blob: 1880807da7eb16d11d0fbb1bf230eabe7fc95783 [file] [log] [blame]
Chris Lattnerd43023a2002-08-02 16:43:03 +00001//===- Dominators.cpp - Dominator Calculation -----------------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner081aabc2001-07-02 05:46:38 +00009//
Chris Lattnerd43023a2002-08-02 16:43:03 +000010// This file implements simple dominator construction algorithms for finding
11// forward dominators. Postdominators are available in libanalysis, but are not
12// included in libvmcore, because it's not needed. Forward dominators are
13// needed to support the Verifier pass.
Chris Lattner081aabc2001-07-02 05:46:38 +000014//
15//===----------------------------------------------------------------------===//
16
Chandler Carruth5ad5f152014-01-13 09:26:24 +000017#include "llvm/IR/Dominators.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000018#include "llvm/ADT/DepthFirstIterator.h"
Devang Patel5a1bd402007-03-27 20:50:46 +000019#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000020#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000021#include "llvm/IR/Instructions.h"
Chandler Carruth64764b42015-01-14 10:19:28 +000022#include "llvm/IR/PassManager.h"
Dan Gohman4dbb3012009-09-28 00:27:48 +000023#include "llvm/Support/CommandLine.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/Support/Debug.h"
Chandler Carruthe509db42014-01-13 10:52:56 +000025#include "llvm/Support/GenericDomTreeConstruction.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000026#include "llvm/Support/raw_ostream.h"
Chris Lattnerc5e0be62004-06-05 00:24:59 +000027#include <algorithm>
Chris Lattner189d19f2003-11-21 20:23:48 +000028using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000029
Dan Gohman4dbb3012009-09-28 00:27:48 +000030// Always verify dominfo if expensive checking is enabled.
Filipe Cabecinhas0da99372016-04-29 15:22:48 +000031#ifdef EXPENSIVE_CHECKS
Dan Gohmanb29cda92010-04-15 17:08:50 +000032static bool VerifyDomInfo = true;
Dan Gohman4dbb3012009-09-28 00:27:48 +000033#else
Dan Gohmanb29cda92010-04-15 17:08:50 +000034static bool VerifyDomInfo = false;
Dan Gohman4dbb3012009-09-28 00:27:48 +000035#endif
36static cl::opt<bool,true>
37VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
38 cl::desc("Verify dominator info (time consuming)"));
39
Rafael Espindolacc80cde2012-08-16 15:09:43 +000040bool BasicBlockEdge::isSingleEdge() const {
41 const TerminatorInst *TI = Start->getTerminator();
42 unsigned NumEdgesToEnd = 0;
43 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
44 if (TI->getSuccessor(i) == End)
45 ++NumEdgesToEnd;
46 if (NumEdgesToEnd >= 2)
47 return false;
48 }
49 assert(NumEdgesToEnd == 1);
50 return true;
Rafael Espindola11870772012-08-10 14:05:55 +000051}
52
Chris Lattnerc385beb2001-07-06 16:58:22 +000053//===----------------------------------------------------------------------===//
Owen Andersonf35a1db2007-04-15 08:47:27 +000054// DominatorTree Implementation
Chris Lattner00f51672003-12-07 00:38:08 +000055//===----------------------------------------------------------------------===//
56//
Owen Anderson84c357f2007-09-23 21:31:44 +000057// Provide public access to DominatorTree information. Implementation details
Chandler Carruthe509db42014-01-13 10:52:56 +000058// can be found in Dominators.h, GenericDomTree.h, and
59// GenericDomTreeConstruction.h.
Chris Lattner00f51672003-12-07 00:38:08 +000060//
61//===----------------------------------------------------------------------===//
62
Benjamin Kramera667d1a2015-07-13 17:21:31 +000063template class llvm::DomTreeNodeBase<BasicBlock>;
64template class llvm::DominatorTreeBase<BasicBlock>;
Owen Anderson41878012007-10-16 19:59:25 +000065
Benjamin Kramera667d1a2015-07-13 17:21:31 +000066template void llvm::Calculate<Function, BasicBlock *>(
Tim Shen8b58bdf2016-08-17 20:01:58 +000067 DominatorTreeBase<
68 typename std::remove_pointer<GraphTraits<BasicBlock *>::NodeRef>::type>
69 &DT,
70 Function &F);
Benjamin Kramera667d1a2015-07-13 17:21:31 +000071template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
Tim Shen8b58bdf2016-08-17 20:01:58 +000072 DominatorTreeBase<typename std::remove_pointer<
73 GraphTraits<Inverse<BasicBlock *>>::NodeRef>::type> &DT,
Benjamin Kramera667d1a2015-07-13 17:21:31 +000074 Function &F);
Rafael Espindola30616362014-02-14 22:36:16 +000075
Rafael Espindola94df2672012-02-26 02:19:19 +000076// dominates - Return true if Def dominates a use in User. This performs
77// the special checks necessary if Def and User are in the same basic block.
78// Note that Def doesn't dominate a use in Def itself!
79bool DominatorTree::dominates(const Instruction *Def,
80 const Instruction *User) const {
81 const BasicBlock *UseBB = User->getParent();
82 const BasicBlock *DefBB = Def->getParent();
Rafael Espindola082d4822012-02-18 19:46:02 +000083
Rafael Espindolaa53c46a2012-03-30 16:46:21 +000084 // Any unreachable use is dominated, even if Def == User.
85 if (!isReachableFromEntry(UseBB))
86 return true;
87
88 // Unreachable definitions don't dominate anything.
89 if (!isReachableFromEntry(DefBB))
90 return false;
Rafael Espindola082d4822012-02-18 19:46:02 +000091
Rafael Espindola94df2672012-02-26 02:19:19 +000092 // An instruction doesn't dominate a use in itself.
93 if (Def == User)
Chris Lattner22151ce2009-09-21 22:30:50 +000094 return false;
Rafael Espindola082d4822012-02-18 19:46:02 +000095
David Majnemer8a1c45d2015-12-12 05:38:55 +000096 // The value defined by an invoke dominates an instruction only if it
97 // dominates every instruction in UseBB.
98 // A PHI is dominated only if the instruction dominates every possible use in
99 // the UseBB.
100 if (isa<InvokeInst>(Def) || isa<PHINode>(User))
Rafael Espindola94df2672012-02-26 02:19:19 +0000101 return dominates(Def, UseBB);
102
103 if (DefBB != UseBB)
104 return dominates(DefBB, UseBB);
105
106 // Loop through the basic block until we find Def or User.
107 BasicBlock::const_iterator I = DefBB->begin();
108 for (; &*I != Def && &*I != User; ++I)
Chris Lattner22151ce2009-09-21 22:30:50 +0000109 /*empty*/;
Rafael Espindola082d4822012-02-18 19:46:02 +0000110
Rafael Espindola94df2672012-02-26 02:19:19 +0000111 return &*I == Def;
112}
113
114// true if Def would dominate a use in any instruction in UseBB.
115// note that dominates(Def, Def->getParent()) is false.
116bool DominatorTree::dominates(const Instruction *Def,
117 const BasicBlock *UseBB) const {
118 const BasicBlock *DefBB = Def->getParent();
119
Rafael Espindolaa53c46a2012-03-30 16:46:21 +0000120 // Any unreachable use is dominated, even if DefBB == UseBB.
121 if (!isReachableFromEntry(UseBB))
122 return true;
123
124 // Unreachable definitions don't dominate anything.
125 if (!isReachableFromEntry(DefBB))
126 return false;
Rafael Espindola94df2672012-02-26 02:19:19 +0000127
128 if (DefBB == UseBB)
129 return false;
130
David Majnemer8a1c45d2015-12-12 05:38:55 +0000131 // Invoke results are only usable in the normal destination, not in the
132 // exceptional destination.
David Majnemer0bc0eef2015-08-15 02:46:08 +0000133 if (const auto *II = dyn_cast<InvokeInst>(Def)) {
134 BasicBlock *NormalDest = II->getNormalDest();
135 BasicBlockEdge E(DefBB, NormalDest);
136 return dominates(E, UseBB);
137 }
Rafael Espindola94df2672012-02-26 02:19:19 +0000138
David Majnemer0bc0eef2015-08-15 02:46:08 +0000139 return dominates(DefBB, UseBB);
Rafael Espindola59564072012-08-07 17:30:46 +0000140}
141
142bool DominatorTree::dominates(const BasicBlockEdge &BBE,
143 const BasicBlock *UseBB) const {
Rafael Espindola9a167352012-08-17 18:21:28 +0000144 // Assert that we have a single edge. We could handle them by simply
145 // returning false, but since isSingleEdge is linear on the number of
146 // edges, the callers can normally handle them more efficiently.
Piotr Padlewski28ffcbe2015-09-02 19:59:59 +0000147 assert(BBE.isSingleEdge() &&
148 "This function is not efficient in handling multiple edges");
Rafael Espindola9a167352012-08-17 18:21:28 +0000149
Rafael Espindola59564072012-08-07 17:30:46 +0000150 // If the BB the edge ends in doesn't dominate the use BB, then the
151 // edge also doesn't.
152 const BasicBlock *Start = BBE.getStart();
153 const BasicBlock *End = BBE.getEnd();
154 if (!dominates(End, UseBB))
Rafael Espindola94df2672012-02-26 02:19:19 +0000155 return false;
156
Rafael Espindola59564072012-08-07 17:30:46 +0000157 // Simple case: if the end BB has a single predecessor, the fact that it
158 // dominates the use block implies that the edge also does.
159 if (End->getSinglePredecessor())
Rafael Espindola94df2672012-02-26 02:19:19 +0000160 return true;
161
162 // The normal edge from the invoke is critical. Conceptually, what we would
163 // like to do is split it and check if the new block dominates the use.
164 // With X being the new block, the graph would look like:
165 //
166 // DefBB
167 // /\ . .
168 // / \ . .
169 // / \ . .
170 // / \ | |
171 // A X B C
172 // | \ | /
173 // . \|/
174 // . NormalDest
175 // .
176 //
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000177 // Given the definition of dominance, NormalDest is dominated by X iff X
Rafael Espindola94df2672012-02-26 02:19:19 +0000178 // dominates all of NormalDest's predecessors (X, B, C in the example). X
179 // trivially dominates itself, so we only have to find if it dominates the
180 // other predecessors. Since the only way out of X is via NormalDest, X can
181 // only properly dominate a node if NormalDest dominates that node too.
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +0000182 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
183 PI != E; ++PI) {
184 const BasicBlock *BB = *PI;
Rafael Espindola59564072012-08-07 17:30:46 +0000185 if (BB == Start)
Rafael Espindola94df2672012-02-26 02:19:19 +0000186 continue;
187
Rafael Espindola59564072012-08-07 17:30:46 +0000188 if (!dominates(End, BB))
Rafael Espindola94df2672012-02-26 02:19:19 +0000189 return false;
190 }
191 return true;
Chris Lattner22151ce2009-09-21 22:30:50 +0000192}
Dan Gohman73273272012-04-12 23:31:46 +0000193
Chandler Carruth73523022014-01-13 13:07:17 +0000194bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
Rafael Espindola9a167352012-08-17 18:21:28 +0000195 // Assert that we have a single edge. We could handle them by simply
196 // returning false, but since isSingleEdge is linear on the number of
197 // edges, the callers can normally handle them more efficiently.
Piotr Padlewski28ffcbe2015-09-02 19:59:59 +0000198 assert(BBE.isSingleEdge() &&
199 "This function is not efficient in handling multiple edges");
Rafael Espindola9a167352012-08-17 18:21:28 +0000200
Rafael Espindola59564072012-08-07 17:30:46 +0000201 Instruction *UserInst = cast<Instruction>(U.getUser());
202 // A PHI in the end of the edge is dominated by it.
203 PHINode *PN = dyn_cast<PHINode>(UserInst);
204 if (PN && PN->getParent() == BBE.getEnd() &&
205 PN->getIncomingBlock(U) == BBE.getStart())
206 return true;
207
208 // Otherwise use the edge-dominates-block query, which
209 // handles the crazy critical edge cases properly.
210 const BasicBlock *UseBB;
211 if (PN)
212 UseBB = PN->getIncomingBlock(U);
213 else
214 UseBB = UserInst->getParent();
215 return dominates(BBE, UseBB);
216}
217
Chandler Carruth73523022014-01-13 13:07:17 +0000218bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
Rafael Espindola59564072012-08-07 17:30:46 +0000219 Instruction *UserInst = cast<Instruction>(U.getUser());
Dan Gohman73273272012-04-12 23:31:46 +0000220 const BasicBlock *DefBB = Def->getParent();
221
222 // Determine the block in which the use happens. PHI nodes use
223 // their operands on edges; simulate this by thinking of the use
224 // happening at the end of the predecessor block.
225 const BasicBlock *UseBB;
226 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
227 UseBB = PN->getIncomingBlock(U);
228 else
229 UseBB = UserInst->getParent();
230
231 // Any unreachable use is dominated, even if Def == User.
232 if (!isReachableFromEntry(UseBB))
233 return true;
234
235 // Unreachable definitions don't dominate anything.
236 if (!isReachableFromEntry(DefBB))
237 return false;
238
David Majnemer8a1c45d2015-12-12 05:38:55 +0000239 // Invoke instructions define their return values on the edges to their normal
240 // successors, so we have to handle them specially.
Dan Gohman73273272012-04-12 23:31:46 +0000241 // Among other things, this means they don't dominate anything in
242 // their own block, except possibly a phi, so we don't need to
243 // walk the block in any case.
244 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
Rafael Espindola59564072012-08-07 17:30:46 +0000245 BasicBlock *NormalDest = II->getNormalDest();
246 BasicBlockEdge E(DefBB, NormalDest);
247 return dominates(E, U);
Dan Gohman73273272012-04-12 23:31:46 +0000248 }
249
250 // If the def and use are in different blocks, do a simple CFG dominator
251 // tree query.
252 if (DefBB != UseBB)
253 return dominates(DefBB, UseBB);
254
255 // Ok, def and use are in the same block. If the def is an invoke, it
256 // doesn't dominate anything in the block. If it's a PHI, it dominates
257 // everything in the block.
258 if (isa<PHINode>(UserInst))
259 return true;
260
261 // Otherwise, just loop through the basic block until we find Def or User.
262 BasicBlock::const_iterator I = DefBB->begin();
263 for (; &*I != Def && &*I != UserInst; ++I)
264 /*empty*/;
265
266 return &*I != UserInst;
267}
268
269bool DominatorTree::isReachableFromEntry(const Use &U) const {
270 Instruction *I = dyn_cast<Instruction>(U.getUser());
271
272 // ConstantExprs aren't really reachable from the entry block, but they
273 // don't need to be treated like unreachable code either.
274 if (!I) return true;
275
276 // PHI nodes use their operands on their incoming edges.
277 if (PHINode *PN = dyn_cast<PHINode>(I))
278 return isReachableFromEntry(PN->getIncomingBlock(U));
279
280 // Everything else uses their operands in their own block.
281 return isReachableFromEntry(I->getParent());
282}
Chandler Carruth73523022014-01-13 13:07:17 +0000283
284void DominatorTree::verifyDomTree() const {
Chandler Carruth73523022014-01-13 13:07:17 +0000285 Function &F = *getRoot()->getParent();
286
287 DominatorTree OtherDT;
288 OtherDT.recalculate(F);
289 if (compare(OtherDT)) {
290 errs() << "DominatorTree is not up to date!\nComputed:\n";
291 print(errs());
292 errs() << "\nActual:\n";
293 OtherDT.print(errs());
294 abort();
295 }
296}
297
298//===----------------------------------------------------------------------===//
Chandler Carruth64764b42015-01-14 10:19:28 +0000299// DominatorTreeAnalysis and related pass implementations
300//===----------------------------------------------------------------------===//
301//
302// This implements the DominatorTreeAnalysis which is used with the new pass
303// manager. It also implements some methods from utility passes.
304//
305//===----------------------------------------------------------------------===//
306
Chandler Carruth164a2aa62016-06-17 00:11:01 +0000307DominatorTree DominatorTreeAnalysis::run(Function &F,
Sean Silva36e0d012016-08-09 00:28:15 +0000308 FunctionAnalysisManager &) {
Chandler Carruth64764b42015-01-14 10:19:28 +0000309 DominatorTree DT;
310 DT.recalculate(F);
311 return DT;
312}
313
Chandler Carruthdab4eae2016-11-23 17:53:26 +0000314AnalysisKey DominatorTreeAnalysis::Key;
NAKAMURA Takumidf0cd722016-02-28 17:17:00 +0000315
Chandler Carruth64764b42015-01-14 10:19:28 +0000316DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
317
318PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
Chandler Carruthb47f8012016-03-11 11:05:24 +0000319 FunctionAnalysisManager &AM) {
Chandler Carruth64764b42015-01-14 10:19:28 +0000320 OS << "DominatorTree for function: " << F.getName() << "\n";
Chandler Carruthb47f8012016-03-11 11:05:24 +0000321 AM.getResult<DominatorTreeAnalysis>(F).print(OS);
Chandler Carruth64764b42015-01-14 10:19:28 +0000322
323 return PreservedAnalyses::all();
324}
325
326PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
Chandler Carruthb47f8012016-03-11 11:05:24 +0000327 FunctionAnalysisManager &AM) {
328 AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree();
Chandler Carruth64764b42015-01-14 10:19:28 +0000329
330 return PreservedAnalyses::all();
331}
332
333//===----------------------------------------------------------------------===//
Chandler Carruth73523022014-01-13 13:07:17 +0000334// DominatorTreeWrapperPass Implementation
335//===----------------------------------------------------------------------===//
336//
Chandler Carruth64764b42015-01-14 10:19:28 +0000337// The implementation details of the wrapper pass that holds a DominatorTree
338// suitable for use with the legacy pass manager.
Chandler Carruth73523022014-01-13 13:07:17 +0000339//
340//===----------------------------------------------------------------------===//
341
342char DominatorTreeWrapperPass::ID = 0;
343INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
344 "Dominator Tree Construction", true, true)
345
346bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
347 DT.recalculate(F);
348 return false;
349}
350
Adam Nemete340f852015-05-06 08:18:41 +0000351void DominatorTreeWrapperPass::verifyAnalysis() const {
352 if (VerifyDomInfo)
353 DT.verifyDomTree();
354}
Chandler Carruth73523022014-01-13 13:07:17 +0000355
356void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
357 DT.print(OS);
358}
359