blob: 57a999bea9d56328bf70e493bc7f0fd8709fb486 [file] [log] [blame]
Duncan Sandsdea551c2011-07-28 14:17:11 +00001//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Duncan Sandsdea551c2011-07-28 14:17:11 +000010#include "llvm/ADT/SCCIterator.h"
Tim Shen608ca252016-08-22 21:59:26 +000011#include "TestGraph.h"
Chandler Carruth9a67b072017-06-06 11:06:56 +000012#include "gtest/gtest.h"
Duncan P. N. Exon Smith91d3cfe2016-04-05 20:45:04 +000013#include <limits.h>
Duncan Sandsdea551c2011-07-28 14:17:11 +000014
15using namespace llvm;
16
17namespace llvm {
18
Duncan Sandsdea551c2011-07-28 14:17:11 +000019TEST(SCCIteratorTest, AllSmallGraphs) {
20 // Test SCC computation against every graph with NUM_NODES nodes or less.
21 // Since SCC considers every node to have an implicit self-edge, we only
22 // create graphs for which every node has a self-edge.
23#define NUM_NODES 4
24#define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
Duncan Sandsbe64bbf2011-07-29 07:50:02 +000025 typedef Graph<NUM_NODES> GT;
Duncan Sandsdea551c2011-07-28 14:17:11 +000026
Duncan Sandsbe64bbf2011-07-29 07:50:02 +000027 /// Enumerate all graphs using NUM_GRAPHS bits.
Gabor Horvathfee04342015-03-16 09:53:42 +000028 static_assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT, "Too many graphs!");
Duncan Sandsbe64bbf2011-07-29 07:50:02 +000029 for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
30 ++GraphDescriptor) {
Duncan Sandsdea551c2011-07-28 14:17:11 +000031 GT G;
32
33 // Add edges as specified by the descriptor.
Duncan Sands251daee2011-07-28 14:37:53 +000034 unsigned DescriptorCopy = GraphDescriptor;
Duncan Sandsdea551c2011-07-28 14:17:11 +000035 for (unsigned i = 0; i != NUM_NODES; ++i)
36 for (unsigned j = 0; j != NUM_NODES; ++j) {
37 // Always add a self-edge.
38 if (i == j) {
39 G.AddEdge(i, j);
40 continue;
41 }
42 if (DescriptorCopy & 1)
43 G.AddEdge(i, j);
44 DescriptorCopy >>= 1;
45 }
46
47 // Test the SCC logic on this graph.
48
49 /// NodesInSomeSCC - Those nodes which are in some SCC.
50 GT::NodeSubset NodesInSomeSCC;
51
52 for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
Duncan P. N. Exon Smithd2b2fac2014-04-25 18:24:50 +000053 const std::vector<GT::NodeType *> &SCC = *I;
Duncan Sandsdea551c2011-07-28 14:17:11 +000054
55 // Get the nodes in this SCC as a NodeSubset rather than a vector.
56 GT::NodeSubset NodesInThisSCC;
57 for (unsigned i = 0, e = SCC.size(); i != e; ++i)
58 NodesInThisSCC.AddNode(SCC[i]->first);
59
60 // There should be at least one node in every SCC.
61 EXPECT_FALSE(NodesInThisSCC.isEmpty());
62
63 // Check that every node in the SCC is reachable from every other node in
64 // the SCC.
65 for (unsigned i = 0; i != NUM_NODES; ++i)
Galina Kistanovafcae62d2017-06-15 21:00:40 +000066 if (NodesInThisSCC.count(i)) {
Duncan Sandsdea551c2011-07-28 14:17:11 +000067 EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
Galina Kistanovafcae62d2017-06-15 21:00:40 +000068 }
Duncan Sandsdea551c2011-07-28 14:17:11 +000069
70 // OK, now that we now that every node in the SCC is reachable from every
71 // other, this means that the set of nodes reachable from any node in the
72 // SCC is the same as the set of nodes reachable from every node in the
73 // SCC. Check that for every node N not in the SCC but reachable from the
74 // SCC, no element of the SCC is reachable from N.
75 for (unsigned i = 0; i != NUM_NODES; ++i)
76 if (NodesInThisSCC.count(i)) {
77 GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
78 GT::NodeSubset ReachableButNotInSCC =
79 NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
80
81 for (unsigned j = 0; j != NUM_NODES; ++j)
Galina Kistanovafcae62d2017-06-15 21:00:40 +000082 if (ReachableButNotInSCC.count(j)) {
Duncan Sandsdea551c2011-07-28 14:17:11 +000083 EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
Galina Kistanovafcae62d2017-06-15 21:00:40 +000084 }
Duncan Sandsdea551c2011-07-28 14:17:11 +000085
86 // The result must be the same for all other nodes in this SCC, so
87 // there is no point in checking them.
88 break;
89 }
90
91 // This is indeed a SCC: a maximal set of nodes for which each node is
92 // reachable from every other.
93
94 // Check that we didn't already see this SCC.
95 EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
96
97 NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
Duncan Sands6d0f0ff2011-07-28 14:33:01 +000098
99 // Check a property that is specific to the LLVM SCC iterator and
100 // guaranteed by it: if a node in SCC S1 has an edge to a node in
101 // SCC S2, then S1 is visited *after* S2. This means that the set
102 // of nodes reachable from this SCC must be contained either in the
103 // union of this SCC and all previously visited SCC's.
104
105 for (unsigned i = 0; i != NUM_NODES; ++i)
106 if (NodesInThisSCC.count(i)) {
107 GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
108 EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
109 // The result must be the same for all other nodes in this SCC, so
110 // there is no point in checking them.
111 break;
112 }
Duncan Sandsdea551c2011-07-28 14:17:11 +0000113 }
114
115 // Finally, check that the nodes in some SCC are exactly those that are
116 // reachable from the initial node.
117 EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
Duncan Sandsbe64bbf2011-07-29 07:50:02 +0000118 }
Duncan Sandsdea551c2011-07-28 14:17:11 +0000119}
120
Duncan P. N. Exon Smith91d3cfe2016-04-05 20:45:04 +0000121}