blob: 77126344c6005622b4c04e26546203befe940a3d [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00008//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00009//
10// This file implements the MemorySSA class.
11//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000012//===----------------------------------------------------------------------===//
13
Daniel Berlin554dcd82017-04-11 20:06:36 +000014#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000015#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000016#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000017#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000019#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000022#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000024#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000028#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/MemoryLocation.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000030#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000031#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/CallSite.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000033#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000034#include "llvm/IR/Function.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000037#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000038#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000039#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000040#include "llvm/IR/PassManager.h"
41#include "llvm/IR/Use.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/AtomicOrdering.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000047#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000048#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000049#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000050#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000051#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000052#include <cassert>
53#include <iterator>
54#include <memory>
55#include <utility>
56
57using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000058
59#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000060
Geoff Berryefb0dd12016-06-14 21:19:40 +000061INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000062 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000063INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
64INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000065INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
66 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000067
Chad Rosier232e29e2016-07-06 21:20:47 +000068INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
69 "Memory SSA Printer", false, false)
70INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
71INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
72 "Memory SSA Printer", false, false)
73
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000074static cl::opt<unsigned> MaxCheckLimit(
75 "memssa-check-limit", cl::Hidden, cl::init(100),
76 cl::desc("The maximum number of stores/phis MemorySSA"
77 "will consider trying to walk past (default = 100)"));
78
Chad Rosier232e29e2016-07-06 21:20:47 +000079static cl::opt<bool>
80 VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
81 cl::desc("Verify MemorySSA in legacy printer pass."));
82
George Burgess IVe1100f52016-02-02 22:46:49 +000083namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000084
George Burgess IVe1100f52016-02-02 22:46:49 +000085/// \brief An assembly annotator class to print Memory SSA information in
86/// comments.
87class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
88 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000089
George Burgess IVe1100f52016-02-02 22:46:49 +000090 const MemorySSA *MSSA;
91
92public:
93 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
94
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000095 void emitBasicBlockStartAnnot(const BasicBlock *BB,
96 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +000097 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
98 OS << "; " << *MA << "\n";
99 }
100
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000101 void emitInstructionAnnot(const Instruction *I,
102 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000103 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
104 OS << "; " << *MA << "\n";
105 }
106};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000107
108} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000109
George Burgess IV5f308972016-07-19 01:29:15 +0000110namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000111
Daniel Berlindff31de2016-08-02 21:57:52 +0000112/// Our current alias analysis API differentiates heavily between calls and
113/// non-calls, and functions called on one usually assert on the other.
114/// This class encapsulates the distinction to simplify other code that wants
115/// "Memory affecting instructions and related data" to use as a key.
116/// For example, this class is used as a densemap key in the use optimizer.
117class MemoryLocOrCall {
118public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000119 bool IsCall = false;
120
121 MemoryLocOrCall() = default;
Daniel Berlindff31de2016-08-02 21:57:52 +0000122 MemoryLocOrCall(MemoryUseOrDef *MUD)
123 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000124 MemoryLocOrCall(const MemoryUseOrDef *MUD)
125 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000126
127 MemoryLocOrCall(Instruction *Inst) {
128 if (ImmutableCallSite(Inst)) {
129 IsCall = true;
130 CS = ImmutableCallSite(Inst);
131 } else {
132 IsCall = false;
133 // There is no such thing as a memorylocation for a fence inst, and it is
134 // unique in that regard.
135 if (!isa<FenceInst>(Inst))
136 Loc = MemoryLocation::get(Inst);
137 }
138 }
139
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000140 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000141
Daniel Berlindff31de2016-08-02 21:57:52 +0000142 ImmutableCallSite getCS() const {
143 assert(IsCall);
144 return CS;
145 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000146
Daniel Berlindff31de2016-08-02 21:57:52 +0000147 MemoryLocation getLoc() const {
148 assert(!IsCall);
149 return Loc;
150 }
151
152 bool operator==(const MemoryLocOrCall &Other) const {
153 if (IsCall != Other.IsCall)
154 return false;
155
156 if (IsCall)
157 return CS.getCalledValue() == Other.CS.getCalledValue();
158 return Loc == Other.Loc;
159 }
160
161private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000162 union {
Daniel Berlind602e042017-01-25 20:56:19 +0000163 ImmutableCallSite CS;
164 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000165 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000166};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000167
168} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000169
170namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000171
Daniel Berlindff31de2016-08-02 21:57:52 +0000172template <> struct DenseMapInfo<MemoryLocOrCall> {
173 static inline MemoryLocOrCall getEmptyKey() {
174 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
175 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000176
Daniel Berlindff31de2016-08-02 21:57:52 +0000177 static inline MemoryLocOrCall getTombstoneKey() {
178 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
179 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000180
Daniel Berlindff31de2016-08-02 21:57:52 +0000181 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
182 if (MLOC.IsCall)
183 return hash_combine(MLOC.IsCall,
184 DenseMapInfo<const Value *>::getHashValue(
185 MLOC.getCS().getCalledValue()));
186 return hash_combine(
187 MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
188 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000189
Daniel Berlindff31de2016-08-02 21:57:52 +0000190 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
191 return LHS == RHS;
192 }
193};
Daniel Berlindf101192016-08-03 00:01:46 +0000194
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000195} // end namespace llvm
196
George Burgess IV82e355c2016-08-03 19:39:54 +0000197/// This does one-way checks to see if Use could theoretically be hoisted above
198/// MayClobber. This will not check the other way around.
199///
200/// This assumes that, for the purposes of MemorySSA, Use comes directly after
201/// MayClobber, with no potentially clobbering operations in between them.
202/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000203static bool areLoadsReorderable(const LoadInst *Use,
204 const LoadInst *MayClobber) {
George Burgess IV82e355c2016-08-03 19:39:54 +0000205 bool VolatileUse = Use->isVolatile();
206 bool VolatileClobber = MayClobber->isVolatile();
207 // Volatile operations may never be reordered with other volatile operations.
208 if (VolatileUse && VolatileClobber)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000209 return false;
210 // Otherwise, volatile doesn't matter here. From the language reference:
211 // 'optimizers may change the order of volatile operations relative to
212 // non-volatile operations.'"
George Burgess IV82e355c2016-08-03 19:39:54 +0000213
214 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
215 // is weaker, it can be moved above other loads. We just need to be sure that
216 // MayClobber isn't an acquire load, because loads can't be moved above
217 // acquire loads.
218 //
219 // Note that this explicitly *does* allow the free reordering of monotonic (or
220 // weaker) loads of the same address.
221 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
222 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
223 AtomicOrdering::Acquire);
Alina Sbirleaca741a82017-12-22 19:54:03 +0000224 return !(SeqCstUse || MayClobberIsAcquire);
George Burgess IV82e355c2016-08-03 19:39:54 +0000225}
226
Sebastian Popd57d93c2016-10-12 03:08:40 +0000227static bool instructionClobbersQuery(MemoryDef *MD,
228 const MemoryLocation &UseLoc,
229 const Instruction *UseInst,
230 AliasAnalysis &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000231 Instruction *DefInst = MD->getMemoryInst();
232 assert(DefInst && "Defining instruction not actually an instruction");
Daniel Berlin74603a62017-04-10 18:46:00 +0000233 ImmutableCallSite UseCS(UseInst);
George Burgess IV5f308972016-07-19 01:29:15 +0000234
Daniel Berlindf101192016-08-03 00:01:46 +0000235 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
236 // These intrinsics will show up as affecting memory, but they are just
237 // markers.
238 switch (II->getIntrinsicID()) {
239 case Intrinsic::lifetime_start:
Daniel Berlin74603a62017-04-10 18:46:00 +0000240 if (UseCS)
241 return false;
242 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), UseLoc);
Daniel Berlindf101192016-08-03 00:01:46 +0000243 case Intrinsic::lifetime_end:
244 case Intrinsic::invariant_start:
245 case Intrinsic::invariant_end:
246 case Intrinsic::assume:
247 return false;
248 default:
249 break;
250 }
251 }
252
Hans Wennborg70e22d12017-11-21 18:00:01 +0000253 if (UseCS) {
Daniel Berlindff31de2016-08-02 21:57:52 +0000254 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
Alina Sbirlea63d22502017-12-05 20:12:23 +0000255 return isModOrRefSet(I);
Hans Wennborg70e22d12017-11-21 18:00:01 +0000256 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000257
Alina Sbirleaca741a82017-12-22 19:54:03 +0000258 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
259 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
260 return !areLoadsReorderable(UseLoad, DefLoad);
George Burgess IV82e355c2016-08-03 19:39:54 +0000261
Alina Sbirlea63d22502017-12-05 20:12:23 +0000262 return isModSet(AA.getModRefInfo(DefInst, UseLoc));
Daniel Berlindff31de2016-08-02 21:57:52 +0000263}
264
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000265static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU,
266 const MemoryLocOrCall &UseMLOC,
267 AliasAnalysis &AA) {
268 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
269 // to exist while MemoryLocOrCall is pushed through places.
270 if (UseMLOC.IsCall)
271 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
272 AA);
273 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
274 AA);
275}
276
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000277// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000278bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
279 AliasAnalysis &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000280 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA);
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000281}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000282
283namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000284
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000285struct UpwardsMemoryQuery {
286 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000287 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000288 // The pointer location we started the query with. This will be empty if
289 // IsCall is true.
290 MemoryLocation StartingLoc;
291 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000292 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000293 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000294 const MemoryAccess *OriginalAccess = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000295
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000296 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000297
298 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
299 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
300 if (!IsCall)
301 StartingLoc = MemoryLocation::get(Inst);
302 }
303};
304
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000305} // end anonymous namespace
306
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000307static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
308 AliasAnalysis &AA) {
309 Instruction *Inst = MD->getMemoryInst();
310 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
311 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000312 case Intrinsic::lifetime_end:
313 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
314 default:
315 return false;
316 }
317 }
318 return false;
319}
320
321static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
322 const Instruction *I) {
323 // If the memory can't be changed, then loads of the memory can't be
324 // clobbered.
325 //
326 // FIXME: We should handle invariant groups, as well. It's a bit harder,
327 // because we need to pay close attention to invariant group barriers.
328 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
Hal Finkela9d67cf2017-04-09 12:57:50 +0000329 AA.pointsToConstantMemory(cast<LoadInst>(I)->
330 getPointerOperand()));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000331}
332
George Burgess IV5f308972016-07-19 01:29:15 +0000333/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
334/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
335///
336/// This is meant to be as simple and self-contained as possible. Because it
337/// uses no cache, etc., it can be relatively expensive.
338///
339/// \param Start The MemoryAccess that we want to walk from.
340/// \param ClobberAt A clobber for Start.
341/// \param StartLoc The MemoryLocation for Start.
342/// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to.
343/// \param Query The UpwardsMemoryQuery we used for our search.
344/// \param AA The AliasAnalysis we used for our search.
345static void LLVM_ATTRIBUTE_UNUSED
346checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
347 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
348 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
349 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
350
351 if (MSSA.isLiveOnEntryDef(Start)) {
352 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
353 "liveOnEntry must clobber itself");
354 return;
355 }
356
George Burgess IV5f308972016-07-19 01:29:15 +0000357 bool FoundClobber = false;
358 DenseSet<MemoryAccessPair> VisitedPhis;
359 SmallVector<MemoryAccessPair, 8> Worklist;
360 Worklist.emplace_back(Start, StartLoc);
361 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
362 // is found, complain.
363 while (!Worklist.empty()) {
364 MemoryAccessPair MAP = Worklist.pop_back_val();
365 // All we care about is that nothing from Start to ClobberAt clobbers Start.
366 // We learn nothing from revisiting nodes.
367 if (!VisitedPhis.insert(MAP).second)
368 continue;
369
370 for (MemoryAccess *MA : def_chain(MAP.first)) {
371 if (MA == ClobberAt) {
372 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
373 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
374 // since it won't let us short-circuit.
375 //
376 // Also, note that this can't be hoisted out of the `Worklist` loop,
377 // since MD may only act as a clobber for 1 of N MemoryLocations.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000378 FoundClobber =
379 FoundClobber || MSSA.isLiveOnEntryDef(MD) ||
380 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000381 }
382 break;
383 }
384
385 // We should never hit liveOnEntry, unless it's the clobber.
386 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
387
388 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
389 (void)MD;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000390 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) &&
George Burgess IV5f308972016-07-19 01:29:15 +0000391 "Found clobber before reaching ClobberAt!");
392 continue;
393 }
394
395 assert(isa<MemoryPhi>(MA));
396 Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
397 }
398 }
399
400 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
401 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
402 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
403 "ClobberAt never acted as a clobber");
404}
405
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000406namespace {
407
George Burgess IV5f308972016-07-19 01:29:15 +0000408/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
409/// in one class.
410class ClobberWalker {
411 /// Save a few bytes by using unsigned instead of size_t.
412 using ListIndex = unsigned;
413
414 /// Represents a span of contiguous MemoryDefs, potentially ending in a
415 /// MemoryPhi.
416 struct DefPath {
417 MemoryLocation Loc;
418 // Note that, because we always walk in reverse, Last will always dominate
419 // First. Also note that First and Last are inclusive.
420 MemoryAccess *First;
421 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000422 Optional<ListIndex> Previous;
423
424 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
425 Optional<ListIndex> Previous)
426 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
427
428 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
429 Optional<ListIndex> Previous)
430 : DefPath(Loc, Init, Init, Previous) {}
431 };
432
433 const MemorySSA &MSSA;
434 AliasAnalysis &AA;
435 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000436 UpwardsMemoryQuery *Query;
George Burgess IV5f308972016-07-19 01:29:15 +0000437
438 // Phi optimization bookkeeping
439 SmallVector<DefPath, 32> Paths;
440 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000441
George Burgess IV5f308972016-07-19 01:29:15 +0000442 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000443 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000444 assert(From->getNumOperands() && "Phi with no operands?");
445
446 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000447 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
448 DomTreeNode *Node = DT.getNode(BB);
449 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000450 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
451 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000452 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000453 }
George Burgess IV5f308972016-07-19 01:29:15 +0000454 return Result;
455 }
456
457 /// Result of calling walkToPhiOrClobber.
458 struct UpwardsWalkResult {
459 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
460 /// both.
461 MemoryAccess *Result;
462 bool IsKnownClobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000463 };
464
465 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
466 /// This will update Desc.Last as it walks. It will (optionally) also stop at
467 /// StopAt.
468 ///
469 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000470 UpwardsWalkResult
471 walkToPhiOrClobber(DefPath &Desc,
472 const MemoryAccess *StopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000473 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
474
475 for (MemoryAccess *Current : def_chain(Desc.Last)) {
476 Desc.Last = Current;
477 if (Current == StopAt)
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000478 return {Current, false};
George Burgess IV5f308972016-07-19 01:29:15 +0000479
480 if (auto *MD = dyn_cast<MemoryDef>(Current))
481 if (MSSA.isLiveOnEntryDef(MD) ||
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000482 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA))
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000483 return {MD, true};
George Burgess IV5f308972016-07-19 01:29:15 +0000484 }
485
486 assert(isa<MemoryPhi>(Desc.Last) &&
487 "Ended at a non-clobber that's not a phi?");
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000488 return {Desc.Last, false};
George Burgess IV5f308972016-07-19 01:29:15 +0000489 }
490
491 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
492 ListIndex PriorNode) {
493 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
494 upward_defs_end());
495 for (const MemoryAccessPair &P : UpwardDefs) {
496 PausedSearches.push_back(Paths.size());
497 Paths.emplace_back(P.second, P.first, PriorNode);
498 }
499 }
500
501 /// Represents a search that terminated after finding a clobber. This clobber
502 /// may or may not be present in the path of defs from LastNode..SearchStart,
503 /// since it may have been retrieved from cache.
504 struct TerminatedPath {
505 MemoryAccess *Clobber;
506 ListIndex LastNode;
507 };
508
509 /// Get an access that keeps us from optimizing to the given phi.
510 ///
511 /// PausedSearches is an array of indices into the Paths array. Its incoming
512 /// value is the indices of searches that stopped at the last phi optimization
513 /// target. It's left in an unspecified state.
514 ///
515 /// If this returns None, NewPaused is a vector of searches that terminated
516 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000517 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000518 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000519 SmallVectorImpl<ListIndex> &PausedSearches,
520 SmallVectorImpl<ListIndex> &NewPaused,
521 SmallVectorImpl<TerminatedPath> &Terminated) {
522 assert(!PausedSearches.empty() && "No searches to continue?");
523
524 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
525 // PausedSearches as our stack.
526 while (!PausedSearches.empty()) {
527 ListIndex PathIndex = PausedSearches.pop_back_val();
528 DefPath &Node = Paths[PathIndex];
529
530 // If we've already visited this path with this MemoryLocation, we don't
531 // need to do so again.
532 //
533 // NOTE: That we just drop these paths on the ground makes caching
534 // behavior sporadic. e.g. given a diamond:
535 // A
536 // B C
537 // D
538 //
539 // ...If we walk D, B, A, C, we'll only cache the result of phi
540 // optimization for A, B, and D; C will be skipped because it dies here.
541 // This arguably isn't the worst thing ever, since:
542 // - We generally query things in a top-down order, so if we got below D
543 // without needing cache entries for {C, MemLoc}, then chances are
544 // that those cache entries would end up ultimately unused.
545 // - We still cache things for A, so C only needs to walk up a bit.
546 // If this behavior becomes problematic, we can fix without a ton of extra
547 // work.
548 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
549 continue;
550
551 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
552 if (Res.IsKnownClobber) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000553 assert(Res.Result != StopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000554 // If this wasn't a cache hit, we hit a clobber when walking. That's a
555 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000556 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000557 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000558 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000559
560 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000561 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000562 continue;
563 }
564
565 if (Res.Result == StopWhere) {
566 // We've hit our target. Save this path off for if we want to continue
567 // walking.
568 NewPaused.push_back(PathIndex);
569 continue;
570 }
571
572 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
573 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
574 }
575
576 return None;
577 }
578
579 template <typename T, typename Walker>
580 struct generic_def_path_iterator
581 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
582 std::forward_iterator_tag, T *> {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000583 generic_def_path_iterator() = default;
George Burgess IV5f308972016-07-19 01:29:15 +0000584 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
585
586 T &operator*() const { return curNode(); }
587
588 generic_def_path_iterator &operator++() {
589 N = curNode().Previous;
590 return *this;
591 }
592
593 bool operator==(const generic_def_path_iterator &O) const {
594 if (N.hasValue() != O.N.hasValue())
595 return false;
596 return !N.hasValue() || *N == *O.N;
597 }
598
599 private:
600 T &curNode() const { return W->Paths[*N]; }
601
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000602 Walker *W = nullptr;
603 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000604 };
605
606 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
607 using const_def_path_iterator =
608 generic_def_path_iterator<const DefPath, const ClobberWalker>;
609
610 iterator_range<def_path_iterator> def_path(ListIndex From) {
611 return make_range(def_path_iterator(this, From), def_path_iterator());
612 }
613
614 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
615 return make_range(const_def_path_iterator(this, From),
616 const_def_path_iterator());
617 }
618
619 struct OptznResult {
620 /// The path that contains our result.
621 TerminatedPath PrimaryClobber;
622 /// The paths that we can legally cache back from, but that aren't
623 /// necessarily the result of the Phi optimization.
624 SmallVector<TerminatedPath, 4> OtherClobbers;
625 };
626
627 ListIndex defPathIndex(const DefPath &N) const {
628 // The assert looks nicer if we don't need to do &N
629 const DefPath *NP = &N;
630 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
631 "Out of bounds DefPath!");
632 return NP - &Paths.front();
633 }
634
635 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
636 /// that act as legal clobbers. Note that this won't return *all* clobbers.
637 ///
638 /// Phi optimization algorithm tl;dr:
639 /// - Find the earliest def/phi, A, we can optimize to
640 /// - Find if all paths from the starting memory access ultimately reach A
641 /// - If not, optimization isn't possible.
642 /// - Otherwise, walk from A to another clobber or phi, A'.
643 /// - If A' is a def, we're done.
644 /// - If A' is a phi, try to optimize it.
645 ///
646 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
647 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
648 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
649 const MemoryLocation &Loc) {
650 assert(Paths.empty() && VisitedPhis.empty() &&
651 "Reset the optimization state.");
652
653 Paths.emplace_back(Loc, Start, Phi, None);
654 // Stores how many "valid" optimization nodes we had prior to calling
655 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
656 auto PriorPathsSize = Paths.size();
657
658 SmallVector<ListIndex, 16> PausedSearches;
659 SmallVector<ListIndex, 8> NewPaused;
660 SmallVector<TerminatedPath, 4> TerminatedPaths;
661
662 addSearches(Phi, PausedSearches, 0);
663
664 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
665 // Paths.
666 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
667 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000668 auto Dom = Paths.begin();
669 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
670 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
671 Dom = I;
672 auto Last = Paths.end() - 1;
673 if (Last != Dom)
674 std::iter_swap(Last, Dom);
675 };
676
677 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000678 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000679 assert(!MSSA.isLiveOnEntryDef(Current) &&
680 "liveOnEntry wasn't treated as a clobber?");
681
Daniel Berlind0420312017-04-01 09:01:12 +0000682 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000683 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
684 // optimization for the prior phi.
685 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
686 return MSSA.dominates(P.Clobber, Target);
687 }));
688
689 // FIXME: This is broken, because the Blocker may be reported to be
690 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000691 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000692 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000693 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000694
695 // Find the node we started at. We can't search based on N->Last, since
696 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000697 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000698 return defPathIndex(N) < PriorPathsSize;
699 });
700 assert(Iter != def_path_iterator());
701
702 DefPath &CurNode = *Iter;
703 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000704
705 // Two things:
706 // A. We can't reliably cache all of NewPaused back. Consider a case
707 // where we have two paths in NewPaused; one of which can't optimize
708 // above this phi, whereas the other can. If we cache the second path
709 // back, we'll end up with suboptimal cache entries. We can handle
710 // cases like this a bit better when we either try to find all
711 // clobbers that block phi optimization, or when our cache starts
712 // supporting unfinished searches.
713 // B. We can't reliably cache TerminatedPaths back here without doing
714 // extra checks; consider a case like:
715 // T
716 // / \
717 // D C
718 // \ /
719 // S
720 // Where T is our target, C is a node with a clobber on it, D is a
721 // diamond (with a clobber *only* on the left or right node, N), and
722 // S is our start. Say we walk to D, through the node opposite N
723 // (read: ignoring the clobber), and see a cache entry in the top
724 // node of D. That cache entry gets put into TerminatedPaths. We then
725 // walk up to C (N is later in our worklist), find the clobber, and
726 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
727 // the bottom part of D to the cached clobber, ignoring the clobber
728 // in N. Again, this problem goes away if we start tracking all
729 // blockers for a given phi optimization.
730 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
731 return {Result, {}};
732 }
733
734 // If there's nothing left to search, then all paths led to valid clobbers
735 // that we got from our cache; pick the nearest to the start, and allow
736 // the rest to be cached back.
737 if (NewPaused.empty()) {
738 MoveDominatedPathToEnd(TerminatedPaths);
739 TerminatedPath Result = TerminatedPaths.pop_back_val();
740 return {Result, std::move(TerminatedPaths)};
741 }
742
743 MemoryAccess *DefChainEnd = nullptr;
744 SmallVector<TerminatedPath, 4> Clobbers;
745 for (ListIndex Paused : NewPaused) {
746 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
747 if (WR.IsKnownClobber)
748 Clobbers.push_back({WR.Result, Paused});
749 else
750 // Micro-opt: If we hit the end of the chain, save it.
751 DefChainEnd = WR.Result;
752 }
753
754 if (!TerminatedPaths.empty()) {
755 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
756 // do it now.
757 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000758 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000759 DefChainEnd = MA;
760
761 // If any of the terminated paths don't dominate the phi we'll try to
762 // optimize, we need to figure out what they are and quit.
763 const BasicBlock *ChainBB = DefChainEnd->getBlock();
764 for (const TerminatedPath &TP : TerminatedPaths) {
765 // Because we know that DefChainEnd is as "high" as we can go, we
766 // don't need local dominance checks; BB dominance is sufficient.
767 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
768 Clobbers.push_back(TP);
769 }
770 }
771
772 // If we have clobbers in the def chain, find the one closest to Current
773 // and quit.
774 if (!Clobbers.empty()) {
775 MoveDominatedPathToEnd(Clobbers);
776 TerminatedPath Result = Clobbers.pop_back_val();
777 return {Result, std::move(Clobbers)};
778 }
779
780 assert(all_of(NewPaused,
781 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
782
783 // Because liveOnEntry is a clobber, this must be a phi.
784 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
785
786 PriorPathsSize = Paths.size();
787 PausedSearches.clear();
788 for (ListIndex I : NewPaused)
789 addSearches(DefChainPhi, PausedSearches, I);
790 NewPaused.clear();
791
792 Current = DefChainPhi;
793 }
794 }
795
George Burgess IV5f308972016-07-19 01:29:15 +0000796 void verifyOptResult(const OptznResult &R) const {
797 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
798 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
799 }));
800 }
801
802 void resetPhiOptznState() {
803 Paths.clear();
804 VisitedPhis.clear();
805 }
806
807public:
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000808 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
809 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000810
Daniel Berlin7500c562017-04-01 08:59:45 +0000811 void reset() {}
George Burgess IV5f308972016-07-19 01:29:15 +0000812
813 /// Finds the nearest clobber for the given query, optimizing phis if
814 /// possible.
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000815 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +0000816 Query = &Q;
817
818 MemoryAccess *Current = Start;
819 // This walker pretends uses don't exist. If we're handed one, silently grab
820 // its def. (This has the nice side-effect of ensuring we never cache uses)
821 if (auto *MU = dyn_cast<MemoryUse>(Start))
822 Current = MU->getDefiningAccess();
823
824 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
825 // Fast path for the overly-common case (no crazy phi optimization
826 // necessary)
827 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000828 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000829 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000830 Result = WalkResult.Result;
831 } else {
832 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
833 Current, Q.StartingLoc);
834 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000835 resetPhiOptznState();
836 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000837 }
838
George Burgess IV5f308972016-07-19 01:29:15 +0000839#ifdef EXPENSIVE_CHECKS
George Burgess IV93ea19b2016-07-24 07:03:49 +0000840 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000841#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000842 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000843 }
Geoff Berrycdf53332016-08-08 17:52:01 +0000844
845 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
George Burgess IV5f308972016-07-19 01:29:15 +0000846};
847
848struct RenamePassData {
849 DomTreeNode *DTN;
850 DomTreeNode::const_iterator ChildIt;
851 MemoryAccess *IncomingVal;
852
853 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
854 MemoryAccess *M)
855 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000856
George Burgess IV5f308972016-07-19 01:29:15 +0000857 void swap(RenamePassData &RHS) {
858 std::swap(DTN, RHS.DTN);
859 std::swap(ChildIt, RHS.ChildIt);
860 std::swap(IncomingVal, RHS.IncomingVal);
861 }
862};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000863
864} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000865
866namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000867
Daniel Berlind952cea2017-04-07 01:28:36 +0000868/// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no
869/// longer does caching on its own,
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000870/// but the name has been retained for the moment.
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000871class MemorySSA::CachingWalker final : public MemorySSAWalker {
George Burgess IV5f308972016-07-19 01:29:15 +0000872 ClobberWalker Walker;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000873 bool AutoResetWalker = true;
George Burgess IV5f308972016-07-19 01:29:15 +0000874
875 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
George Burgess IV5f308972016-07-19 01:29:15 +0000876
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000877public:
878 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000879 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000880
George Burgess IV400ae402016-07-20 19:51:34 +0000881 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000882
George Burgess IV400ae402016-07-20 19:51:34 +0000883 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000884 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
George Burgess IV013fd732016-10-28 19:22:46 +0000885 const MemoryLocation &) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000886 void invalidateInfo(MemoryAccess *) override;
887
George Burgess IV5f308972016-07-19 01:29:15 +0000888 /// Whether we call resetClobberWalker() after each time we *actually* walk to
889 /// answer a clobber query.
890 void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000891
Daniel Berlin7500c562017-04-01 08:59:45 +0000892 /// Drop the walker's persistent data structures.
George Burgess IV5f308972016-07-19 01:29:15 +0000893 void resetClobberWalker() { Walker.reset(); }
Geoff Berrycdf53332016-08-08 17:52:01 +0000894
895 void verify(const MemorySSA *MSSA) override {
896 MemorySSAWalker::verify(MSSA);
897 Walker.verify(MSSA);
898 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000899};
George Burgess IVe1100f52016-02-02 22:46:49 +0000900
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000901} // end namespace llvm
902
Daniel Berlin78cbd282017-02-20 22:26:03 +0000903void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
904 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000905 // Pass through values to our successors
906 for (const BasicBlock *S : successors(BB)) {
907 auto It = PerBlockAccesses.find(S);
908 // Rename the phi nodes in our successor block
909 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
910 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +0000911 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +0000912 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +0000913 if (RenameAllUses) {
914 int PhiIndex = Phi->getBasicBlockIndex(BB);
915 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
916 Phi->setIncomingValue(PhiIndex, IncomingVal);
917 } else
918 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +0000919 }
Daniel Berlin78cbd282017-02-20 22:26:03 +0000920}
George Burgess IVe1100f52016-02-02 22:46:49 +0000921
Daniel Berlin78cbd282017-02-20 22:26:03 +0000922/// \brief Rename a single basic block into MemorySSA form.
923/// Uses the standard SSA renaming algorithm.
924/// \returns The new incoming value.
925MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
926 bool RenameAllUses) {
927 auto It = PerBlockAccesses.find(BB);
928 // Skip most processing if the list is empty.
929 if (It != PerBlockAccesses.end()) {
930 AccessList *Accesses = It->second.get();
931 for (MemoryAccess &L : *Accesses) {
932 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
933 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
934 MUD->setDefiningAccess(IncomingVal);
935 if (isa<MemoryDef>(&L))
936 IncomingVal = &L;
937 } else {
938 IncomingVal = &L;
939 }
940 }
941 }
George Burgess IVe1100f52016-02-02 22:46:49 +0000942 return IncomingVal;
943}
944
945/// \brief This is the standard SSA renaming algorithm.
946///
947/// We walk the dominator tree in preorder, renaming accesses, and then filling
948/// in phi nodes in our successors.
949void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +0000950 SmallPtrSetImpl<BasicBlock *> &Visited,
951 bool SkipVisited, bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000952 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +0000953 // Skip everything if we already renamed this block and we are skipping.
954 // Note: You can't sink this into the if, because we need it to occur
955 // regardless of whether we skip blocks or not.
956 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
957 if (SkipVisited && AlreadyVisited)
958 return;
959
960 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
961 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +0000962 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +0000963
964 while (!WorkStack.empty()) {
965 DomTreeNode *Node = WorkStack.back().DTN;
966 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
967 IncomingVal = WorkStack.back().IncomingVal;
968
969 if (ChildIt == Node->end()) {
970 WorkStack.pop_back();
971 } else {
972 DomTreeNode *Child = *ChildIt;
973 ++WorkStack.back().ChildIt;
974 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +0000975 // Note: You can't sink this into the if, because we need it to occur
976 // regardless of whether we skip blocks or not.
977 AlreadyVisited = !Visited.insert(BB).second;
978 if (SkipVisited && AlreadyVisited) {
979 // We already visited this during our renaming, which can happen when
980 // being asked to rename multiple blocks. Figure out the incoming val,
981 // which is the last def.
982 // Incoming value can only change if there is a block def, and in that
983 // case, it's the last block def in the list.
984 if (auto *BlockDefs = getWritableBlockDefs(BB))
985 IncomingVal = &*BlockDefs->rbegin();
986 } else
987 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
988 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +0000989 WorkStack.push_back({Child, Child->begin(), IncomingVal});
990 }
991 }
992}
993
George Burgess IVa362b092016-07-06 00:28:43 +0000994/// \brief This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +0000995/// unreachable blocks, and marking all other unreachable MemoryAccess's as
996/// being uses of the live on entry definition.
997void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
998 assert(!DT->isReachableFromEntry(BB) &&
999 "Reachable block found while handling unreachable blocks");
1000
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001001 // Make sure phi nodes in our reachable successors end up with a
1002 // LiveOnEntryDef for our incoming edge, even though our block is forward
1003 // unreachable. We could just disconnect these blocks from the CFG fully,
1004 // but we do not right now.
1005 for (const BasicBlock *S : successors(BB)) {
1006 if (!DT->isReachableFromEntry(S))
1007 continue;
1008 auto It = PerBlockAccesses.find(S);
1009 // Rename the phi nodes in our successor block
1010 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1011 continue;
1012 AccessList *Accesses = It->second.get();
1013 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1014 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1015 }
1016
George Burgess IVe1100f52016-02-02 22:46:49 +00001017 auto It = PerBlockAccesses.find(BB);
1018 if (It == PerBlockAccesses.end())
1019 return;
1020
1021 auto &Accesses = It->second;
1022 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1023 auto Next = std::next(AI);
1024 // If we have a phi, just remove it. We are going to replace all
1025 // users with live on entry.
1026 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1027 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1028 else
1029 Accesses->erase(AI);
1030 AI = Next;
1031 }
1032}
1033
Geoff Berryb96d3b22016-06-01 21:30:40 +00001034MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1035 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
George Burgess IV68ac9412018-02-23 23:07:18 +00001036 NextID(0) {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001037 buildMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001038}
1039
George Burgess IVe1100f52016-02-02 22:46:49 +00001040MemorySSA::~MemorySSA() {
1041 // Drop all our references
1042 for (const auto &Pair : PerBlockAccesses)
1043 for (MemoryAccess &MA : *Pair.second)
1044 MA.dropAllReferences();
1045}
1046
Daniel Berlin14300262016-06-21 18:39:20 +00001047MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001048 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1049
1050 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001051 Res.first->second = llvm::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001052 return Res.first->second.get();
1053}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001054
Daniel Berlind602e042017-01-25 20:56:19 +00001055MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1056 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1057
1058 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001059 Res.first->second = llvm::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001060 return Res.first->second.get();
1061}
George Burgess IVe1100f52016-02-02 22:46:49 +00001062
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001063namespace llvm {
1064
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001065/// This class is a batch walker of all MemoryUse's in the program, and points
1066/// their defining access at the thing that actually clobbers them. Because it
1067/// is a batch walker that touches everything, it does not operate like the
1068/// other walkers. This walker is basically performing a top-down SSA renaming
1069/// pass, where the version stack is used as the cache. This enables it to be
1070/// significantly more time and memory efficient than using the regular walker,
1071/// which is walking bottom-up.
1072class MemorySSA::OptimizeUses {
1073public:
1074 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1075 DominatorTree *DT)
1076 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1077 Walker = MSSA->getWalker();
1078 }
1079
1080 void optimizeUses();
1081
1082private:
1083 /// This represents where a given memorylocation is in the stack.
1084 struct MemlocStackInfo {
1085 // This essentially is keeping track of versions of the stack. Whenever
1086 // the stack changes due to pushes or pops, these versions increase.
1087 unsigned long StackEpoch;
1088 unsigned long PopEpoch;
1089 // This is the lower bound of places on the stack to check. It is equal to
1090 // the place the last stack walk ended.
1091 // Note: Correctness depends on this being initialized to 0, which densemap
1092 // does
1093 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001094 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001095 // This is where the last walk for this memory location ended.
1096 unsigned long LastKill;
1097 bool LastKillValid;
1098 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001099
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001100 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1101 SmallVectorImpl<MemoryAccess *> &,
1102 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001103
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001104 MemorySSA *MSSA;
1105 MemorySSAWalker *Walker;
1106 AliasAnalysis *AA;
1107 DominatorTree *DT;
1108};
1109
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001110} // end namespace llvm
1111
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001112/// Optimize the uses in a given block This is basically the SSA renaming
1113/// algorithm, with one caveat: We are able to use a single stack for all
1114/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1115/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1116/// going to be some position in that stack of possible ones.
1117///
1118/// We track the stack positions that each MemoryLocation needs
1119/// to check, and last ended at. This is because we only want to check the
1120/// things that changed since last time. The same MemoryLocation should
1121/// get clobbered by the same store (getModRefInfo does not use invariantness or
1122/// things like this, and if they start, we can modify MemoryLocOrCall to
1123/// include relevant data)
1124void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1125 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1126 SmallVectorImpl<MemoryAccess *> &VersionStack,
1127 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1128
1129 /// If no accesses, nothing to do.
1130 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1131 if (Accesses == nullptr)
1132 return;
1133
1134 // Pop everything that doesn't dominate the current block off the stack,
1135 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001136 while (true) {
1137 assert(
1138 !VersionStack.empty() &&
1139 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001140 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1141 if (DT->dominates(BackBlock, BB))
1142 break;
1143 while (VersionStack.back()->getBlock() == BackBlock)
1144 VersionStack.pop_back();
1145 ++PopEpoch;
1146 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001147
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001148 for (MemoryAccess &MA : *Accesses) {
1149 auto *MU = dyn_cast<MemoryUse>(&MA);
1150 if (!MU) {
1151 VersionStack.push_back(&MA);
1152 ++StackEpoch;
1153 continue;
1154 }
1155
George Burgess IV024f3d22016-08-03 19:57:02 +00001156 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Daniel Berlincd2deac2016-10-20 20:13:45 +00001157 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true);
George Burgess IV024f3d22016-08-03 19:57:02 +00001158 continue;
1159 }
1160
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001161 MemoryLocOrCall UseMLOC(MU);
1162 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001163 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001164 // stack due to changing blocks. We may have to reset the lower bound or
1165 // last kill info.
1166 if (LocInfo.PopEpoch != PopEpoch) {
1167 LocInfo.PopEpoch = PopEpoch;
1168 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001169 // If the lower bound was in something that no longer dominates us, we
1170 // have to reset it.
1171 // We can't simply track stack size, because the stack may have had
1172 // pushes/pops in the meantime.
1173 // XXX: This is non-optimal, but only is slower cases with heavily
1174 // branching dominator trees. To get the optimal number of queries would
1175 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1176 // the top of that stack dominates us. This does not seem worth it ATM.
1177 // A much cheaper optimization would be to always explore the deepest
1178 // branch of the dominator tree first. This will guarantee this resets on
1179 // the smallest set of blocks.
1180 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001181 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001182 // Reset the lower bound of things to check.
1183 // TODO: Some day we should be able to reset to last kill, rather than
1184 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001185 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001186 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001187 LocInfo.LastKillValid = false;
1188 }
1189 } else if (LocInfo.StackEpoch != StackEpoch) {
1190 // If all that has changed is the StackEpoch, we only have to check the
1191 // new things on the stack, because we've checked everything before. In
1192 // this case, the lower bound of things to check remains the same.
1193 LocInfo.PopEpoch = PopEpoch;
1194 LocInfo.StackEpoch = StackEpoch;
1195 }
1196 if (!LocInfo.LastKillValid) {
1197 LocInfo.LastKill = VersionStack.size() - 1;
1198 LocInfo.LastKillValid = true;
1199 }
1200
1201 // At this point, we should have corrected last kill and LowerBound to be
1202 // in bounds.
1203 assert(LocInfo.LowerBound < VersionStack.size() &&
1204 "Lower bound out of range");
1205 assert(LocInfo.LastKill < VersionStack.size() &&
1206 "Last kill info out of range");
1207 // In any case, the new upper bound is the top of the stack.
1208 unsigned long UpperBound = VersionStack.size() - 1;
1209
1210 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Daniel Berlin26fcea92016-08-02 20:02:21 +00001211 DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1212 << *(MU->getMemoryInst()) << ")"
1213 << " because there are " << UpperBound - LocInfo.LowerBound
1214 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001215 // Because we did not walk, LastKill is no longer valid, as this may
1216 // have been a kill.
1217 LocInfo.LastKillValid = false;
1218 continue;
1219 }
1220 bool FoundClobberResult = false;
1221 while (UpperBound > LocInfo.LowerBound) {
1222 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1223 // For phis, use the walker, see where we ended up, go there
1224 Instruction *UseInst = MU->getMemoryInst();
1225 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1226 // We are guaranteed to find it or something is wrong
1227 while (VersionStack[UpperBound] != Result) {
1228 assert(UpperBound != 0);
1229 --UpperBound;
1230 }
1231 FoundClobberResult = true;
1232 break;
1233 }
1234
1235 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001236 // If the lifetime of the pointer ends at this instruction, it's live on
1237 // entry.
1238 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1239 // Reset UpperBound to liveOnEntryDef's place in the stack
1240 UpperBound = 0;
1241 FoundClobberResult = true;
1242 break;
1243 }
Daniel Berlindff31de2016-08-02 21:57:52 +00001244 if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001245 FoundClobberResult = true;
1246 break;
1247 }
1248 --UpperBound;
1249 }
1250 // At the end of this loop, UpperBound is either a clobber, or lower bound
1251 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1252 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlincd2deac2016-10-20 20:13:45 +00001253 MU->setDefiningAccess(VersionStack[UpperBound], true);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001254 // We were last killed now by where we got to
1255 LocInfo.LastKill = UpperBound;
1256 } else {
1257 // Otherwise, we checked all the new ones, and now we know we can get to
1258 // LastKill.
Daniel Berlincd2deac2016-10-20 20:13:45 +00001259 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001260 }
1261 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001262 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001263 }
1264}
1265
1266/// Optimize uses to point to their actual clobbering definitions.
1267void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001268 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001269 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001270 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1271
1272 unsigned long StackEpoch = 1;
1273 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001274 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001275 for (const auto *DomNode : depth_first(DT->getRootNode()))
1276 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1277 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001278}
1279
Daniel Berlin3d512a22016-08-22 19:14:30 +00001280void MemorySSA::placePHINodes(
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001281 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks,
1282 const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001283 // Determine where our MemoryPhi's should go
1284 ForwardIDFCalculator IDFs(*DT);
1285 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001286 SmallVector<BasicBlock *, 32> IDFBlocks;
1287 IDFs.calculate(IDFBlocks);
1288
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001289 std::sort(IDFBlocks.begin(), IDFBlocks.end(),
1290 [&BBNumbers](const BasicBlock *A, const BasicBlock *B) {
1291 return BBNumbers.lookup(A) < BBNumbers.lookup(B);
1292 });
1293
Daniel Berlin3d512a22016-08-22 19:14:30 +00001294 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001295 for (auto &BB : IDFBlocks)
1296 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001297}
1298
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001299void MemorySSA::buildMemorySSA() {
George Burgess IVe1100f52016-02-02 22:46:49 +00001300 // We create an access to represent "live on entry", for things like
1301 // arguments or users of globals, where the memory they use is defined before
1302 // the beginning of the function. We do not actually insert it into the IR.
1303 // We do not define a live on exit for the immediate uses, and thus our
1304 // semantics do *not* imply that something with no immediate uses can simply
1305 // be removed.
1306 BasicBlock &StartingPoint = F.getEntryBlock();
George Burgess IV612cf212018-02-27 06:43:19 +00001307 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1308 &StartingPoint, NextID++));
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001309 DenseMap<const BasicBlock *, unsigned int> BBNumbers;
1310 unsigned NextBBNum = 0;
George Burgess IVe1100f52016-02-02 22:46:49 +00001311
1312 // We maintain lists of memory accesses per-block, trading memory for time. We
1313 // could just look up the memory access for every possible instruction in the
1314 // stream.
1315 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001316 // Go through each block, figure out where defs occur, and chain together all
1317 // the accesses.
1318 for (BasicBlock &B : F) {
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001319 BBNumbers[&B] = NextBBNum++;
Daniel Berlin7898ca62016-02-07 01:52:15 +00001320 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001321 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001322 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001323 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +00001324 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +00001325 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001326 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001327
George Burgess IVe1100f52016-02-02 22:46:49 +00001328 if (!Accesses)
1329 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001330 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001331 if (isa<MemoryDef>(MUD)) {
1332 InsertIntoDef = true;
1333 if (!Defs)
1334 Defs = getOrCreateDefsList(&B);
1335 Defs->push_back(*MUD);
1336 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001337 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001338 if (InsertIntoDef)
1339 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001340 }
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001341 placePHINodes(DefiningBlocks, BBNumbers);
George Burgess IVe1100f52016-02-02 22:46:49 +00001342
1343 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1344 // filled in with all blocks.
1345 SmallPtrSet<BasicBlock *, 16> Visited;
1346 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1347
George Burgess IV5f308972016-07-19 01:29:15 +00001348 CachingWalker *Walker = getWalkerImpl();
1349
1350 // We're doing a batch of updates; don't drop useful caches between them.
1351 Walker->setAutoResetWalker(false);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001352 OptimizeUses(this, Walker, AA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001353 Walker->setAutoResetWalker(true);
1354 Walker->resetClobberWalker();
1355
George Burgess IVe1100f52016-02-02 22:46:49 +00001356 // Mark the uses in unreachable blocks as live on entry, so that they go
1357 // somewhere.
1358 for (auto &BB : F)
1359 if (!Visited.count(&BB))
1360 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001361}
George Burgess IVe1100f52016-02-02 22:46:49 +00001362
George Burgess IV5f308972016-07-19 01:29:15 +00001363MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1364
1365MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001366 if (Walker)
1367 return Walker.get();
1368
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001369 Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001370 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001371}
1372
Daniel Berlind602e042017-01-25 20:56:19 +00001373// This is a helper function used by the creation routines. It places NewAccess
1374// into the access and defs lists for a given basic block, at the given
1375// insertion point.
1376void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1377 const BasicBlock *BB,
1378 InsertionPlace Point) {
1379 auto *Accesses = getOrCreateAccessList(BB);
1380 if (Point == Beginning) {
1381 // If it's a phi node, it goes first, otherwise, it goes after any phi
1382 // nodes.
1383 if (isa<MemoryPhi>(NewAccess)) {
1384 Accesses->push_front(NewAccess);
1385 auto *Defs = getOrCreateDefsList(BB);
1386 Defs->push_front(*NewAccess);
1387 } else {
1388 auto AI = find_if_not(
1389 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1390 Accesses->insert(AI, NewAccess);
1391 if (!isa<MemoryUse>(NewAccess)) {
1392 auto *Defs = getOrCreateDefsList(BB);
1393 auto DI = find_if_not(
1394 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1395 Defs->insert(DI, *NewAccess);
1396 }
1397 }
1398 } else {
1399 Accesses->push_back(NewAccess);
1400 if (!isa<MemoryUse>(NewAccess)) {
1401 auto *Defs = getOrCreateDefsList(BB);
1402 Defs->push_back(*NewAccess);
1403 }
1404 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001405 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001406}
1407
1408void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1409 AccessList::iterator InsertPt) {
1410 auto *Accesses = getWritableBlockAccesses(BB);
1411 bool WasEnd = InsertPt == Accesses->end();
1412 Accesses->insert(AccessList::iterator(InsertPt), What);
1413 if (!isa<MemoryUse>(What)) {
1414 auto *Defs = getOrCreateDefsList(BB);
1415 // If we got asked to insert at the end, we have an easy job, just shove it
1416 // at the end. If we got asked to insert before an existing def, we also get
1417 // an terator. If we got asked to insert before a use, we have to hunt for
1418 // the next def.
1419 if (WasEnd) {
1420 Defs->push_back(*What);
1421 } else if (isa<MemoryDef>(InsertPt)) {
1422 Defs->insert(InsertPt->getDefsIterator(), *What);
1423 } else {
1424 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1425 ++InsertPt;
1426 // Either we found a def, or we are inserting at the end
1427 if (InsertPt == Accesses->end())
1428 Defs->push_back(*What);
1429 else
1430 Defs->insert(InsertPt->getDefsIterator(), *What);
1431 }
1432 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001433 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001434}
1435
Daniel Berlin60ead052017-01-28 01:23:13 +00001436// Move What before Where in the IR. The end result is taht What will belong to
1437// the right lists and have the right Block set, but will not otherwise be
1438// correct. It will not have the right defining access, and if it is a def,
1439// things below it will not properly be updated.
1440void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1441 AccessList::iterator Where) {
1442 // Keep it in the lookup tables, remove from the lists
1443 removeFromLists(What, false);
1444 What->setBlock(BB);
1445 insertIntoListsBefore(What, BB, Where);
1446}
1447
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001448void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1449 InsertionPlace Point) {
1450 removeFromLists(What, false);
1451 What->setBlock(BB);
1452 insertIntoListsForBlock(What, BB, Point);
1453}
1454
Daniel Berlin14300262016-06-21 18:39:20 +00001455MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1456 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001457 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001458 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001459 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001460 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001461 return Phi;
1462}
1463
1464MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1465 MemoryAccess *Definition) {
1466 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1467 MemoryUseOrDef *NewAccess = createNewAccess(I);
1468 assert(
1469 NewAccess != nullptr &&
1470 "Tried to create a memory access for a non-memory touching instruction");
1471 NewAccess->setDefiningAccess(Definition);
1472 return NewAccess;
1473}
1474
Daniel Berlind952cea2017-04-07 01:28:36 +00001475// Return true if the instruction has ordering constraints.
1476// Note specifically that this only considers stores and loads
1477// because others are still considered ModRef by getModRefInfo.
1478static inline bool isOrdered(const Instruction *I) {
1479 if (auto *SI = dyn_cast<StoreInst>(I)) {
1480 if (!SI->isUnordered())
1481 return true;
1482 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1483 if (!LI->isUnordered())
1484 return true;
1485 }
1486 return false;
1487}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001488
George Burgess IVe1100f52016-02-02 22:46:49 +00001489/// \brief Helper function to create new memory accesses
Peter Collingbourneffecb142016-05-26 01:19:17 +00001490MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001491 // The assume intrinsic has a control dependency which we model by claiming
1492 // that it writes arbitrarily. Ignore that fake memory dependency here.
1493 // FIXME: Replace this special casing with a more accurate modelling of
1494 // assume's control dependency.
1495 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1496 if (II->getIntrinsicID() == Intrinsic::assume)
1497 return nullptr;
1498
George Burgess IVe1100f52016-02-02 22:46:49 +00001499 // Find out what affect this instruction has on memory.
Alina Sbirlea967e7962017-08-01 00:28:29 +00001500 ModRefInfo ModRef = AA->getModRefInfo(I, None);
Daniel Berlind952cea2017-04-07 01:28:36 +00001501 // The isOrdered check is used to ensure that volatiles end up as defs
1502 // (atomics end up as ModRef right now anyway). Until we separate the
1503 // ordering chain from the memory chain, this enables people to see at least
1504 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1505 // will still give an answer that bypasses other volatile loads. TODO:
1506 // Separate memory aliasing and ordering into two different chains so that we
1507 // can precisely represent both "what memory will this read/write/is clobbered
1508 // by" and "what instructions can I move this past".
Alina Sbirlea63d22502017-12-05 20:12:23 +00001509 bool Def = isModSet(ModRef) || isOrdered(I);
1510 bool Use = isRefSet(ModRef);
George Burgess IVe1100f52016-02-02 22:46:49 +00001511
1512 // It's possible for an instruction to not modify memory at all. During
1513 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001514 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001515 return nullptr;
1516
1517 assert((Def || Use) &&
1518 "Trying to create a memory access with a non-memory instruction");
1519
George Burgess IVb42b7622016-03-11 19:34:03 +00001520 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001521 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001522 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001523 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001524 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001525 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001526 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001527}
1528
George Burgess IVe1100f52016-02-02 22:46:49 +00001529/// \brief Returns true if \p Replacer dominates \p Replacee .
1530bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1531 const MemoryAccess *Replacee) const {
1532 if (isa<MemoryUseOrDef>(Replacee))
1533 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1534 const auto *MP = cast<MemoryPhi>(Replacee);
1535 // For a phi node, the use occurs in the predecessor block of the phi node.
1536 // Since we may occur multiple times in the phi node, we have to check each
1537 // operand to ensure Replacer dominates each operand where Replacee occurs.
1538 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001539 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001540 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1541 return false;
1542 }
1543 return true;
1544}
1545
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001546/// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001547void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1548 assert(MA->use_empty() &&
1549 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001550 BlockNumbering.erase(MA);
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001551 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
1552 MUD->setDefiningAccess(nullptr);
1553 // Invalidate our walker's cache if necessary
1554 if (!isa<MemoryUse>(MA))
1555 Walker->invalidateInfo(MA);
1556 // The call below to erase will destroy MA, so we can't change the order we
1557 // are doing things here
1558 Value *MemoryInst;
1559 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1560 MemoryInst = MUD->getMemoryInst();
1561 } else {
1562 MemoryInst = MA->getBlock();
1563 }
Daniel Berlin5130cc82016-07-31 21:08:20 +00001564 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1565 if (VMA->second == MA)
1566 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001567}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001568
Daniel Berlin60ead052017-01-28 01:23:13 +00001569/// \brief Properly remove \p MA from all of MemorySSA's lists.
1570///
1571/// Because of the way the intrusive list and use lists work, it is important to
1572/// do removal in the right order.
1573/// ShouldDelete defaults to true, and will cause the memory access to also be
1574/// deleted, not just removed.
1575void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Daniel Berlind602e042017-01-25 20:56:19 +00001576 // The access list owns the reference, so we erase it from the non-owning list
1577 // first.
1578 if (!isa<MemoryUse>(MA)) {
1579 auto DefsIt = PerBlockDefs.find(MA->getBlock());
1580 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1581 Defs->remove(*MA);
1582 if (Defs->empty())
1583 PerBlockDefs.erase(DefsIt);
1584 }
1585
Daniel Berlin60ead052017-01-28 01:23:13 +00001586 // The erase call here will delete it. If we don't want it deleted, we call
1587 // remove instead.
George Burgess IVe0e6e482016-03-02 02:35:04 +00001588 auto AccessIt = PerBlockAccesses.find(MA->getBlock());
Daniel Berlinada263d2016-06-20 20:21:33 +00001589 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001590 if (ShouldDelete)
1591 Accesses->erase(MA);
1592 else
1593 Accesses->remove(MA);
1594
George Burgess IVe0e6e482016-03-02 02:35:04 +00001595 if (Accesses->empty())
1596 PerBlockAccesses.erase(AccessIt);
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001597}
1598
George Burgess IVe1100f52016-02-02 22:46:49 +00001599void MemorySSA::print(raw_ostream &OS) const {
1600 MemorySSAAnnotatedWriter Writer(this);
1601 F.print(OS, &Writer);
1602}
1603
Aaron Ballman615eb472017-10-15 14:32:27 +00001604#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Daniel Berlin78cbd282017-02-20 22:26:03 +00001605LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001606#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001607
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001608void MemorySSA::verifyMemorySSA() const {
1609 verifyDefUses(F);
1610 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001611 verifyOrdering(F);
Geoff Berrycdf53332016-08-08 17:52:01 +00001612 Walker->verify(this);
Daniel Berlin14300262016-06-21 18:39:20 +00001613}
1614
1615/// \brief Verify that the order and existence of MemoryAccesses matches the
1616/// order and existence of memory affecting instructions.
1617void MemorySSA::verifyOrdering(Function &F) const {
1618 // Walk all the blocks, comparing what the lookups think and what the access
1619 // lists think, as well as the order in the blocks vs the order in the access
1620 // lists.
1621 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001622 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001623 for (BasicBlock &B : F) {
1624 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001625 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001626 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001627 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001628 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001629 ActualDefs.push_back(Phi);
1630 }
1631
Daniel Berlin14300262016-06-21 18:39:20 +00001632 for (Instruction &I : B) {
1633 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001634 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1635 "We have memory affecting instructions "
1636 "in this block but they are not in the "
1637 "access list or defs list");
1638 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001639 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001640 if (isa<MemoryDef>(MA))
1641 ActualDefs.push_back(MA);
1642 }
Daniel Berlin14300262016-06-21 18:39:20 +00001643 }
1644 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001645 // accesses and an access list.
1646 // Same with defs.
1647 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001648 continue;
1649 assert(AL->size() == ActualAccesses.size() &&
1650 "We don't have the same number of accesses in the block as on the "
1651 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001652 assert((DL || ActualDefs.size() == 0) &&
1653 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001654 assert((!DL || DL->size() == ActualDefs.size()) &&
1655 "We don't have the same number of defs in the block as on the "
1656 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001657 auto ALI = AL->begin();
1658 auto AAI = ActualAccesses.begin();
1659 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1660 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1661 ++ALI;
1662 ++AAI;
1663 }
1664 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00001665 if (DL) {
1666 auto DLI = DL->begin();
1667 auto ADI = ActualDefs.begin();
1668 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1669 assert(&*DLI == *ADI && "Not the same defs in the same order");
1670 ++DLI;
1671 ++ADI;
1672 }
1673 }
1674 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00001675 }
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001676}
1677
George Burgess IVe1100f52016-02-02 22:46:49 +00001678/// \brief Verify the domination properties of MemorySSA by checking that each
1679/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001680void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001681#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001682 for (BasicBlock &B : F) {
1683 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001684 if (MemoryPhi *MP = getMemoryAccess(&B))
1685 for (const Use &U : MP->uses())
1686 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00001687
George Burgess IVe1100f52016-02-02 22:46:49 +00001688 for (Instruction &I : B) {
1689 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1690 if (!MD)
1691 continue;
1692
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001693 for (const Use &U : MD->uses())
1694 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00001695 }
1696 }
Daniel Berlin7af95872016-08-05 21:47:20 +00001697#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001698}
1699
1700/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
1701/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001702void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001703#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001704 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00001705 if (!Def)
1706 assert(isLiveOnEntryDef(Use) &&
1707 "Null def but use not point to live on entry def");
1708 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00001709 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00001710 "Did not find use in def's use list");
1711#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001712}
1713
1714/// \brief Verify the immediate use information, by walking all the memory
1715/// accesses and verifying that, for each use, it appears in the
1716/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001717void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001718 for (BasicBlock &B : F) {
1719 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00001720 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00001721 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1722 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00001723 "Incomplete MemoryPhi Node");
George Burgess IVe1100f52016-02-02 22:46:49 +00001724 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1725 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Daniel Berlin14300262016-06-21 18:39:20 +00001726 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001727
1728 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00001729 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1730 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00001731 }
1732 }
1733 }
1734}
1735
George Burgess IV66837ab2016-11-01 21:17:46 +00001736MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
1737 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
George Burgess IVe1100f52016-02-02 22:46:49 +00001738}
1739
1740MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
George Burgess IV66837ab2016-11-01 21:17:46 +00001741 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
George Burgess IVe1100f52016-02-02 22:46:49 +00001742}
1743
Daniel Berlin5c46b942016-07-19 22:49:43 +00001744/// Perform a local numbering on blocks so that instruction ordering can be
1745/// determined in constant time.
1746/// TODO: We currently just number in order. If we numbered by N, we could
1747/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1748/// log2(N) sequences of mixed before and after) without needing to invalidate
1749/// the numbering.
1750void MemorySSA::renumberBlock(const BasicBlock *B) const {
1751 // The pre-increment ensures the numbers really start at 1.
1752 unsigned long CurrentNumber = 0;
1753 const AccessList *AL = getBlockAccesses(B);
1754 assert(AL != nullptr && "Asking to renumber an empty block");
1755 for (const auto &I : *AL)
1756 BlockNumbering[&I] = ++CurrentNumber;
1757 BlockNumberingValid.insert(B);
1758}
1759
George Burgess IVe1100f52016-02-02 22:46:49 +00001760/// \brief Determine, for two memory accesses in the same block,
1761/// whether \p Dominator dominates \p Dominatee.
1762/// \returns True if \p Dominator dominates \p Dominatee.
1763bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1764 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00001765 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00001766
Daniel Berlin19860302016-07-19 23:08:08 +00001767 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00001768 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00001769 // A node dominates itself.
1770 if (Dominatee == Dominator)
1771 return true;
1772
1773 // When Dominatee is defined on function entry, it is not dominated by another
1774 // memory access.
1775 if (isLiveOnEntryDef(Dominatee))
1776 return false;
1777
1778 // When Dominator is defined on function entry, it dominates the other memory
1779 // access.
1780 if (isLiveOnEntryDef(Dominator))
1781 return true;
1782
Daniel Berlin5c46b942016-07-19 22:49:43 +00001783 if (!BlockNumberingValid.count(DominatorBlock))
1784 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00001785
Daniel Berlin5c46b942016-07-19 22:49:43 +00001786 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1787 // All numbers start with 1
1788 assert(DominatorNum != 0 && "Block was not numbered properly");
1789 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1790 assert(DominateeNum != 0 && "Block was not numbered properly");
1791 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00001792}
1793
George Burgess IV5f308972016-07-19 01:29:15 +00001794bool MemorySSA::dominates(const MemoryAccess *Dominator,
1795 const MemoryAccess *Dominatee) const {
1796 if (Dominator == Dominatee)
1797 return true;
1798
1799 if (isLiveOnEntryDef(Dominatee))
1800 return false;
1801
1802 if (Dominator->getBlock() != Dominatee->getBlock())
1803 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1804 return locallyDominates(Dominator, Dominatee);
1805}
1806
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001807bool MemorySSA::dominates(const MemoryAccess *Dominator,
1808 const Use &Dominatee) const {
1809 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1810 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1811 // The def must dominate the incoming block of the phi.
1812 if (UseBB != Dominator->getBlock())
1813 return DT->dominates(Dominator->getBlock(), UseBB);
1814 // If the UseBB and the DefBB are the same, compare locally.
1815 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1816 }
1817 // If it's not a PHI node use, the normal dominates can already handle it.
1818 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1819}
1820
George Burgess IVe1100f52016-02-02 22:46:49 +00001821const static char LiveOnEntryStr[] = "liveOnEntry";
1822
Reid Kleckner96ab8722017-05-18 17:24:10 +00001823void MemoryAccess::print(raw_ostream &OS) const {
1824 switch (getValueID()) {
1825 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1826 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1827 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1828 }
1829 llvm_unreachable("invalid value id");
1830}
1831
George Burgess IVe1100f52016-02-02 22:46:49 +00001832void MemoryDef::print(raw_ostream &OS) const {
1833 MemoryAccess *UO = getDefiningAccess();
1834
1835 OS << getID() << " = MemoryDef(";
1836 if (UO && UO->getID())
1837 OS << UO->getID();
1838 else
1839 OS << LiveOnEntryStr;
1840 OS << ')';
1841}
1842
1843void MemoryPhi::print(raw_ostream &OS) const {
1844 bool First = true;
1845 OS << getID() << " = MemoryPhi(";
1846 for (const auto &Op : operands()) {
1847 BasicBlock *BB = getIncomingBlock(Op);
1848 MemoryAccess *MA = cast<MemoryAccess>(Op);
1849 if (!First)
1850 OS << ',';
1851 else
1852 First = false;
1853
1854 OS << '{';
1855 if (BB->hasName())
1856 OS << BB->getName();
1857 else
1858 BB->printAsOperand(OS, false);
1859 OS << ',';
1860 if (unsigned ID = MA->getID())
1861 OS << ID;
1862 else
1863 OS << LiveOnEntryStr;
1864 OS << '}';
1865 }
1866 OS << ')';
1867}
1868
George Burgess IVe1100f52016-02-02 22:46:49 +00001869void MemoryUse::print(raw_ostream &OS) const {
1870 MemoryAccess *UO = getDefiningAccess();
1871 OS << "MemoryUse(";
1872 if (UO && UO->getID())
1873 OS << UO->getID();
1874 else
1875 OS << LiveOnEntryStr;
1876 OS << ')';
1877}
1878
1879void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00001880// Cannot completely remove virtual function even in release mode.
Aaron Ballman615eb472017-10-15 14:32:27 +00001881#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
George Burgess IVe1100f52016-02-02 22:46:49 +00001882 print(dbgs());
1883 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00001884#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001885}
1886
Chad Rosier232e29e2016-07-06 21:20:47 +00001887char MemorySSAPrinterLegacyPass::ID = 0;
1888
1889MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
1890 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
1891}
1892
1893void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
1894 AU.setPreservesAll();
1895 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00001896}
1897
1898bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
1899 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
1900 MSSA.print(dbgs());
1901 if (VerifyMemorySSA)
1902 MSSA.verifyMemorySSA();
1903 return false;
1904}
1905
Chandler Carruthdab4eae2016-11-23 17:53:26 +00001906AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00001907
Daniel Berlin1e98c042016-09-26 17:22:54 +00001908MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
1909 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00001910 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1911 auto &AA = AM.getResult<AAManager>(F);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001912 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00001913}
1914
Geoff Berryb96d3b22016-06-01 21:30:40 +00001915PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
1916 FunctionAnalysisManager &AM) {
1917 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00001918 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001919
1920 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00001921}
1922
Geoff Berryb96d3b22016-06-01 21:30:40 +00001923PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
1924 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00001925 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001926
1927 return PreservedAnalyses::all();
1928}
1929
1930char MemorySSAWrapperPass::ID = 0;
1931
1932MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
1933 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
1934}
1935
1936void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
1937
1938void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001939 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001940 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1941 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001942}
1943
Geoff Berryb96d3b22016-06-01 21:30:40 +00001944bool MemorySSAWrapperPass::runOnFunction(Function &F) {
1945 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1946 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1947 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00001948 return false;
1949}
1950
Geoff Berryb96d3b22016-06-01 21:30:40 +00001951void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00001952
Geoff Berryb96d3b22016-06-01 21:30:40 +00001953void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001954 MSSA->print(OS);
1955}
1956
George Burgess IVe1100f52016-02-02 22:46:49 +00001957MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
1958
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001959MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
1960 DominatorTree *D)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001961 : MemorySSAWalker(M), Walker(*M, *A, *D) {}
George Burgess IVe1100f52016-02-02 22:46:49 +00001962
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001963void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +00001964 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1965 MUD->resetOptimized();
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001966}
1967
George Burgess IVe1100f52016-02-02 22:46:49 +00001968/// \brief Walk the use-def chains starting at \p MA and find
1969/// the MemoryAccess that actually clobbers Loc.
1970///
1971/// \returns our clobbering memory access
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001972MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
1973 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +00001974 MemoryAccess *New = Walker.findClobber(StartingAccess, Q);
1975#ifdef EXPENSIVE_CHECKS
Daniel Berlind7a7ae02017-04-05 19:01:58 +00001976 MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q);
George Burgess IV5f308972016-07-19 01:29:15 +00001977 assert(NewNoCache == New && "Cache made us hand back a different result?");
Simon Pilgrim51693842017-06-11 12:49:29 +00001978 (void)NewNoCache;
George Burgess IV5f308972016-07-19 01:29:15 +00001979#endif
1980 if (AutoResetWalker)
1981 resetClobberWalker();
1982 return New;
George Burgess IVe1100f52016-02-02 22:46:49 +00001983}
1984
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001985MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00001986 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001987 if (isa<MemoryPhi>(StartingAccess))
1988 return StartingAccess;
1989
1990 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
1991 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
1992 return StartingUseOrDef;
1993
1994 Instruction *I = StartingUseOrDef->getMemoryInst();
1995
1996 // Conservatively, fences are always clobbers, so don't perform the walk if we
1997 // hit a fence.
David Majnemera940f362016-07-15 17:19:24 +00001998 if (!ImmutableCallSite(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00001999 return StartingUseOrDef;
2000
2001 UpwardsMemoryQuery Q;
2002 Q.OriginalAccess = StartingUseOrDef;
2003 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002004 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002005 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002006
George Burgess IVe1100f52016-02-02 22:46:49 +00002007 // Unlike the other function, do not walk to the def of a def, because we are
2008 // handed something we already believe is the clobbering access.
2009 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2010 ? StartingUseOrDef->getDefiningAccess()
2011 : StartingUseOrDef;
2012
2013 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002014 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2015 DEBUG(dbgs() << *StartingUseOrDef << "\n");
2016 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2017 DEBUG(dbgs() << *Clobber << "\n");
2018 return Clobber;
2019}
2020
2021MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002022MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2023 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2024 // If this is a MemoryPhi, we can't do anything.
2025 if (!StartingAccess)
2026 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002027
Daniel Berlincd2deac2016-10-20 20:13:45 +00002028 // If this is an already optimized use or def, return the optimized result.
2029 // Note: Currently, we do not store the optimized def result because we'd need
2030 // a separate field, since we can't use it as the defining access.
George Burgess IV6f49f4a2018-02-24 00:15:21 +00002031 if (StartingAccess->isOptimized())
2032 return StartingAccess->getOptimized();
Daniel Berlincd2deac2016-10-20 20:13:45 +00002033
George Burgess IV400ae402016-07-20 19:51:34 +00002034 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV5f308972016-07-19 01:29:15 +00002035 UpwardsMemoryQuery Q(I, StartingAccess);
David Majnemera940f362016-07-15 17:19:24 +00002036 // We can't sanely do anything with a fences, they conservatively
George Burgess IVe1100f52016-02-02 22:46:49 +00002037 // clobber all memory, and have no locations to get pointers from to
David Majnemera940f362016-07-15 17:19:24 +00002038 // try to disambiguate.
George Burgess IV5f308972016-07-19 01:29:15 +00002039 if (!Q.IsCall && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002040 return StartingAccess;
2041
George Burgess IV024f3d22016-08-03 19:57:02 +00002042 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2043 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
Daniel Berline33bc312017-04-04 23:43:10 +00002044 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
2045 MUD->setOptimized(LiveOnEntry);
George Burgess IV024f3d22016-08-03 19:57:02 +00002046 return LiveOnEntry;
2047 }
2048
George Burgess IVe1100f52016-02-02 22:46:49 +00002049 // Start with the thing we already think clobbers this location
2050 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2051
2052 // At this point, DefiningAccess may be the live on entry def.
2053 // If it is, we will not get a better result.
2054 if (MSSA->isLiveOnEntryDef(DefiningAccess))
2055 return DefiningAccess;
2056
2057 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002058 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2059 DEBUG(dbgs() << *DefiningAccess << "\n");
2060 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2061 DEBUG(dbgs() << *Result << "\n");
Daniel Berline33bc312017-04-04 23:43:10 +00002062 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
2063 MUD->setOptimized(Result);
George Burgess IVe1100f52016-02-02 22:46:49 +00002064
2065 return Result;
2066}
2067
George Burgess IVe1100f52016-02-02 22:46:49 +00002068MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002069DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002070 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2071 return Use->getDefiningAccess();
2072 return MA;
2073}
2074
2075MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002076 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002077 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2078 return Use->getDefiningAccess();
2079 return StartingAccess;
2080}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002081
2082void MemoryPhi::deleteMe(DerivedUser *Self) {
2083 delete static_cast<MemoryPhi *>(Self);
2084}
2085
2086void MemoryDef::deleteMe(DerivedUser *Self) {
2087 delete static_cast<MemoryDef *>(Self);
2088}
2089
2090void MemoryUse::deleteMe(DerivedUser *Self) {
2091 delete static_cast<MemoryUse *>(Self);
2092}