Duncan P. N. Exon Smith | 411840d | 2014-06-20 21:47:47 +0000 | [diff] [blame] | 1 | //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Implementation of some scaled number algorithms. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Support/ScaledNumber.h" |
Duncan P. N. Exon Smith | 84553d8 | 2014-06-24 00:38:09 +0000 | [diff] [blame] | 15 | #include "llvm/ADT/APFloat.h" |
Mehdi Amini | 47b292d | 2016-04-16 07:51:28 +0000 | [diff] [blame] | 16 | #include "llvm/ADT/ArrayRef.h" |
Duncan P. N. Exon Smith | 84553d8 | 2014-06-24 00:38:09 +0000 | [diff] [blame] | 17 | #include "llvm/Support/Debug.h" |
Benjamin Kramer | 16132e6 | 2015-03-23 18:07:13 +0000 | [diff] [blame] | 18 | #include "llvm/Support/raw_ostream.h" |
Duncan P. N. Exon Smith | 84553d8 | 2014-06-24 00:38:09 +0000 | [diff] [blame] | 19 | |
Duncan P. N. Exon Smith | 411840d | 2014-06-20 21:47:47 +0000 | [diff] [blame] | 20 | using namespace llvm; |
| 21 | using namespace llvm::ScaledNumbers; |
| 22 | |
| 23 | std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS, |
| 24 | uint64_t RHS) { |
| 25 | // Separate into two 32-bit digits (U.L). |
| 26 | auto getU = [](uint64_t N) { return N >> 32; }; |
| 27 | auto getL = [](uint64_t N) { return N & UINT32_MAX; }; |
| 28 | uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS); |
| 29 | |
| 30 | // Compute cross products. |
| 31 | uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR; |
| 32 | |
| 33 | // Sum into two 64-bit digits. |
| 34 | uint64_t Upper = P1, Lower = P4; |
| 35 | auto addWithCarry = [&](uint64_t N) { |
| 36 | uint64_t NewLower = Lower + (getL(N) << 32); |
| 37 | Upper += getU(N) + (NewLower < Lower); |
| 38 | Lower = NewLower; |
| 39 | }; |
| 40 | addWithCarry(P2); |
| 41 | addWithCarry(P3); |
| 42 | |
| 43 | // Check whether the upper digit is empty. |
| 44 | if (!Upper) |
| 45 | return std::make_pair(Lower, 0); |
| 46 | |
| 47 | // Shift as little as possible to maximize precision. |
| 48 | unsigned LeadingZeros = countLeadingZeros(Upper); |
| 49 | int Shift = 64 - LeadingZeros; |
| 50 | if (LeadingZeros) |
| 51 | Upper = Upper << LeadingZeros | Lower >> Shift; |
| 52 | return getRounded(Upper, Shift, |
| 53 | Shift && (Lower & UINT64_C(1) << (Shift - 1))); |
| 54 | } |
| 55 | |
| 56 | static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } |
| 57 | |
| 58 | std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend, |
| 59 | uint32_t Divisor) { |
| 60 | assert(Dividend && "expected non-zero dividend"); |
| 61 | assert(Divisor && "expected non-zero divisor"); |
| 62 | |
| 63 | // Use 64-bit math and canonicalize the dividend to gain precision. |
| 64 | uint64_t Dividend64 = Dividend; |
| 65 | int Shift = 0; |
| 66 | if (int Zeros = countLeadingZeros(Dividend64)) { |
| 67 | Shift -= Zeros; |
| 68 | Dividend64 <<= Zeros; |
| 69 | } |
| 70 | uint64_t Quotient = Dividend64 / Divisor; |
| 71 | uint64_t Remainder = Dividend64 % Divisor; |
| 72 | |
| 73 | // If Quotient needs to be shifted, leave the rounding to getAdjusted(). |
| 74 | if (Quotient > UINT32_MAX) |
| 75 | return getAdjusted<uint32_t>(Quotient, Shift); |
| 76 | |
| 77 | // Round based on the value of the next bit. |
| 78 | return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor)); |
| 79 | } |
| 80 | |
| 81 | std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend, |
| 82 | uint64_t Divisor) { |
| 83 | assert(Dividend && "expected non-zero dividend"); |
| 84 | assert(Divisor && "expected non-zero divisor"); |
| 85 | |
| 86 | // Minimize size of divisor. |
| 87 | int Shift = 0; |
| 88 | if (int Zeros = countTrailingZeros(Divisor)) { |
| 89 | Shift -= Zeros; |
| 90 | Divisor >>= Zeros; |
| 91 | } |
| 92 | |
| 93 | // Check for powers of two. |
| 94 | if (Divisor == 1) |
| 95 | return std::make_pair(Dividend, Shift); |
| 96 | |
| 97 | // Maximize size of dividend. |
| 98 | if (int Zeros = countLeadingZeros(Dividend)) { |
| 99 | Shift -= Zeros; |
| 100 | Dividend <<= Zeros; |
| 101 | } |
| 102 | |
| 103 | // Start with the result of a divide. |
| 104 | uint64_t Quotient = Dividend / Divisor; |
| 105 | Dividend %= Divisor; |
| 106 | |
| 107 | // Continue building the quotient with long division. |
| 108 | while (!(Quotient >> 63) && Dividend) { |
| 109 | // Shift Dividend and check for overflow. |
| 110 | bool IsOverflow = Dividend >> 63; |
| 111 | Dividend <<= 1; |
| 112 | --Shift; |
| 113 | |
| 114 | // Get the next bit of Quotient. |
| 115 | Quotient <<= 1; |
| 116 | if (IsOverflow || Divisor <= Dividend) { |
| 117 | Quotient |= 1; |
| 118 | Dividend -= Divisor; |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor)); |
| 123 | } |
Duncan P. N. Exon Smith | 0067ff4 | 2014-06-23 17:47:40 +0000 | [diff] [blame] | 124 | |
| 125 | int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) { |
| 126 | assert(ScaleDiff >= 0 && "wrong argument order"); |
| 127 | assert(ScaleDiff < 64 && "numbers too far apart"); |
| 128 | |
| 129 | uint64_t L_adjusted = L >> ScaleDiff; |
| 130 | if (L_adjusted < R) |
| 131 | return -1; |
| 132 | if (L_adjusted > R) |
| 133 | return 1; |
| 134 | |
| 135 | return L > L_adjusted << ScaleDiff ? 1 : 0; |
| 136 | } |
Duncan P. N. Exon Smith | 84553d8 | 2014-06-24 00:38:09 +0000 | [diff] [blame] | 137 | |
| 138 | static void appendDigit(std::string &Str, unsigned D) { |
| 139 | assert(D < 10); |
| 140 | Str += '0' + D % 10; |
| 141 | } |
| 142 | |
| 143 | static void appendNumber(std::string &Str, uint64_t N) { |
| 144 | while (N) { |
| 145 | appendDigit(Str, N % 10); |
| 146 | N /= 10; |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | static bool doesRoundUp(char Digit) { |
| 151 | switch (Digit) { |
| 152 | case '5': |
| 153 | case '6': |
| 154 | case '7': |
| 155 | case '8': |
| 156 | case '9': |
| 157 | return true; |
| 158 | default: |
| 159 | return false; |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) { |
| 164 | assert(E >= ScaledNumbers::MinScale); |
| 165 | assert(E <= ScaledNumbers::MaxScale); |
| 166 | |
| 167 | // Find a new E, but don't let it increase past MaxScale. |
| 168 | int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D); |
| 169 | int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros); |
| 170 | int Shift = 63 - (NewE - E); |
| 171 | assert(Shift <= LeadingZeros); |
| 172 | assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale); |
Michael Ilseman | 5be22a1 | 2014-12-12 21:48:03 +0000 | [diff] [blame] | 173 | assert(Shift >= 0 && Shift < 64 && "undefined behavior"); |
Duncan P. N. Exon Smith | 84553d8 | 2014-06-24 00:38:09 +0000 | [diff] [blame] | 174 | D <<= Shift; |
| 175 | E = NewE; |
| 176 | |
| 177 | // Check for a denormal. |
| 178 | unsigned AdjustedE = E + 16383; |
| 179 | if (!(D >> 63)) { |
| 180 | assert(E == ScaledNumbers::MaxScale); |
| 181 | AdjustedE = 0; |
| 182 | } |
| 183 | |
| 184 | // Build the float and print it. |
| 185 | uint64_t RawBits[2] = {D, AdjustedE}; |
| 186 | APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits)); |
| 187 | SmallVector<char, 24> Chars; |
| 188 | Float.toString(Chars, Precision, 0); |
| 189 | return std::string(Chars.begin(), Chars.end()); |
| 190 | } |
| 191 | |
| 192 | static std::string stripTrailingZeros(const std::string &Float) { |
| 193 | size_t NonZero = Float.find_last_not_of('0'); |
| 194 | assert(NonZero != std::string::npos && "no . in floating point string"); |
| 195 | |
| 196 | if (Float[NonZero] == '.') |
| 197 | ++NonZero; |
| 198 | |
| 199 | return Float.substr(0, NonZero + 1); |
| 200 | } |
| 201 | |
| 202 | std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width, |
| 203 | unsigned Precision) { |
| 204 | if (!D) |
| 205 | return "0.0"; |
| 206 | |
| 207 | // Canonicalize exponent and digits. |
| 208 | uint64_t Above0 = 0; |
| 209 | uint64_t Below0 = 0; |
| 210 | uint64_t Extra = 0; |
| 211 | int ExtraShift = 0; |
| 212 | if (E == 0) { |
| 213 | Above0 = D; |
| 214 | } else if (E > 0) { |
| 215 | if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) { |
| 216 | D <<= Shift; |
| 217 | E -= Shift; |
| 218 | |
| 219 | if (!E) |
| 220 | Above0 = D; |
| 221 | } |
| 222 | } else if (E > -64) { |
| 223 | Above0 = D >> -E; |
| 224 | Below0 = D << (64 + E); |
Alexey Samsonov | 314c643 | 2014-08-20 18:30:07 +0000 | [diff] [blame] | 225 | } else if (E == -64) { |
| 226 | // Special case: shift by 64 bits is undefined behavior. |
| 227 | Below0 = D; |
Duncan P. N. Exon Smith | 84553d8 | 2014-06-24 00:38:09 +0000 | [diff] [blame] | 228 | } else if (E > -120) { |
| 229 | Below0 = D >> (-E - 64); |
| 230 | Extra = D << (128 + E); |
| 231 | ExtraShift = -64 - E; |
| 232 | } |
| 233 | |
| 234 | // Fall back on APFloat for very small and very large numbers. |
| 235 | if (!Above0 && !Below0) |
| 236 | return toStringAPFloat(D, E, Precision); |
| 237 | |
| 238 | // Append the digits before the decimal. |
| 239 | std::string Str; |
| 240 | size_t DigitsOut = 0; |
| 241 | if (Above0) { |
| 242 | appendNumber(Str, Above0); |
| 243 | DigitsOut = Str.size(); |
| 244 | } else |
| 245 | appendDigit(Str, 0); |
| 246 | std::reverse(Str.begin(), Str.end()); |
| 247 | |
| 248 | // Return early if there's nothing after the decimal. |
| 249 | if (!Below0) |
| 250 | return Str + ".0"; |
| 251 | |
| 252 | // Append the decimal and beyond. |
| 253 | Str += '.'; |
| 254 | uint64_t Error = UINT64_C(1) << (64 - Width); |
| 255 | |
| 256 | // We need to shift Below0 to the right to make space for calculating |
| 257 | // digits. Save the precision we're losing in Extra. |
| 258 | Extra = (Below0 & 0xf) << 56 | (Extra >> 8); |
| 259 | Below0 >>= 4; |
| 260 | size_t SinceDot = 0; |
| 261 | size_t AfterDot = Str.size(); |
| 262 | do { |
| 263 | if (ExtraShift) { |
| 264 | --ExtraShift; |
| 265 | Error *= 5; |
| 266 | } else |
| 267 | Error *= 10; |
| 268 | |
| 269 | Below0 *= 10; |
| 270 | Extra *= 10; |
| 271 | Below0 += (Extra >> 60); |
| 272 | Extra = Extra & (UINT64_MAX >> 4); |
| 273 | appendDigit(Str, Below0 >> 60); |
| 274 | Below0 = Below0 & (UINT64_MAX >> 4); |
| 275 | if (DigitsOut || Str.back() != '0') |
| 276 | ++DigitsOut; |
| 277 | ++SinceDot; |
| 278 | } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 && |
| 279 | (!Precision || DigitsOut <= Precision || SinceDot < 2)); |
| 280 | |
| 281 | // Return early for maximum precision. |
| 282 | if (!Precision || DigitsOut <= Precision) |
| 283 | return stripTrailingZeros(Str); |
| 284 | |
| 285 | // Find where to truncate. |
| 286 | size_t Truncate = |
| 287 | std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1); |
| 288 | |
| 289 | // Check if there's anything to truncate. |
| 290 | if (Truncate >= Str.size()) |
| 291 | return stripTrailingZeros(Str); |
| 292 | |
| 293 | bool Carry = doesRoundUp(Str[Truncate]); |
| 294 | if (!Carry) |
| 295 | return stripTrailingZeros(Str.substr(0, Truncate)); |
| 296 | |
| 297 | // Round with the first truncated digit. |
| 298 | for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend(); |
| 299 | I != E; ++I) { |
| 300 | if (*I == '.') |
| 301 | continue; |
| 302 | if (*I == '9') { |
| 303 | *I = '0'; |
| 304 | continue; |
| 305 | } |
| 306 | |
| 307 | ++*I; |
| 308 | Carry = false; |
| 309 | break; |
| 310 | } |
| 311 | |
| 312 | // Add "1" in front if we still need to carry. |
| 313 | return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate)); |
| 314 | } |
| 315 | |
| 316 | raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E, |
| 317 | int Width, unsigned Precision) { |
| 318 | return OS << toString(D, E, Width, Precision); |
| 319 | } |
| 320 | |
| 321 | void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) { |
| 322 | print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E |
| 323 | << "]"; |
| 324 | } |