Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 1 | //=== X86CallingConv.cpp - X86 Custom Calling Convention Impl -*- C++ -*-===// |
| 2 | // |
Chandler Carruth | 2946cd7 | 2019-01-19 08:50:56 +0000 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the implementation of custom routines for the X86 |
| 10 | // Calling Convention that aren't done by tablegen. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame] | 14 | #include "X86CallingConv.h" |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 15 | #include "X86Subtarget.h" |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame] | 16 | #include "llvm/ADT/SmallVector.h" |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 17 | #include "llvm/CodeGen/CallingConvLower.h" |
| 18 | #include "llvm/IR/CallingConv.h" |
| 19 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame] | 20 | using namespace llvm; |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 21 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame] | 22 | /// When regcall calling convention compiled to 32 bit arch, special treatment |
| 23 | /// is required for 64 bit masks. |
| 24 | /// The value should be assigned to two GPRs. |
| 25 | /// \return true if registers were allocated and false otherwise. |
| 26 | static bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT, |
| 27 | MVT &LocVT, |
| 28 | CCValAssign::LocInfo &LocInfo, |
| 29 | ISD::ArgFlagsTy &ArgFlags, |
| 30 | CCState &State) { |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 31 | // List of GPR registers that are available to store values in regcall |
| 32 | // calling convention. |
| 33 | static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI, |
| 34 | X86::ESI}; |
| 35 | |
| 36 | // The vector will save all the available registers for allocation. |
| 37 | SmallVector<unsigned, 5> AvailableRegs; |
| 38 | |
| 39 | // searching for the available registers. |
| 40 | for (auto Reg : RegList) { |
| 41 | if (!State.isAllocated(Reg)) |
| 42 | AvailableRegs.push_back(Reg); |
| 43 | } |
| 44 | |
| 45 | const size_t RequiredGprsUponSplit = 2; |
| 46 | if (AvailableRegs.size() < RequiredGprsUponSplit) |
| 47 | return false; // Not enough free registers - continue the search. |
| 48 | |
| 49 | // Allocating the available registers. |
| 50 | for (unsigned I = 0; I < RequiredGprsUponSplit; I++) { |
| 51 | |
| 52 | // Marking the register as located. |
| 53 | unsigned Reg = State.AllocateReg(AvailableRegs[I]); |
| 54 | |
| 55 | // Since we previously made sure that 2 registers are available |
| 56 | // we expect that a real register number will be returned. |
| 57 | assert(Reg && "Expecting a register will be available"); |
| 58 | |
| 59 | // Assign the value to the allocated register |
| 60 | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 61 | } |
| 62 | |
| 63 | // Successful in allocating regsiters - stop scanning next rules. |
| 64 | return true; |
| 65 | } |
| 66 | |
| 67 | static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) { |
| 68 | if (ValVT.is512BitVector()) { |
| 69 | static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2, |
| 70 | X86::ZMM3, X86::ZMM4, X86::ZMM5}; |
| 71 | return makeArrayRef(std::begin(RegListZMM), std::end(RegListZMM)); |
| 72 | } |
| 73 | |
| 74 | if (ValVT.is256BitVector()) { |
| 75 | static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2, |
| 76 | X86::YMM3, X86::YMM4, X86::YMM5}; |
| 77 | return makeArrayRef(std::begin(RegListYMM), std::end(RegListYMM)); |
| 78 | } |
| 79 | |
| 80 | static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2, |
| 81 | X86::XMM3, X86::XMM4, X86::XMM5}; |
| 82 | return makeArrayRef(std::begin(RegListXMM), std::end(RegListXMM)); |
| 83 | } |
| 84 | |
| 85 | static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() { |
| 86 | static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9}; |
| 87 | return makeArrayRef(std::begin(RegListGPR), std::end(RegListGPR)); |
| 88 | } |
| 89 | |
| 90 | static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT, |
| 91 | MVT &LocVT, |
| 92 | CCValAssign::LocInfo &LocInfo, |
| 93 | ISD::ArgFlagsTy &ArgFlags, |
| 94 | CCState &State) { |
| 95 | |
| 96 | ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT); |
| 97 | bool Is64bit = static_cast<const X86Subtarget &>( |
| 98 | State.getMachineFunction().getSubtarget()) |
| 99 | .is64Bit(); |
| 100 | |
| 101 | for (auto Reg : RegList) { |
| 102 | // If the register is not marked as allocated - assign to it. |
| 103 | if (!State.isAllocated(Reg)) { |
| 104 | unsigned AssigedReg = State.AllocateReg(Reg); |
| 105 | assert(AssigedReg == Reg && "Expecting a valid register allocation"); |
| 106 | State.addLoc( |
| 107 | CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo)); |
| 108 | return true; |
| 109 | } |
| 110 | // If the register is marked as shadow allocated - assign to it. |
| 111 | if (Is64bit && State.IsShadowAllocatedReg(Reg)) { |
| 112 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 113 | return true; |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | llvm_unreachable("Clang should ensure that hva marked vectors will have " |
| 118 | "an available register."); |
| 119 | return false; |
| 120 | } |
| 121 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame] | 122 | /// Vectorcall calling convention has special handling for vector types or |
| 123 | /// HVA for 64 bit arch. |
| 124 | /// For HVAs shadow registers might be allocated on the first pass |
| 125 | /// and actual XMM registers are allocated on the second pass. |
| 126 | /// For vector types, actual XMM registers are allocated on the first pass. |
| 127 | /// \return true if registers were allocated and false otherwise. |
| 128 | static bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 129 | CCValAssign::LocInfo &LocInfo, |
| 130 | ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 131 | // On the second pass, go through the HVAs only. |
| 132 | if (ArgFlags.isSecArgPass()) { |
| 133 | if (ArgFlags.isHva()) |
| 134 | return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, |
| 135 | ArgFlags, State); |
| 136 | return true; |
| 137 | } |
| 138 | |
| 139 | // Process only vector types as defined by vectorcall spec: |
| 140 | // "A vector type is either a floating-point type, for example, |
| 141 | // a float or double, or an SIMD vector type, for example, __m128 or __m256". |
| 142 | if (!(ValVT.isFloatingPoint() || |
| 143 | (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { |
| 144 | // If R9 was already assigned it means that we are after the fourth element |
| 145 | // and because this is not an HVA / Vector type, we need to allocate |
| 146 | // shadow XMM register. |
| 147 | if (State.isAllocated(X86::R9)) { |
| 148 | // Assign shadow XMM register. |
| 149 | (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT)); |
| 150 | } |
| 151 | |
| 152 | return false; |
| 153 | } |
| 154 | |
| 155 | if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) { |
| 156 | // Assign shadow GPR register. |
| 157 | (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs()); |
| 158 | |
| 159 | // Assign XMM register - (shadow for HVA and non-shadow for non HVA). |
| 160 | if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { |
| 161 | // In Vectorcall Calling convention, additional shadow stack can be |
| 162 | // created on top of the basic 32 bytes of win64. |
| 163 | // It can happen if the fifth or sixth argument is vector type or HVA. |
| 164 | // At that case for each argument a shadow stack of 8 bytes is allocated. |
Reid Kleckner | 8fda7e1 | 2019-02-26 19:48:16 +0000 | [diff] [blame] | 165 | const TargetRegisterInfo *TRI = |
| 166 | State.getMachineFunction().getSubtarget().getRegisterInfo(); |
| 167 | if (TRI->regsOverlap(Reg, X86::XMM4) || |
| 168 | TRI->regsOverlap(Reg, X86::XMM5)) |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 169 | State.AllocateStack(8, 8); |
| 170 | |
| 171 | if (!ArgFlags.isHva()) { |
| 172 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 173 | return true; // Allocated a register - Stop the search. |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | // If this is an HVA - Stop the search, |
| 179 | // otherwise continue the search. |
| 180 | return ArgFlags.isHva(); |
| 181 | } |
| 182 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame] | 183 | /// Vectorcall calling convention has special handling for vector types or |
| 184 | /// HVA for 32 bit arch. |
| 185 | /// For HVAs actual XMM registers are allocated on the second pass. |
| 186 | /// For vector types, actual XMM registers are allocated on the first pass. |
| 187 | /// \return true if registers were allocated and false otherwise. |
| 188 | static bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 189 | CCValAssign::LocInfo &LocInfo, |
| 190 | ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 191 | // On the second pass, go through the HVAs only. |
| 192 | if (ArgFlags.isSecArgPass()) { |
| 193 | if (ArgFlags.isHva()) |
| 194 | return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, |
| 195 | ArgFlags, State); |
| 196 | return true; |
| 197 | } |
| 198 | |
| 199 | // Process only vector types as defined by vectorcall spec: |
| 200 | // "A vector type is either a floating point type, for example, |
| 201 | // a float or double, or an SIMD vector type, for example, __m128 or __m256". |
| 202 | if (!(ValVT.isFloatingPoint() || |
| 203 | (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { |
| 204 | return false; |
| 205 | } |
| 206 | |
| 207 | if (ArgFlags.isHva()) |
| 208 | return true; // If this is an HVA - Stop the search. |
| 209 | |
| 210 | // Assign XMM register. |
| 211 | if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { |
| 212 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 213 | return true; |
| 214 | } |
| 215 | |
| 216 | // In case we did not find an available XMM register for a vector - |
| 217 | // pass it indirectly. |
| 218 | // It is similar to CCPassIndirect, with the addition of inreg. |
| 219 | if (!ValVT.isFloatingPoint()) { |
| 220 | LocVT = MVT::i32; |
| 221 | LocInfo = CCValAssign::Indirect; |
| 222 | ArgFlags.setInReg(); |
| 223 | } |
| 224 | |
| 225 | return false; // No register was assigned - Continue the search. |
| 226 | } |
| 227 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame] | 228 | static bool CC_X86_AnyReg_Error(unsigned &, MVT &, MVT &, |
| 229 | CCValAssign::LocInfo &, ISD::ArgFlagsTy &, |
| 230 | CCState &) { |
| 231 | llvm_unreachable("The AnyReg calling convention is only supported by the " |
| 232 | "stackmap and patchpoint intrinsics."); |
| 233 | // gracefully fallback to X86 C calling convention on Release builds. |
| 234 | return false; |
| 235 | } |
| 236 | |
| 237 | static bool CC_X86_32_MCUInReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 238 | CCValAssign::LocInfo &LocInfo, |
| 239 | ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
Reid Kleckner | ca16e9d | 2019-01-16 22:05:36 +0000 | [diff] [blame] | 240 | // This is similar to CCAssignToReg<[EAX, EDX, ECX]>, but makes sure |
| 241 | // not to split i64 and double between a register and stack |
| 242 | static const MCPhysReg RegList[] = {X86::EAX, X86::EDX, X86::ECX}; |
| 243 | static const unsigned NumRegs = sizeof(RegList) / sizeof(RegList[0]); |
| 244 | |
| 245 | SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs(); |
| 246 | |
| 247 | // If this is the first part of an double/i64/i128, or if we're already |
| 248 | // in the middle of a split, add to the pending list. If this is not |
| 249 | // the end of the split, return, otherwise go on to process the pending |
| 250 | // list |
| 251 | if (ArgFlags.isSplit() || !PendingMembers.empty()) { |
| 252 | PendingMembers.push_back( |
| 253 | CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); |
| 254 | if (!ArgFlags.isSplitEnd()) |
| 255 | return true; |
| 256 | } |
| 257 | |
| 258 | // If there are no pending members, we are not in the middle of a split, |
| 259 | // so do the usual inreg stuff. |
| 260 | if (PendingMembers.empty()) { |
| 261 | if (unsigned Reg = State.AllocateReg(RegList)) { |
| 262 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 263 | return true; |
| 264 | } |
| 265 | return false; |
| 266 | } |
| 267 | |
| 268 | assert(ArgFlags.isSplitEnd()); |
| 269 | |
| 270 | // We now have the entire original argument in PendingMembers, so decide |
| 271 | // whether to use registers or the stack. |
| 272 | // Per the MCU ABI: |
| 273 | // a) To use registers, we need to have enough of them free to contain |
| 274 | // the entire argument. |
| 275 | // b) We never want to use more than 2 registers for a single argument. |
| 276 | |
| 277 | unsigned FirstFree = State.getFirstUnallocated(RegList); |
| 278 | bool UseRegs = PendingMembers.size() <= std::min(2U, NumRegs - FirstFree); |
| 279 | |
| 280 | for (auto &It : PendingMembers) { |
| 281 | if (UseRegs) |
| 282 | It.convertToReg(State.AllocateReg(RegList[FirstFree++])); |
| 283 | else |
| 284 | It.convertToMem(State.AllocateStack(4, 4)); |
| 285 | State.addLoc(It); |
| 286 | } |
| 287 | |
| 288 | PendingMembers.clear(); |
| 289 | |
| 290 | return true; |
| 291 | } |
| 292 | |
Reid Kleckner | 2f055f0 | 2019-02-26 02:11:25 +0000 | [diff] [blame] | 293 | /// X86 interrupt handlers can only take one or two stack arguments, but if |
| 294 | /// there are two arguments, they are in the opposite order from the standard |
| 295 | /// convention. Therefore, we have to look at the argument count up front before |
| 296 | /// allocating stack for each argument. |
| 297 | static bool CC_X86_Intr(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 298 | CCValAssign::LocInfo &LocInfo, |
| 299 | ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| 300 | const MachineFunction &MF = State.getMachineFunction(); |
| 301 | size_t ArgCount = State.getMachineFunction().getFunction().arg_size(); |
| 302 | bool Is64Bit = static_cast<const X86Subtarget &>(MF.getSubtarget()).is64Bit(); |
| 303 | unsigned SlotSize = Is64Bit ? 8 : 4; |
| 304 | unsigned Offset; |
| 305 | if (ArgCount == 1 && ValNo == 0) { |
| 306 | // If we have one argument, the argument is five stack slots big, at fixed |
| 307 | // offset zero. |
| 308 | Offset = State.AllocateStack(5 * SlotSize, 4); |
| 309 | } else if (ArgCount == 2 && ValNo == 0) { |
| 310 | // If we have two arguments, the stack slot is *after* the error code |
| 311 | // argument. Pretend it doesn't consume stack space, and account for it when |
| 312 | // we assign the second argument. |
| 313 | Offset = SlotSize; |
| 314 | } else if (ArgCount == 2 && ValNo == 1) { |
| 315 | // If this is the second of two arguments, it must be the error code. It |
| 316 | // appears first on the stack, and is then followed by the five slot |
| 317 | // interrupt struct. |
| 318 | Offset = 0; |
| 319 | (void)State.AllocateStack(6 * SlotSize, 4); |
| 320 | } else { |
| 321 | report_fatal_error("unsupported x86 interrupt prototype"); |
| 322 | } |
| 323 | |
| 324 | // FIXME: This should be accounted for in |
| 325 | // X86FrameLowering::getFrameIndexReference, not here. |
| 326 | if (Is64Bit && ArgCount == 2) |
| 327 | Offset += SlotSize; |
| 328 | |
| 329 | State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| 330 | return true; |
| 331 | } |
| 332 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame] | 333 | // Provides entry points of CC_X86 and RetCC_X86. |
| 334 | #include "X86GenCallingConv.inc" |