1801 "No set bits in mask when using 32-bit ands for 64-bit value");
1802
1803 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1804 (unsigned) (ANDISMask != 0) +
1805 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1806
1807 SDValue ANDIVal, ANDISVal;
1808 if (ANDIMask != 0)
1809 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1810 Res, getI32Imm(ANDIMask)), 0);
1811 if (ANDISMask != 0)
1812 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1813 Res, getI32Imm(ANDISMask)), 0);
1814
1815 if (!ANDIVal)
1816 Res = ANDISVal;
1817 else if (!ANDISVal)
1818 Res = ANDIVal;
1819 else
1820 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1821 ANDIVal, ANDISVal), 0);
1822 } else {
1823 if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1;
1824
1825 SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
1826 Res =
1827 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1828 Res, MaskVal), 0);
1829 }
1830 }
1831
1832 return Res.getNode();
1833 }
1834
1835 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
1836 // Fill in BitGroups.
1837 collectBitGroups(LateMask);
1838 if (BitGroups.empty())
1839 return nullptr;
1840
1841 // For 64-bit values, figure out when we can use 32-bit instructions.
1842 if (Bits.size() == 64)
1843 assignRepl32BitGroups();
1844
1845 // Fill in ValueRotsVec.
1846 collectValueRotInfo();
1847
1848 if (Bits.size() == 32) {
1849 return Select32(N, LateMask, InstCnt);
1850 } else {
1851 assert(Bits.size() == 64 && "Not 64 bits here?");
1852 return Select64(N, LateMask, InstCnt);
1853 }
1854
1855 return nullptr;
1856 }
1857
Hal Finkel8adf2252014-12-16 05:51:41 +00001858 SmallVector<ValueBit, 64> Bits;
1859
1860 bool HasZeros;
1861 SmallVector<unsigned, 64> RLAmt;
1862
1863 SmallVector<BitGroup, 16> BitGroups;
1864
1865 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
1866 SmallVector<ValueRotInfo, 16> ValueRotsVec;
1867
1868 SelectionDAG *CurDAG;
1869
1870public:
1871 BitPermutationSelector(SelectionDAG *DAG)
1872 : CurDAG(DAG) {}
1873
1874 // Here we try to match complex bit permutations into a set of
1875 // rotate-and-shift/shift/and/or instructions, using a set of heuristics
1876 // known to produce optimial code for common cases (like i32 byte swapping).
1877 SDNode *Select(SDNode *N) {
1878 Bits.resize(N->getValueType(0).getSizeInBits());
1879 if (!getValueBits(SDValue(N, 0), Bits))
1880 return nullptr;
1881
1882 DEBUG(dbgs() << "Considering bit-permutation-based instruction"
1883 " selection for: ");
1884 DEBUG(N->dump(CurDAG));
1885
1886 // Fill it RLAmt and set HasZeros.
1887 computeRotationAmounts();
1888
Hal Finkelc58ce412015-01-01 02:53:29 +00001889 if (!HasZeros)
1890 return Select(N, false);
Hal Finkel8adf2252014-12-16 05:51:41 +00001891
Hal Finkelc58ce412015-01-01 02:53:29 +00001892 // We currently have two techniques for handling results with zeros: early
1893 // masking (the default) and late masking. Late masking is sometimes more
1894 // efficient, but because the structure of the bit groups is different, it
1895 // is hard to tell without generating both and comparing the results. With
1896 // late masking, we ignore zeros in the resulting value when inserting each
1897 // set of bit groups, and then mask in the zeros at the end. With early
1898 // masking, we only insert the non-zero parts of the result at every step.
Hal Finkel8adf2252014-12-16 05:51:41 +00001899
Hal Finkelc58ce412015-01-01 02:53:29 +00001900 unsigned InstCnt, InstCntLateMask;
1901 DEBUG(dbgs() << "\tEarly masking:\n");
1902 SDNode *RN = Select(N, false, &InstCnt);
1903 DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
1904
1905 DEBUG(dbgs() << "\tLate masking:\n");
1906 SDNode *RNLM = Select(N, true, &InstCntLateMask);
1907 DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
1908 " instructions\n");
1909
1910 if (InstCnt <= InstCntLateMask) {
1911 DEBUG(dbgs() << "\tUsing early-masking for isel\n");
1912 return RN;
Hal Finkel8adf2252014-12-16 05:51:41 +00001913 }
1914
Hal Finkelc58ce412015-01-01 02:53:29 +00001915 DEBUG(dbgs() << "\tUsing late-masking for isel\n");
1916 return RNLM;
Hal Finkel8adf2252014-12-16 05:51:41 +00001917 }
1918};
1919} // anonymous namespace
1920
1921SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) {
1922 if (N->getValueType(0) != MVT::i32 &&
1923 N->getValueType(0) != MVT::i64)
1924 return nullptr;
1925
Hal Finkelc58ce412015-01-01 02:53:29 +00001926 if (!UseBitPermRewriter)
1927 return nullptr;
1928
Hal Finkel8adf2252014-12-16 05:51:41 +00001929 switch (N->getOpcode()) {
1930 default: break;
1931 case ISD::ROTL:
1932 case ISD::SHL:
1933 case ISD::SRL:
1934 case ISD::AND:
1935 case ISD::OR: {
1936 BitPermutationSelector BPS(CurDAG);
1937 return BPS.Select(N);
1938 }
1939 }
1940
1941 return nullptr;
1942}
1943
Chris Lattner2a1823d2005-08-21 18:50:37 +00001944/// SelectCC - Select a comparison of the specified values with the specified
1945/// condition code, returning the CR# of the expression.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00001946SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
Andrew Trickef9de2a2013-05-25 02:42:55 +00001947 ISD::CondCode CC, SDLoc dl) {
Chris Lattner2a1823d2005-08-21 18:50:37 +00001948 // Always select the LHS.
Chris Lattner97b3da12006-06-27 00:04:13 +00001949 unsigned Opc;
Andrew Trickc416ba62010-12-24 04:28:06 +00001950
Owen Anderson9f944592009-08-11 20:47:22 +00001951 if (LHS.getValueType() == MVT::i32) {
Chris Lattner9a40cca2006-06-27 00:10:13 +00001952 unsigned Imm;
Chris Lattneraa3926b2006-09-20 04:25:47 +00001953 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
1954 if (isInt32Immediate(RHS, Imm)) {
1955 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
Benjamin Kramer2788f792010-03-29 21:13:41 +00001956 if (isUInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001957 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
1958 getI32Imm(Imm & 0xFFFF)), 0);
Chris Lattneraa3926b2006-09-20 04:25:47 +00001959 // If this is a 16-bit signed immediate, fold it.
Benjamin Kramer2788f792010-03-29 21:13:41 +00001960 if (isInt<16>((int)Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001961 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
1962 getI32Imm(Imm & 0xFFFF)), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00001963
Chris Lattneraa3926b2006-09-20 04:25:47 +00001964 // For non-equality comparisons, the default code would materialize the
1965 // constant, then compare against it, like this:
1966 // lis r2, 4660
Andrew Trickc416ba62010-12-24 04:28:06 +00001967 // ori r2, r2, 22136
Chris Lattneraa3926b2006-09-20 04:25:47 +00001968 // cmpw cr0, r3, r2
1969 // Since we are just comparing for equality, we can emit this instead:
1970 // xoris r0,r3,0x1234
1971 // cmplwi cr0,r0,0x5678
1972 // beq cr0,L6
Dan Gohman32f71d72009-09-25 18:54:59 +00001973 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
1974 getI32Imm(Imm >> 16)), 0);
1975 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
1976 getI32Imm(Imm & 0xFFFF)), 0);
Chris Lattneraa3926b2006-09-20 04:25:47 +00001977 }
1978 Opc = PPC::CMPLW;
1979 } else if (ISD::isUnsignedIntSetCC(CC)) {
Benjamin Kramer2788f792010-03-29 21:13:41 +00001980 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001981 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
1982 getI32Imm(Imm & 0xFFFF)), 0);
Chris Lattner97b3da12006-06-27 00:04:13 +00001983 Opc = PPC::CMPLW;
1984 } else {
1985 short SImm;
1986 if (isIntS16Immediate(RHS, SImm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001987 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
1988 getI32Imm((int)SImm & 0xFFFF)),
Chris Lattner97b3da12006-06-27 00:04:13 +00001989 0);
1990 Opc = PPC::CMPW;
1991 }
Owen Anderson9f944592009-08-11 20:47:22 +00001992 } else if (LHS.getValueType() == MVT::i64) {
Chris Lattner97b3da12006-06-27 00:04:13 +00001993 uint64_t Imm;
Chris Lattnerda9b1a92006-09-20 04:33:27 +00001994 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
Gabor Greiff304a7a2008-08-28 21:40:38 +00001995 if (isInt64Immediate(RHS.getNode(), Imm)) {
Chris Lattnerda9b1a92006-09-20 04:33:27 +00001996 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
Benjamin Kramer2788f792010-03-29 21:13:41 +00001997 if (isUInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001998 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
1999 getI32Imm(Imm & 0xFFFF)), 0);
Chris Lattnerda9b1a92006-09-20 04:33:27 +00002000 // If this is a 16-bit signed immediate, fold it.
Benjamin Kramer2788f792010-03-29 21:13:41 +00002001 if (isInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00002002 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2003 getI32Imm(Imm & 0xFFFF)), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002004
Chris Lattnerda9b1a92006-09-20 04:33:27 +00002005 // For non-equality comparisons, the default code would materialize the
2006 // constant, then compare against it, like this:
2007 // lis r2, 4660
Andrew Trickc416ba62010-12-24 04:28:06 +00002008 // ori r2, r2, 22136
Chris Lattnerda9b1a92006-09-20 04:33:27 +00002009 // cmpd cr0, r3, r2
2010 // Since we are just comparing for equality, we can emit this instead:
2011 // xoris r0,r3,0x1234
2012 // cmpldi cr0,r0,0x5678
2013 // beq cr0,L6
Benjamin Kramer2788f792010-03-29 21:13:41 +00002014 if (isUInt<32>(Imm)) {
Dan Gohman32f71d72009-09-25 18:54:59 +00002015 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
2016 getI64Imm(Imm >> 16)), 0);
2017 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
2018 getI64Imm(Imm & 0xFFFF)), 0);
Chris Lattnerda9b1a92006-09-20 04:33:27 +00002019 }
2020 }
2021 Opc = PPC::CMPLD;
2022 } else if (ISD::isUnsignedIntSetCC(CC)) {
Benjamin Kramer2788f792010-03-29 21:13:41 +00002023 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00002024 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2025 getI64Imm(Imm & 0xFFFF)), 0);
Chris Lattner97b3da12006-06-27 00:04:13 +00002026 Opc = PPC::CMPLD;
2027 } else {
2028 short SImm;
2029 if (isIntS16Immediate(RHS, SImm))
Dan Gohman32f71d72009-09-25 18:54:59 +00002030 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2031 getI64Imm(SImm & 0xFFFF)),
Chris Lattner97b3da12006-06-27 00:04:13 +00002032 0);
2033 Opc = PPC::CMPD;
2034 }
Owen Anderson9f944592009-08-11 20:47:22 +00002035 } else if (LHS.getValueType() == MVT::f32) {
Chris Lattner97b3da12006-06-27 00:04:13 +00002036 Opc = PPC::FCMPUS;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002037 } else {
Owen Anderson9f944592009-08-11 20:47:22 +00002038 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
Eric Christopher1b8e7632014-05-22 01:07:24 +00002039 Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002040 }
Dan Gohman32f71d72009-09-25 18:54:59 +00002041 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
Chris Lattner2a1823d2005-08-21 18:50:37 +00002042}
2043
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002044static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
Chris Lattner2a1823d2005-08-21 18:50:37 +00002045 switch (CC) {
Chris Lattner630bbce2006-05-25 16:54:16 +00002046 case ISD::SETUEQ:
Dale Johannesen160be0f2008-11-07 22:54:33 +00002047 case ISD::SETONE:
2048 case ISD::SETOLE:
2049 case ISD::SETOGE:
Torok Edwinfbcc6632009-07-14 16:55:14 +00002050 llvm_unreachable("Should be lowered by legalize!");
2051 default: llvm_unreachable("Unknown condition!");
Dale Johannesen160be0f2008-11-07 22:54:33 +00002052 case ISD::SETOEQ:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002053 case ISD::SETEQ: return PPC::PRED_EQ;
Chris Lattner630bbce2006-05-25 16:54:16 +00002054 case ISD::SETUNE:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002055 case ISD::SETNE: return PPC::PRED_NE;
Dale Johannesen160be0f2008-11-07 22:54:33 +00002056 case ISD::SETOLT:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002057 case ISD::SETLT: return PPC::PRED_LT;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002058 case ISD::SETULE:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002059 case ISD::SETLE: return PPC::PRED_LE;
Dale Johannesen160be0f2008-11-07 22:54:33 +00002060 case ISD::SETOGT:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002061 case ISD::SETGT: return PPC::PRED_GT;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002062 case ISD::SETUGE:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002063 case ISD::SETGE: return PPC::PRED_GE;
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002064 case ISD::SETO: return PPC::PRED_NU;
2065 case ISD::SETUO: return PPC::PRED_UN;
Dale Johannesen160be0f2008-11-07 22:54:33 +00002066 // These two are invalid for floating point. Assume we have int.
2067 case ISD::SETULT: return PPC::PRED_LT;
2068 case ISD::SETUGT: return PPC::PRED_GT;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002069 }
Chris Lattner2a1823d2005-08-21 18:50:37 +00002070}
2071
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002072/// getCRIdxForSetCC - Return the index of the condition register field
2073/// associated with the SetCC condition, and whether or not the field is
2074/// treated as inverted. That is, lt = 0; ge = 0 inverted.
Ulrich Weigand47e93282013-07-03 15:13:30 +00002075static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
Chris Lattner89f36e62008-01-08 06:46:30 +00002076 Invert = false;
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002077 switch (CC) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002078 default: llvm_unreachable("Unknown condition!");
Chris Lattner89f36e62008-01-08 06:46:30 +00002079 case ISD::SETOLT:
2080 case ISD::SETLT: return 0; // Bit #0 = SETOLT
2081 case ISD::SETOGT:
2082 case ISD::SETGT: return 1; // Bit #1 = SETOGT
2083 case ISD::SETOEQ:
2084 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
2085 case ISD::SETUO: return 3; // Bit #3 = SETUO
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002086 case ISD::SETUGE:
Chris Lattner89f36e62008-01-08 06:46:30 +00002087 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002088 case ISD::SETULE:
Chris Lattner89f36e62008-01-08 06:46:30 +00002089 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
Chris Lattner1fbb0d32006-05-25 18:06:16 +00002090 case ISD::SETUNE:
Chris Lattner89f36e62008-01-08 06:46:30 +00002091 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
2092 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
Andrew Trickc416ba62010-12-24 04:28:06 +00002093 case ISD::SETUEQ:
2094 case ISD::SETOGE:
2095 case ISD::SETOLE:
Dale Johannesen160be0f2008-11-07 22:54:33 +00002096 case ISD::SETONE:
Torok Edwinfbcc6632009-07-14 16:55:14 +00002097 llvm_unreachable("Invalid branch code: should be expanded by legalize");
Dale Johannesen160be0f2008-11-07 22:54:33 +00002098 // These are invalid for floating point. Assume integer.
2099 case ISD::SETULT: return 0;
2100 case ISD::SETUGT: return 1;
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002101 }
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002102}
Chris Lattnerc5292ec2005-08-21 22:31:09 +00002103
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002104// getVCmpInst: return the vector compare instruction for the specified
2105// vector type and condition code. Since this is for altivec specific code,
2106// only support the altivec types (v16i8, v8i16, v4i32, and v4f32).
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002107static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
2108 bool HasVSX, bool &Swap, bool &Negate) {
2109 Swap = false;
2110 Negate = false;
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002111
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002112 if (VecVT.isFloatingPoint()) {
2113 /* Handle some cases by swapping input operands. */
2114 switch (CC) {
2115 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
2116 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2117 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
2118 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
2119 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2120 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
2121 default: break;
2122 }
2123 /* Handle some cases by negating the result. */
2124 switch (CC) {
2125 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2126 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
2127 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
2128 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
2129 default: break;
2130 }
2131 /* We have instructions implementing the remaining cases. */
2132 switch (CC) {
2133 case ISD::SETEQ:
2134 case ISD::SETOEQ:
2135 if (VecVT == MVT::v4f32)
2136 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
2137 else if (VecVT == MVT::v2f64)
2138 return PPC::XVCMPEQDP;
2139 break;
2140 case ISD::SETGT:
2141 case ISD::SETOGT:
2142 if (VecVT == MVT::v4f32)
2143 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
2144 else if (VecVT == MVT::v2f64)
2145 return PPC::XVCMPGTDP;
2146 break;
2147 case ISD::SETGE:
2148 case ISD::SETOGE:
2149 if (VecVT == MVT::v4f32)
2150 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
2151 else if (VecVT == MVT::v2f64)
2152 return PPC::XVCMPGEDP;
2153 break;
2154 default:
2155 break;
2156 }
2157 llvm_unreachable("Invalid floating-point vector compare condition");
2158 } else {
2159 /* Handle some cases by swapping input operands. */
2160 switch (CC) {
2161 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
2162 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2163 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2164 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
2165 default: break;
2166 }
2167 /* Handle some cases by negating the result. */
2168 switch (CC) {
2169 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2170 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
2171 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
2172 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
2173 default: break;
2174 }
2175 /* We have instructions implementing the remaining cases. */
2176 switch (CC) {
2177 case ISD::SETEQ:
2178 case ISD::SETUEQ:
2179 if (VecVT == MVT::v16i8)
2180 return PPC::VCMPEQUB;
2181 else if (VecVT == MVT::v8i16)
2182 return PPC::VCMPEQUH;
2183 else if (VecVT == MVT::v4i32)
2184 return PPC::VCMPEQUW;
2185 break;
2186 case ISD::SETGT:
2187 if (VecVT == MVT::v16i8)
2188 return PPC::VCMPGTSB;
2189 else if (VecVT == MVT::v8i16)
2190 return PPC::VCMPGTSH;
2191 else if (VecVT == MVT::v4i32)
2192 return PPC::VCMPGTSW;
2193 break;
2194 case ISD::SETUGT:
2195 if (VecVT == MVT::v16i8)
2196 return PPC::VCMPGTUB;
2197 else if (VecVT == MVT::v8i16)
2198 return PPC::VCMPGTUH;
2199 else if (VecVT == MVT::v4i32)
2200 return PPC::VCMPGTUW;
2201 break;
2202 default:
2203 break;
2204 }
2205 llvm_unreachable("Invalid integer vector compare condition");
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002206 }
2207}
2208
Dan Gohmanea6f91f2010-01-05 01:24:18 +00002209SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002210 SDLoc dl(N);
Chris Lattner491b8292005-10-06 19:03:35 +00002211 unsigned Imm;
2212 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
Roman Divacky254f8212011-06-20 15:28:39 +00002213 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
2214 bool isPPC64 = (PtrVT == MVT::i64);
2215
Eric Christopher1b8e7632014-05-22 01:07:24 +00002216 if (!PPCSubTarget->useCRBits() &&
Hal Finkel940ab932014-02-28 00:27:01 +00002217 isInt32Immediate(N->getOperand(1), Imm)) {
Chris Lattner491b8292005-10-06 19:03:35 +00002218 // We can codegen setcc op, imm very efficiently compared to a brcond.
2219 // Check for those cases here.
2220 // setcc op, 0
2221 if (Imm == 0) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002222 SDValue Op = N->getOperand(0);
Chris Lattner491b8292005-10-06 19:03:35 +00002223 switch (CC) {
Chris Lattnere2969492005-10-21 21:17:10 +00002224 default: break;
Evan Chengc3acfc02006-08-27 08:14:06 +00002225 case ISD::SETEQ: {
Dan Gohman32f71d72009-09-25 18:54:59 +00002226 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002227 SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
Craig Topper481fb282014-04-27 19:21:11 +00002228 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Evan Chengc3acfc02006-08-27 08:14:06 +00002229 }
Chris Lattnere2969492005-10-21 21:17:10 +00002230 case ISD::SETNE: {
Roman Divacky254f8212011-06-20 15:28:39 +00002231 if (isPPC64) break;
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002232 SDValue AD =
Chris Lattner3e5fbd72010-12-21 02:38:05 +00002233 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Dan Gohman32f71d72009-09-25 18:54:59 +00002234 Op, getI32Imm(~0U)), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002235 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
Evan Cheng34b70ee2006-08-26 08:00:10 +00002236 AD.getValue(1));
Chris Lattner491b8292005-10-06 19:03:35 +00002237 }
Evan Chengc3acfc02006-08-27 08:14:06 +00002238 case ISD::SETLT: {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002239 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Craig Topper481fb282014-04-27 19:21:11 +00002240 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Evan Chengc3acfc02006-08-27 08:14:06 +00002241 }
Chris Lattnere2969492005-10-21 21:17:10 +00002242 case ISD::SETGT: {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002243 SDValue T =
Dan Gohman32f71d72009-09-25 18:54:59 +00002244 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
2245 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002246 SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Craig Topper481fb282014-04-27 19:21:11 +00002247 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Chris Lattnere2969492005-10-21 21:17:10 +00002248 }
2249 }
Chris Lattner491b8292005-10-06 19:03:35 +00002250 } else if (Imm == ~0U) { // setcc op, -1
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002251 SDValue Op = N->getOperand(0);
Chris Lattner491b8292005-10-06 19:03:35 +00002252 switch (CC) {
Chris Lattnere2969492005-10-21 21:17:10 +00002253 default: break;
2254 case ISD::SETEQ:
Roman Divacky254f8212011-06-20 15:28:39 +00002255 if (isPPC64) break;
Chris Lattner3e5fbd72010-12-21 02:38:05 +00002256 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Dan Gohman32f71d72009-09-25 18:54:59 +00002257 Op, getI32Imm(1)), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002258 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2259 SDValue(CurDAG->getMachineNode(PPC::LI, dl,
Dan Gohman32f71d72009-09-25 18:54:59 +00002260 MVT::i32,
2261 getI32Imm(0)), 0),
Dale Johannesenf08a47b2009-02-04 23:02:30 +00002262 Op.getValue(1));
Chris Lattnere2969492005-10-21 21:17:10 +00002263 case ISD::SETNE: {
Roman Divacky254f8212011-06-20 15:28:39 +00002264 if (isPPC64) break;
Dan Gohman32f71d72009-09-25 18:54:59 +00002265 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
Chris Lattner3e5fbd72010-12-21 02:38:05 +00002266 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Dan Gohman32f71d72009-09-25 18:54:59 +00002267 Op, getI32Imm(~0U));
Owen Anderson9f944592009-08-11 20:47:22 +00002268 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002269 Op, SDValue(AD, 1));
Chris Lattner491b8292005-10-06 19:03:35 +00002270 }
Chris Lattnere2969492005-10-21 21:17:10 +00002271 case ISD::SETLT: {
Dan Gohman32f71d72009-09-25 18:54:59 +00002272 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
2273 getI32Imm(1)), 0);
2274 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
2275 Op), 0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002276 SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Craig Topper481fb282014-04-27 19:21:11 +00002277 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Chris Lattnere2969492005-10-21 21:17:10 +00002278 }
Evan Chengc3acfc02006-08-27 08:14:06 +00002279 case ISD::SETGT: {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002280 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Michael Liaob53d8962013-04-19 22:22:57 +00002281 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
Dale Johannesenf08a47b2009-02-04 23:02:30 +00002282 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002283 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
Evan Cheng34b70ee2006-08-26 08:00:10 +00002284 getI32Imm(1));
Chris Lattnere2969492005-10-21 21:17:10 +00002285 }
Evan Chengc3acfc02006-08-27 08:14:06 +00002286 }
Chris Lattner491b8292005-10-06 19:03:35 +00002287 }
2288 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002289
Adhemerval Zanellafe3f7932012-10-08 18:59:53 +00002290 SDValue LHS = N->getOperand(0);
2291 SDValue RHS = N->getOperand(1);
2292
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002293 // Altivec Vector compare instructions do not set any CR register by default and
2294 // vector compare operations return the same type as the operands.
Adhemerval Zanellafe3f7932012-10-08 18:59:53 +00002295 if (LHS.getValueType().isVector()) {
Hal Finkelc93a9a22015-02-25 01:06:45 +00002296 if (PPCSubTarget->hasQPX())
2297 return nullptr;
2298
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002299 EVT VecVT = LHS.getValueType();
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002300 bool Swap, Negate;
2301 unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
2302 PPCSubTarget->hasVSX(), Swap, Negate);
2303 if (Swap)
2304 std::swap(LHS, RHS);
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002305
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002306 if (Negate) {
2307 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
2308 return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR :
2309 PPC::VNOR,
2310 VecVT, VCmp, VCmp);
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002311 }
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002312
2313 return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
Adhemerval Zanellafe3f7932012-10-08 18:59:53 +00002314 }
2315
Eric Christopher1b8e7632014-05-22 01:07:24 +00002316 if (PPCSubTarget->useCRBits())
Craig Topper062a2ba2014-04-25 05:30:21 +00002317 return nullptr;
Hal Finkel940ab932014-02-28 00:27:01 +00002318
Chris Lattner491b8292005-10-06 19:03:35 +00002319 bool Inv;
Ulrich Weigand47e93282013-07-03 15:13:30 +00002320 unsigned Idx = getCRIdxForSetCC(CC, Inv);
Adhemerval Zanellafe3f7932012-10-08 18:59:53 +00002321 SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002322 SDValue IntCR;
Andrew Trickc416ba62010-12-24 04:28:06 +00002323
Chris Lattner491b8292005-10-06 19:03:35 +00002324 // Force the ccreg into CR7.
Owen Anderson9f944592009-08-11 20:47:22 +00002325 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
Andrew Trickc416ba62010-12-24 04:28:06 +00002326
Craig Topper062a2ba2014-04-25 05:30:21 +00002327 SDValue InFlag(nullptr, 0); // Null incoming flag value.
Andrew Trickc416ba62010-12-24 04:28:06 +00002328 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
Chris Lattnerbd099102005-12-01 03:50:19 +00002329 InFlag).getValue(1);
Andrew Trickc416ba62010-12-24 04:28:06 +00002330
Ulrich Weigandd5ebc622013-07-03 17:05:42 +00002331 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
2332 CCReg), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002333
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002334 SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
Evan Chengc3acfc02006-08-27 08:14:06 +00002335 getI32Imm(31), getI32Imm(31) };
Ulrich Weigand47e93282013-07-03 15:13:30 +00002336 if (!Inv)
Craig Topper481fb282014-04-27 19:21:11 +00002337 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Chris Lattner89f36e62008-01-08 06:46:30 +00002338
2339 // Get the specified bit.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002340 SDValue Tmp =
Michael Liaob53d8962013-04-19 22:22:57 +00002341 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
Ulrich Weigand47e93282013-07-03 15:13:30 +00002342 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
Chris Lattner491b8292005-10-06 19:03:35 +00002343}
Chris Lattner502a3692005-10-06 18:56:10 +00002344
Chris Lattner318622f2005-10-06 19:07:45 +00002345
Chris Lattner43ff01e2005-08-17 19:33:03 +00002346// Select - Convert the specified operand from a target-independent to a
2347// target-specific node if it hasn't already been changed.
Dan Gohmanea6f91f2010-01-05 01:24:18 +00002348SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002349 SDLoc dl(N);
Tim Northover31d093c2013-09-22 08:21:56 +00002350 if (N->isMachineOpcode()) {
2351 N->setNodeId(-1);
Craig Topper062a2ba2014-04-25 05:30:21 +00002352 return nullptr; // Already selected.
Tim Northover31d093c2013-09-22 08:21:56 +00002353 }
Chris Lattner08c319f2005-09-29 00:59:32 +00002354
Hal Finkel51b3fd12014-09-02 06:23:54 +00002355 // In case any misguided DAG-level optimizations form an ADD with a
2356 // TargetConstant operand, crash here instead of miscompiling (by selecting
2357 // an r+r add instead of some kind of r+i add).
2358 if (N->getOpcode() == ISD::ADD &&
2359 N->getOperand(1).getOpcode() == ISD::TargetConstant)
2360 llvm_unreachable("Invalid ADD with TargetConstant operand");
2361
Hal Finkel8adf2252014-12-16 05:51:41 +00002362 // Try matching complex bit permutations before doing anything else.
2363 if (SDNode *NN = SelectBitPermutation(N))
2364 return NN;
2365
Chris Lattner43ff01e2005-08-17 19:33:03 +00002366 switch (N->getOpcode()) {
Chris Lattner498915d2005-09-07 23:45:15 +00002367 default: break;
Andrew Trickc416ba62010-12-24 04:28:06 +00002368
Jim Laskey095e6f32006-12-12 13:23:43 +00002369 case ISD::Constant: {
Hal Finkelc58ce412015-01-01 02:53:29 +00002370 if (N->getValueType(0) == MVT::i64)
2371 return SelectInt64(CurDAG, N);
Jim Laskey095e6f32006-12-12 13:23:43 +00002372 break;
2373 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002374
Hal Finkel940ab932014-02-28 00:27:01 +00002375 case ISD::SETCC: {
2376 SDNode *SN = SelectSETCC(N);
2377 if (SN)
2378 return SN;
2379 break;
2380 }
Evan Cheng6dc90ca2006-02-09 00:37:58 +00002381 case PPCISD::GlobalBaseReg:
Evan Cheng61413a32006-08-26 05:34:46 +00002382 return getGlobalBaseReg();
Andrew Trickc416ba62010-12-24 04:28:06 +00002383
Hal Finkelb5e9b042014-12-11 22:51:06 +00002384 case ISD::FrameIndex:
2385 return getFrameIndex(N, N);
Chris Lattner6961fc72006-03-26 10:06:40 +00002386
Ulrich Weigandd5ebc622013-07-03 17:05:42 +00002387 case PPCISD::MFOCRF: {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002388 SDValue InFlag = N->getOperand(1);
Ulrich Weigandd5ebc622013-07-03 17:05:42 +00002389 return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
2390 N->getOperand(0), InFlag);
Chris Lattner6961fc72006-03-26 10:06:40 +00002391 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002392
Hal Finkelbbdee932014-12-02 22:01:00 +00002393 case PPCISD::READ_TIME_BASE: {
2394 return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
2395 MVT::Other, N->getOperand(0));
2396 }
2397
Hal Finkel13d104b2014-12-11 18:37:52 +00002398 case PPCISD::SRA_ADDZE: {
2399 SDValue N0 = N->getOperand(0);
2400 SDValue ShiftAmt =
2401 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
2402 getConstantIntValue(), N->getValueType(0));
2403 if (N->getValueType(0) == MVT::i64) {
2404 SDNode *Op =
2405 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
2406 N0, ShiftAmt);
2407 return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64,
2408 SDValue(Op, 0), SDValue(Op, 1));
2409 } else {
2410 assert(N->getValueType(0) == MVT::i32 &&
2411 "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
2412 SDNode *Op =
2413 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
2414 N0, ShiftAmt);
2415 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2416 SDValue(Op, 0), SDValue(Op, 1));
Chris Lattnerdc664572005-08-25 17:50:06 +00002417 }
Chris Lattner6e184f22005-08-25 22:04:30 +00002418 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002419
Chris Lattnerce645542006-11-10 02:08:47 +00002420 case ISD::LOAD: {
2421 // Handle preincrement loads.
Dan Gohmanea6f91f2010-01-05 01:24:18 +00002422 LoadSDNode *LD = cast<LoadSDNode>(N);
Owen Anderson53aa7a92009-08-10 22:56:29 +00002423 EVT LoadedVT = LD->getMemoryVT();
Andrew Trickc416ba62010-12-24 04:28:06 +00002424
Chris Lattnerce645542006-11-10 02:08:47 +00002425 // Normal loads are handled by code generated from the .td file.
2426 if (LD->getAddressingMode() != ISD::PRE_INC)
2427 break;
Andrew Trickc416ba62010-12-24 04:28:06 +00002428
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002429 SDValue Offset = LD->getOffset();
Ulrich Weigandd1b99d32013-03-22 14:58:17 +00002430 if (Offset.getOpcode() == ISD::TargetConstant ||
Chris Lattnerc5102bf2006-11-11 04:53:30 +00002431 Offset.getOpcode() == ISD::TargetGlobalAddress) {
Andrew Trickc416ba62010-12-24 04:28:06 +00002432
Chris Lattner474b5b72006-11-15 19:55:13 +00002433 unsigned Opcode;
2434 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
Owen Anderson9f944592009-08-11 20:47:22 +00002435 if (LD->getValueType(0) != MVT::i64) {
Chris Lattner474b5b72006-11-15 19:55:13 +00002436 // Handle PPC32 integer and normal FP loads.
Owen Anderson9f944592009-08-11 20:47:22 +00002437 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2438 switch (LoadedVT.getSimpleVT().SimpleTy) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002439 default: llvm_unreachable("Invalid PPC load type!");
Owen Anderson9f944592009-08-11 20:47:22 +00002440 case MVT::f64: Opcode = PPC::LFDU; break;
2441 case MVT::f32: Opcode = PPC::LFSU; break;
2442 case MVT::i32: Opcode = PPC::LWZU; break;
2443 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
2444 case MVT::i1:
2445 case MVT::i8: Opcode = PPC::LBZU; break;
Chris Lattner474b5b72006-11-15 19:55:13 +00002446 }
2447 } else {
Owen Anderson9f944592009-08-11 20:47:22 +00002448 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2449 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2450 switch (LoadedVT.getSimpleVT().SimpleTy) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002451 default: llvm_unreachable("Invalid PPC load type!");
Owen Anderson9f944592009-08-11 20:47:22 +00002452 case MVT::i64: Opcode = PPC::LDU; break;
2453 case MVT::i32: Opcode = PPC::LWZU8; break;
2454 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
2455 case MVT::i1:
2456 case MVT::i8: Opcode = PPC::LBZU8; break;
Chris Lattner474b5b72006-11-15 19:55:13 +00002457 }
2458 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002459
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002460 SDValue Chain = LD->getChain();
2461 SDValue Base = LD->getBasePtr();
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002462 SDValue Ops[] = { Offset, Base, Chain };
Dan Gohman32f71d72009-09-25 18:54:59 +00002463 return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
Eric Christopher1b8e7632014-05-22 01:07:24 +00002464 PPCLowering->getPointerTy(),
Michael Liaob53d8962013-04-19 22:22:57 +00002465 MVT::Other, Ops);
Chris Lattnerce645542006-11-10 02:08:47 +00002466 } else {
Hal Finkelca542be2012-06-20 15:43:03 +00002467 unsigned Opcode;
2468 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2469 if (LD->getValueType(0) != MVT::i64) {
2470 // Handle PPC32 integer and normal FP loads.
2471 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2472 switch (LoadedVT.getSimpleVT().SimpleTy) {
2473 default: llvm_unreachable("Invalid PPC load type!");
Hal Finkelc93a9a22015-02-25 01:06:45 +00002474 case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
2475 case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
Hal Finkelca542be2012-06-20 15:43:03 +00002476 case MVT::f64: Opcode = PPC::LFDUX; break;
2477 case MVT::f32: Opcode = PPC::LFSUX; break;
2478 case MVT::i32: Opcode = PPC::LWZUX; break;
2479 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
2480 case MVT::i1:
2481 case MVT::i8: Opcode = PPC::LBZUX; break;
2482 }
2483 } else {
2484 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2485 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
2486 "Invalid sext update load");
2487 switch (LoadedVT.getSimpleVT().SimpleTy) {
2488 default: llvm_unreachable("Invalid PPC load type!");
2489 case MVT::i64: Opcode = PPC::LDUX; break;
2490 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
2491 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
2492 case MVT::i1:
2493 case MVT::i8: Opcode = PPC::LBZUX8; break;
2494 }
2495 }
2496
2497 SDValue Chain = LD->getChain();
2498 SDValue Base = LD->getBasePtr();
Ulrich Weigande90b0222013-03-22 14:58:48 +00002499 SDValue Ops[] = { Base, Offset, Chain };
Hal Finkelca542be2012-06-20 15:43:03 +00002500 return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
Eric Christopher1b8e7632014-05-22 01:07:24 +00002501 PPCLowering->getPointerTy(),
Michael Liaob53d8962013-04-19 22:22:57 +00002502 MVT::Other, Ops);
Chris Lattnerce645542006-11-10 02:08:47 +00002503 }
2504 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002505
Nate Begemanb3821a32005-08-18 07:30:46 +00002506 case ISD::AND: {
Nate Begemand31efd12006-09-22 05:01:56 +00002507 unsigned Imm, Imm2, SH, MB, ME;
Hal Finkele39526a2012-08-28 02:10:15 +00002508 uint64_t Imm64;
Nate Begemand31efd12006-09-22 05:01:56 +00002509
Nate Begemanb3821a32005-08-18 07:30:46 +00002510 // If this is an and of a value rotated between 0 and 31 bits and then and'd
2511 // with a mask, emit rlwinm
Chris Lattner97b3da12006-06-27 00:04:13 +00002512 if (isInt32Immediate(N->getOperand(1), Imm) &&
Gabor Greiff304a7a2008-08-28 21:40:38 +00002513 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002514 SDValue Val = N->getOperand(0).getOperand(0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002515 SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
Craig Topper481fb282014-04-27 19:21:11 +00002516 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Nate Begemanb3821a32005-08-18 07:30:46 +00002517 }
Nate Begemand31efd12006-09-22 05:01:56 +00002518 // If this is just a masked value where the input is not handled above, and
2519 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
2520 if (isInt32Immediate(N->getOperand(1), Imm) &&
Andrew Trickc416ba62010-12-24 04:28:06 +00002521 isRunOfOnes(Imm, MB, ME) &&
Nate Begemand31efd12006-09-22 05:01:56 +00002522 N->getOperand(0).getOpcode() != ISD::ROTL) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002523 SDValue Val = N->getOperand(0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002524 SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
Craig Topper481fb282014-04-27 19:21:11 +00002525 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Nate Begemand31efd12006-09-22 05:01:56 +00002526 }
Hal Finkele39526a2012-08-28 02:10:15 +00002527 // If this is a 64-bit zero-extension mask, emit rldicl.
2528 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
2529 isMask_64(Imm64)) {
2530 SDValue Val = N->getOperand(0);
Benjamin Kramer5f6a9072015-02-12 15:35:40 +00002531 MB = 64 - countTrailingOnes(Imm64);
Hal Finkel22498fa2013-11-20 01:10:15 +00002532 SH = 0;
2533
2534 // If the operand is a logical right shift, we can fold it into this
2535 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
2536 // for n <= mb. The right shift is really a left rotate followed by a
2537 // mask, and this mask is a more-restrictive sub-mask of the mask implied
2538 // by the shift.
2539 if (Val.getOpcode() == ISD::SRL &&
2540 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
2541 assert(Imm < 64 && "Illegal shift amount");
2542 Val = Val.getOperand(0);
2543 SH = 64 - Imm;
2544 }
2545
2546 SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB) };
Craig Topper481fb282014-04-27 19:21:11 +00002547 return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
Hal Finkele39526a2012-08-28 02:10:15 +00002548 }
Nate Begemand31efd12006-09-22 05:01:56 +00002549 // AND X, 0 -> 0, not "rlwinm 32".
2550 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002551 ReplaceUses(SDValue(N, 0), N->getOperand(1));
Craig Topper062a2ba2014-04-25 05:30:21 +00002552 return nullptr;
Nate Begemand31efd12006-09-22 05:01:56 +00002553 }
Nate Begeman9aea6e42005-12-24 01:00:15 +00002554 // ISD::OR doesn't get all the bitfield insertion fun.
2555 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
Andrew Trickc416ba62010-12-24 04:28:06 +00002556 if (isInt32Immediate(N->getOperand(1), Imm) &&
Nate Begeman9aea6e42005-12-24 01:00:15 +00002557 N->getOperand(0).getOpcode() == ISD::OR &&
Chris Lattner97b3da12006-06-27 00:04:13 +00002558 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
Chris Lattner20c88df2006-01-05 18:32:49 +00002559 unsigned MB, ME;
Nate Begeman9aea6e42005-12-24 01:00:15 +00002560 Imm = ~(Imm^Imm2);
2561 if (isRunOfOnes(Imm, MB, ME)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002562 SDValue Ops[] = { N->getOperand(0).getOperand(0),
Evan Chengc3acfc02006-08-27 08:14:06 +00002563 N->getOperand(0).getOperand(1),
2564 getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
Michael Liaob53d8962013-04-19 22:22:57 +00002565 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
Nate Begeman9aea6e42005-12-24 01:00:15 +00002566 }
2567 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002568
Chris Lattner1de57062005-09-29 23:33:31 +00002569 // Other cases are autogenerated.
2570 break;
Nate Begemanb3821a32005-08-18 07:30:46 +00002571 }
Hal Finkelb5e9b042014-12-11 22:51:06 +00002572 case ISD::OR: {
Owen Anderson9f944592009-08-11 20:47:22 +00002573 if (N->getValueType(0) == MVT::i32)
Chris Lattnerbc485fd2006-08-15 23:48:22 +00002574 if (SDNode *I = SelectBitfieldInsert(N))
2575 return I;
Andrew Trickc416ba62010-12-24 04:28:06 +00002576
Hal Finkelb5e9b042014-12-11 22:51:06 +00002577 short Imm;
2578 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2579 isIntS16Immediate(N->getOperand(1), Imm)) {
2580 APInt LHSKnownZero, LHSKnownOne;
2581 CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
2582
2583 // If this is equivalent to an add, then we can fold it with the
2584 // FrameIndex calculation.
2585 if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL)
2586 return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2587 }
2588
Chris Lattner1de57062005-09-29 23:33:31 +00002589 // Other cases are autogenerated.
2590 break;
Hal Finkelb5e9b042014-12-11 22:51:06 +00002591 }
2592 case ISD::ADD: {
2593 short Imm;
2594 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2595 isIntS16Immediate(N->getOperand(1), Imm))
2596 return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2597
2598 break;
2599 }
Nate Begeman33acb2c2005-08-18 23:38:00 +00002600 case ISD::SHL: {
2601 unsigned Imm, SH, MB, ME;
Gabor Greiff304a7a2008-08-28 21:40:38 +00002602 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
Nate Begeman9f3c26c2005-10-19 18:42:01 +00002603 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002604 SDValue Ops[] = { N->getOperand(0).getOperand(0),
Evan Chengc3acfc02006-08-27 08:14:06 +00002605 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
Craig Topper481fb282014-04-27 19:21:11 +00002606 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Nate Begeman9eaa6ba2005-10-19 01:12:32 +00002607 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002608
Nate Begeman9f3c26c2005-10-19 18:42:01 +00002609 // Other cases are autogenerated.
2610 break;
Nate Begeman33acb2c2005-08-18 23:38:00 +00002611 }
2612 case ISD::SRL: {
2613 unsigned Imm, SH, MB, ME;
Gabor Greiff304a7a2008-08-28 21:40:38 +00002614 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
Andrew Trickc416ba62010-12-24 04:28:06 +00002615 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002616 SDValue Ops[] = { N->getOperand(0).getOperand(0),
Evan Chengc3acfc02006-08-27 08:14:06 +00002617 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
Craig Topper481fb282014-04-27 19:21:11 +00002618 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Nate Begeman9eaa6ba2005-10-19 01:12:32 +00002619 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002620
Nate Begeman9f3c26c2005-10-19 18:42:01 +00002621 // Other cases are autogenerated.
2622 break;
Nate Begeman33acb2c2005-08-18 23:38:00 +00002623 }
Hal Finkel940ab932014-02-28 00:27:01 +00002624 // FIXME: Remove this once the ANDI glue bug is fixed:
2625 case PPCISD::ANDIo_1_EQ_BIT:
2626 case PPCISD::ANDIo_1_GT_BIT: {
2627 if (!ANDIGlueBug)
2628 break;
2629
2630 EVT InVT = N->getOperand(0).getValueType();
2631 assert((InVT == MVT::i64 || InVT == MVT::i32) &&
2632 "Invalid input type for ANDIo_1_EQ_BIT");
2633
2634 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
2635 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
2636 N->getOperand(0),
2637 CurDAG->getTargetConstant(1, InVT)), 0);
2638 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2639 SDValue SRIdxVal =
2640 CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
2641 PPC::sub_eq : PPC::sub_gt, MVT::i32);
2642
2643 return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
2644 CR0Reg, SRIdxVal,
2645 SDValue(AndI.getNode(), 1) /* glue */);
2646 }
Chris Lattnerbec817c2005-08-26 18:46:49 +00002647 case ISD::SELECT_CC: {
2648 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
Roman Divacky254f8212011-06-20 15:28:39 +00002649 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
2650 bool isPPC64 = (PtrVT == MVT::i64);
Andrew Trickc416ba62010-12-24 04:28:06 +00002651
Hal Finkel940ab932014-02-28 00:27:01 +00002652 // If this is a select of i1 operands, we'll pattern match it.
Eric Christopher1b8e7632014-05-22 01:07:24 +00002653 if (PPCSubTarget->useCRBits() &&
Hal Finkel940ab932014-02-28 00:27:01 +00002654 N->getOperand(0).getValueType() == MVT::i1)
2655 break;
2656
Chris Lattner97b3da12006-06-27 00:04:13 +00002657 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
Roman Divacky254f8212011-06-20 15:28:39 +00002658 if (!isPPC64)
2659 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2660 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
2661 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
2662 if (N1C->isNullValue() && N3C->isNullValue() &&
2663 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
2664 // FIXME: Implement this optzn for PPC64.
2665 N->getValueType(0) == MVT::i32) {
2666 SDNode *Tmp =
2667 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2668 N->getOperand(0), getI32Imm(~0U));
2669 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
2670 SDValue(Tmp, 0), N->getOperand(0),
2671 SDValue(Tmp, 1));
2672 }
Chris Lattner9b577f12005-08-26 21:23:58 +00002673
Dale Johannesenab8e4422009-02-06 19:16:40 +00002674 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
Hal Finkel940ab932014-02-28 00:27:01 +00002675
2676 if (N->getValueType(0) == MVT::i1) {
2677 // An i1 select is: (c & t) | (!c & f).
2678 bool Inv;
2679 unsigned Idx = getCRIdxForSetCC(CC, Inv);
2680
2681 unsigned SRI;
2682 switch (Idx) {
2683 default: llvm_unreachable("Invalid CC index");
2684 case 0: SRI = PPC::sub_lt; break;
2685 case 1: SRI = PPC::sub_gt; break;
2686 case 2: SRI = PPC::sub_eq; break;
2687 case 3: SRI = PPC::sub_un; break;
2688 }
2689
2690 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
2691
2692 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
2693 CCBit, CCBit), 0);
2694 SDValue C = Inv ? NotCCBit : CCBit,
2695 NotC = Inv ? CCBit : NotCCBit;
2696
2697 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2698 C, N->getOperand(2)), 0);
2699 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2700 NotC, N->getOperand(3)), 0);
2701
2702 return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
2703 }
2704
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002705 unsigned BROpc = getPredicateForSetCC(CC);
Chris Lattner9b577f12005-08-26 21:23:58 +00002706
Chris Lattnerd3eee1a2005-10-01 01:35:02 +00002707 unsigned SelectCCOp;
Owen Anderson9f944592009-08-11 20:47:22 +00002708 if (N->getValueType(0) == MVT::i32)
Chris Lattner97b3da12006-06-27 00:04:13 +00002709 SelectCCOp = PPC::SELECT_CC_I4;
Owen Anderson9f944592009-08-11 20:47:22 +00002710 else if (N->getValueType(0) == MVT::i64)
Chris Lattner97b3da12006-06-27 00:04:13 +00002711 SelectCCOp = PPC::SELECT_CC_I8;
Owen Anderson9f944592009-08-11 20:47:22 +00002712 else if (N->getValueType(0) == MVT::f32)
Chris Lattnerd3eee1a2005-10-01 01:35:02 +00002713 SelectCCOp = PPC::SELECT_CC_F4;
Owen Anderson9f944592009-08-11 20:47:22 +00002714 else if (N->getValueType(0) == MVT::f64)
Bill Schmidt9c54bbd2014-10-22 16:58:20 +00002715 if (PPCSubTarget->hasVSX())
2716 SelectCCOp = PPC::SELECT_CC_VSFRC;
2717 else
2718 SelectCCOp = PPC::SELECT_CC_F8;
Hal Finkelc93a9a22015-02-25 01:06:45 +00002719 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
2720 SelectCCOp = PPC::SELECT_CC_QFRC;
2721 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
2722 SelectCCOp = PPC::SELECT_CC_QSRC;
2723 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
2724 SelectCCOp = PPC::SELECT_CC_QBRC;
Bill Schmidt61e65232014-10-22 13:13:40 +00002725 else if (N->getValueType(0) == MVT::v2f64 ||
2726 N->getValueType(0) == MVT::v2i64)
2727 SelectCCOp = PPC::SELECT_CC_VSRC;
Chris Lattner0a3d1bb2006-04-08 22:45:08 +00002728 else
2729 SelectCCOp = PPC::SELECT_CC_VRRC;
2730
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002731 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
Evan Chengc3acfc02006-08-27 08:14:06 +00002732 getI32Imm(BROpc) };
Craig Topper481fb282014-04-27 19:21:11 +00002733 return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
Chris Lattnerbec817c2005-08-26 18:46:49 +00002734 }
Hal Finkel732f0f72014-03-26 12:49:28 +00002735 case ISD::VSELECT:
Eric Christopher1b8e7632014-05-22 01:07:24 +00002736 if (PPCSubTarget->hasVSX()) {
Hal Finkel732f0f72014-03-26 12:49:28 +00002737 SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
Craig Topper481fb282014-04-27 19:21:11 +00002738 return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
Hal Finkel732f0f72014-03-26 12:49:28 +00002739 }
2740
2741 break;
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002742 case ISD::VECTOR_SHUFFLE:
Eric Christopher1b8e7632014-05-22 01:07:24 +00002743 if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002744 N->getValueType(0) == MVT::v2i64)) {
2745 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
2746
2747 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
2748 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
2749 unsigned DM[2];
2750
2751 for (int i = 0; i < 2; ++i)
2752 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
2753 DM[i] = 0;
2754 else
2755 DM[i] = 1;
2756
Bill Schmidt30144352014-12-09 16:52:29 +00002757 // For little endian, we must swap the input operands and adjust
2758 // the mask elements (reverse and invert them).
2759 if (PPCSubTarget->isLittleEndian()) {
2760 std::swap(Op1, Op2);
2761 unsigned tmp = DM[0];
2762 DM[0] = 1 - DM[1];
2763 DM[1] = 1 - tmp;
2764 }
2765
Hal Finkel2583b062014-03-28 20:24:55 +00002766 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), MVT::i32);
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002767
2768 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
2769 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
2770 isa<LoadSDNode>(Op1.getOperand(0))) {
2771 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
2772 SDValue Base, Offset;
2773
2774 if (LD->isUnindexed() &&
2775 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
2776 SDValue Chain = LD->getChain();
2777 SDValue Ops[] = { Base, Offset, Chain };
2778 return CurDAG->SelectNodeTo(N, PPC::LXVDSX,
Craig Topper481fb282014-04-27 19:21:11 +00002779 N->getValueType(0), Ops);
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002780 }
2781 }
2782
2783 SDValue Ops[] = { Op1, Op2, DMV };
Craig Topper481fb282014-04-27 19:21:11 +00002784 return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002785 }
2786
2787 break;
Hal Finkel25c19922013-05-15 21:37:41 +00002788 case PPCISD::BDNZ:
2789 case PPCISD::BDZ: {
Eric Christopher1b8e7632014-05-22 01:07:24 +00002790 bool IsPPC64 = PPCSubTarget->isPPC64();
Hal Finkel25c19922013-05-15 21:37:41 +00002791 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
2792 return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
2793 (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
2794 (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
Craig Topper481fb282014-04-27 19:21:11 +00002795 MVT::Other, Ops);
Hal Finkel25c19922013-05-15 21:37:41 +00002796 }
Chris Lattnerbe9377a2006-11-17 22:37:34 +00002797 case PPCISD::COND_BRANCH: {
Dan Gohman7a638a82008-11-05 17:16:24 +00002798 // Op #0 is the Chain.
Chris Lattnerbe9377a2006-11-17 22:37:34 +00002799 // Op #1 is the PPC::PRED_* number.
2800 // Op #2 is the CR#
2801 // Op #3 is the Dest MBB
Dan Gohmanf14b77e2008-11-05 04:14:16 +00002802 // Op #4 is the Flag.
Evan Cheng58d1eac2007-06-29 01:25:06 +00002803 // Prevent PPC::PRED_* from being selected into LI.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002804 SDValue Pred =
Dan Gohmaneffb8942008-09-12 16:56:44 +00002805 getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002806 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
Chris Lattnerbe9377a2006-11-17 22:37:34 +00002807 N->getOperand(0), N->getOperand(4) };
Craig Topper481fb282014-04-27 19:21:11 +00002808 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
Chris Lattnerbe9377a2006-11-17 22:37:34 +00002809 }
Nate Begemanbb01d4f2006-03-17 01:40:33 +00002810 case ISD::BR_CC: {
Chris Lattner2a1823d2005-08-21 18:50:37 +00002811 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
Hal Finkel940ab932014-02-28 00:27:01 +00002812 unsigned PCC = getPredicateForSetCC(CC);
2813
2814 if (N->getOperand(2).getValueType() == MVT::i1) {
2815 unsigned Opc;
2816 bool Swap;
2817 switch (PCC) {
2818 default: llvm_unreachable("Unexpected Boolean-operand predicate");
2819 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
2820 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
2821 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
2822 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
2823 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
2824 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
2825 }
2826
2827 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
2828 N->getOperand(Swap ? 3 : 2),
2829 N->getOperand(Swap ? 2 : 3)), 0);
2830 return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
2831 BitComp, N->getOperand(4), N->getOperand(0));
2832 }
2833
Dale Johannesenab8e4422009-02-06 19:16:40 +00002834 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
Hal Finkel940ab932014-02-28 00:27:01 +00002835 SDValue Ops[] = { getI32Imm(PCC), CondCode,
Evan Chengc3acfc02006-08-27 08:14:06 +00002836 N->getOperand(4), N->getOperand(0) };
Craig Topper481fb282014-04-27 19:21:11 +00002837 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
Chris Lattner2a1823d2005-08-21 18:50:37 +00002838 }
Nate Begeman4ca2ea52006-04-22 18:53:45 +00002839 case ISD::BRIND: {
Chris Lattnerb055c872006-06-10 01:15:02 +00002840 // FIXME: Should custom lower this.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002841 SDValue Chain = N->getOperand(0);
2842 SDValue Target = N->getOperand(1);
Owen Anderson9f944592009-08-11 20:47:22 +00002843 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
Roman Divackya4a59ae2011-06-03 15:47:49 +00002844 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
Hal Finkel528ff4b2011-12-08 04:36:44 +00002845 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
Dan Gohman32f71d72009-09-25 18:54:59 +00002846 Chain), 0);
Roman Divackya4a59ae2011-06-03 15:47:49 +00002847 return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
Nate Begeman4ca2ea52006-04-22 18:53:45 +00002848 }
Bill Schmidt34627e32012-11-27 17:35:46 +00002849 case PPCISD::TOC_ENTRY: {
Justin Hibbitsa88b6052014-11-12 15:16:30 +00002850 assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
2851 "Only supported for 64-bit ABI and 32-bit SVR4");
Hal Finkel3ee2af72014-07-18 23:29:49 +00002852 if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
2853 SDValue GA = N->getOperand(0);
2854 return CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
2855 N->getOperand(1));
Justin Hibbits3476db42014-08-28 04:40:55 +00002856 }
Bill Schmidt34627e32012-11-27 17:35:46 +00002857
Bill Schmidt27917782013-02-21 17:12:27 +00002858 // For medium and large code model, we generate two instructions as
2859 // described below. Otherwise we allow SelectCodeCommon to handle this,
Ulrich Weigandc8c2ea22014-10-31 10:33:14 +00002860 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
Bill Schmidt27917782013-02-21 17:12:27 +00002861 CodeModel::Model CModel = TM.getCodeModel();
2862 if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
Bill Schmidt34627e32012-11-27 17:35:46 +00002863 break;
2864
Bill Schmidt5d82f092014-06-16 21:36:02 +00002865 // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
2866 // If it is an externally defined symbol, a symbol with common linkage,
2867 // a non-local function address, or a jump table address, or if we are
2868 // generating code for large code model, we generate:
Bill Schmidt34627e32012-11-27 17:35:46 +00002869 // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
2870 // Otherwise we generate:
2871 // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
2872 SDValue GA = N->getOperand(0);
2873 SDValue TOCbase = N->getOperand(1);
2874 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
2875 TOCbase, GA);
2876
Ulrich Weigandc8c2ea22014-10-31 10:33:14 +00002877 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
2878 CModel == CodeModel::Large)
Bill Schmidt34627e32012-11-27 17:35:46 +00002879 return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
2880 SDValue(Tmp, 0));
2881
2882 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
2883 const GlobalValue *GValue = G->getGlobal();
Bill Schmidt5d82f092014-06-16 21:36:02 +00002884 if ((GValue->getType()->getElementType()->isFunctionTy() &&
2885 (GValue->isDeclaration() || GValue->isWeakForLinker())) ||
Rafael Espindola04902862014-05-29 15:41:38 +00002886 GValue->isDeclaration() || GValue->hasCommonLinkage() ||
2887 GValue->hasAvailableExternallyLinkage())
Bill Schmidt34627e32012-11-27 17:35:46 +00002888 return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
2889 SDValue(Tmp, 0));
2890 }
2891
2892 return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
2893 SDValue(Tmp, 0), GA);
2894 }
Hal Finkel7c8ae532014-07-25 17:47:22 +00002895 case PPCISD::PPC32_PICGOT: {
2896 // Generate a PIC-safe GOT reference.
2897 assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
2898 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
2899 return CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(), MVT::i32);
2900 }
Bill Schmidt51e79512013-02-20 15:50:31 +00002901 case PPCISD::VADD_SPLAT: {
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002902 // This expands into one of three sequences, depending on whether
2903 // the first operand is odd or even, positive or negative.
Bill Schmidt51e79512013-02-20 15:50:31 +00002904 assert(isa<ConstantSDNode>(N->getOperand(0)) &&
2905 isa<ConstantSDNode>(N->getOperand(1)) &&
2906 "Invalid operand on VADD_SPLAT!");
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002907
2908 int Elt = N->getConstantOperandVal(0);
Bill Schmidt51e79512013-02-20 15:50:31 +00002909 int EltSize = N->getConstantOperandVal(1);
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002910 unsigned Opc1, Opc2, Opc3;
Bill Schmidt51e79512013-02-20 15:50:31 +00002911 EVT VT;
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002912
Bill Schmidt51e79512013-02-20 15:50:31 +00002913 if (EltSize == 1) {
2914 Opc1 = PPC::VSPLTISB;
2915 Opc2 = PPC::VADDUBM;
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002916 Opc3 = PPC::VSUBUBM;
Bill Schmidt51e79512013-02-20 15:50:31 +00002917 VT = MVT::v16i8;
2918 } else if (EltSize == 2) {
2919 Opc1 = PPC::VSPLTISH;
2920 Opc2 = PPC::VADDUHM;
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002921 Opc3 = PPC::VSUBUHM;
Bill Schmidt51e79512013-02-20 15:50:31 +00002922 VT = MVT::v8i16;
2923 } else {
2924 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
2925 Opc1 = PPC::VSPLTISW;
2926 Opc2 = PPC::VADDUWM;
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002927 Opc3 = PPC::VSUBUWM;
Bill Schmidt51e79512013-02-20 15:50:31 +00002928 VT = MVT::v4i32;
2929 }
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002930
2931 if ((Elt & 1) == 0) {
2932 // Elt is even, in the range [-32,-18] + [16,30].
2933 //
2934 // Convert: VADD_SPLAT elt, size
2935 // Into: tmp = VSPLTIS[BHW] elt
2936 // VADDU[BHW]M tmp, tmp
2937 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
2938 SDValue EltVal = getI32Imm(Elt >> 1);
2939 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2940 SDValue TmpVal = SDValue(Tmp, 0);
2941 return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
2942
2943 } else if (Elt > 0) {
2944 // Elt is odd and positive, in the range [17,31].
2945 //
2946 // Convert: VADD_SPLAT elt, size
2947 // Into: tmp1 = VSPLTIS[BHW] elt-16
2948 // tmp2 = VSPLTIS[BHW] -16
2949 // VSUBU[BHW]M tmp1, tmp2
2950 SDValue EltVal = getI32Imm(Elt - 16);
2951 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2952 EltVal = getI32Imm(-16);
2953 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2954 return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
2955 SDValue(Tmp2, 0));
2956
2957 } else {
2958 // Elt is odd and negative, in the range [-31,-17].
2959 //
2960 // Convert: VADD_SPLAT elt, size
2961 // Into: tmp1 = VSPLTIS[BHW] elt+16
2962 // tmp2 = VSPLTIS[BHW] -16
2963 // VADDU[BHW]M tmp1, tmp2
2964 SDValue EltVal = getI32Imm(Elt + 16);
2965 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2966 EltVal = getI32Imm(-16);
2967 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2968 return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
2969 SDValue(Tmp2, 0));
2970 }
Bill Schmidt51e79512013-02-20 15:50:31 +00002971 }
Chris Lattner43ff01e2005-08-17 19:33:03 +00002972 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002973
Dan Gohmanea6f91f2010-01-05 01:24:18 +00002974 return SelectCode(N);
Chris Lattner43ff01e2005-08-17 19:33:03 +00002975}
2976
Hal Finkel4edc66b2015-01-03 01:16:37 +00002977// If the target supports the cmpb instruction, do the idiom recognition here.
2978// We don't do this as a DAG combine because we don't want to do it as nodes
2979// are being combined (because we might miss part of the eventual idiom). We
2980// don't want to do it during instruction selection because we want to reuse
2981// the logic for lowering the masking operations already part of the
2982// instruction selector.
2983SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
2984 SDLoc dl(N);
2985
2986 assert(N->getOpcode() == ISD::OR &&
2987 "Only OR nodes are supported for CMPB");
2988
2989 SDValue Res;
2990 if (!PPCSubTarget->hasCMPB())
2991 return Res;
2992
2993 if (N->getValueType(0) != MVT::i32 &&
2994 N->getValueType(0) != MVT::i64)
2995 return Res;
2996
2997 EVT VT = N->getValueType(0);
2998
2999 SDValue RHS, LHS;
3000 bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
3001 uint64_t Mask = 0, Alt = 0;
3002
3003 auto IsByteSelectCC = [this](SDValue O, unsigned &b,
3004 uint64_t &Mask, uint64_t &Alt,
3005 SDValue &LHS, SDValue &RHS) {
3006 if (O.getOpcode() != ISD::SELECT_CC)
3007 return false;
3008 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
3009
3010 if (!isa<ConstantSDNode>(O.getOperand(2)) ||
3011 !isa<ConstantSDNode>(O.getOperand(3)))
3012 return false;
3013
3014 uint64_t PM = O.getConstantOperandVal(2);
3015 uint64_t PAlt = O.getConstantOperandVal(3);
3016 for (b = 0; b < 8; ++b) {
3017 uint64_t Mask = UINT64_C(0xFF) << (8*b);
3018 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
3019 break;
3020 }
3021
3022 if (b == 8)
3023 return false;
3024 Mask |= PM;
3025 Alt |= PAlt;
3026
3027 if (!isa<ConstantSDNode>(O.getOperand(1)) ||
3028 O.getConstantOperandVal(1) != 0) {
3029 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
3030 if (Op0.getOpcode() == ISD::TRUNCATE)
3031 Op0 = Op0.getOperand(0);
3032 if (Op1.getOpcode() == ISD::TRUNCATE)
3033 Op1 = Op1.getOperand(0);
3034
3035 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
3036 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
3037 isa<ConstantSDNode>(Op0.getOperand(1))) {
3038
3039 unsigned Bits = Op0.getValueType().getSizeInBits();
3040 if (b != Bits/8-1)
3041 return false;
3042 if (Op0.getConstantOperandVal(1) != Bits-8)
3043 return false;
3044
3045 LHS = Op0.getOperand(0);
3046 RHS = Op1.getOperand(0);
3047 return true;
3048 }
3049
3050 // When we have small integers (i16 to be specific), the form present
3051 // post-legalization uses SETULT in the SELECT_CC for the
3052 // higher-order byte, depending on the fact that the
3053 // even-higher-order bytes are known to all be zero, for example:
3054 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
3055 // (so when the second byte is the same, because all higher-order
3056 // bits from bytes 3 and 4 are known to be zero, the result of the
3057 // xor can be at most 255)
3058 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
3059 isa<ConstantSDNode>(O.getOperand(1))) {
3060
3061 uint64_t ULim = O.getConstantOperandVal(1);
3062 if (ULim != (UINT64_C(1) << b*8))
3063 return false;
3064
3065 // Now we need to make sure that the upper bytes are known to be
3066 // zero.
3067 unsigned Bits = Op0.getValueType().getSizeInBits();
3068 if (!CurDAG->MaskedValueIsZero(Op0,
3069 APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
3070 return false;
3071
3072 LHS = Op0.getOperand(0);
3073 RHS = Op0.getOperand(1);
3074 return true;
3075 }
3076
3077 return false;
3078 }
3079
3080 if (CC != ISD::SETEQ)
3081 return false;
3082
3083 SDValue Op = O.getOperand(0);
3084 if (Op.getOpcode() == ISD::AND) {
3085 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3086 return false;
3087 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
3088 return false;
3089
3090 SDValue XOR = Op.getOperand(0);
3091 if (XOR.getOpcode() == ISD::TRUNCATE)
3092 XOR = XOR.getOperand(0);
3093 if (XOR.getOpcode() != ISD::XOR)
3094 return false;
3095
3096 LHS = XOR.getOperand(0);
3097 RHS = XOR.getOperand(1);
3098 return true;
3099 } else if (Op.getOpcode() == ISD::SRL) {
3100 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3101 return false;
3102 unsigned Bits = Op.getValueType().getSizeInBits();
3103 if (b != Bits/8-1)
3104 return false;
3105 if (Op.getConstantOperandVal(1) != Bits-8)
3106 return false;
3107
3108 SDValue XOR = Op.getOperand(0);
3109 if (XOR.getOpcode() == ISD::TRUNCATE)
3110 XOR = XOR.getOperand(0);
3111 if (XOR.getOpcode() != ISD::XOR)
3112 return false;
3113
3114 LHS = XOR.getOperand(0);
3115 RHS = XOR.getOperand(1);
3116 return true;
3117 }
3118
3119 return false;
3120 };
3121
3122 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
3123 while (!Queue.empty()) {
3124 SDValue V = Queue.pop_back_val();
3125
3126 for (const SDValue &O : V.getNode()->ops()) {
3127 unsigned b;
3128 uint64_t M = 0, A = 0;
3129 SDValue OLHS, ORHS;
3130 if (O.getOpcode() == ISD::OR) {
3131 Queue.push_back(O);
3132 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
3133 if (!LHS) {
3134 LHS = OLHS;
3135 RHS = ORHS;
3136 BytesFound[b] = true;
3137 Mask |= M;
3138 Alt |= A;
3139 } else if ((LHS == ORHS && RHS == OLHS) ||
3140 (RHS == ORHS && LHS == OLHS)) {
3141 BytesFound[b] = true;
3142 Mask |= M;
3143 Alt |= A;
3144 } else {
3145 return Res;
3146 }
3147 } else {
3148 return Res;
3149 }
3150 }
3151 }
3152
3153 unsigned LastB = 0, BCnt = 0;
3154 for (unsigned i = 0; i < 8; ++i)
3155 if (BytesFound[LastB]) {
3156 ++BCnt;
3157 LastB = i;
3158 }
3159
3160 if (!LastB || BCnt < 2)
3161 return Res;
3162
3163 // Because we'll be zero-extending the output anyway if don't have a specific
3164 // value for each input byte (via the Mask), we can 'anyext' the inputs.
3165 if (LHS.getValueType() != VT) {
3166 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
3167 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
3168 }
3169
3170 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
3171
3172 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
3173 if (NonTrivialMask && !Alt) {
3174 // Res = Mask & CMPB
3175 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, CurDAG->getConstant(Mask, VT));
3176 } else if (Alt) {
3177 // Res = (CMPB & Mask) | (~CMPB & Alt)
3178 // Which, as suggested here:
3179 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
3180 // can be written as:
3181 // Res = Alt ^ ((Alt ^ Mask) & CMPB)
3182 // useful because the (Alt ^ Mask) can be pre-computed.
3183 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
3184 CurDAG->getConstant(Mask ^ Alt, VT));
3185 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, CurDAG->getConstant(Alt, VT));
3186 }
3187
3188 return Res;
3189}
3190
Hal Finkel200d2ad2015-01-05 21:10:24 +00003191// When CR bit registers are enabled, an extension of an i1 variable to a i32
3192// or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
3193// involves constant materialization of a 0 or a 1 or both. If the result of
3194// the extension is then operated upon by some operator that can be constant
3195// folded with a constant 0 or 1, and that constant can be materialized using
3196// only one instruction (like a zero or one), then we should fold in those
3197// operations with the select.
3198void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
3199 if (!PPCSubTarget->useCRBits())
3200 return;
3201
3202 if (N->getOpcode() != ISD::ZERO_EXTEND &&
3203 N->getOpcode() != ISD::SIGN_EXTEND &&
3204 N->getOpcode() != ISD::ANY_EXTEND)
3205 return;
3206
3207 if (N->getOperand(0).getValueType() != MVT::i1)
3208 return;
3209
3210 if (!N->hasOneUse())
3211 return;
3212
3213 SDLoc dl(N);
3214 EVT VT = N->getValueType(0);
3215 SDValue Cond = N->getOperand(0);
3216 SDValue ConstTrue =
3217 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, VT);
3218 SDValue ConstFalse = CurDAG->getConstant(0, VT);
3219
3220 do {
3221 SDNode *User = *N->use_begin();
3222 if (User->getNumOperands() != 2)
3223 break;
3224
3225 auto TryFold = [this, N, User](SDValue Val) {
3226 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
3227 SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
3228 SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
3229
3230 return CurDAG->FoldConstantArithmetic(User->getOpcode(),
3231 User->getValueType(0),
3232 O0.getNode(), O1.getNode());
3233 };
3234
3235 SDValue TrueRes = TryFold(ConstTrue);
3236 if (!TrueRes)
3237 break;
3238 SDValue FalseRes = TryFold(ConstFalse);
3239 if (!FalseRes)
3240 break;
3241
3242 // For us to materialize these using one instruction, we must be able to
3243 // represent them as signed 16-bit integers.
3244 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
3245 False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
3246 if (!isInt<16>(True) || !isInt<16>(False))
3247 break;
3248
3249 // We can replace User with a new SELECT node, and try again to see if we
3250 // can fold the select with its user.
3251 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
3252 N = User;
3253 ConstTrue = TrueRes;
3254 ConstFalse = FalseRes;
3255 } while (N->hasOneUse());
3256}
3257
Hal Finkel4edc66b2015-01-03 01:16:37 +00003258void PPCDAGToDAGISel::PreprocessISelDAG() {
3259 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3260 ++Position;
3261
3262 bool MadeChange = false;
3263 while (Position != CurDAG->allnodes_begin()) {
3264 SDNode *N = --Position;
3265 if (N->use_empty())
3266 continue;
3267
3268 SDValue Res;
3269 switch (N->getOpcode()) {
3270 default: break;
3271 case ISD::OR:
3272 Res = combineToCMPB(N);
3273 break;
3274 }
3275
Hal Finkel200d2ad2015-01-05 21:10:24 +00003276 if (!Res)
3277 foldBoolExts(Res, N);
3278
Hal Finkel4edc66b2015-01-03 01:16:37 +00003279 if (Res) {
3280 DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
3281 DEBUG(N->dump(CurDAG));
3282 DEBUG(dbgs() << "\nNew: ");
3283 DEBUG(Res.getNode()->dump(CurDAG));
3284 DEBUG(dbgs() << "\n");
3285
3286 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
3287 MadeChange = true;
3288 }
3289 }
3290
3291 if (MadeChange)
3292 CurDAG->RemoveDeadNodes();
3293}
3294
Hal Finkel860fa902014-01-02 22:09:39 +00003295/// PostprocessISelDAG - Perform some late peephole optimizations
Bill Schmidtf5b474c2013-02-21 00:38:25 +00003296/// on the DAG representation.
3297void PPCDAGToDAGISel::PostprocessISelDAG() {
3298
3299 // Skip peepholes at -O0.
3300 if (TM.getOptLevel() == CodeGenOpt::None)
3301 return;
3302
Hal Finkel940ab932014-02-28 00:27:01 +00003303 PeepholePPC64();
Eric Christopher02e18042014-05-14 00:31:15 +00003304 PeepholeCROps();
Hal Finkel4c6658f2014-12-12 23:59:36 +00003305 PeepholePPC64ZExt();
Hal Finkel940ab932014-02-28 00:27:01 +00003306}
3307
Hal Finkelb9989152014-02-28 06:11:16 +00003308// Check if all users of this node will become isel where the second operand
3309// is the constant zero. If this is so, and if we can negate the condition,
3310// then we can flip the true and false operands. This will allow the zero to
3311// be folded with the isel so that we don't need to materialize a register
3312// containing zero.
3313bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
3314 // If we're not using isel, then this does not matter.
Eric Christopher1b8e7632014-05-22 01:07:24 +00003315 if (!PPCSubTarget->hasISEL())
Hal Finkelb9989152014-02-28 06:11:16 +00003316 return false;
3317
3318 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3319 UI != UE; ++UI) {
3320 SDNode *User = *UI;
3321 if (!User->isMachineOpcode())
3322 return false;
3323 if (User->getMachineOpcode() != PPC::SELECT_I4 &&
3324 User->getMachineOpcode() != PPC::SELECT_I8)
3325 return false;
3326
3327 SDNode *Op2 = User->getOperand(2).getNode();
3328 if (!Op2->isMachineOpcode())
3329 return false;
3330
3331 if (Op2->getMachineOpcode() != PPC::LI &&
3332 Op2->getMachineOpcode() != PPC::LI8)
3333 return false;
3334
3335 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
3336 if (!C)
3337 return false;
3338
3339 if (!C->isNullValue())
3340 return false;
3341 }
3342
3343 return true;
3344}
3345
3346void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
3347 SmallVector<SDNode *, 4> ToReplace;
3348 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3349 UI != UE; ++UI) {
3350 SDNode *User = *UI;
3351 assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
3352 User->getMachineOpcode() == PPC::SELECT_I8) &&
3353 "Must have all select users");
3354 ToReplace.push_back(User);
3355 }
3356
3357 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
3358 UE = ToReplace.end(); UI != UE; ++UI) {
3359 SDNode *User = *UI;
3360 SDNode *ResNode =
3361 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
3362 User->getValueType(0), User->getOperand(0),
3363 User->getOperand(2),
3364 User->getOperand(1));
3365
3366 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
3367 DEBUG(User->dump(CurDAG));
3368 DEBUG(dbgs() << "\nNew: ");
3369 DEBUG(ResNode->dump(CurDAG));
3370 DEBUG(dbgs() << "\n");
3371
3372 ReplaceUses(User, ResNode);
3373 }
3374}
3375
Eric Christopher02e18042014-05-14 00:31:15 +00003376void PPCDAGToDAGISel::PeepholeCROps() {
Hal Finkel940ab932014-02-28 00:27:01 +00003377 bool IsModified;
3378 do {
3379 IsModified = false;
3380 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
3381 E = CurDAG->allnodes_end(); I != E; ++I) {
3382 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
3383 if (!MachineNode || MachineNode->use_empty())
3384 continue;
3385 SDNode *ResNode = MachineNode;
3386
3387 bool Op1Set = false, Op1Unset = false,
3388 Op1Not = false,
3389 Op2Set = false, Op2Unset = false,
3390 Op2Not = false;
3391
3392 unsigned Opcode = MachineNode->getMachineOpcode();
3393 switch (Opcode) {
3394 default: break;
3395 case PPC::CRAND:
3396 case PPC::CRNAND:
3397 case PPC::CROR:
3398 case PPC::CRXOR:
3399 case PPC::CRNOR:
3400 case PPC::CREQV:
3401 case PPC::CRANDC:
3402 case PPC::CRORC: {
3403 SDValue Op = MachineNode->getOperand(1);
3404 if (Op.isMachineOpcode()) {
3405 if (Op.getMachineOpcode() == PPC::CRSET)
3406 Op2Set = true;
3407 else if (Op.getMachineOpcode() == PPC::CRUNSET)
3408 Op2Unset = true;
3409 else if (Op.getMachineOpcode() == PPC::CRNOR &&
3410 Op.getOperand(0) == Op.getOperand(1))
3411 Op2Not = true;
3412 }
3413 } // fallthrough
3414 case PPC::BC:
3415 case PPC::BCn:
3416 case PPC::SELECT_I4:
3417 case PPC::SELECT_I8:
3418 case PPC::SELECT_F4:
3419 case PPC::SELECT_F8:
Hal Finkelc93a9a22015-02-25 01:06:45 +00003420 case PPC::SELECT_QFRC:
3421 case PPC::SELECT_QSRC:
3422 case PPC::SELECT_QBRC:
Bill Schmidt61e65232014-10-22 13:13:40 +00003423 case PPC::SELECT_VRRC:
Bill Schmidt9c54bbd2014-10-22 16:58:20 +00003424 case PPC::SELECT_VSFRC:
Bill Schmidt61e65232014-10-22 13:13:40 +00003425 case PPC::SELECT_VSRC: {
Hal Finkel940ab932014-02-28 00:27:01 +00003426 SDValue Op = MachineNode->getOperand(0);
3427 if (Op.isMachineOpcode()) {
3428 if (Op.getMachineOpcode() == PPC::CRSET)
3429 Op1Set = true;
3430 else if (Op.getMachineOpcode() == PPC::CRUNSET)
3431 Op1Unset = true;
3432 else if (Op.getMachineOpcode() == PPC::CRNOR &&
3433 Op.getOperand(0) == Op.getOperand(1))
3434 Op1Not = true;
3435 }
3436 }
3437 break;
3438 }
3439
Hal Finkelb9989152014-02-28 06:11:16 +00003440 bool SelectSwap = false;
Hal Finkel940ab932014-02-28 00:27:01 +00003441 switch (Opcode) {
3442 default: break;
3443 case PPC::CRAND:
3444 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3445 // x & x = x
3446 ResNode = MachineNode->getOperand(0).getNode();
3447 else if (Op1Set)
3448 // 1 & y = y
3449 ResNode = MachineNode->getOperand(1).getNode();
3450 else if (Op2Set)
3451 // x & 1 = x
3452 ResNode = MachineNode->getOperand(0).getNode();
3453 else if (Op1Unset || Op2Unset)
3454 // x & 0 = 0 & y = 0
3455 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3456 MVT::i1);
3457 else if (Op1Not)
3458 // ~x & y = andc(y, x)
3459 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3460 MVT::i1, MachineNode->getOperand(1),
3461 MachineNode->getOperand(0).
3462 getOperand(0));
3463 else if (Op2Not)
3464 // x & ~y = andc(x, y)
3465 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3466 MVT::i1, MachineNode->getOperand(0),
3467 MachineNode->getOperand(1).
3468 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003469 else if (AllUsersSelectZero(MachineNode))
3470 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3471 MVT::i1, MachineNode->getOperand(0),
3472 MachineNode->getOperand(1)),
3473 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003474 break;
3475 case PPC::CRNAND:
3476 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3477 // nand(x, x) -> nor(x, x)
3478 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3479 MVT::i1, MachineNode->getOperand(0),
3480 MachineNode->getOperand(0));
3481 else if (Op1Set)
3482 // nand(1, y) -> nor(y, y)
3483 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3484 MVT::i1, MachineNode->getOperand(1),
3485 MachineNode->getOperand(1));
3486 else if (Op2Set)
3487 // nand(x, 1) -> nor(x, x)
3488 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3489 MVT::i1, MachineNode->getOperand(0),
3490 MachineNode->getOperand(0));
3491 else if (Op1Unset || Op2Unset)
3492 // nand(x, 0) = nand(0, y) = 1
3493 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3494 MVT::i1);
3495 else if (Op1Not)
3496 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
3497 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3498 MVT::i1, MachineNode->getOperand(0).
3499 getOperand(0),
3500 MachineNode->getOperand(1));
3501 else if (Op2Not)
3502 // nand(x, ~y) = ~x | y = orc(y, x)
3503 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3504 MVT::i1, MachineNode->getOperand(1).
3505 getOperand(0),
3506 MachineNode->getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003507 else if (AllUsersSelectZero(MachineNode))
3508 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3509 MVT::i1, MachineNode->getOperand(0),
3510 MachineNode->getOperand(1)),
3511 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003512 break;
3513 case PPC::CROR:
3514 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3515 // x | x = x
3516 ResNode = MachineNode->getOperand(0).getNode();
3517 else if (Op1Set || Op2Set)
3518 // x | 1 = 1 | y = 1
3519 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3520 MVT::i1);
3521 else if (Op1Unset)
3522 // 0 | y = y
3523 ResNode = MachineNode->getOperand(1).getNode();
3524 else if (Op2Unset)
3525 // x | 0 = x
3526 ResNode = MachineNode->getOperand(0).getNode();
3527 else if (Op1Not)
3528 // ~x | y = orc(y, x)
3529 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3530 MVT::i1, MachineNode->getOperand(1),
3531 MachineNode->getOperand(0).
3532 getOperand(0));
3533 else if (Op2Not)
3534 // x | ~y = orc(x, y)
3535 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3536 MVT::i1, MachineNode->getOperand(0),
3537 MachineNode->getOperand(1).
3538 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003539 else if (AllUsersSelectZero(MachineNode))
3540 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3541 MVT::i1, MachineNode->getOperand(0),
3542 MachineNode->getOperand(1)),
3543 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003544 break;
3545 case PPC::CRXOR:
3546 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3547 // xor(x, x) = 0
3548 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3549 MVT::i1);
3550 else if (Op1Set)
3551 // xor(1, y) -> nor(y, y)
3552 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3553 MVT::i1, MachineNode->getOperand(1),
3554 MachineNode->getOperand(1));
3555 else if (Op2Set)
3556 // xor(x, 1) -> nor(x, x)
3557 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3558 MVT::i1, MachineNode->getOperand(0),
3559 MachineNode->getOperand(0));
3560 else if (Op1Unset)
3561 // xor(0, y) = y
3562 ResNode = MachineNode->getOperand(1).getNode();
3563 else if (Op2Unset)
3564 // xor(x, 0) = x
3565 ResNode = MachineNode->getOperand(0).getNode();
3566 else if (Op1Not)
3567 // xor(~x, y) = eqv(x, y)
3568 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3569 MVT::i1, MachineNode->getOperand(0).
3570 getOperand(0),
3571 MachineNode->getOperand(1));
3572 else if (Op2Not)
3573 // xor(x, ~y) = eqv(x, y)
3574 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3575 MVT::i1, MachineNode->getOperand(0),
3576 MachineNode->getOperand(1).
3577 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003578 else if (AllUsersSelectZero(MachineNode))
3579 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3580 MVT::i1, MachineNode->getOperand(0),
3581 MachineNode->getOperand(1)),
3582 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003583 break;
3584 case PPC::CRNOR:
3585 if (Op1Set || Op2Set)
3586 // nor(1, y) -> 0
3587 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3588 MVT::i1);
3589 else if (Op1Unset)
3590 // nor(0, y) = ~y -> nor(y, y)
3591 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3592 MVT::i1, MachineNode->getOperand(1),
3593 MachineNode->getOperand(1));
3594 else if (Op2Unset)
3595 // nor(x, 0) = ~x
3596 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3597 MVT::i1, MachineNode->getOperand(0),
3598 MachineNode->getOperand(0));
3599 else if (Op1Not)
3600 // nor(~x, y) = andc(x, y)
3601 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3602 MVT::i1, MachineNode->getOperand(0).
3603 getOperand(0),
3604 MachineNode->getOperand(1));
3605 else if (Op2Not)
3606 // nor(x, ~y) = andc(y, x)
3607 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3608 MVT::i1, MachineNode->getOperand(1).
3609 getOperand(0),
3610 MachineNode->getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003611 else if (AllUsersSelectZero(MachineNode))
3612 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3613 MVT::i1, MachineNode->getOperand(0),
3614 MachineNode->getOperand(1)),
3615 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003616 break;
3617 case PPC::CREQV:
3618 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3619 // eqv(x, x) = 1
3620 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3621 MVT::i1);
3622 else if (Op1Set)
3623 // eqv(1, y) = y
3624 ResNode = MachineNode->getOperand(1).getNode();
3625 else if (Op2Set)
3626 // eqv(x, 1) = x
3627 ResNode = MachineNode->getOperand(0).getNode();
3628 else if (Op1Unset)
3629 // eqv(0, y) = ~y -> nor(y, y)
3630 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3631 MVT::i1, MachineNode->getOperand(1),
3632 MachineNode->getOperand(1));
3633 else if (Op2Unset)
3634 // eqv(x, 0) = ~x
3635 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3636 MVT::i1, MachineNode->getOperand(0),
3637 MachineNode->getOperand(0));
3638 else if (Op1Not)
3639 // eqv(~x, y) = xor(x, y)
3640 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3641 MVT::i1, MachineNode->getOperand(0).
3642 getOperand(0),
3643 MachineNode->getOperand(1));
3644 else if (Op2Not)
3645 // eqv(x, ~y) = xor(x, y)
3646 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3647 MVT::i1, MachineNode->getOperand(0),
3648 MachineNode->getOperand(1).
3649 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003650 else if (AllUsersSelectZero(MachineNode))
3651 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3652 MVT::i1, MachineNode->getOperand(0),
3653 MachineNode->getOperand(1)),
3654 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003655 break;
3656 case PPC::CRANDC:
3657 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3658 // andc(x, x) = 0
3659 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3660 MVT::i1);
3661 else if (Op1Set)
3662 // andc(1, y) = ~y
3663 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3664 MVT::i1, MachineNode->getOperand(1),
3665 MachineNode->getOperand(1));
3666 else if (Op1Unset || Op2Set)
3667 // andc(0, y) = andc(x, 1) = 0
3668 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3669 MVT::i1);
3670 else if (Op2Unset)
3671 // andc(x, 0) = x
3672 ResNode = MachineNode->getOperand(0).getNode();
3673 else if (Op1Not)
3674 // andc(~x, y) = ~(x | y) = nor(x, y)
3675 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3676 MVT::i1, MachineNode->getOperand(0).
3677 getOperand(0),
3678 MachineNode->getOperand(1));
3679 else if (Op2Not)
3680 // andc(x, ~y) = x & y
3681 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3682 MVT::i1, MachineNode->getOperand(0),
3683 MachineNode->getOperand(1).
3684 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003685 else if (AllUsersSelectZero(MachineNode))
3686 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3687 MVT::i1, MachineNode->getOperand(1),
3688 MachineNode->getOperand(0)),
3689 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003690 break;
3691 case PPC::CRORC:
3692 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3693 // orc(x, x) = 1
3694 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3695 MVT::i1);
3696 else if (Op1Set || Op2Unset)
3697 // orc(1, y) = orc(x, 0) = 1
3698 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3699 MVT::i1);
3700 else if (Op2Set)
3701 // orc(x, 1) = x
3702 ResNode = MachineNode->getOperand(0).getNode();
3703 else if (Op1Unset)
3704 // orc(0, y) = ~y
3705 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3706 MVT::i1, MachineNode->getOperand(1),
3707 MachineNode->getOperand(1));
3708 else if (Op1Not)
3709 // orc(~x, y) = ~(x & y) = nand(x, y)
3710 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3711 MVT::i1, MachineNode->getOperand(0).
3712 getOperand(0),
3713 MachineNode->getOperand(1));
3714 else if (Op2Not)
3715 // orc(x, ~y) = x | y
3716 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3717 MVT::i1, MachineNode->getOperand(0),
3718 MachineNode->getOperand(1).
3719 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003720 else if (AllUsersSelectZero(MachineNode))
3721 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3722 MVT::i1, MachineNode->getOperand(1),
3723 MachineNode->getOperand(0)),
3724 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003725 break;
3726 case PPC::SELECT_I4:
3727 case PPC::SELECT_I8:
3728 case PPC::SELECT_F4:
3729 case PPC::SELECT_F8:
Hal Finkelc93a9a22015-02-25 01:06:45 +00003730 case PPC::SELECT_QFRC:
3731 case PPC::SELECT_QSRC:
3732 case PPC::SELECT_QBRC:
Hal Finkel940ab932014-02-28 00:27:01 +00003733 case PPC::SELECT_VRRC:
Bill Schmidt9c54bbd2014-10-22 16:58:20 +00003734 case PPC::SELECT_VSFRC:
Bill Schmidt61e65232014-10-22 13:13:40 +00003735 case PPC::SELECT_VSRC:
Hal Finkel940ab932014-02-28 00:27:01 +00003736 if (Op1Set)
3737 ResNode = MachineNode->getOperand(1).getNode();
3738 else if (Op1Unset)
3739 ResNode = MachineNode->getOperand(2).getNode();
3740 else if (Op1Not)
3741 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
3742 SDLoc(MachineNode),
3743 MachineNode->getValueType(0),
3744 MachineNode->getOperand(0).
3745 getOperand(0),
3746 MachineNode->getOperand(2),
3747 MachineNode->getOperand(1));
3748 break;
3749 case PPC::BC:
3750 case PPC::BCn:
3751 if (Op1Not)
3752 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
3753 PPC::BC,
3754 SDLoc(MachineNode),
3755 MVT::Other,
3756 MachineNode->getOperand(0).
3757 getOperand(0),
3758 MachineNode->getOperand(1),
3759 MachineNode->getOperand(2));
3760 // FIXME: Handle Op1Set, Op1Unset here too.
3761 break;
3762 }
3763
Hal Finkelb9989152014-02-28 06:11:16 +00003764 // If we're inverting this node because it is used only by selects that
3765 // we'd like to swap, then swap the selects before the node replacement.
3766 if (SelectSwap)
3767 SwapAllSelectUsers(MachineNode);
3768
Hal Finkel940ab932014-02-28 00:27:01 +00003769 if (ResNode != MachineNode) {
3770 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
3771 DEBUG(MachineNode->dump(CurDAG));
3772 DEBUG(dbgs() << "\nNew: ");
3773 DEBUG(ResNode->dump(CurDAG));
3774 DEBUG(dbgs() << "\n");
3775
3776 ReplaceUses(MachineNode, ResNode);
3777 IsModified = true;
3778 }
3779 }
3780 if (IsModified)
3781 CurDAG->RemoveDeadNodes();
3782 } while (IsModified);
3783}
3784
Hal Finkel4c6658f2014-12-12 23:59:36 +00003785// Gather the set of 32-bit operations that are known to have their
3786// higher-order 32 bits zero, where ToPromote contains all such operations.
3787static bool PeepholePPC64ZExtGather(SDValue Op32,
3788 SmallPtrSetImpl<SDNode *> &ToPromote) {
3789 if (!Op32.isMachineOpcode())
3790 return false;
3791
3792 // First, check for the "frontier" instructions (those that will clear the
3793 // higher-order 32 bits.
3794
3795 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
3796 // around. If it does not, then these instructions will clear the
3797 // higher-order bits.
3798 if ((Op32.getMachineOpcode() == PPC::RLWINM ||
3799 Op32.getMachineOpcode() == PPC::RLWNM) &&
3800 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
3801 ToPromote.insert(Op32.getNode());
3802 return true;
3803 }
3804
3805 // SLW and SRW always clear the higher-order bits.
3806 if (Op32.getMachineOpcode() == PPC::SLW ||
3807 Op32.getMachineOpcode() == PPC::SRW) {
3808 ToPromote.insert(Op32.getNode());
3809 return true;
3810 }
3811
3812 // For LI and LIS, we need the immediate to be positive (so that it is not
3813 // sign extended).
3814 if (Op32.getMachineOpcode() == PPC::LI ||
3815 Op32.getMachineOpcode() == PPC::LIS) {
3816 if (!isUInt<15>(Op32.getConstantOperandVal(0)))
3817 return false;
3818
3819 ToPromote.insert(Op32.getNode());
3820 return true;
3821 }
3822
Hal Finkel4e2c7822015-01-05 18:09:06 +00003823 // LHBRX and LWBRX always clear the higher-order bits.
3824 if (Op32.getMachineOpcode() == PPC::LHBRX ||
3825 Op32.getMachineOpcode() == PPC::LWBRX) {
3826 ToPromote.insert(Op32.getNode());
3827 return true;
3828 }
3829
Hal Finkel49557f12015-01-05 18:52:29 +00003830 // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
3831 if (Op32.getMachineOpcode() == PPC::CNTLZW) {
3832 ToPromote.insert(Op32.getNode());
3833 return true;
3834 }
3835
Hal Finkel4c6658f2014-12-12 23:59:36 +00003836 // Next, check for those instructions we can look through.
3837
3838 // Assuming the mask does not wrap around, then the higher-order bits are
3839 // taken directly from the first operand.
3840 if (Op32.getMachineOpcode() == PPC::RLWIMI &&
3841 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
3842 SmallPtrSet<SDNode *, 16> ToPromote1;
3843 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
3844 return false;
3845
3846 ToPromote.insert(Op32.getNode());
3847 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3848 return true;
3849 }
3850
3851 // For OR, the higher-order bits are zero if that is true for both operands.
3852 // For SELECT_I4, the same is true (but the relevant operand numbers are
3853 // shifted by 1).
3854 if (Op32.getMachineOpcode() == PPC::OR ||
3855 Op32.getMachineOpcode() == PPC::SELECT_I4) {
3856 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
3857 SmallPtrSet<SDNode *, 16> ToPromote1;
3858 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
3859 return false;
3860 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
3861 return false;
3862
3863 ToPromote.insert(Op32.getNode());
3864 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3865 return true;
3866 }
3867
3868 // For ORI and ORIS, we need the higher-order bits of the first operand to be
3869 // zero, and also for the constant to be positive (so that it is not sign
3870 // extended).
3871 if (Op32.getMachineOpcode() == PPC::ORI ||
3872 Op32.getMachineOpcode() == PPC::ORIS) {
3873 SmallPtrSet<SDNode *, 16> ToPromote1;
3874 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
3875 return false;
3876 if (!isUInt<15>(Op32.getConstantOperandVal(1)))
3877 return false;
3878
3879 ToPromote.insert(Op32.getNode());
3880 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3881 return true;
3882 }
3883
3884 // The higher-order bits of AND are zero if that is true for at least one of
3885 // the operands.
3886 if (Op32.getMachineOpcode() == PPC::AND) {
3887 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
3888 bool Op0OK =
3889 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
3890 bool Op1OK =
3891 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
3892 if (!Op0OK && !Op1OK)
3893 return false;
3894
3895 ToPromote.insert(Op32.getNode());
3896
3897 if (Op0OK)
3898 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3899
3900 if (Op1OK)
3901 ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
3902
3903 return true;
3904 }
3905
3906 // For ANDI and ANDIS, the higher-order bits are zero if either that is true
3907 // of the first operand, or if the second operand is positive (so that it is
3908 // not sign extended).
3909 if (Op32.getMachineOpcode() == PPC::ANDIo ||
3910 Op32.getMachineOpcode() == PPC::ANDISo) {
3911 SmallPtrSet<SDNode *, 16> ToPromote1;
3912 bool Op0OK =
3913 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
3914 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
3915 if (!Op0OK && !Op1OK)
3916 return false;
3917
3918 ToPromote.insert(Op32.getNode());
3919
3920 if (Op0OK)
3921 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3922
3923 return true;
3924 }
3925
3926 return false;
3927}
3928
3929void PPCDAGToDAGISel::PeepholePPC64ZExt() {
3930 if (!PPCSubTarget->isPPC64())
3931 return;
3932
3933 // When we zero-extend from i32 to i64, we use a pattern like this:
3934 // def : Pat<(i64 (zext i32:$in)),
3935 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
3936 // 0, 32)>;
3937 // There are several 32-bit shift/rotate instructions, however, that will
3938 // clear the higher-order bits of their output, rendering the RLDICL
3939 // unnecessary. When that happens, we remove it here, and redefine the
3940 // relevant 32-bit operation to be a 64-bit operation.
3941
3942 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3943 ++Position;
3944
3945 bool MadeChange = false;
3946 while (Position != CurDAG->allnodes_begin()) {
3947 SDNode *N = --Position;
3948 // Skip dead nodes and any non-machine opcodes.
3949 if (N->use_empty() || !N->isMachineOpcode())
3950 continue;
3951
3952 if (N->getMachineOpcode() != PPC::RLDICL)
3953 continue;
3954
3955 if (N->getConstantOperandVal(1) != 0 ||
3956 N->getConstantOperandVal(2) != 32)
3957 continue;
3958
3959 SDValue ISR = N->getOperand(0);
3960 if (!ISR.isMachineOpcode() ||
3961 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
3962 continue;
3963
3964 if (!ISR.hasOneUse())
3965 continue;
3966
3967 if (ISR.getConstantOperandVal(2) != PPC::sub_32)
3968 continue;
3969
3970 SDValue IDef = ISR.getOperand(0);
3971 if (!IDef.isMachineOpcode() ||
3972 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
3973 continue;
3974
3975 // We now know that we're looking at a canonical i32 -> i64 zext. See if we
3976 // can get rid of it.
3977
3978 SDValue Op32 = ISR->getOperand(1);
3979 if (!Op32.isMachineOpcode())
3980 continue;
3981
3982 // There are some 32-bit instructions that always clear the high-order 32
3983 // bits, there are also some instructions (like AND) that we can look
3984 // through.
3985 SmallPtrSet<SDNode *, 16> ToPromote;
3986 if (!PeepholePPC64ZExtGather(Op32, ToPromote))
3987 continue;
3988
3989 // If the ToPromote set contains nodes that have uses outside of the set
3990 // (except for the original INSERT_SUBREG), then abort the transformation.
3991 bool OutsideUse = false;
3992 for (SDNode *PN : ToPromote) {
3993 for (SDNode *UN : PN->uses()) {
3994 if (!ToPromote.count(UN) && UN != ISR.getNode()) {
3995 OutsideUse = true;
3996 break;
3997 }
3998 }
3999
4000 if (OutsideUse)
4001 break;
4002 }
4003 if (OutsideUse)
4004 continue;
4005
4006 MadeChange = true;
4007
4008 // We now know that this zero extension can be removed by promoting to
4009 // nodes in ToPromote to 64-bit operations, where for operations in the
4010 // frontier of the set, we need to insert INSERT_SUBREGs for their
4011 // operands.
4012 for (SDNode *PN : ToPromote) {
4013 unsigned NewOpcode;
4014 switch (PN->getMachineOpcode()) {
4015 default:
4016 llvm_unreachable("Don't know the 64-bit variant of this instruction");
4017 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break;
4018 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break;
4019 case PPC::SLW: NewOpcode = PPC::SLW8; break;
4020 case PPC::SRW: NewOpcode = PPC::SRW8; break;
4021 case PPC::LI: NewOpcode = PPC::LI8; break;
4022 case PPC::LIS: NewOpcode = PPC::LIS8; break;
Hal Finkel4e2c7822015-01-05 18:09:06 +00004023 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break;
4024 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break;
Hal Finkel49557f12015-01-05 18:52:29 +00004025 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break;
Hal Finkel4c6658f2014-12-12 23:59:36 +00004026 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
4027 case PPC::OR: NewOpcode = PPC::OR8; break;
4028 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
4029 case PPC::ORI: NewOpcode = PPC::ORI8; break;
4030 case PPC::ORIS: NewOpcode = PPC::ORIS8; break;
4031 case PPC::AND: NewOpcode = PPC::AND8; break;
4032 case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break;
4033 case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break;
4034 }
4035
4036 // Note: During the replacement process, the nodes will be in an
4037 // inconsistent state (some instructions will have operands with values
4038 // of the wrong type). Once done, however, everything should be right
4039 // again.
4040
4041 SmallVector<SDValue, 4> Ops;
4042 for (const SDValue &V : PN->ops()) {
4043 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
4044 !isa<ConstantSDNode>(V)) {
4045 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
4046 SDNode *ReplOp =
4047 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
4048 ISR.getNode()->getVTList(), ReplOpOps);
4049 Ops.push_back(SDValue(ReplOp, 0));
4050 } else {
4051 Ops.push_back(V);
4052 }
4053 }
4054
4055 // Because all to-be-promoted nodes only have users that are other
4056 // promoted nodes (or the original INSERT_SUBREG), we can safely replace
4057 // the i32 result value type with i64.
4058
4059 SmallVector<EVT, 2> NewVTs;
4060 SDVTList VTs = PN->getVTList();
4061 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
4062 if (VTs.VTs[i] == MVT::i32)
4063 NewVTs.push_back(MVT::i64);
4064 else
4065 NewVTs.push_back(VTs.VTs[i]);
4066
4067 DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
4068 DEBUG(PN->dump(CurDAG));
4069
4070 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
4071
4072 DEBUG(dbgs() << "\nNew: ");
4073 DEBUG(PN->dump(CurDAG));
4074 DEBUG(dbgs() << "\n");
4075 }
4076
4077 // Now we replace the original zero extend and its associated INSERT_SUBREG
4078 // with the value feeding the INSERT_SUBREG (which has now been promoted to
4079 // return an i64).
4080
4081 DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
4082 DEBUG(N->dump(CurDAG));
4083 DEBUG(dbgs() << "\nNew: ");
4084 DEBUG(Op32.getNode()->dump(CurDAG));
4085 DEBUG(dbgs() << "\n");
4086
4087 ReplaceUses(N, Op32.getNode());
4088 }
4089
4090 if (MadeChange)
4091 CurDAG->RemoveDeadNodes();
4092}
4093
Hal Finkel940ab932014-02-28 00:27:01 +00004094void PPCDAGToDAGISel::PeepholePPC64() {
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004095 // These optimizations are currently supported only for 64-bit SVR4.
Eric Christopher1b8e7632014-05-22 01:07:24 +00004096 if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004097 return;
4098
4099 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4100 ++Position;
4101
4102 while (Position != CurDAG->allnodes_begin()) {
4103 SDNode *N = --Position;
4104 // Skip dead nodes and any non-machine opcodes.
4105 if (N->use_empty() || !N->isMachineOpcode())
4106 continue;
4107
4108 unsigned FirstOp;
4109 unsigned StorageOpcode = N->getMachineOpcode();
4110
4111 switch (StorageOpcode) {
4112 default: continue;
4113
4114 case PPC::LBZ:
4115 case PPC::LBZ8:
4116 case PPC::LD:
4117 case PPC::LFD:
4118 case PPC::LFS:
4119 case PPC::LHA:
4120 case PPC::LHA8:
4121 case PPC::LHZ:
4122 case PPC::LHZ8:
4123 case PPC::LWA:
4124 case PPC::LWZ:
4125 case PPC::LWZ8:
4126 FirstOp = 0;
4127 break;
4128
4129 case PPC::STB:
4130 case PPC::STB8:
4131 case PPC::STD:
4132 case PPC::STFD:
4133 case PPC::STFS:
4134 case PPC::STH:
4135 case PPC::STH8:
4136 case PPC::STW:
4137 case PPC::STW8:
4138 FirstOp = 1;
4139 break;
4140 }
4141
4142 // If this is a load or store with a zero offset, we may be able to
4143 // fold an add-immediate into the memory operation.
4144 if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
4145 N->getConstantOperandVal(FirstOp) != 0)
4146 continue;
4147
4148 SDValue Base = N->getOperand(FirstOp + 1);
4149 if (!Base.isMachineOpcode())
4150 continue;
4151
4152 unsigned Flags = 0;
4153 bool ReplaceFlags = true;
4154
4155 // When the feeding operation is an add-immediate of some sort,
4156 // determine whether we need to add relocation information to the
4157 // target flags on the immediate operand when we fold it into the
4158 // load instruction.
4159 //
4160 // For something like ADDItocL, the relocation information is
4161 // inferred from the opcode; when we process it in the AsmPrinter,
4162 // we add the necessary relocation there. A load, though, can receive
4163 // relocation from various flavors of ADDIxxx, so we need to carry
4164 // the relocation information in the target flags.
4165 switch (Base.getMachineOpcode()) {
4166 default: continue;
4167
4168 case PPC::ADDI8:
Ulrich Weigand35f9fdf2013-03-26 10:55:20 +00004169 case PPC::ADDI:
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004170 // In some cases (such as TLS) the relocation information
4171 // is already in place on the operand, so copying the operand
4172 // is sufficient.
4173 ReplaceFlags = false;
4174 // For these cases, the immediate may not be divisible by 4, in
4175 // which case the fold is illegal for DS-form instructions. (The
4176 // other cases provide aligned addresses and are always safe.)
4177 if ((StorageOpcode == PPC::LWA ||
4178 StorageOpcode == PPC::LD ||
4179 StorageOpcode == PPC::STD) &&
4180 (!isa<ConstantSDNode>(Base.getOperand(1)) ||
4181 Base.getConstantOperandVal(1) % 4 != 0))
4182 continue;
4183 break;
4184 case PPC::ADDIdtprelL:
Ulrich Weigandd51c09f2013-06-21 14:42:20 +00004185 Flags = PPCII::MO_DTPREL_LO;
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004186 break;
4187 case PPC::ADDItlsldL:
Ulrich Weigandd51c09f2013-06-21 14:42:20 +00004188 Flags = PPCII::MO_TLSLD_LO;
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004189 break;
4190 case PPC::ADDItocL:
Ulrich Weigandd51c09f2013-06-21 14:42:20 +00004191 Flags = PPCII::MO_TOC_LO;
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004192 break;
4193 }
4194
4195 // We found an opportunity. Reverse the operands from the add
4196 // immediate and substitute them into the load or store. If
4197 // needed, update the target flags for the immediate operand to
4198 // reflect the necessary relocation information.
4199 DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
4200 DEBUG(Base->dump(CurDAG));
4201 DEBUG(dbgs() << "\nN: ");
4202 DEBUG(N->dump(CurDAG));
4203 DEBUG(dbgs() << "\n");
4204
4205 SDValue ImmOpnd = Base.getOperand(1);
4206
4207 // If the relocation information isn't already present on the
4208 // immediate operand, add it now.
4209 if (ReplaceFlags) {
Bill Schmidt49498da2013-02-21 14:35:42 +00004210 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
Andrew Trickef9de2a2013-05-25 02:42:55 +00004211 SDLoc dl(GA);
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004212 const GlobalValue *GV = GA->getGlobal();
Bill Schmidt48fc20a2013-07-01 20:52:27 +00004213 // We can't perform this optimization for data whose alignment
4214 // is insufficient for the instruction encoding.
4215 if (GV->getAlignment() < 4 &&
4216 (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
4217 StorageOpcode == PPC::LWA)) {
4218 DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
4219 continue;
4220 }
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004221 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
Bill Schmidt836c45b2013-02-21 17:26:05 +00004222 } else if (ConstantPoolSDNode *CP =
4223 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
Bill Schmidt49498da2013-02-21 14:35:42 +00004224 const Constant *C = CP->getConstVal();
4225 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
4226 CP->getAlignment(),
4227 0, Flags);
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004228 }
4229 }
4230
4231 if (FirstOp == 1) // Store
4232 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
4233 Base.getOperand(0), N->getOperand(3));
4234 else // Load
4235 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
4236 N->getOperand(2));
4237
4238 // The add-immediate may now be dead, in which case remove it.
4239 if (Base.getNode()->use_empty())
4240 CurDAG->RemoveDeadNode(Base.getNode());
4241 }
4242}
Chris Lattner43ff01e2005-08-17 19:33:03 +00004243
Chris Lattnerb055c872006-06-10 01:15:02 +00004244
Andrew Trickc416ba62010-12-24 04:28:06 +00004245/// createPPCISelDag - This pass converts a legalized DAG into a
Chris Lattner43ff01e2005-08-17 19:33:03 +00004246/// PowerPC-specific DAG, ready for instruction scheduling.
4247///
Evan Cheng2dd2c652006-03-13 23:20:37 +00004248FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
Nate Begeman0b71e002005-10-18 00:28:58 +00004249 return new PPCDAGToDAGISel(TM);
Chris Lattner43ff01e2005-08-17 19:33:03 +00004250}
4251
Krzysztof Parzyszek2680b532013-02-13 17:40:07 +00004252static void initializePassOnce(PassRegistry &Registry) {
4253 const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
Craig Topper062a2ba2014-04-25 05:30:21 +00004254 PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID,
4255 nullptr, false, false);
Krzysztof Parzyszek2680b532013-02-13 17:40:07 +00004256 Registry.registerPass(*PI, true);
4257}
4258
4259void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
4260 CALL_ONCE_INITIALIZATION(initializePassOnce);
4261}
4262