blob: 3993d887552e23776dcde82436c8b3fc5dc16476 [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// Status: early prototype.
14///
15/// The algorithm of the tool is similar to Memcheck
16/// (http://goo.gl/QKbem). We associate a few shadow bits with every
17/// byte of the application memory, poison the shadow of the malloc-ed
18/// or alloca-ed memory, load the shadow bits on every memory read,
19/// propagate the shadow bits through some of the arithmetic
20/// instruction (including MOV), store the shadow bits on every memory
21/// write, report a bug on some other instructions (e.g. JMP) if the
22/// associated shadow is poisoned.
23///
24/// But there are differences too. The first and the major one:
25/// compiler instrumentation instead of binary instrumentation. This
26/// gives us much better register allocation, possible compiler
27/// optimizations and a fast start-up. But this brings the major issue
28/// as well: msan needs to see all program events, including system
29/// calls and reads/writes in system libraries, so we either need to
30/// compile *everything* with msan or use a binary translation
31/// component (e.g. DynamoRIO) to instrument pre-built libraries.
32/// Another difference from Memcheck is that we use 8 shadow bits per
33/// byte of application memory and use a direct shadow mapping. This
34/// greatly simplifies the instrumentation code and avoids races on
35/// shadow updates (Memcheck is single-threaded so races are not a
36/// concern there. Memcheck uses 2 shadow bits per byte with a slow
37/// path storage that uses 8 bits per byte).
38///
39/// The default value of shadow is 0, which means "clean" (not poisoned).
40///
41/// Every module initializer should call __msan_init to ensure that the
42/// shadow memory is ready. On error, __msan_warning is called. Since
43/// parameters and return values may be passed via registers, we have a
44/// specialized thread-local shadow for return values
45/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000046///
47/// Origin tracking.
48///
49/// MemorySanitizer can track origins (allocation points) of all uninitialized
50/// values. This behavior is controlled with a flag (msan-track-origins) and is
51/// disabled by default.
52///
53/// Origins are 4-byte values created and interpreted by the runtime library.
54/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
55/// of application memory. Propagation of origins is basically a bunch of
56/// "select" instructions that pick the origin of a dirty argument, if an
57/// instruction has one.
58///
59/// Every 4 aligned, consecutive bytes of application memory have one origin
60/// value associated with them. If these bytes contain uninitialized data
61/// coming from 2 different allocations, the last store wins. Because of this,
62/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
63/// practice.
64///
65/// Origins are meaningless for fully initialized values, so MemorySanitizer
66/// avoids storing origin to memory when a fully initialized value is stored.
67/// This way it avoids needless overwritting origin of the 4-byte region on
68/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000069//===----------------------------------------------------------------------===//
70
71#define DEBUG_TYPE "msan"
72
Chandler Carruthed0881b2012-12-03 16:50:05 +000073#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000074#include "BlackList.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000075#include "llvm/ADT/DepthFirstIterator.h"
76#include "llvm/ADT/SmallString.h"
77#include "llvm/ADT/SmallVector.h"
78#include "llvm/ADT/ValueMap.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000079#include "llvm/DataLayout.h"
80#include "llvm/Function.h"
81#include "llvm/IRBuilder.h"
82#include "llvm/InlineAsm.h"
83#include "llvm/InstVisitor.h"
84#include "llvm/IntrinsicInst.h"
85#include "llvm/LLVMContext.h"
86#include "llvm/MDBuilder.h"
87#include "llvm/Module.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000088#include "llvm/Support/CommandLine.h"
89#include "llvm/Support/Compiler.h"
90#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000091#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000092#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +000093#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000094#include "llvm/Transforms/Utils/ModuleUtils.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000095#include "llvm/Type.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000096
97using namespace llvm;
98
99static const uint64_t kShadowMask32 = 1ULL << 31;
100static const uint64_t kShadowMask64 = 1ULL << 46;
101static const uint64_t kOriginOffset32 = 1ULL << 30;
102static const uint64_t kOriginOffset64 = 1ULL << 45;
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +0000103static const uint64_t kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000104
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000105/// \brief Track origins of uninitialized values.
106///
107/// Adds a section to MemorySanitizer report that points to the allocation
108/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000109static cl::opt<bool> ClTrackOrigins("msan-track-origins",
110 cl::desc("Track origins (allocation sites) of poisoned memory"),
111 cl::Hidden, cl::init(false));
112static cl::opt<bool> ClKeepGoing("msan-keep-going",
113 cl::desc("keep going after reporting a UMR"),
114 cl::Hidden, cl::init(false));
115static cl::opt<bool> ClPoisonStack("msan-poison-stack",
116 cl::desc("poison uninitialized stack variables"),
117 cl::Hidden, cl::init(true));
118static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
119 cl::desc("poison uninitialized stack variables with a call"),
120 cl::Hidden, cl::init(false));
121static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
122 cl::desc("poison uninitialized stack variables with the given patter"),
123 cl::Hidden, cl::init(0xff));
124
125static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
126 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
127 cl::Hidden, cl::init(true));
128
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000129static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
130 cl::desc("store origin for clean (fully initialized) values"),
131 cl::Hidden, cl::init(false));
132
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000133// This flag controls whether we check the shadow of the address
134// operand of load or store. Such bugs are very rare, since load from
135// a garbage address typically results in SEGV, but still happen
136// (e.g. only lower bits of address are garbage, or the access happens
137// early at program startup where malloc-ed memory is more likely to
138// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
139static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
140 cl::desc("report accesses through a pointer which has poisoned shadow"),
141 cl::Hidden, cl::init(true));
142
143static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
144 cl::desc("print out instructions with default strict semantics"),
145 cl::Hidden, cl::init(false));
146
147static cl::opt<std::string> ClBlackListFile("msan-blacklist",
148 cl::desc("File containing the list of functions where MemorySanitizer "
149 "should not report bugs"), cl::Hidden);
150
151namespace {
152
153/// \brief An instrumentation pass implementing detection of uninitialized
154/// reads.
155///
156/// MemorySanitizer: instrument the code in module to find
157/// uninitialized reads.
158class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000159 public:
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000160 MemorySanitizer(bool TrackOrigins = false)
161 : FunctionPass(ID),
162 TrackOrigins(TrackOrigins || ClTrackOrigins),
163 TD(0),
164 WarningFn(0) { }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000165 const char *getPassName() const { return "MemorySanitizer"; }
166 bool runOnFunction(Function &F);
167 bool doInitialization(Module &M);
168 static char ID; // Pass identification, replacement for typeid.
169
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000170 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000171 void initializeCallbacks(Module &M);
172
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000173 /// \brief Track origins (allocation points) of uninitialized values.
174 bool TrackOrigins;
175
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000176 DataLayout *TD;
177 LLVMContext *C;
178 Type *IntptrTy;
179 Type *OriginTy;
180 /// \brief Thread-local shadow storage for function parameters.
181 GlobalVariable *ParamTLS;
182 /// \brief Thread-local origin storage for function parameters.
183 GlobalVariable *ParamOriginTLS;
184 /// \brief Thread-local shadow storage for function return value.
185 GlobalVariable *RetvalTLS;
186 /// \brief Thread-local origin storage for function return value.
187 GlobalVariable *RetvalOriginTLS;
188 /// \brief Thread-local shadow storage for in-register va_arg function
189 /// parameters (x86_64-specific).
190 GlobalVariable *VAArgTLS;
191 /// \brief Thread-local shadow storage for va_arg overflow area
192 /// (x86_64-specific).
193 GlobalVariable *VAArgOverflowSizeTLS;
194 /// \brief Thread-local space used to pass origin value to the UMR reporting
195 /// function.
196 GlobalVariable *OriginTLS;
197
198 /// \brief The run-time callback to print a warning.
199 Value *WarningFn;
200 /// \brief Run-time helper that copies origin info for a memory range.
201 Value *MsanCopyOriginFn;
202 /// \brief Run-time helper that generates a new origin value for a stack
203 /// allocation.
204 Value *MsanSetAllocaOriginFn;
205 /// \brief Run-time helper that poisons stack on function entry.
206 Value *MsanPoisonStackFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000207 /// \brief MSan runtime replacements for memmove, memcpy and memset.
208 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000209
210 /// \brief Address mask used in application-to-shadow address calculation.
211 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
212 uint64_t ShadowMask;
213 /// \brief Offset of the origin shadow from the "normal" shadow.
214 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
215 uint64_t OriginOffset;
216 /// \brief Branch weights for error reporting.
217 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000218 /// \brief Branch weights for origin store.
219 MDNode *OriginStoreWeights;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000220 /// \brief The blacklist.
221 OwningPtr<BlackList> BL;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000222 /// \brief An empty volatile inline asm that prevents callback merge.
223 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000224
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000225 friend struct MemorySanitizerVisitor;
226 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000227};
228} // namespace
229
230char MemorySanitizer::ID = 0;
231INITIALIZE_PASS(MemorySanitizer, "msan",
232 "MemorySanitizer: detects uninitialized reads.",
233 false, false)
234
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000235FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins) {
236 return new MemorySanitizer(TrackOrigins);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000237}
238
239/// \brief Create a non-const global initialized with the given string.
240///
241/// Creates a writable global for Str so that we can pass it to the
242/// run-time lib. Runtime uses first 4 bytes of the string to store the
243/// frame ID, so the string needs to be mutable.
244static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
245 StringRef Str) {
246 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
247 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
248 GlobalValue::PrivateLinkage, StrConst, "");
249}
250
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000251
252/// \brief Insert extern declaration of runtime-provided functions and globals.
253void MemorySanitizer::initializeCallbacks(Module &M) {
254 // Only do this once.
255 if (WarningFn)
256 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000257
258 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000259 // Create the callback.
260 // FIXME: this function should have "Cold" calling conv,
261 // which is not yet implemented.
262 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
263 : "__msan_warning_noreturn";
264 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
265
266 MsanCopyOriginFn = M.getOrInsertFunction(
267 "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
268 IRB.getInt8PtrTy(), IntptrTy, NULL);
269 MsanSetAllocaOriginFn = M.getOrInsertFunction(
270 "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
271 IRB.getInt8PtrTy(), NULL);
272 MsanPoisonStackFn = M.getOrInsertFunction(
273 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
274 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000275 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
276 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000277 MemcpyFn = M.getOrInsertFunction(
278 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
279 IntptrTy, NULL);
280 MemsetFn = M.getOrInsertFunction(
281 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000282 IntptrTy, NULL);
283
284 // Create globals.
285 RetvalTLS = new GlobalVariable(
286 M, ArrayType::get(IRB.getInt64Ty(), 8), false,
287 GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
288 GlobalVariable::GeneralDynamicTLSModel);
289 RetvalOriginTLS = new GlobalVariable(
290 M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
291 "__msan_retval_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
292
293 ParamTLS = new GlobalVariable(
294 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
295 GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
296 GlobalVariable::GeneralDynamicTLSModel);
297 ParamOriginTLS = new GlobalVariable(
298 M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
299 0, "__msan_param_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
300
301 VAArgTLS = new GlobalVariable(
302 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
303 GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
304 GlobalVariable::GeneralDynamicTLSModel);
305 VAArgOverflowSizeTLS = new GlobalVariable(
306 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
307 "__msan_va_arg_overflow_size_tls", 0,
308 GlobalVariable::GeneralDynamicTLSModel);
309 OriginTLS = new GlobalVariable(
310 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
311 "__msan_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000312
313 // We insert an empty inline asm after __msan_report* to avoid callback merge.
314 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
315 StringRef(""), StringRef(""),
316 /*hasSideEffects=*/true);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000317}
318
319/// \brief Module-level initialization.
320///
321/// inserts a call to __msan_init to the module's constructor list.
322bool MemorySanitizer::doInitialization(Module &M) {
323 TD = getAnalysisIfAvailable<DataLayout>();
324 if (!TD)
325 return false;
326 BL.reset(new BlackList(ClBlackListFile));
327 C = &(M.getContext());
328 unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
329 switch (PtrSize) {
330 case 64:
331 ShadowMask = kShadowMask64;
332 OriginOffset = kOriginOffset64;
333 break;
334 case 32:
335 ShadowMask = kShadowMask32;
336 OriginOffset = kOriginOffset32;
337 break;
338 default:
339 report_fatal_error("unsupported pointer size");
340 break;
341 }
342
343 IRBuilder<> IRB(*C);
344 IntptrTy = IRB.getIntPtrTy(TD);
345 OriginTy = IRB.getInt32Ty();
346
347 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000348 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000349
350 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
351 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
352 "__msan_init", IRB.getVoidTy(), NULL)), 0);
353
354 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000355 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000356
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000357 return true;
358}
359
360namespace {
361
362/// \brief A helper class that handles instrumentation of VarArg
363/// functions on a particular platform.
364///
365/// Implementations are expected to insert the instrumentation
366/// necessary to propagate argument shadow through VarArg function
367/// calls. Visit* methods are called during an InstVisitor pass over
368/// the function, and should avoid creating new basic blocks. A new
369/// instance of this class is created for each instrumented function.
370struct VarArgHelper {
371 /// \brief Visit a CallSite.
372 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
373
374 /// \brief Visit a va_start call.
375 virtual void visitVAStartInst(VAStartInst &I) = 0;
376
377 /// \brief Visit a va_copy call.
378 virtual void visitVACopyInst(VACopyInst &I) = 0;
379
380 /// \brief Finalize function instrumentation.
381 ///
382 /// This method is called after visiting all interesting (see above)
383 /// instructions in a function.
384 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000385
386 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000387};
388
389struct MemorySanitizerVisitor;
390
391VarArgHelper*
392CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
393 MemorySanitizerVisitor &Visitor);
394
395/// This class does all the work for a given function. Store and Load
396/// instructions store and load corresponding shadow and origin
397/// values. Most instructions propagate shadow from arguments to their
398/// return values. Certain instructions (most importantly, BranchInst)
399/// test their argument shadow and print reports (with a runtime call) if it's
400/// non-zero.
401struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
402 Function &F;
403 MemorySanitizer &MS;
404 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
405 ValueMap<Value*, Value*> ShadowMap, OriginMap;
406 bool InsertChecks;
407 OwningPtr<VarArgHelper> VAHelper;
408
409 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
410 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000411 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000412 static const unsigned AMD64FpEndOffset = 176;
413
414 struct ShadowOriginAndInsertPoint {
415 Instruction *Shadow;
416 Instruction *Origin;
417 Instruction *OrigIns;
418 ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I)
419 : Shadow(S), Origin(O), OrigIns(I) { }
420 ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
421 };
422 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000423 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000424
425 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
426 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
427 InsertChecks = !MS.BL->isIn(F);
428 DEBUG(if (!InsertChecks)
429 dbgs() << "MemorySanitizer is not inserting checks into '"
430 << F.getName() << "'\n");
431 }
432
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000433 void materializeStores() {
434 for (size_t i = 0, n = StoreList.size(); i < n; i++) {
435 StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
436
437 IRBuilder<> IRB(&I);
438 Value *Val = I.getValueOperand();
439 Value *Addr = I.getPointerOperand();
440 Value *Shadow = getShadow(Val);
441 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
442
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000443 StoreInst *NewSI =
444 IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000445 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000446 (void)NewSI;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000447 // If the store is volatile, add a check.
448 if (I.isVolatile())
449 insertCheck(Val, &I);
450 if (ClCheckAccessAddress)
451 insertCheck(Addr, &I);
452
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000453 if (MS.TrackOrigins) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000454 if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
Evgeniy Stepanov49175b22012-12-14 13:43:11 +0000455 IRB.CreateStore(getOrigin(Val), getOriginPtr(Addr, IRB));
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000456 } else {
457 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
458
459 Constant *Cst = dyn_cast_or_null<Constant>(ConvertedShadow);
460 // TODO(eugenis): handle non-zero constant shadow by inserting an
461 // unconditional check (can not simply fail compilation as this could
462 // be in the dead code).
463 if (Cst)
464 continue;
465
466 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
467 getCleanShadow(ConvertedShadow), "_mscmp");
468 Instruction *CheckTerm =
Evgeniy Stepanov49175b22012-12-14 13:43:11 +0000469 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
470 MS.OriginStoreWeights);
471 IRBuilder<> IRBNew(CheckTerm);
472 IRBNew.CreateStore(getOrigin(Val), getOriginPtr(Addr, IRBNew));
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000473 }
474 }
475 }
476 }
477
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000478 void materializeChecks() {
479 for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
480 Instruction *Shadow = InstrumentationList[i].Shadow;
481 Instruction *OrigIns = InstrumentationList[i].OrigIns;
482 IRBuilder<> IRB(OrigIns);
483 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
484 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
485 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
486 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
487 getCleanShadow(ConvertedShadow), "_mscmp");
488 Instruction *CheckTerm =
489 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
490 /* Unreachable */ !ClKeepGoing,
491 MS.ColdCallWeights);
492
493 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000494 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000495 Instruction *Origin = InstrumentationList[i].Origin;
496 IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
497 MS.OriginTLS);
498 }
499 CallInst *Call = IRB.CreateCall(MS.WarningFn);
500 Call->setDebugLoc(OrigIns->getDebugLoc());
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000501 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000502 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
503 }
504 DEBUG(dbgs() << "DONE:\n" << F);
505 }
506
507 /// \brief Add MemorySanitizer instrumentation to a function.
508 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000509 MS.initializeCallbacks(*F.getParent());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000510 if (!MS.TD) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000511
512 // In the presence of unreachable blocks, we may see Phi nodes with
513 // incoming nodes from such blocks. Since InstVisitor skips unreachable
514 // blocks, such nodes will not have any shadow value associated with them.
515 // It's easier to remove unreachable blocks than deal with missing shadow.
516 removeUnreachableBlocks(F);
517
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000518 // Iterate all BBs in depth-first order and create shadow instructions
519 // for all instructions (where applicable).
520 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
521 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
522 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
523 BasicBlock *BB = *DI;
524 visit(*BB);
525 }
526
527 // Finalize PHI nodes.
528 for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
529 PHINode *PN = ShadowPHINodes[i];
530 PHINode *PNS = cast<PHINode>(getShadow(PN));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000531 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000532 size_t NumValues = PN->getNumIncomingValues();
533 for (size_t v = 0; v < NumValues; v++) {
534 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
535 if (PNO)
536 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
537 }
538 }
539
540 VAHelper->finalizeInstrumentation();
541
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000542 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000543 // This may add new checks to be inserted later.
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000544 materializeStores();
545
546 // Insert shadow value checks.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000547 materializeChecks();
548
549 return true;
550 }
551
552 /// \brief Compute the shadow type that corresponds to a given Value.
553 Type *getShadowTy(Value *V) {
554 return getShadowTy(V->getType());
555 }
556
557 /// \brief Compute the shadow type that corresponds to a given Type.
558 Type *getShadowTy(Type *OrigTy) {
559 if (!OrigTy->isSized()) {
560 return 0;
561 }
562 // For integer type, shadow is the same as the original type.
563 // This may return weird-sized types like i1.
564 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
565 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000566 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
567 uint32_t EltSize = MS.TD->getTypeStoreSizeInBits(VT->getElementType());
568 return VectorType::get(IntegerType::get(*MS.C, EltSize),
569 VT->getNumElements());
570 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000571 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
572 SmallVector<Type*, 4> Elements;
573 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
574 Elements.push_back(getShadowTy(ST->getElementType(i)));
575 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
576 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
577 return Res;
578 }
579 uint32_t TypeSize = MS.TD->getTypeStoreSizeInBits(OrigTy);
580 return IntegerType::get(*MS.C, TypeSize);
581 }
582
583 /// \brief Flatten a vector type.
584 Type *getShadowTyNoVec(Type *ty) {
585 if (VectorType *vt = dyn_cast<VectorType>(ty))
586 return IntegerType::get(*MS.C, vt->getBitWidth());
587 return ty;
588 }
589
590 /// \brief Convert a shadow value to it's flattened variant.
591 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
592 Type *Ty = V->getType();
593 Type *NoVecTy = getShadowTyNoVec(Ty);
594 if (Ty == NoVecTy) return V;
595 return IRB.CreateBitCast(V, NoVecTy);
596 }
597
598 /// \brief Compute the shadow address that corresponds to a given application
599 /// address.
600 ///
601 /// Shadow = Addr & ~ShadowMask.
602 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
603 IRBuilder<> &IRB) {
604 Value *ShadowLong =
605 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
606 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
607 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
608 }
609
610 /// \brief Compute the origin address that corresponds to a given application
611 /// address.
612 ///
613 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000614 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
615 Value *ShadowLong =
616 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000617 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000618 Value *Add =
619 IRB.CreateAdd(ShadowLong,
620 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000621 Value *SecondAnd =
622 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
623 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000624 }
625
626 /// \brief Compute the shadow address for a given function argument.
627 ///
628 /// Shadow = ParamTLS+ArgOffset.
629 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
630 int ArgOffset) {
631 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
632 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
633 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
634 "_msarg");
635 }
636
637 /// \brief Compute the origin address for a given function argument.
638 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
639 int ArgOffset) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000640 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000641 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
642 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
643 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
644 "_msarg_o");
645 }
646
647 /// \brief Compute the shadow address for a retval.
648 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
649 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
650 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
651 "_msret");
652 }
653
654 /// \brief Compute the origin address for a retval.
655 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
656 // We keep a single origin for the entire retval. Might be too optimistic.
657 return MS.RetvalOriginTLS;
658 }
659
660 /// \brief Set SV to be the shadow value for V.
661 void setShadow(Value *V, Value *SV) {
662 assert(!ShadowMap.count(V) && "Values may only have one shadow");
663 ShadowMap[V] = SV;
664 }
665
666 /// \brief Set Origin to be the origin value for V.
667 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000668 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000669 assert(!OriginMap.count(V) && "Values may only have one origin");
670 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
671 OriginMap[V] = Origin;
672 }
673
674 /// \brief Create a clean shadow value for a given value.
675 ///
676 /// Clean shadow (all zeroes) means all bits of the value are defined
677 /// (initialized).
678 Value *getCleanShadow(Value *V) {
679 Type *ShadowTy = getShadowTy(V);
680 if (!ShadowTy)
681 return 0;
682 return Constant::getNullValue(ShadowTy);
683 }
684
685 /// \brief Create a dirty shadow of a given shadow type.
686 Constant *getPoisonedShadow(Type *ShadowTy) {
687 assert(ShadowTy);
688 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
689 return Constant::getAllOnesValue(ShadowTy);
690 StructType *ST = cast<StructType>(ShadowTy);
691 SmallVector<Constant *, 4> Vals;
692 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
693 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
694 return ConstantStruct::get(ST, Vals);
695 }
696
697 /// \brief Create a clean (zero) origin.
698 Value *getCleanOrigin() {
699 return Constant::getNullValue(MS.OriginTy);
700 }
701
702 /// \brief Get the shadow value for a given Value.
703 ///
704 /// This function either returns the value set earlier with setShadow,
705 /// or extracts if from ParamTLS (for function arguments).
706 Value *getShadow(Value *V) {
707 if (Instruction *I = dyn_cast<Instruction>(V)) {
708 // For instructions the shadow is already stored in the map.
709 Value *Shadow = ShadowMap[V];
710 if (!Shadow) {
711 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000712 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000713 assert(Shadow && "No shadow for a value");
714 }
715 return Shadow;
716 }
717 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
718 Value *AllOnes = getPoisonedShadow(getShadowTy(V));
719 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000720 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000721 return AllOnes;
722 }
723 if (Argument *A = dyn_cast<Argument>(V)) {
724 // For arguments we compute the shadow on demand and store it in the map.
725 Value **ShadowPtr = &ShadowMap[V];
726 if (*ShadowPtr)
727 return *ShadowPtr;
728 Function *F = A->getParent();
729 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
730 unsigned ArgOffset = 0;
731 for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
732 AI != AE; ++AI) {
733 if (!AI->getType()->isSized()) {
734 DEBUG(dbgs() << "Arg is not sized\n");
735 continue;
736 }
737 unsigned Size = AI->hasByValAttr()
738 ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
739 : MS.TD->getTypeAllocSize(AI->getType());
740 if (A == AI) {
741 Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
742 if (AI->hasByValAttr()) {
743 // ByVal pointer itself has clean shadow. We copy the actual
744 // argument shadow to the underlying memory.
745 Value *Cpy = EntryIRB.CreateMemCpy(
746 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
747 Base, Size, AI->getParamAlignment());
748 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000749 (void)Cpy;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000750 *ShadowPtr = getCleanShadow(V);
751 } else {
752 *ShadowPtr = EntryIRB.CreateLoad(Base);
753 }
754 DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
755 **ShadowPtr << "\n");
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000756 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000757 Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
758 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
759 }
760 }
761 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
762 }
763 assert(*ShadowPtr && "Could not find shadow for an argument");
764 return *ShadowPtr;
765 }
766 // For everything else the shadow is zero.
767 return getCleanShadow(V);
768 }
769
770 /// \brief Get the shadow for i-th argument of the instruction I.
771 Value *getShadow(Instruction *I, int i) {
772 return getShadow(I->getOperand(i));
773 }
774
775 /// \brief Get the origin for a value.
776 Value *getOrigin(Value *V) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000777 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000778 if (isa<Instruction>(V) || isa<Argument>(V)) {
779 Value *Origin = OriginMap[V];
780 if (!Origin) {
781 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
782 Origin = getCleanOrigin();
783 }
784 return Origin;
785 }
786 return getCleanOrigin();
787 }
788
789 /// \brief Get the origin for i-th argument of the instruction I.
790 Value *getOrigin(Instruction *I, int i) {
791 return getOrigin(I->getOperand(i));
792 }
793
794 /// \brief Remember the place where a shadow check should be inserted.
795 ///
796 /// This location will be later instrumented with a check that will print a
797 /// UMR warning in runtime if the value is not fully defined.
798 void insertCheck(Value *Val, Instruction *OrigIns) {
799 assert(Val);
800 if (!InsertChecks) return;
801 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
802 if (!Shadow) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000803#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000804 Type *ShadowTy = Shadow->getType();
805 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
806 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000807#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000808 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
809 InstrumentationList.push_back(
810 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
811 }
812
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000813 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000814
815 /// \brief Instrument LoadInst
816 ///
817 /// Loads the corresponding shadow and (optionally) origin.
818 /// Optionally, checks that the load address is fully defined.
819 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000820 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000821 IRBuilder<> IRB(&I);
822 Type *ShadowTy = getShadowTy(&I);
823 Value *Addr = I.getPointerOperand();
824 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
Evgeniy Stepanoveeb8b7c2012-11-29 14:05:53 +0000825 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000826
827 if (ClCheckAccessAddress)
828 insertCheck(I.getPointerOperand(), &I);
829
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000830 if (MS.TrackOrigins)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +0000831 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000832 }
833
834 /// \brief Instrument StoreInst
835 ///
836 /// Stores the corresponding shadow and (optionally) origin.
837 /// Optionally, checks that the store address is fully defined.
838 /// Volatile stores check that the value being stored is fully defined.
839 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000840 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000841 }
842
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +0000843 // Vector manipulation.
844 void visitExtractElementInst(ExtractElementInst &I) {
845 insertCheck(I.getOperand(1), &I);
846 IRBuilder<> IRB(&I);
847 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
848 "_msprop"));
849 setOrigin(&I, getOrigin(&I, 0));
850 }
851
852 void visitInsertElementInst(InsertElementInst &I) {
853 insertCheck(I.getOperand(2), &I);
854 IRBuilder<> IRB(&I);
855 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
856 I.getOperand(2), "_msprop"));
857 setOriginForNaryOp(I);
858 }
859
860 void visitShuffleVectorInst(ShuffleVectorInst &I) {
861 insertCheck(I.getOperand(2), &I);
862 IRBuilder<> IRB(&I);
863 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
864 I.getOperand(2), "_msprop"));
865 setOriginForNaryOp(I);
866 }
867
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000868 // Casts.
869 void visitSExtInst(SExtInst &I) {
870 IRBuilder<> IRB(&I);
871 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
872 setOrigin(&I, getOrigin(&I, 0));
873 }
874
875 void visitZExtInst(ZExtInst &I) {
876 IRBuilder<> IRB(&I);
877 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
878 setOrigin(&I, getOrigin(&I, 0));
879 }
880
881 void visitTruncInst(TruncInst &I) {
882 IRBuilder<> IRB(&I);
883 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
884 setOrigin(&I, getOrigin(&I, 0));
885 }
886
887 void visitBitCastInst(BitCastInst &I) {
888 IRBuilder<> IRB(&I);
889 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
890 setOrigin(&I, getOrigin(&I, 0));
891 }
892
893 void visitPtrToIntInst(PtrToIntInst &I) {
894 IRBuilder<> IRB(&I);
895 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
896 "_msprop_ptrtoint"));
897 setOrigin(&I, getOrigin(&I, 0));
898 }
899
900 void visitIntToPtrInst(IntToPtrInst &I) {
901 IRBuilder<> IRB(&I);
902 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
903 "_msprop_inttoptr"));
904 setOrigin(&I, getOrigin(&I, 0));
905 }
906
907 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
908 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
909 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
910 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
911 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
912 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
913
914 /// \brief Propagate shadow for bitwise AND.
915 ///
916 /// This code is exact, i.e. if, for example, a bit in the left argument
917 /// is defined and 0, then neither the value not definedness of the
918 /// corresponding bit in B don't affect the resulting shadow.
919 void visitAnd(BinaryOperator &I) {
920 IRBuilder<> IRB(&I);
921 // "And" of 0 and a poisoned value results in unpoisoned value.
922 // 1&1 => 1; 0&1 => 0; p&1 => p;
923 // 1&0 => 0; 0&0 => 0; p&0 => 0;
924 // 1&p => p; 0&p => 0; p&p => p;
925 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
926 Value *S1 = getShadow(&I, 0);
927 Value *S2 = getShadow(&I, 1);
928 Value *V1 = I.getOperand(0);
929 Value *V2 = I.getOperand(1);
930 if (V1->getType() != S1->getType()) {
931 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
932 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
933 }
934 Value *S1S2 = IRB.CreateAnd(S1, S2);
935 Value *V1S2 = IRB.CreateAnd(V1, S2);
936 Value *S1V2 = IRB.CreateAnd(S1, V2);
937 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
938 setOriginForNaryOp(I);
939 }
940
941 void visitOr(BinaryOperator &I) {
942 IRBuilder<> IRB(&I);
943 // "Or" of 1 and a poisoned value results in unpoisoned value.
944 // 1|1 => 1; 0|1 => 1; p|1 => 1;
945 // 1|0 => 1; 0|0 => 0; p|0 => p;
946 // 1|p => 1; 0|p => p; p|p => p;
947 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
948 Value *S1 = getShadow(&I, 0);
949 Value *S2 = getShadow(&I, 1);
950 Value *V1 = IRB.CreateNot(I.getOperand(0));
951 Value *V2 = IRB.CreateNot(I.getOperand(1));
952 if (V1->getType() != S1->getType()) {
953 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
954 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
955 }
956 Value *S1S2 = IRB.CreateAnd(S1, S2);
957 Value *V1S2 = IRB.CreateAnd(V1, S2);
958 Value *S1V2 = IRB.CreateAnd(S1, V2);
959 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
960 setOriginForNaryOp(I);
961 }
962
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +0000963 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000964 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +0000965 /// This class implements the general case of shadow propagation, used in all
966 /// cases where we don't know and/or don't care about what the operation
967 /// actually does. It converts all input shadow values to a common type
968 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000969 ///
970 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
971 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +0000972 ///
973 /// This class also implements the general case of origin propagation. For a
974 /// Nary operation, result origin is set to the origin of an argument that is
975 /// not entirely initialized. If there is more than one such arguments, the
976 /// rightmost of them is picked. It does not matter which one is picked if all
977 /// arguments are initialized.
978 template <bool CombineShadow>
979 class Combiner {
980 Value *Shadow;
981 Value *Origin;
982 IRBuilder<> &IRB;
983 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000984
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +0000985 public:
986 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
987 Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
988
989 /// \brief Add a pair of shadow and origin values to the mix.
990 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
991 if (CombineShadow) {
992 assert(OpShadow);
993 if (!Shadow)
994 Shadow = OpShadow;
995 else {
996 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
997 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
998 }
999 }
1000
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001001 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001002 assert(OpOrigin);
1003 if (!Origin) {
1004 Origin = OpOrigin;
1005 } else {
1006 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1007 Value *Cond = IRB.CreateICmpNE(FlatShadow,
1008 MSV->getCleanShadow(FlatShadow));
1009 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1010 }
1011 }
1012 return *this;
1013 }
1014
1015 /// \brief Add an application value to the mix.
1016 Combiner &Add(Value *V) {
1017 Value *OpShadow = MSV->getShadow(V);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001018 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001019 return Add(OpShadow, OpOrigin);
1020 }
1021
1022 /// \brief Set the current combined values as the given instruction's shadow
1023 /// and origin.
1024 void Done(Instruction *I) {
1025 if (CombineShadow) {
1026 assert(Shadow);
1027 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1028 MSV->setShadow(I, Shadow);
1029 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001030 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001031 assert(Origin);
1032 MSV->setOrigin(I, Origin);
1033 }
1034 }
1035 };
1036
1037 typedef Combiner<true> ShadowAndOriginCombiner;
1038 typedef Combiner<false> OriginCombiner;
1039
1040 /// \brief Propagate origin for arbitrary operation.
1041 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001042 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001043 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001044 OriginCombiner OC(this, IRB);
1045 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1046 OC.Add(OI->get());
1047 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001048 }
1049
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001050 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001051 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1052 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001053 return Ty->isVectorTy() ?
1054 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1055 Ty->getPrimitiveSizeInBits();
1056 }
1057
1058 /// \brief Cast between two shadow types, extending or truncating as
1059 /// necessary.
1060 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy) {
1061 Type *srcTy = V->getType();
1062 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
1063 return IRB.CreateIntCast(V, dstTy, false);
1064 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1065 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
1066 return IRB.CreateIntCast(V, dstTy, false);
1067 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1068 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1069 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1070 Value *V2 =
1071 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), false);
1072 return IRB.CreateBitCast(V2, dstTy);
1073 // TODO: handle struct types.
1074 }
1075
1076 /// \brief Propagate shadow for arbitrary operation.
1077 void handleShadowOr(Instruction &I) {
1078 IRBuilder<> IRB(&I);
1079 ShadowAndOriginCombiner SC(this, IRB);
1080 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1081 SC.Add(OI->get());
1082 SC.Done(&I);
1083 }
1084
1085 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1086 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1087 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1088 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1089 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1090 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1091 void visitMul(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001092
1093 void handleDiv(Instruction &I) {
1094 IRBuilder<> IRB(&I);
1095 // Strict on the second argument.
1096 insertCheck(I.getOperand(1), &I);
1097 setShadow(&I, getShadow(&I, 0));
1098 setOrigin(&I, getOrigin(&I, 0));
1099 }
1100
1101 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1102 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1103 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1104 void visitURem(BinaryOperator &I) { handleDiv(I); }
1105 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1106 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1107
1108 /// \brief Instrument == and != comparisons.
1109 ///
1110 /// Sometimes the comparison result is known even if some of the bits of the
1111 /// arguments are not.
1112 void handleEqualityComparison(ICmpInst &I) {
1113 IRBuilder<> IRB(&I);
1114 Value *A = I.getOperand(0);
1115 Value *B = I.getOperand(1);
1116 Value *Sa = getShadow(A);
1117 Value *Sb = getShadow(B);
1118 if (A->getType()->isPointerTy())
1119 A = IRB.CreatePointerCast(A, MS.IntptrTy);
1120 if (B->getType()->isPointerTy())
1121 B = IRB.CreatePointerCast(B, MS.IntptrTy);
1122 // A == B <==> (C = A^B) == 0
1123 // A != B <==> (C = A^B) != 0
1124 // Sc = Sa | Sb
1125 Value *C = IRB.CreateXor(A, B);
1126 Value *Sc = IRB.CreateOr(Sa, Sb);
1127 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1128 // Result is defined if one of the following is true
1129 // * there is a defined 1 bit in C
1130 // * C is fully defined
1131 // Si = !(C & ~Sc) && Sc
1132 Value *Zero = Constant::getNullValue(Sc->getType());
1133 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1134 Value *Si =
1135 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1136 IRB.CreateICmpEQ(
1137 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1138 Si->setName("_msprop_icmp");
1139 setShadow(&I, Si);
1140 setOriginForNaryOp(I);
1141 }
1142
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001143 /// \brief Instrument signed relational comparisons.
1144 ///
1145 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1146 /// propagating the highest bit of the shadow. Everything else is delegated
1147 /// to handleShadowOr().
1148 void handleSignedRelationalComparison(ICmpInst &I) {
1149 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1150 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1151 Value* op = NULL;
1152 CmpInst::Predicate pre = I.getPredicate();
1153 if (constOp0 && constOp0->isNullValue() &&
1154 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1155 op = I.getOperand(1);
1156 } else if (constOp1 && constOp1->isNullValue() &&
1157 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1158 op = I.getOperand(0);
1159 }
1160 if (op) {
1161 IRBuilder<> IRB(&I);
1162 Value* Shadow =
1163 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1164 setShadow(&I, Shadow);
1165 setOrigin(&I, getOrigin(op));
1166 } else {
1167 handleShadowOr(I);
1168 }
1169 }
1170
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001171 void visitICmpInst(ICmpInst &I) {
1172 if (ClHandleICmp && I.isEquality())
1173 handleEqualityComparison(I);
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001174 else if (ClHandleICmp && I.isSigned() && I.isRelational())
1175 handleSignedRelationalComparison(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001176 else
1177 handleShadowOr(I);
1178 }
1179
1180 void visitFCmpInst(FCmpInst &I) {
1181 handleShadowOr(I);
1182 }
1183
1184 void handleShift(BinaryOperator &I) {
1185 IRBuilder<> IRB(&I);
1186 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1187 // Otherwise perform the same shift on S1.
1188 Value *S1 = getShadow(&I, 0);
1189 Value *S2 = getShadow(&I, 1);
1190 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1191 S2->getType());
1192 Value *V2 = I.getOperand(1);
1193 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1194 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1195 setOriginForNaryOp(I);
1196 }
1197
1198 void visitShl(BinaryOperator &I) { handleShift(I); }
1199 void visitAShr(BinaryOperator &I) { handleShift(I); }
1200 void visitLShr(BinaryOperator &I) { handleShift(I); }
1201
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001202 /// \brief Instrument llvm.memmove
1203 ///
1204 /// At this point we don't know if llvm.memmove will be inlined or not.
1205 /// If we don't instrument it and it gets inlined,
1206 /// our interceptor will not kick in and we will lose the memmove.
1207 /// If we instrument the call here, but it does not get inlined,
1208 /// we will memove the shadow twice: which is bad in case
1209 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1210 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001211 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001212 void visitMemMoveInst(MemMoveInst &I) {
1213 IRBuilder<> IRB(&I);
1214 IRB.CreateCall3(
1215 MS.MemmoveFn,
1216 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1217 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1218 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1219 I.eraseFromParent();
1220 }
1221
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001222 // Similar to memmove: avoid copying shadow twice.
1223 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1224 // FIXME: consider doing manual inline for small constant sizes and proper
1225 // alignment.
1226 void visitMemCpyInst(MemCpyInst &I) {
1227 IRBuilder<> IRB(&I);
1228 IRB.CreateCall3(
1229 MS.MemcpyFn,
1230 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1231 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1232 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1233 I.eraseFromParent();
1234 }
1235
1236 // Same as memcpy.
1237 void visitMemSetInst(MemSetInst &I) {
1238 IRBuilder<> IRB(&I);
1239 IRB.CreateCall3(
1240 MS.MemsetFn,
1241 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1242 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1243 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1244 I.eraseFromParent();
1245 }
1246
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001247 void visitVAStartInst(VAStartInst &I) {
1248 VAHelper->visitVAStartInst(I);
1249 }
1250
1251 void visitVACopyInst(VACopyInst &I) {
1252 VAHelper->visitVACopyInst(I);
1253 }
1254
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001255 enum IntrinsicKind {
1256 IK_DoesNotAccessMemory,
1257 IK_OnlyReadsMemory,
1258 IK_WritesMemory
1259 };
1260
1261 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1262 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1263 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1264 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1265 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1266 const int UnknownModRefBehavior = IK_WritesMemory;
1267#define GET_INTRINSIC_MODREF_BEHAVIOR
1268#define ModRefBehavior IntrinsicKind
1269#include "llvm/Intrinsics.gen"
1270#undef ModRefBehavior
1271#undef GET_INTRINSIC_MODREF_BEHAVIOR
1272 }
1273
1274 /// \brief Handle vector store-like intrinsics.
1275 ///
1276 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1277 /// has 1 pointer argument and 1 vector argument, returns void.
1278 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1279 IRBuilder<> IRB(&I);
1280 Value* Addr = I.getArgOperand(0);
1281 Value *Shadow = getShadow(&I, 1);
1282 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1283
1284 // We don't know the pointer alignment (could be unaligned SSE store!).
1285 // Have to assume to worst case.
1286 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1287
1288 if (ClCheckAccessAddress)
1289 insertCheck(Addr, &I);
1290
1291 // FIXME: use ClStoreCleanOrigin
1292 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001293 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001294 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1295 return true;
1296 }
1297
1298 /// \brief Handle vector load-like intrinsics.
1299 ///
1300 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1301 /// has 1 pointer argument, returns a vector.
1302 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1303 IRBuilder<> IRB(&I);
1304 Value *Addr = I.getArgOperand(0);
1305
1306 Type *ShadowTy = getShadowTy(&I);
1307 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1308 // We don't know the pointer alignment (could be unaligned SSE load!).
1309 // Have to assume to worst case.
1310 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1311
1312 if (ClCheckAccessAddress)
1313 insertCheck(Addr, &I);
1314
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001315 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001316 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1317 return true;
1318 }
1319
1320 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1321 ///
1322 /// Instrument intrinsics with any number of arguments of the same type,
1323 /// equal to the return type. The type should be simple (no aggregates or
1324 /// pointers; vectors are fine).
1325 /// Caller guarantees that this intrinsic does not access memory.
1326 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1327 Type *RetTy = I.getType();
1328 if (!(RetTy->isIntOrIntVectorTy() ||
1329 RetTy->isFPOrFPVectorTy() ||
1330 RetTy->isX86_MMXTy()))
1331 return false;
1332
1333 unsigned NumArgOperands = I.getNumArgOperands();
1334
1335 for (unsigned i = 0; i < NumArgOperands; ++i) {
1336 Type *Ty = I.getArgOperand(i)->getType();
1337 if (Ty != RetTy)
1338 return false;
1339 }
1340
1341 IRBuilder<> IRB(&I);
1342 ShadowAndOriginCombiner SC(this, IRB);
1343 for (unsigned i = 0; i < NumArgOperands; ++i)
1344 SC.Add(I.getArgOperand(i));
1345 SC.Done(&I);
1346
1347 return true;
1348 }
1349
1350 /// \brief Heuristically instrument unknown intrinsics.
1351 ///
1352 /// The main purpose of this code is to do something reasonable with all
1353 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1354 /// We recognize several classes of intrinsics by their argument types and
1355 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1356 /// sure that we know what the intrinsic does.
1357 ///
1358 /// We special-case intrinsics where this approach fails. See llvm.bswap
1359 /// handling as an example of that.
1360 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1361 unsigned NumArgOperands = I.getNumArgOperands();
1362 if (NumArgOperands == 0)
1363 return false;
1364
1365 Intrinsic::ID iid = I.getIntrinsicID();
1366 IntrinsicKind IK = getIntrinsicKind(iid);
1367 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1368 bool WritesMemory = IK == IK_WritesMemory;
1369 assert(!(OnlyReadsMemory && WritesMemory));
1370
1371 if (NumArgOperands == 2 &&
1372 I.getArgOperand(0)->getType()->isPointerTy() &&
1373 I.getArgOperand(1)->getType()->isVectorTy() &&
1374 I.getType()->isVoidTy() &&
1375 WritesMemory) {
1376 // This looks like a vector store.
1377 return handleVectorStoreIntrinsic(I);
1378 }
1379
1380 if (NumArgOperands == 1 &&
1381 I.getArgOperand(0)->getType()->isPointerTy() &&
1382 I.getType()->isVectorTy() &&
1383 OnlyReadsMemory) {
1384 // This looks like a vector load.
1385 return handleVectorLoadIntrinsic(I);
1386 }
1387
1388 if (!OnlyReadsMemory && !WritesMemory)
1389 if (maybeHandleSimpleNomemIntrinsic(I))
1390 return true;
1391
1392 // FIXME: detect and handle SSE maskstore/maskload
1393 return false;
1394 }
1395
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001396 void handleBswap(IntrinsicInst &I) {
1397 IRBuilder<> IRB(&I);
1398 Value *Op = I.getArgOperand(0);
1399 Type *OpType = Op->getType();
1400 Function *BswapFunc = Intrinsic::getDeclaration(
1401 F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1402 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1403 setOrigin(&I, getOrigin(Op));
1404 }
1405
1406 void visitIntrinsicInst(IntrinsicInst &I) {
1407 switch (I.getIntrinsicID()) {
1408 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001409 handleBswap(I);
1410 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001411 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001412 if (!handleUnknownIntrinsic(I))
1413 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00001414 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001415 }
1416 }
1417
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001418 void visitCallSite(CallSite CS) {
1419 Instruction &I = *CS.getInstruction();
1420 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
1421 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00001422 CallInst *Call = cast<CallInst>(&I);
1423
1424 // For inline asm, do the usual thing: check argument shadow and mark all
1425 // outputs as clean. Note that any side effects of the inline asm that are
1426 // not immediately visible in its constraints are not handled.
1427 if (Call->isInlineAsm()) {
1428 visitInstruction(I);
1429 return;
1430 }
1431
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001432 // Allow only tail calls with the same types, otherwise
1433 // we may have a false positive: shadow for a non-void RetVal
1434 // will get propagated to a void RetVal.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001435 if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
1436 Call->setTailCall(false);
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001437
1438 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00001439
1440 // We are going to insert code that relies on the fact that the callee
1441 // will become a non-readonly function after it is instrumented by us. To
1442 // prevent this code from being optimized out, mark that function
1443 // non-readonly in advance.
1444 if (Function *Func = Call->getCalledFunction()) {
1445 // Clear out readonly/readnone attributes.
1446 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001447 B.addAttribute(Attribute::ReadOnly)
1448 .addAttribute(Attribute::ReadNone);
Bill Wendlinge94d8432012-12-07 23:16:57 +00001449 Func->removeAttribute(AttributeSet::FunctionIndex,
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001450 Attribute::get(Func->getContext(), B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00001451 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001452 }
1453 IRBuilder<> IRB(&I);
1454 unsigned ArgOffset = 0;
1455 DEBUG(dbgs() << " CallSite: " << I << "\n");
1456 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
1457 ArgIt != End; ++ArgIt) {
1458 Value *A = *ArgIt;
1459 unsigned i = ArgIt - CS.arg_begin();
1460 if (!A->getType()->isSized()) {
1461 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
1462 continue;
1463 }
1464 unsigned Size = 0;
1465 Value *Store = 0;
1466 // Compute the Shadow for arg even if it is ByVal, because
1467 // in that case getShadow() will copy the actual arg shadow to
1468 // __msan_param_tls.
1469 Value *ArgShadow = getShadow(A);
1470 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
1471 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
1472 " Shadow: " << *ArgShadow << "\n");
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001473 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001474 assert(A->getType()->isPointerTy() &&
1475 "ByVal argument is not a pointer!");
1476 Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
1477 unsigned Alignment = CS.getParamAlignment(i + 1);
1478 Store = IRB.CreateMemCpy(ArgShadowBase,
1479 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
1480 Size, Alignment);
1481 } else {
1482 Size = MS.TD->getTypeAllocSize(A->getType());
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001483 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
1484 kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001485 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001486 if (MS.TrackOrigins)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00001487 IRB.CreateStore(getOrigin(A),
1488 getOriginPtrForArgument(A, IRB, ArgOffset));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001489 assert(Size != 0 && Store != 0);
1490 DEBUG(dbgs() << " Param:" << *Store << "\n");
1491 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
1492 }
1493 DEBUG(dbgs() << " done with call args\n");
1494
1495 FunctionType *FT =
1496 cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0));
1497 if (FT->isVarArg()) {
1498 VAHelper->visitCallSite(CS, IRB);
1499 }
1500
1501 // Now, get the shadow for the RetVal.
1502 if (!I.getType()->isSized()) return;
1503 IRBuilder<> IRBBefore(&I);
1504 // Untill we have full dynamic coverage, make sure the retval shadow is 0.
1505 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001506 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001507 Instruction *NextInsn = 0;
1508 if (CS.isCall()) {
1509 NextInsn = I.getNextNode();
1510 } else {
1511 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
1512 if (!NormalDest->getSinglePredecessor()) {
1513 // FIXME: this case is tricky, so we are just conservative here.
1514 // Perhaps we need to split the edge between this BB and NormalDest,
1515 // but a naive attempt to use SplitEdge leads to a crash.
1516 setShadow(&I, getCleanShadow(&I));
1517 setOrigin(&I, getCleanOrigin());
1518 return;
1519 }
1520 NextInsn = NormalDest->getFirstInsertionPt();
1521 assert(NextInsn &&
1522 "Could not find insertion point for retval shadow load");
1523 }
1524 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001525 Value *RetvalShadow =
1526 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
1527 kShadowTLSAlignment, "_msret");
1528 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001529 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001530 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
1531 }
1532
1533 void visitReturnInst(ReturnInst &I) {
1534 IRBuilder<> IRB(&I);
1535 if (Value *RetVal = I.getReturnValue()) {
1536 // Set the shadow for the RetVal.
1537 Value *Shadow = getShadow(RetVal);
1538 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
1539 DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001540 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001541 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001542 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
1543 }
1544 }
1545
1546 void visitPHINode(PHINode &I) {
1547 IRBuilder<> IRB(&I);
1548 ShadowPHINodes.push_back(&I);
1549 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
1550 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001551 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001552 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
1553 "_msphi_o"));
1554 }
1555
1556 void visitAllocaInst(AllocaInst &I) {
1557 setShadow(&I, getCleanShadow(&I));
1558 if (!ClPoisonStack) return;
1559 IRBuilder<> IRB(I.getNextNode());
1560 uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
1561 if (ClPoisonStackWithCall) {
1562 IRB.CreateCall2(MS.MsanPoisonStackFn,
1563 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
1564 ConstantInt::get(MS.IntptrTy, Size));
1565 } else {
1566 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
1567 IRB.CreateMemSet(ShadowBase, IRB.getInt8(ClPoisonStackPattern),
1568 Size, I.getAlignment());
1569 }
1570
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001571 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001572 setOrigin(&I, getCleanOrigin());
1573 SmallString<2048> StackDescriptionStorage;
1574 raw_svector_ostream StackDescription(StackDescriptionStorage);
1575 // We create a string with a description of the stack allocation and
1576 // pass it into __msan_set_alloca_origin.
1577 // It will be printed by the run-time if stack-originated UMR is found.
1578 // The first 4 bytes of the string are set to '----' and will be replaced
1579 // by __msan_va_arg_overflow_size_tls at the first call.
1580 StackDescription << "----" << I.getName() << "@" << F.getName();
1581 Value *Descr =
1582 createPrivateNonConstGlobalForString(*F.getParent(),
1583 StackDescription.str());
1584 IRB.CreateCall3(MS.MsanSetAllocaOriginFn,
1585 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
1586 ConstantInt::get(MS.IntptrTy, Size),
1587 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()));
1588 }
1589 }
1590
1591 void visitSelectInst(SelectInst& I) {
1592 IRBuilder<> IRB(&I);
1593 setShadow(&I, IRB.CreateSelect(I.getCondition(),
1594 getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
1595 "_msprop"));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00001596 if (MS.TrackOrigins) {
1597 // Origins are always i32, so any vector conditions must be flattened.
1598 // FIXME: consider tracking vector origins for app vectors?
1599 Value *Cond = I.getCondition();
1600 if (Cond->getType()->isVectorTy()) {
1601 Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
1602 Cond = IRB.CreateICmpNE(ConvertedShadow,
1603 getCleanShadow(ConvertedShadow), "_mso_select");
1604 }
1605 setOrigin(&I, IRB.CreateSelect(Cond,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001606 getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00001607 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001608 }
1609
1610 void visitLandingPadInst(LandingPadInst &I) {
1611 // Do nothing.
1612 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
1613 setShadow(&I, getCleanShadow(&I));
1614 setOrigin(&I, getCleanOrigin());
1615 }
1616
1617 void visitGetElementPtrInst(GetElementPtrInst &I) {
1618 handleShadowOr(I);
1619 }
1620
1621 void visitExtractValueInst(ExtractValueInst &I) {
1622 IRBuilder<> IRB(&I);
1623 Value *Agg = I.getAggregateOperand();
1624 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
1625 Value *AggShadow = getShadow(Agg);
1626 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
1627 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
1628 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
1629 setShadow(&I, ResShadow);
1630 setOrigin(&I, getCleanOrigin());
1631 }
1632
1633 void visitInsertValueInst(InsertValueInst &I) {
1634 IRBuilder<> IRB(&I);
1635 DEBUG(dbgs() << "InsertValue: " << I << "\n");
1636 Value *AggShadow = getShadow(I.getAggregateOperand());
1637 Value *InsShadow = getShadow(I.getInsertedValueOperand());
1638 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
1639 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
1640 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
1641 DEBUG(dbgs() << " Res: " << *Res << "\n");
1642 setShadow(&I, Res);
1643 setOrigin(&I, getCleanOrigin());
1644 }
1645
1646 void dumpInst(Instruction &I) {
1647 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1648 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
1649 } else {
1650 errs() << "ZZZ " << I.getOpcodeName() << "\n";
1651 }
1652 errs() << "QQQ " << I << "\n";
1653 }
1654
1655 void visitResumeInst(ResumeInst &I) {
1656 DEBUG(dbgs() << "Resume: " << I << "\n");
1657 // Nothing to do here.
1658 }
1659
1660 void visitInstruction(Instruction &I) {
1661 // Everything else: stop propagating and check for poisoned shadow.
1662 if (ClDumpStrictInstructions)
1663 dumpInst(I);
1664 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
1665 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
1666 insertCheck(I.getOperand(i), &I);
1667 setShadow(&I, getCleanShadow(&I));
1668 setOrigin(&I, getCleanOrigin());
1669 }
1670};
1671
1672/// \brief AMD64-specific implementation of VarArgHelper.
1673struct VarArgAMD64Helper : public VarArgHelper {
1674 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
1675 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001676 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001677 static const unsigned AMD64FpEndOffset = 176;
1678
1679 Function &F;
1680 MemorySanitizer &MS;
1681 MemorySanitizerVisitor &MSV;
1682 Value *VAArgTLSCopy;
1683 Value *VAArgOverflowSize;
1684
1685 SmallVector<CallInst*, 16> VAStartInstrumentationList;
1686
1687 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
1688 MemorySanitizerVisitor &MSV)
1689 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
1690
1691 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
1692
1693 ArgKind classifyArgument(Value* arg) {
1694 // A very rough approximation of X86_64 argument classification rules.
1695 Type *T = arg->getType();
1696 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
1697 return AK_FloatingPoint;
1698 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
1699 return AK_GeneralPurpose;
1700 if (T->isPointerTy())
1701 return AK_GeneralPurpose;
1702 return AK_Memory;
1703 }
1704
1705 // For VarArg functions, store the argument shadow in an ABI-specific format
1706 // that corresponds to va_list layout.
1707 // We do this because Clang lowers va_arg in the frontend, and this pass
1708 // only sees the low level code that deals with va_list internals.
1709 // A much easier alternative (provided that Clang emits va_arg instructions)
1710 // would have been to associate each live instance of va_list with a copy of
1711 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
1712 // order.
1713 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
1714 unsigned GpOffset = 0;
1715 unsigned FpOffset = AMD64GpEndOffset;
1716 unsigned OverflowOffset = AMD64FpEndOffset;
1717 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
1718 ArgIt != End; ++ArgIt) {
1719 Value *A = *ArgIt;
1720 ArgKind AK = classifyArgument(A);
1721 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
1722 AK = AK_Memory;
1723 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
1724 AK = AK_Memory;
1725 Value *Base;
1726 switch (AK) {
1727 case AK_GeneralPurpose:
1728 Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
1729 GpOffset += 8;
1730 break;
1731 case AK_FloatingPoint:
1732 Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
1733 FpOffset += 16;
1734 break;
1735 case AK_Memory:
1736 uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
1737 Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
1738 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
1739 }
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001740 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001741 }
1742 Constant *OverflowSize =
1743 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
1744 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
1745 }
1746
1747 /// \brief Compute the shadow address for a given va_arg.
1748 Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
1749 int ArgOffset) {
1750 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
1751 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1752 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
1753 "_msarg");
1754 }
1755
1756 void visitVAStartInst(VAStartInst &I) {
1757 IRBuilder<> IRB(&I);
1758 VAStartInstrumentationList.push_back(&I);
1759 Value *VAListTag = I.getArgOperand(0);
1760 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
1761
1762 // Unpoison the whole __va_list_tag.
1763 // FIXME: magic ABI constants.
1764 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
1765 /* size */24, /* alignment */16, false);
1766 }
1767
1768 void visitVACopyInst(VACopyInst &I) {
1769 IRBuilder<> IRB(&I);
1770 Value *VAListTag = I.getArgOperand(0);
1771 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
1772
1773 // Unpoison the whole __va_list_tag.
1774 // FIXME: magic ABI constants.
1775 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
1776 /* size */ 24, /* alignment */ 16, false);
1777 }
1778
1779 void finalizeInstrumentation() {
1780 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
1781 "finalizeInstrumentation called twice");
1782 if (!VAStartInstrumentationList.empty()) {
1783 // If there is a va_start in this function, make a backup copy of
1784 // va_arg_tls somewhere in the function entry block.
1785 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
1786 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
1787 Value *CopySize =
1788 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
1789 VAArgOverflowSize);
1790 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
1791 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
1792 }
1793
1794 // Instrument va_start.
1795 // Copy va_list shadow from the backup copy of the TLS contents.
1796 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
1797 CallInst *OrigInst = VAStartInstrumentationList[i];
1798 IRBuilder<> IRB(OrigInst->getNextNode());
1799 Value *VAListTag = OrigInst->getArgOperand(0);
1800
1801 Value *RegSaveAreaPtrPtr =
1802 IRB.CreateIntToPtr(
1803 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
1804 ConstantInt::get(MS.IntptrTy, 16)),
1805 Type::getInt64PtrTy(*MS.C));
1806 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
1807 Value *RegSaveAreaShadowPtr =
1808 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
1809 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
1810 AMD64FpEndOffset, 16);
1811
1812 Value *OverflowArgAreaPtrPtr =
1813 IRB.CreateIntToPtr(
1814 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
1815 ConstantInt::get(MS.IntptrTy, 8)),
1816 Type::getInt64PtrTy(*MS.C));
1817 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
1818 Value *OverflowArgAreaShadowPtr =
1819 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
1820 Value *SrcPtr =
1821 getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset);
1822 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
1823 }
1824 }
1825};
1826
1827VarArgHelper* CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1828 MemorySanitizerVisitor &Visitor) {
1829 return new VarArgAMD64Helper(Func, Msan, Visitor);
1830}
1831
1832} // namespace
1833
1834bool MemorySanitizer::runOnFunction(Function &F) {
1835 MemorySanitizerVisitor Visitor(F, *this);
1836
1837 // Clear out readonly/readnone attributes.
1838 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001839 B.addAttribute(Attribute::ReadOnly)
1840 .addAttribute(Attribute::ReadNone);
Bill Wendlinge94d8432012-12-07 23:16:57 +00001841 F.removeAttribute(AttributeSet::FunctionIndex,
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001842 Attribute::get(F.getContext(), B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001843
1844 return Visitor.runOnFunction();
1845}