blob: 8476eadbda67f79f0216192eb9678e4dd476f7e1 [file] [log] [blame]
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +00001//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Loops should be simplified before this analysis.
11//
12//===----------------------------------------------------------------------===//
13
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000014#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/Support/raw_ostream.h"
17#include <deque>
18
19using namespace llvm;
20
Chandler Carruth1b9dde02014-04-22 02:02:50 +000021#define DEBUG_TYPE "block-freq"
22
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000023//===----------------------------------------------------------------------===//
24//
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000025// UnsignedFloat implementation.
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000026//
27//===----------------------------------------------------------------------===//
28#ifndef _MSC_VER
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000029const int32_t UnsignedFloatBase::MaxExponent;
30const int32_t UnsignedFloatBase::MinExponent;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000031#endif
32
33static void appendDigit(std::string &Str, unsigned D) {
34 assert(D < 10);
35 Str += '0' + D % 10;
36}
37
38static void appendNumber(std::string &Str, uint64_t N) {
39 while (N) {
40 appendDigit(Str, N % 10);
41 N /= 10;
42 }
43}
44
45static bool doesRoundUp(char Digit) {
46 switch (Digit) {
47 case '5':
48 case '6':
49 case '7':
50 case '8':
51 case '9':
52 return true;
53 default:
54 return false;
55 }
56}
57
58static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000059 assert(E >= UnsignedFloatBase::MinExponent);
60 assert(E <= UnsignedFloatBase::MaxExponent);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000061
62 // Find a new E, but don't let it increase past MaxExponent.
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000063 int LeadingZeros = UnsignedFloatBase::countLeadingZeros64(D);
64 int NewE = std::min(UnsignedFloatBase::MaxExponent, E + 63 - LeadingZeros);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000065 int Shift = 63 - (NewE - E);
66 assert(Shift <= LeadingZeros);
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000067 assert(Shift == LeadingZeros || NewE == UnsignedFloatBase::MaxExponent);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000068 D <<= Shift;
69 E = NewE;
70
71 // Check for a denormal.
72 unsigned AdjustedE = E + 16383;
73 if (!(D >> 63)) {
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000074 assert(E == UnsignedFloatBase::MaxExponent);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000075 AdjustedE = 0;
76 }
77
78 // Build the float and print it.
79 uint64_t RawBits[2] = {D, AdjustedE};
80 APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
81 SmallVector<char, 24> Chars;
82 Float.toString(Chars, Precision, 0);
83 return std::string(Chars.begin(), Chars.end());
84}
85
86static std::string stripTrailingZeros(const std::string &Float) {
87 size_t NonZero = Float.find_last_not_of('0');
88 assert(NonZero != std::string::npos && "no . in floating point string");
89
90 if (Float[NonZero] == '.')
91 ++NonZero;
92
93 return Float.substr(0, NonZero + 1);
94}
95
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000096std::string UnsignedFloatBase::toString(uint64_t D, int16_t E, int Width,
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000097 unsigned Precision) {
98 if (!D)
99 return "0.0";
100
101 // Canonicalize exponent and digits.
102 uint64_t Above0 = 0;
103 uint64_t Below0 = 0;
104 uint64_t Extra = 0;
105 int ExtraShift = 0;
106 if (E == 0) {
107 Above0 = D;
108 } else if (E > 0) {
109 if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
110 D <<= Shift;
111 E -= Shift;
112
113 if (!E)
114 Above0 = D;
115 }
116 } else if (E > -64) {
117 Above0 = D >> -E;
118 Below0 = D << (64 + E);
119 } else if (E > -120) {
120 Below0 = D >> (-E - 64);
121 Extra = D << (128 + E);
122 ExtraShift = -64 - E;
123 }
124
125 // Fall back on APFloat for very small and very large numbers.
126 if (!Above0 && !Below0)
127 return toStringAPFloat(D, E, Precision);
128
129 // Append the digits before the decimal.
130 std::string Str;
131 size_t DigitsOut = 0;
132 if (Above0) {
133 appendNumber(Str, Above0);
134 DigitsOut = Str.size();
135 } else
136 appendDigit(Str, 0);
137 std::reverse(Str.begin(), Str.end());
138
139 // Return early if there's nothing after the decimal.
140 if (!Below0)
141 return Str + ".0";
142
143 // Append the decimal and beyond.
144 Str += '.';
145 uint64_t Error = UINT64_C(1) << (64 - Width);
146
147 // We need to shift Below0 to the right to make space for calculating
148 // digits. Save the precision we're losing in Extra.
149 Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
150 Below0 >>= 4;
151 size_t SinceDot = 0;
152 size_t AfterDot = Str.size();
153 do {
154 if (ExtraShift) {
155 --ExtraShift;
156 Error *= 5;
157 } else
158 Error *= 10;
159
160 Below0 *= 10;
161 Extra *= 10;
162 Below0 += (Extra >> 60);
163 Extra = Extra & (UINT64_MAX >> 4);
164 appendDigit(Str, Below0 >> 60);
165 Below0 = Below0 & (UINT64_MAX >> 4);
166 if (DigitsOut || Str.back() != '0')
167 ++DigitsOut;
168 ++SinceDot;
169 } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
170 (!Precision || DigitsOut <= Precision || SinceDot < 2));
171
172 // Return early for maximum precision.
173 if (!Precision || DigitsOut <= Precision)
174 return stripTrailingZeros(Str);
175
176 // Find where to truncate.
177 size_t Truncate =
178 std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
179
180 // Check if there's anything to truncate.
181 if (Truncate >= Str.size())
182 return stripTrailingZeros(Str);
183
184 bool Carry = doesRoundUp(Str[Truncate]);
185 if (!Carry)
186 return stripTrailingZeros(Str.substr(0, Truncate));
187
188 // Round with the first truncated digit.
189 for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
190 I != E; ++I) {
191 if (*I == '.')
192 continue;
193 if (*I == '9') {
194 *I = '0';
195 continue;
196 }
197
198 ++*I;
199 Carry = false;
200 break;
201 }
202
203 // Add "1" in front if we still need to carry.
204 return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
205}
206
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000207raw_ostream &UnsignedFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E,
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000208 int Width, unsigned Precision) {
209 return OS << toString(D, E, Width, Precision);
210}
211
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000212void UnsignedFloatBase::dump(uint64_t D, int16_t E, int Width) {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000213 print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
214 << "]";
215}
216
217static std::pair<uint64_t, int16_t>
218getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) {
219 if (ShouldRound)
220 if (!++N)
221 // Rounding caused an overflow.
222 return std::make_pair(UINT64_C(1), Shift + 64);
223 return std::make_pair(N, Shift);
224}
225
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000226std::pair<uint64_t, int16_t> UnsignedFloatBase::divide64(uint64_t Dividend,
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000227 uint64_t Divisor) {
228 // Input should be sanitized.
229 assert(Divisor);
230 assert(Dividend);
231
232 // Minimize size of divisor.
233 int16_t Shift = 0;
234 if (int Zeros = countTrailingZeros(Divisor)) {
235 Shift -= Zeros;
236 Divisor >>= Zeros;
237 }
238
239 // Check for powers of two.
240 if (Divisor == 1)
241 return std::make_pair(Dividend, Shift);
242
243 // Maximize size of dividend.
244 if (int Zeros = countLeadingZeros64(Dividend)) {
245 Shift -= Zeros;
246 Dividend <<= Zeros;
247 }
248
249 // Start with the result of a divide.
250 uint64_t Quotient = Dividend / Divisor;
251 Dividend %= Divisor;
252
253 // Continue building the quotient with long division.
254 //
255 // TODO: continue with largers digits.
256 while (!(Quotient >> 63) && Dividend) {
257 // Shift Dividend, and check for overflow.
258 bool IsOverflow = Dividend >> 63;
259 Dividend <<= 1;
260 --Shift;
261
262 // Divide.
263 bool DoesDivide = IsOverflow || Divisor <= Dividend;
264 Quotient = (Quotient << 1) | uint64_t(DoesDivide);
265 Dividend -= DoesDivide ? Divisor : 0;
266 }
267
268 // Round.
269 if (Dividend >= getHalf(Divisor))
270 if (!++Quotient)
271 // Rounding caused an overflow in Quotient.
272 return std::make_pair(UINT64_C(1), Shift + 64);
273
274 return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift);
275}
276
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000277std::pair<uint64_t, int16_t> UnsignedFloatBase::multiply64(uint64_t L,
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000278 uint64_t R) {
279 // Separate into two 32-bit digits (U.L).
280 uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX;
281
282 // Compute cross products.
283 uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
284
285 // Sum into two 64-bit digits.
286 uint64_t Upper = P1, Lower = P4;
287 auto addWithCarry = [&](uint64_t N) {
288 uint64_t NewLower = Lower + (N << 32);
289 Upper += (N >> 32) + (NewLower < Lower);
290 Lower = NewLower;
291 };
292 addWithCarry(P2);
293 addWithCarry(P3);
294
295 // Check whether the upper digit is empty.
296 if (!Upper)
297 return std::make_pair(Lower, 0);
298
299 // Shift as little as possible to maximize precision.
300 unsigned LeadingZeros = countLeadingZeros64(Upper);
301 int16_t Shift = 64 - LeadingZeros;
302 if (LeadingZeros)
303 Upper = Upper << LeadingZeros | Lower >> Shift;
304 bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1));
305 return getRoundedFloat(Upper, ShouldRound, Shift);
306}
307
308//===----------------------------------------------------------------------===//
309//
310// BlockMass implementation.
311//
312//===----------------------------------------------------------------------===//
313BlockMass &BlockMass::operator*=(const BranchProbability &P) {
314 uint32_t N = P.getNumerator(), D = P.getDenominator();
315 assert(D && "divide by 0");
316 assert(N <= D && "fraction greater than 1");
317
318 // Fast path for multiplying by 1.0.
319 if (!Mass || N == D)
320 return *this;
321
322 // Get as much precision as we can.
323 int Shift = countLeadingZeros(Mass);
324 uint64_t ShiftedQuotient = (Mass << Shift) / D;
325 uint64_t Product = ShiftedQuotient * N >> Shift;
326
327 // Now check for what's lost.
328 uint64_t Left = ShiftedQuotient * (D - N) >> Shift;
329 uint64_t Lost = Mass - Product - Left;
330
331 // TODO: prove this assertion.
332 assert(Lost <= UINT32_MAX);
333
334 // Take the product plus a portion of the spoils.
335 Mass = Product + Lost * N / D;
336 return *this;
337}
338
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000339UnsignedFloat<uint64_t> BlockMass::toFloat() const {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000340 if (isFull())
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000341 return UnsignedFloat<uint64_t>(1, 0);
342 return UnsignedFloat<uint64_t>(getMass() + 1, -64);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000343}
344
345void BlockMass::dump() const { print(dbgs()); }
346
347static char getHexDigit(int N) {
348 assert(N < 16);
349 if (N < 10)
350 return '0' + N;
351 return 'a' + N - 10;
352}
353raw_ostream &BlockMass::print(raw_ostream &OS) const {
354 for (int Digits = 0; Digits < 16; ++Digits)
355 OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
356 return OS;
357}
358
359//===----------------------------------------------------------------------===//
360//
361// BlockFrequencyInfoImpl implementation.
362//
363//===----------------------------------------------------------------------===//
364namespace {
365
366typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
367typedef BlockFrequencyInfoImplBase::Distribution Distribution;
368typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
369typedef BlockFrequencyInfoImplBase::Float Float;
Duncan P. N. Exon Smithcc88ebf2014-04-22 03:31:31 +0000370typedef BlockFrequencyInfoImplBase::LoopData LoopData;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000371typedef BlockFrequencyInfoImplBase::Weight Weight;
372typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
373
374/// \brief Dithering mass distributer.
375///
376/// This class splits up a single mass into portions by weight, dithering to
377/// spread out error. No mass is lost. The dithering precision depends on the
378/// precision of the product of \a BlockMass and \a BranchProbability.
379///
380/// The distribution algorithm follows.
381///
382/// 1. Initialize by saving the sum of the weights in \a RemWeight and the
383/// mass to distribute in \a RemMass.
384///
385/// 2. For each portion:
386///
387/// 1. Construct a branch probability, P, as the portion's weight divided
388/// by the current value of \a RemWeight.
389/// 2. Calculate the portion's mass as \a RemMass times P.
390/// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
391/// the current portion's weight and mass.
392///
393/// Mass is distributed in two ways: full distribution and forward
394/// distribution. The latter ignores backedges, and uses the parallel fields
395/// \a RemForwardWeight and \a RemForwardMass.
396struct DitheringDistributer {
397 uint32_t RemWeight;
398 uint32_t RemForwardWeight;
399
400 BlockMass RemMass;
401 BlockMass RemForwardMass;
402
403 DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
404
405 BlockMass takeLocalMass(uint32_t Weight) {
406 (void)takeMass(Weight);
407 return takeForwardMass(Weight);
408 }
409 BlockMass takeExitMass(uint32_t Weight) {
410 (void)takeForwardMass(Weight);
411 return takeMass(Weight);
412 }
413 BlockMass takeBackedgeMass(uint32_t Weight) { return takeMass(Weight); }
414
415private:
416 BlockMass takeForwardMass(uint32_t Weight);
417 BlockMass takeMass(uint32_t Weight);
418};
419}
420
421DitheringDistributer::DitheringDistributer(Distribution &Dist,
422 const BlockMass &Mass) {
423 Dist.normalize();
424 RemWeight = Dist.Total;
425 RemForwardWeight = Dist.ForwardTotal;
426 RemMass = Mass;
427 RemForwardMass = Dist.ForwardTotal ? Mass : BlockMass();
428}
429
430BlockMass DitheringDistributer::takeForwardMass(uint32_t Weight) {
431 // Compute the amount of mass to take.
432 assert(Weight && "invalid weight");
433 assert(Weight <= RemForwardWeight);
434 BlockMass Mass = RemForwardMass * BranchProbability(Weight, RemForwardWeight);
435
436 // Decrement totals (dither).
437 RemForwardWeight -= Weight;
438 RemForwardMass -= Mass;
439 return Mass;
440}
441BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
442 assert(Weight && "invalid weight");
443 assert(Weight <= RemWeight);
444 BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
445
446 // Decrement totals (dither).
447 RemWeight -= Weight;
448 RemMass -= Mass;
449 return Mass;
450}
451
452void Distribution::add(const BlockNode &Node, uint64_t Amount,
453 Weight::DistType Type) {
454 assert(Amount && "invalid weight of 0");
455 uint64_t NewTotal = Total + Amount;
456
457 // Check for overflow. It should be impossible to overflow twice.
458 bool IsOverflow = NewTotal < Total;
459 assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
460 DidOverflow |= IsOverflow;
461
462 // Update the total.
463 Total = NewTotal;
464
465 // Save the weight.
466 Weight W;
467 W.TargetNode = Node;
468 W.Amount = Amount;
469 W.Type = Type;
470 Weights.push_back(W);
471
472 if (Type == Weight::Backedge)
473 return;
474
475 // Update forward total. Don't worry about overflow here, since then Total
476 // will exceed 32-bits and they'll both be recomputed in normalize().
477 ForwardTotal += Amount;
478}
479
480static void combineWeight(Weight &W, const Weight &OtherW) {
481 assert(OtherW.TargetNode.isValid());
482 if (!W.Amount) {
483 W = OtherW;
484 return;
485 }
486 assert(W.Type == OtherW.Type);
487 assert(W.TargetNode == OtherW.TargetNode);
488 assert(W.Amount < W.Amount + OtherW.Amount);
489 W.Amount += OtherW.Amount;
490}
491static void combineWeightsBySorting(WeightList &Weights) {
492 // Sort so edges to the same node are adjacent.
493 std::sort(Weights.begin(), Weights.end(),
494 [](const Weight &L,
495 const Weight &R) { return L.TargetNode < R.TargetNode; });
496
497 // Combine adjacent edges.
498 WeightList::iterator O = Weights.begin();
499 for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
500 ++O, (I = L)) {
501 *O = *I;
502
503 // Find the adjacent weights to the same node.
504 for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
505 combineWeight(*O, *L);
506 }
507
508 // Erase extra entries.
509 Weights.erase(O, Weights.end());
510 return;
511}
512static void combineWeightsByHashing(WeightList &Weights) {
513 // Collect weights into a DenseMap.
514 typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
515 HashTable Combined(NextPowerOf2(2 * Weights.size()));
516 for (const Weight &W : Weights)
517 combineWeight(Combined[W.TargetNode.Index], W);
518
519 // Check whether anything changed.
520 if (Weights.size() == Combined.size())
521 return;
522
523 // Fill in the new weights.
524 Weights.clear();
525 Weights.reserve(Combined.size());
526 for (const auto &I : Combined)
527 Weights.push_back(I.second);
528}
529static void combineWeights(WeightList &Weights) {
530 // Use a hash table for many successors to keep this linear.
531 if (Weights.size() > 128) {
532 combineWeightsByHashing(Weights);
533 return;
534 }
535
536 combineWeightsBySorting(Weights);
537}
538static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
539 assert(Shift >= 0);
540 assert(Shift < 64);
541 if (!Shift)
542 return N;
543 return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
544}
545void Distribution::normalize() {
546 // Early exit for termination nodes.
547 if (Weights.empty())
548 return;
549
550 // Only bother if there are multiple successors.
551 if (Weights.size() > 1)
552 combineWeights(Weights);
553
554 // Early exit when combined into a single successor.
555 if (Weights.size() == 1) {
556 Total = 1;
557 ForwardTotal = Weights.front().Type != Weight::Backedge;
558 Weights.front().Amount = 1;
559 return;
560 }
561
562 // Determine how much to shift right so that the total fits into 32-bits.
563 //
564 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
565 // for each weight can cause a 32-bit overflow.
566 int Shift = 0;
567 if (DidOverflow)
568 Shift = 33;
569 else if (Total > UINT32_MAX)
570 Shift = 33 - countLeadingZeros(Total);
571
572 // Early exit if nothing needs to be scaled.
573 if (!Shift)
574 return;
575
576 // Recompute the total through accumulation (rather than shifting it) so that
577 // it's accurate after shifting. ForwardTotal is dirty here anyway.
578 Total = 0;
579 ForwardTotal = 0;
580
581 // Sum the weights to each node and shift right if necessary.
582 for (Weight &W : Weights) {
583 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
584 // can round here without concern about overflow.
585 assert(W.TargetNode.isValid());
586 W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
587 assert(W.Amount <= UINT32_MAX);
588
589 // Update the total.
590 Total += W.Amount;
591 if (W.Type == Weight::Backedge)
592 continue;
593
594 // Update the forward total.
595 ForwardTotal += W.Amount;
596 }
597 assert(Total <= UINT32_MAX);
598}
599
600void BlockFrequencyInfoImplBase::clear() {
Duncan P. N. Exon Smithdc2d66e2014-04-22 03:31:34 +0000601 // Swap with a default-constructed std::vector, since std::vector<>::clear()
602 // does not actually clear heap storage.
603 std::vector<FrequencyData>().swap(Freqs);
604 std::vector<WorkingData>().swap(Working);
Duncan P. N. Exon Smithfc7dc932014-04-25 04:30:06 +0000605 Loops.clear();
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000606}
607
608/// \brief Clear all memory not needed downstream.
609///
610/// Releases all memory not used downstream. In particular, saves Freqs.
611static void cleanup(BlockFrequencyInfoImplBase &BFI) {
612 std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
613 BFI.clear();
614 BFI.Freqs = std::move(SavedFreqs);
615}
616
617/// \brief Get a possibly packaged node.
618///
619/// Get the node currently representing Node, which could be a containing
620/// loop.
621///
622/// This function should only be called when distributing mass. As long as
623/// there are no irreducilbe edges to Node, then it will have complexity O(1)
624/// in this context.
625///
626/// In general, the complexity is O(L), where L is the number of loop headers
627/// Node has been packaged into. Since this method is called in the context
628/// of distributing mass, L will be the number of loop headers an early exit
629/// edge jumps out of.
630static BlockNode getPackagedNode(const BlockFrequencyInfoImplBase &BFI,
631 const BlockNode &Node) {
632 assert(Node.isValid());
Duncan P. N. Exon Smith2984a642014-04-22 03:31:44 +0000633 if (!BFI.Working[Node.Index].isPackaged())
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000634 return Node;
Duncan P. N. Exon Smith2984a642014-04-22 03:31:44 +0000635 if (!BFI.Working[Node.Index].isAPackage())
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000636 return Node;
Duncan P. N. Exon Smith2984a642014-04-22 03:31:44 +0000637 return getPackagedNode(BFI, BFI.Working[Node.Index].getContainingHeader());
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000638}
639
640/// \brief Get the appropriate mass for a possible pseudo-node loop package.
641///
642/// Get appropriate mass for Node. If Node is a loop-header (whose loop has
643/// been packaged), returns the mass of its pseudo-node. If it's a node inside
644/// a packaged loop, it returns the loop's pseudo-node.
645static BlockMass &getPackageMass(BlockFrequencyInfoImplBase &BFI,
646 const BlockNode &Node) {
647 assert(Node.isValid());
Duncan P. N. Exon Smith2984a642014-04-22 03:31:44 +0000648 assert(!BFI.Working[Node.Index].isPackaged());
Duncan P. N. Exon Smithe1423632014-04-22 03:31:37 +0000649 if (!BFI.Working[Node.Index].isAPackage())
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000650 return BFI.Working[Node.Index].Mass;
651
652 return BFI.getLoopPackage(Node).Mass;
653}
654
655void BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000656 const LoopData *OuterLoop,
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000657 const BlockNode &Pred,
658 const BlockNode &Succ,
659 uint64_t Weight) {
660 if (!Weight)
661 Weight = 1;
662
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000663 BlockNode LoopHead;
664 if (OuterLoop)
665 LoopHead = OuterLoop->Header;
666
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000667#ifndef NDEBUG
668 auto debugSuccessor = [&](const char *Type, const BlockNode &Resolved) {
669 dbgs() << " =>"
670 << " [" << Type << "] weight = " << Weight;
671 if (Succ != LoopHead)
672 dbgs() << ", succ = " << getBlockName(Succ);
673 if (Resolved != Succ)
674 dbgs() << ", resolved = " << getBlockName(Resolved);
675 dbgs() << "\n";
676 };
677 (void)debugSuccessor;
678#endif
679
680 if (Succ == LoopHead) {
681 DEBUG(debugSuccessor("backedge", Succ));
682 Dist.addBackedge(LoopHead, Weight);
683 return;
684 }
685 BlockNode Resolved = getPackagedNode(*this, Succ);
686 assert(Resolved != LoopHead);
687
Duncan P. N. Exon Smith2984a642014-04-22 03:31:44 +0000688 if (Working[Resolved.Index].getContainingHeader() != LoopHead) {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000689 DEBUG(debugSuccessor(" exit ", Resolved));
690 Dist.addExit(Resolved, Weight);
691 return;
692 }
693
Duncan P. N. Exon Smithb3380ea2014-04-22 03:31:53 +0000694 if (Resolved < Pred) {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000695 // Irreducible backedge. Skip this edge in the distribution.
696 DEBUG(debugSuccessor("skipped ", Resolved));
697 return;
698 }
699
700 DEBUG(debugSuccessor(" local ", Resolved));
701 Dist.addLocal(Resolved, Weight);
702}
703
704void BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000705 const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000706 // Copy the exit map into Dist.
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000707 for (const auto &I : Loop.Exits)
708 addToDist(Dist, OuterLoop, Loop.Header, I.first, I.second.getMass());
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000709
710 // We don't need this map any more. Clear it to prevent quadratic memory
711 // usage in deeply nested loops with irreducible control flow.
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000712 Loop.Exits.clear();
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000713}
714
715/// \brief Get the maximum allowed loop scale.
716///
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000717/// Gives the maximum number of estimated iterations allowed for a loop. Very
718/// large numbers cause problems downstream (even within 64-bits).
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000719static Float getMaxLoopScale() { return Float(1, 12); }
720
721/// \brief Compute the loop scale for a loop.
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000722void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000723 // Compute loop scale.
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000724 DEBUG(dbgs() << "compute-loop-scale: " << getBlockName(Loop.Header) << "\n");
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000725
726 // LoopScale == 1 / ExitMass
727 // ExitMass == HeadMass - BackedgeMass
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000728 BlockMass ExitMass = BlockMass::getFull() - Loop.BackedgeMass;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000729
730 // Block scale stores the inverse of the scale.
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000731 Loop.Scale = ExitMass.toFloat().inverse();
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000732
733 DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000734 << " - " << Loop.BackedgeMass << ")\n"
735 << " - scale = " << Loop.Scale << "\n");
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000736
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000737 if (Loop.Scale > getMaxLoopScale()) {
738 Loop.Scale = getMaxLoopScale();
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000739 DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n");
740 }
741}
742
743/// \brief Package up a loop.
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000744void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
745 DEBUG(dbgs() << "packaging-loop: " << getBlockName(Loop.Header) << "\n");
746 Loop.IsPackaged = true;
Duncan P. N. Exon Smith2984a642014-04-22 03:31:44 +0000747 DEBUG(for (const BlockNode &M
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000748 : Loop.Members) {
Duncan P. N. Exon Smith2984a642014-04-22 03:31:44 +0000749 dbgs() << " - node: " << getBlockName(M.Index) << "\n";
750 });
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000751}
752
753void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000754 LoopData *OuterLoop,
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000755 Distribution &Dist) {
756 BlockMass Mass = getPackageMass(*this, Source);
757 DEBUG(dbgs() << " => mass: " << Mass
758 << " ( general | forward )\n");
759
760 // Distribute mass to successors as laid out in Dist.
761 DitheringDistributer D(Dist, Mass);
762
763#ifndef NDEBUG
764 auto debugAssign = [&](const BlockNode &T, const BlockMass &M,
765 const char *Desc) {
766 dbgs() << " => assign " << M << " (" << D.RemMass << "|"
767 << D.RemForwardMass << ")";
768 if (Desc)
769 dbgs() << " [" << Desc << "]";
770 if (T.isValid())
771 dbgs() << " to " << getBlockName(T);
772 dbgs() << "\n";
773 };
774 (void)debugAssign;
775#endif
776
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000777 BlockNode LoopHead;
778 if (OuterLoop)
779 LoopHead = OuterLoop->Header;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000780 for (const Weight &W : Dist.Weights) {
781 // Check for a local edge (forward and non-exit).
782 if (W.Type == Weight::Local) {
783 BlockMass Local = D.takeLocalMass(W.Amount);
784 getPackageMass(*this, W.TargetNode) += Local;
785 DEBUG(debugAssign(W.TargetNode, Local, nullptr));
786 continue;
787 }
788
789 // Backedges and exits only make sense if we're processing a loop.
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000790 assert(OuterLoop && "backedge or exit outside of loop");
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000791
792 // Check for a backedge.
793 if (W.Type == Weight::Backedge) {
794 BlockMass Back = D.takeBackedgeMass(W.Amount);
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000795 OuterLoop->BackedgeMass += Back;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000796 DEBUG(debugAssign(BlockNode(), Back, "back"));
797 continue;
798 }
799
800 // This must be an exit.
801 assert(W.Type == Weight::Exit);
802 BlockMass Exit = D.takeExitMass(W.Amount);
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000803 OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Exit));
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000804 DEBUG(debugAssign(W.TargetNode, Exit, "exit"));
805 }
806}
807
808static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
809 const Float &Min, const Float &Max) {
810 // Scale the Factor to a size that creates integers. Ideally, integers would
811 // be scaled so that Max == UINT64_MAX so that they can be best
812 // differentiated. However, the register allocator currently deals poorly
813 // with large numbers. Instead, push Min up a little from 1 to give some
814 // room to differentiate small, unequal numbers.
815 //
816 // TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max.
817 Float ScalingFactor = Min.inverse();
818 if ((Max / Min).lg() < 60)
819 ScalingFactor <<= 3;
820
821 // Translate the floats to integers.
822 DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
823 << ", factor = " << ScalingFactor << "\n");
824 for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
825 Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor;
826 BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
827 DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
828 << BFI.Freqs[Index].Floating << ", scaled = " << Scaled
829 << ", int = " << BFI.Freqs[Index].Integer << "\n");
830 }
831}
832
833static void scaleBlockData(BlockFrequencyInfoImplBase &BFI,
834 const BlockNode &Node,
Duncan P. N. Exon Smithcc88ebf2014-04-22 03:31:31 +0000835 const LoopData &Loop) {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000836 Float F = Loop.Mass.toFloat() * Loop.Scale;
837
838 Float &Current = BFI.Freqs[Node.Index].Floating;
839 Float Updated = Current * F;
840
841 DEBUG(dbgs() << " - " << BFI.getBlockName(Node) << ": " << Current << " => "
842 << Updated << "\n");
843
844 Current = Updated;
845}
846
847/// \brief Unwrap a loop package.
848///
849/// Visits all the members of a loop, adjusting their BlockData according to
850/// the loop's pseudo-node.
851static void unwrapLoopPackage(BlockFrequencyInfoImplBase &BFI,
852 const BlockNode &Head) {
853 assert(Head.isValid());
854
Duncan P. N. Exon Smithcc88ebf2014-04-22 03:31:31 +0000855 LoopData &LoopPackage = BFI.getLoopPackage(Head);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000856 DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getBlockName(Head)
857 << ": mass = " << LoopPackage.Mass
858 << ", scale = " << LoopPackage.Scale << "\n");
859 scaleBlockData(BFI, Head, LoopPackage);
860
861 // Propagate the head scale through the loop. Since members are visited in
862 // RPO, the head scale will be updated by the loop scale first, and then the
863 // final head scale will be used for updated the rest of the members.
864 for (const BlockNode &M : LoopPackage.Members) {
865 const FrequencyData &HeadData = BFI.Freqs[Head.Index];
866 FrequencyData &Freqs = BFI.Freqs[M.Index];
867 Float NewFreq = Freqs.Floating * HeadData.Floating;
868 DEBUG(dbgs() << " - " << BFI.getBlockName(M) << ": " << Freqs.Floating
869 << " => " << NewFreq << "\n");
870 Freqs.Floating = NewFreq;
871 }
872}
873
874void BlockFrequencyInfoImplBase::finalizeMetrics() {
875 // Set initial frequencies from loop-local masses.
876 for (size_t Index = 0; Index < Working.size(); ++Index)
877 Freqs[Index].Floating = Working[Index].Mass.toFloat();
878
879 // Unwrap loop packages in reverse post-order, tracking min and max
880 // frequencies.
881 auto Min = Float::getLargest();
882 auto Max = Float::getZero();
883 for (size_t Index = 0; Index < Working.size(); ++Index) {
884 if (Working[Index].isLoopHeader())
885 unwrapLoopPackage(*this, BlockNode(Index));
886
887 // Update max scale.
888 Min = std::min(Min, Freqs[Index].Floating);
889 Max = std::max(Max, Freqs[Index].Floating);
890 }
891
892 // Convert to integers.
893 convertFloatingToInteger(*this, Min, Max);
894
895 // Clean up data structures.
896 cleanup(*this);
897
898 // Print out the final stats.
899 DEBUG(dump());
900}
901
902BlockFrequency
903BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
904 if (!Node.isValid())
905 return 0;
906 return Freqs[Node.Index].Integer;
907}
908Float
909BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
910 if (!Node.isValid())
911 return Float::getZero();
912 return Freqs[Node.Index].Floating;
913}
914
915std::string
916BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
917 return std::string();
918}
919
920raw_ostream &
921BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
922 const BlockNode &Node) const {
923 return OS << getFloatingBlockFreq(Node);
924}
925
926raw_ostream &
927BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
928 const BlockFrequency &Freq) const {
929 Float Block(Freq.getFrequency(), 0);
930 Float Entry(getEntryFreq(), 0);
931
932 return OS << Block / Entry;
933}