blob: 9436f23345b6e7328d1849edc4a4df5590ea9964 [file] [log] [blame]
Chris Lattnere6794492002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerca081252001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohmand78c4002008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Chris Lattnerca081252001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner07418422007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattnerca081252001-12-14 16:52:21 +000017// into:
Chris Lattner07418422007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattnerca081252001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner216c7b82003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattnerbfb1d032003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencer266e42b2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnerede3fe02003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattner7515cab2004-11-14 19:13:23 +000032// ... etc.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000033//
Chris Lattnerca081252001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattnerb4cfa7f2002-05-07 20:03:00 +000036#include "llvm/Transforms/Scalar.h"
Chris Lattner35522b72010-01-04 07:12:23 +000037#include "InstCombine.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000038#include "llvm-c/Initialization.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/ADT/StringSwitch.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000042#include "llvm/Analysis/AssumptionCache.h"
David Majnemer7e2b9882014-11-03 21:55:12 +000043#include "llvm/Analysis/CFG.h"
Chris Lattner024f4ab2007-01-30 23:46:24 +000044#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnerc1f19072009-11-09 23:28:39 +000045#include "llvm/Analysis/InstructionSimplify.h"
David Majnemer7e2b9882014-11-03 21:55:12 +000046#include "llvm/Analysis/LoopInfo.h"
Victor Hernandezf390e042009-10-27 20:05:49 +000047#include "llvm/Analysis/MemoryBuiltins.h"
Sanjay Patel58814442014-07-09 16:34:54 +000048#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000049#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000050#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000051#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000052#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000053#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000054#include "llvm/IR/PatternMatch.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000055#include "llvm/IR/ValueHandle.h"
Meador Inge193e0352012-11-13 04:16:17 +000056#include "llvm/Support/CommandLine.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000057#include "llvm/Support/Debug.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000058#include "llvm/Analysis/TargetLibraryInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000059#include "llvm/Transforms/Utils/Local.h"
Chris Lattner053c0932002-05-14 15:24:07 +000060#include <algorithm>
Torok Edwinab207842008-04-20 08:33:11 +000061#include <climits>
Chris Lattner8427bff2003-12-07 01:24:23 +000062using namespace llvm;
Chris Lattnerd4252a72004-07-30 07:50:03 +000063using namespace llvm::PatternMatch;
Brian Gaeke960707c2003-11-11 22:41:34 +000064
Chandler Carruth964daaa2014-04-22 02:55:47 +000065#define DEBUG_TYPE "instcombine"
66
Chris Lattner79a42ac2006-12-19 21:40:18 +000067STATISTIC(NumCombined , "Number of insts combined");
68STATISTIC(NumConstProp, "Number of constant folds");
69STATISTIC(NumDeadInst , "Number of dead inst eliminated");
Chris Lattner79a42ac2006-12-19 21:40:18 +000070STATISTIC(NumSunkInst , "Number of instructions sunk");
Duncan Sandsfbb9ac32010-12-22 13:36:08 +000071STATISTIC(NumExpand, "Number of expansions");
Duncan Sands3547d2e2010-12-22 09:40:51 +000072STATISTIC(NumFactor , "Number of factorizations");
73STATISTIC(NumReassoc , "Number of reassociations");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000074
Nuno Lopesa2f6cec2012-05-22 17:19:09 +000075Value *InstCombiner::EmitGEPOffset(User *GEP) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +000076 return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
Nuno Lopesa2f6cec2012-05-22 17:19:09 +000077}
78
Chris Lattner1559bed2009-11-10 07:23:37 +000079/// ShouldChangeType - Return true if it is desirable to convert a computation
80/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
81/// type for example, or from a smaller to a larger illegal type.
Chris Lattner229907c2011-07-18 04:54:35 +000082bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
Duncan Sands19d0b472010-02-16 11:11:14 +000083 assert(From->isIntegerTy() && To->isIntegerTy());
Jakub Staszakcfc46f82012-05-06 13:52:31 +000084
Rafael Espindola37dc9e12014-02-21 00:06:31 +000085 // If we don't have DL, we don't know if the source/dest are legal.
86 if (!DL) return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +000087
Chris Lattner1559bed2009-11-10 07:23:37 +000088 unsigned FromWidth = From->getPrimitiveSizeInBits();
89 unsigned ToWidth = To->getPrimitiveSizeInBits();
Rafael Espindola37dc9e12014-02-21 00:06:31 +000090 bool FromLegal = DL->isLegalInteger(FromWidth);
91 bool ToLegal = DL->isLegalInteger(ToWidth);
Jakub Staszakcfc46f82012-05-06 13:52:31 +000092
Chris Lattner1559bed2009-11-10 07:23:37 +000093 // If this is a legal integer from type, and the result would be an illegal
94 // type, don't do the transformation.
95 if (FromLegal && !ToLegal)
96 return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +000097
Chris Lattner1559bed2009-11-10 07:23:37 +000098 // Otherwise, if both are illegal, do not increase the size of the result. We
99 // do allow things like i160 -> i64, but not i64 -> i160.
100 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
101 return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000102
Chris Lattner1559bed2009-11-10 07:23:37 +0000103 return true;
104}
105
Nick Lewyckyde492782011-08-14 01:45:19 +0000106// Return true, if No Signed Wrap should be maintained for I.
107// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
108// where both B and C should be ConstantInts, results in a constant that does
109// not overflow. This function only handles the Add and Sub opcodes. For
110// all other opcodes, the function conservatively returns false.
111static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
112 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
113 if (!OBO || !OBO->hasNoSignedWrap()) {
114 return false;
115 }
116
117 // We reason about Add and Sub Only.
118 Instruction::BinaryOps Opcode = I.getOpcode();
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000119 if (Opcode != Instruction::Add &&
Nick Lewyckyde492782011-08-14 01:45:19 +0000120 Opcode != Instruction::Sub) {
121 return false;
122 }
123
124 ConstantInt *CB = dyn_cast<ConstantInt>(B);
125 ConstantInt *CC = dyn_cast<ConstantInt>(C);
126
127 if (!CB || !CC) {
128 return false;
129 }
130
131 const APInt &BVal = CB->getValue();
132 const APInt &CVal = CC->getValue();
133 bool Overflow = false;
134
135 if (Opcode == Instruction::Add) {
136 BVal.sadd_ov(CVal, Overflow);
137 } else {
138 BVal.ssub_ov(CVal, Overflow);
139 }
140
141 return !Overflow;
142}
143
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000144/// Conservatively clears subclassOptionalData after a reassociation or
145/// commutation. We preserve fast-math flags when applicable as they can be
146/// preserved.
147static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
148 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
149 if (!FPMO) {
150 I.clearSubclassOptionalData();
151 return;
152 }
153
154 FastMathFlags FMF = I.getFastMathFlags();
155 I.clearSubclassOptionalData();
156 I.setFastMathFlags(FMF);
157}
158
Duncan Sands641baf12010-11-13 15:10:37 +0000159/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
160/// operators which are associative or commutative:
161//
162// Commutative operators:
Chris Lattner260ab202002-04-18 17:39:14 +0000163//
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000164// 1. Order operands such that they are listed from right (least complex) to
165// left (most complex). This puts constants before unary operators before
166// binary operators.
167//
Duncan Sands641baf12010-11-13 15:10:37 +0000168// Associative operators:
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000169//
Duncan Sands641baf12010-11-13 15:10:37 +0000170// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
171// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
172//
173// Associative and commutative operators:
174//
175// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
176// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
177// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
178// if C1 and C2 are constants.
179//
180bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000181 Instruction::BinaryOps Opcode = I.getOpcode();
Duncan Sands641baf12010-11-13 15:10:37 +0000182 bool Changed = false;
Chris Lattner7fb29e12003-03-11 00:12:48 +0000183
Duncan Sands641baf12010-11-13 15:10:37 +0000184 do {
185 // Order operands such that they are listed from right (least complex) to
186 // left (most complex). This puts constants before unary operators before
187 // binary operators.
188 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
189 getComplexity(I.getOperand(1)))
190 Changed = !I.swapOperands();
191
192 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
193 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
194
195 if (I.isAssociative()) {
196 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
197 if (Op0 && Op0->getOpcode() == Opcode) {
198 Value *A = Op0->getOperand(0);
199 Value *B = Op0->getOperand(1);
200 Value *C = I.getOperand(1);
201
202 // Does "B op C" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000203 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000204 // It simplifies to V. Form "A op V".
205 I.setOperand(0, A);
206 I.setOperand(1, V);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000207 // Conservatively clear the optional flags, since they may not be
208 // preserved by the reassociation.
Nick Lewyckyae13df62011-08-14 03:41:33 +0000209 if (MaintainNoSignedWrap(I, B, C) &&
Bill Wendlingea6397f2012-07-19 00:11:40 +0000210 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
Nick Lewyckyae13df62011-08-14 03:41:33 +0000211 // Note: this is only valid because SimplifyBinOp doesn't look at
212 // the operands to Op0.
Nick Lewyckyde492782011-08-14 01:45:19 +0000213 I.clearSubclassOptionalData();
214 I.setHasNoSignedWrap(true);
215 } else {
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000216 ClearSubclassDataAfterReassociation(I);
Nick Lewyckyde492782011-08-14 01:45:19 +0000217 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000218
Duncan Sands641baf12010-11-13 15:10:37 +0000219 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000220 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000221 continue;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000222 }
Duncan Sands641baf12010-11-13 15:10:37 +0000223 }
224
225 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
226 if (Op1 && Op1->getOpcode() == Opcode) {
227 Value *A = I.getOperand(0);
228 Value *B = Op1->getOperand(0);
229 Value *C = Op1->getOperand(1);
230
231 // Does "A op B" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000232 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000233 // It simplifies to V. Form "V op C".
234 I.setOperand(0, V);
235 I.setOperand(1, C);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000236 // Conservatively clear the optional flags, since they may not be
237 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000238 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000239 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000240 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000241 continue;
242 }
243 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000244 }
Duncan Sands641baf12010-11-13 15:10:37 +0000245
246 if (I.isAssociative() && I.isCommutative()) {
247 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
248 if (Op0 && Op0->getOpcode() == Opcode) {
249 Value *A = Op0->getOperand(0);
250 Value *B = Op0->getOperand(1);
251 Value *C = I.getOperand(1);
252
253 // Does "C op A" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000254 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000255 // It simplifies to V. Form "V op B".
256 I.setOperand(0, V);
257 I.setOperand(1, B);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000258 // Conservatively clear the optional flags, since they may not be
259 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000260 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000261 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000262 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000263 continue;
264 }
265 }
266
267 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
268 if (Op1 && Op1->getOpcode() == Opcode) {
269 Value *A = I.getOperand(0);
270 Value *B = Op1->getOperand(0);
271 Value *C = Op1->getOperand(1);
272
273 // Does "C op A" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000274 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000275 // It simplifies to V. Form "B op V".
276 I.setOperand(0, B);
277 I.setOperand(1, V);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000278 // Conservatively clear the optional flags, since they may not be
279 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000280 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000281 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000282 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000283 continue;
284 }
285 }
286
287 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
288 // if C1 and C2 are constants.
289 if (Op0 && Op1 &&
290 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
291 isa<Constant>(Op0->getOperand(1)) &&
292 isa<Constant>(Op1->getOperand(1)) &&
293 Op0->hasOneUse() && Op1->hasOneUse()) {
294 Value *A = Op0->getOperand(0);
295 Constant *C1 = cast<Constant>(Op0->getOperand(1));
296 Value *B = Op1->getOperand(0);
297 Constant *C2 = cast<Constant>(Op1->getOperand(1));
298
299 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
Nick Lewyckyde492782011-08-14 01:45:19 +0000300 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
Owen Anderson1664dc82014-01-20 07:44:53 +0000301 if (isa<FPMathOperator>(New)) {
302 FastMathFlags Flags = I.getFastMathFlags();
303 Flags &= Op0->getFastMathFlags();
304 Flags &= Op1->getFastMathFlags();
305 New->setFastMathFlags(Flags);
306 }
Eli Friedman35211c62011-05-27 00:19:40 +0000307 InsertNewInstWith(New, I);
Eli Friedman41e509a2011-05-18 23:58:37 +0000308 New->takeName(Op1);
Duncan Sands641baf12010-11-13 15:10:37 +0000309 I.setOperand(0, New);
310 I.setOperand(1, Folded);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000311 // Conservatively clear the optional flags, since they may not be
312 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000313 ClearSubclassDataAfterReassociation(I);
Nick Lewyckyde492782011-08-14 01:45:19 +0000314
Duncan Sands641baf12010-11-13 15:10:37 +0000315 Changed = true;
316 continue;
317 }
318 }
319
320 // No further simplifications.
321 return Changed;
322 } while (1);
Chris Lattner260ab202002-04-18 17:39:14 +0000323}
Chris Lattnerca081252001-12-14 16:52:21 +0000324
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000325/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
Duncan Sands22df7412010-11-23 15:25:34 +0000326/// "(X LOp Y) ROp (X LOp Z)".
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000327static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
328 Instruction::BinaryOps ROp) {
329 switch (LOp) {
330 default:
331 return false;
332
333 case Instruction::And:
334 // And distributes over Or and Xor.
335 switch (ROp) {
336 default:
337 return false;
338 case Instruction::Or:
339 case Instruction::Xor:
340 return true;
341 }
342
343 case Instruction::Mul:
344 // Multiplication distributes over addition and subtraction.
345 switch (ROp) {
346 default:
347 return false;
348 case Instruction::Add:
349 case Instruction::Sub:
350 return true;
351 }
352
353 case Instruction::Or:
354 // Or distributes over And.
355 switch (ROp) {
356 default:
357 return false;
358 case Instruction::And:
359 return true;
360 }
361 }
362}
363
364/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
365/// "(X ROp Z) LOp (Y ROp Z)".
366static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
367 Instruction::BinaryOps ROp) {
368 if (Instruction::isCommutative(ROp))
369 return LeftDistributesOverRight(ROp, LOp);
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000370
371 switch (LOp) {
372 default:
373 return false;
374 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
375 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
376 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
377 case Instruction::And:
378 case Instruction::Or:
379 case Instruction::Xor:
380 switch (ROp) {
381 default:
382 return false;
383 case Instruction::Shl:
384 case Instruction::LShr:
385 case Instruction::AShr:
386 return true;
387 }
388 }
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000389 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
390 // but this requires knowing that the addition does not overflow and other
391 // such subtleties.
392 return false;
393}
394
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000395/// This function returns identity value for given opcode, which can be used to
396/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
397static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
398 if (isa<Constant>(V))
399 return nullptr;
400
401 if (OpCode == Instruction::Mul)
402 return ConstantInt::get(V->getType(), 1);
403
404 // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
405
406 return nullptr;
407}
408
409/// This function factors binary ops which can be combined using distributive
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000410/// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
411/// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
412/// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
413/// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
414/// RHS to 4.
Benjamin Kramer6cbe6702014-07-07 14:47:51 +0000415static Instruction::BinaryOps
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000416getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
417 BinaryOperator *Op, Value *&LHS, Value *&RHS) {
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000418 if (!Op)
419 return Instruction::BinaryOpsEnd;
420
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000421 LHS = Op->getOperand(0);
422 RHS = Op->getOperand(1);
423
424 switch (TopLevelOpcode) {
425 default:
426 return Op->getOpcode();
427
428 case Instruction::Add:
429 case Instruction::Sub:
430 if (Op->getOpcode() == Instruction::Shl) {
431 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
432 // The multiplier is really 1 << CST.
433 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
434 return Instruction::Mul;
435 }
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000436 }
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000437 return Op->getOpcode();
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000438 }
439
440 // TODO: We can add other conversions e.g. shr => div etc.
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000441}
442
443/// This tries to simplify binary operations by factorizing out common terms
444/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
445static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
446 const DataLayout *DL, BinaryOperator &I,
447 Instruction::BinaryOps InnerOpcode, Value *A,
448 Value *B, Value *C, Value *D) {
449
450 // If any of A, B, C, D are null, we can not factor I, return early.
451 // Checking A and C should be enough.
452 if (!A || !C || !B || !D)
453 return nullptr;
454
455 Value *SimplifiedInst = nullptr;
456 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
457 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
458
459 // Does "X op' Y" always equal "Y op' X"?
460 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
461
462 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
463 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
464 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
465 // commutative case, "(A op' B) op (C op' A)"?
466 if (A == C || (InnerCommutative && A == D)) {
467 if (A != C)
468 std::swap(C, D);
469 // Consider forming "A op' (B op D)".
470 // If "B op D" simplifies then it can be formed with no cost.
471 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
472 // If "B op D" doesn't simplify then only go on if both of the existing
473 // operations "A op' B" and "C op' D" will be zapped as no longer used.
474 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
475 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
476 if (V) {
477 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
478 }
479 }
480
481 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
482 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
483 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
484 // commutative case, "(A op' B) op (B op' D)"?
485 if (B == D || (InnerCommutative && B == C)) {
486 if (B != D)
487 std::swap(C, D);
488 // Consider forming "(A op C) op' B".
489 // If "A op C" simplifies then it can be formed with no cost.
490 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
491
492 // If "A op C" doesn't simplify then only go on if both of the existing
493 // operations "A op' B" and "C op' D" will be zapped as no longer used.
494 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
495 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
496 if (V) {
497 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
498 }
499 }
500
501 if (SimplifiedInst) {
502 ++NumFactor;
503 SimplifiedInst->takeName(&I);
504
505 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
506 // TODO: Check for NUW.
507 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
508 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
509 bool HasNSW = false;
510 if (isa<OverflowingBinaryOperator>(&I))
511 HasNSW = I.hasNoSignedWrap();
512
513 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
514 if (isa<OverflowingBinaryOperator>(Op0))
515 HasNSW &= Op0->hasNoSignedWrap();
516
517 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
518 if (isa<OverflowingBinaryOperator>(Op1))
519 HasNSW &= Op1->hasNoSignedWrap();
520 BO->setHasNoSignedWrap(HasNSW);
521 }
522 }
523 }
524 return SimplifiedInst;
525}
526
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000527/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
528/// which some other binary operation distributes over either by factorizing
529/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
530/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
531/// a win). Returns the simplified value, or null if it didn't simplify.
532Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
533 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
534 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
535 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000536
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000537 // Factorization.
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000538 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000539 auto TopLevelOpcode = I.getOpcode();
540 auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
541 auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000542
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000543 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
544 // a common term.
545 if (LHSOpcode == RHSOpcode) {
546 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
547 return V;
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000548 }
549
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000550 // The instruction has the form "(A op' B) op (C)". Try to factorize common
551 // term.
552 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
553 getIdentityValue(LHSOpcode, RHS)))
554 return V;
555
556 // The instruction has the form "(B) op (C op' D)". Try to factorize common
557 // term.
558 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
559 getIdentityValue(RHSOpcode, LHS), C, D))
560 return V;
561
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000562 // Expansion.
563 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
564 // The instruction has the form "(A op' B) op C". See if expanding it out
565 // to "(A op C) op' (B op C)" results in simplifications.
566 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
567 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
568
569 // Do "A op C" and "B op C" both simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000570 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
571 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000572 // They do! Return "L op' R".
573 ++NumExpand;
574 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
575 if ((L == A && R == B) ||
576 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
577 return Op0;
578 // Otherwise return "L op' R" if it simplifies.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000579 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000580 return V;
581 // Otherwise, create a new instruction.
582 C = Builder->CreateBinOp(InnerOpcode, L, R);
583 C->takeName(&I);
584 return C;
585 }
586 }
587
588 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
589 // The instruction has the form "A op (B op' C)". See if expanding it out
590 // to "(A op B) op' (A op C)" results in simplifications.
591 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
592 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
593
594 // Do "A op B" and "A op C" both simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000595 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
596 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000597 // They do! Return "L op' R".
598 ++NumExpand;
599 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
600 if ((L == B && R == C) ||
601 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
602 return Op1;
603 // Otherwise return "L op' R" if it simplifies.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000604 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000605 return V;
606 // Otherwise, create a new instruction.
607 A = Builder->CreateBinOp(InnerOpcode, L, R);
608 A->takeName(&I);
609 return A;
610 }
611 }
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000612
Craig Topperf40110f2014-04-25 05:29:35 +0000613 return nullptr;
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000614}
615
Chris Lattnerbb74e222003-03-10 23:06:50 +0000616// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
617// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattner9fa53de2002-05-06 16:49:18 +0000618//
Chris Lattner2188e402010-01-04 07:37:31 +0000619Value *InstCombiner::dyn_castNegVal(Value *V) const {
Owen Andersonbb2501b2009-07-13 22:18:28 +0000620 if (BinaryOperator::isNeg(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000621 return BinaryOperator::getNegArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000622
Chris Lattner9ad0d552004-12-14 20:08:06 +0000623 // Constants can be considered to be negated values if they can be folded.
624 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Owen Anderson487375e2009-07-29 18:55:55 +0000625 return ConstantExpr::getNeg(C);
Nick Lewycky3bf55122008-05-23 04:54:45 +0000626
Chris Lattner8213c8a2012-02-06 21:56:39 +0000627 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
628 if (C->getType()->getElementType()->isIntegerTy())
Owen Anderson487375e2009-07-29 18:55:55 +0000629 return ConstantExpr::getNeg(C);
Nick Lewycky3bf55122008-05-23 04:54:45 +0000630
Craig Topperf40110f2014-04-25 05:29:35 +0000631 return nullptr;
Chris Lattner9fa53de2002-05-06 16:49:18 +0000632}
633
Dan Gohmana5b96452009-06-04 22:49:04 +0000634// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
635// instruction if the LHS is a constant negative zero (which is the 'negate'
636// form).
637//
Shuxin Yangf0537ab2013-01-09 00:13:41 +0000638Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
639 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
Dan Gohmana5b96452009-06-04 22:49:04 +0000640 return BinaryOperator::getFNegArgument(V);
641
642 // Constants can be considered to be negated values if they can be folded.
643 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
Owen Anderson487375e2009-07-29 18:55:55 +0000644 return ConstantExpr::getFNeg(C);
Dan Gohmana5b96452009-06-04 22:49:04 +0000645
Chris Lattner8213c8a2012-02-06 21:56:39 +0000646 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
647 if (C->getType()->getElementType()->isFloatingPointTy())
Owen Anderson487375e2009-07-29 18:55:55 +0000648 return ConstantExpr::getFNeg(C);
Dan Gohmana5b96452009-06-04 22:49:04 +0000649
Craig Topperf40110f2014-04-25 05:29:35 +0000650 return nullptr;
Dan Gohmana5b96452009-06-04 22:49:04 +0000651}
652
Chris Lattner86102b82005-01-01 16:22:27 +0000653static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner183b3362004-04-09 19:05:30 +0000654 InstCombiner *IC) {
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000655 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattnerc8565392009-08-30 20:01:10 +0000656 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000657 }
Chris Lattner86102b82005-01-01 16:22:27 +0000658
Chris Lattner183b3362004-04-09 19:05:30 +0000659 // Figure out if the constant is the left or the right argument.
Chris Lattner86102b82005-01-01 16:22:27 +0000660 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
661 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattnerb8b97502003-08-13 19:01:45 +0000662
Chris Lattner183b3362004-04-09 19:05:30 +0000663 if (Constant *SOC = dyn_cast<Constant>(SO)) {
664 if (ConstIsRHS)
Owen Anderson487375e2009-07-29 18:55:55 +0000665 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
666 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner183b3362004-04-09 19:05:30 +0000667 }
668
669 Value *Op0 = SO, *Op1 = ConstOperand;
670 if (!ConstIsRHS)
671 std::swap(Op0, Op1);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000672
Owen Anderson1664dc82014-01-20 07:44:53 +0000673 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
674 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
Chris Lattner022a5822009-08-30 07:44:24 +0000675 SO->getName()+".op");
Owen Anderson1664dc82014-01-20 07:44:53 +0000676 Instruction *FPInst = dyn_cast<Instruction>(RI);
677 if (FPInst && isa<FPMathOperator>(FPInst))
678 FPInst->copyFastMathFlags(BO);
679 return RI;
680 }
Chris Lattner022a5822009-08-30 07:44:24 +0000681 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
682 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
683 SO->getName()+".cmp");
684 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
685 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
686 SO->getName()+".cmp");
687 llvm_unreachable("Unknown binary instruction type!");
Chris Lattner86102b82005-01-01 16:22:27 +0000688}
689
690// FoldOpIntoSelect - Given an instruction with a select as one operand and a
691// constant as the other operand, try to fold the binary operator into the
692// select arguments. This also works for Cast instructions, which obviously do
693// not have a second operand.
Chris Lattner2b295a02010-01-04 07:53:58 +0000694Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
Chris Lattner86102b82005-01-01 16:22:27 +0000695 // Don't modify shared select instructions
Craig Topperf40110f2014-04-25 05:29:35 +0000696 if (!SI->hasOneUse()) return nullptr;
Chris Lattner86102b82005-01-01 16:22:27 +0000697 Value *TV = SI->getOperand(1);
698 Value *FV = SI->getOperand(2);
699
700 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner374e6592005-04-21 05:43:13 +0000701 // Bool selects with constant operands can be folded to logical ops.
Craig Topperf40110f2014-04-25 05:29:35 +0000702 if (SI->getType()->isIntegerTy(1)) return nullptr;
Chris Lattner374e6592005-04-21 05:43:13 +0000703
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000704 // If it's a bitcast involving vectors, make sure it has the same number of
705 // elements on both sides.
706 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
Chris Lattner229907c2011-07-18 04:54:35 +0000707 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
708 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000709
710 // Verify that either both or neither are vectors.
Craig Topperf40110f2014-04-25 05:29:35 +0000711 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000712 // If vectors, verify that they have the same number of elements.
713 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
Craig Topperf40110f2014-04-25 05:29:35 +0000714 return nullptr;
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000715 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000716
Chris Lattner2b295a02010-01-04 07:53:58 +0000717 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
718 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
Chris Lattner86102b82005-01-01 16:22:27 +0000719
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000720 return SelectInst::Create(SI->getCondition(),
721 SelectTrueVal, SelectFalseVal);
Chris Lattner86102b82005-01-01 16:22:27 +0000722 }
Craig Topperf40110f2014-04-25 05:29:35 +0000723 return nullptr;
Chris Lattner183b3362004-04-09 19:05:30 +0000724}
725
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000726
Chris Lattnerfacb8672009-09-27 19:57:57 +0000727/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
728/// has a PHI node as operand #0, see if we can fold the instruction into the
729/// PHI (which is only possible if all operands to the PHI are constants).
Chris Lattnerb391e872009-09-27 20:46:36 +0000730///
Chris Lattnerea7131a2011-01-16 05:14:26 +0000731Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000732 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattner7515cab2004-11-14 19:13:23 +0000733 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner25ce2802011-01-16 04:37:29 +0000734 if (NumPHIValues == 0)
Craig Topperf40110f2014-04-25 05:29:35 +0000735 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000736
Chris Lattnerf4ca47b2011-01-21 05:08:26 +0000737 // We normally only transform phis with a single use. However, if a PHI has
738 // multiple uses and they are all the same operation, we can fold *all* of the
739 // uses into the PHI.
Chris Lattnerd55581d2011-01-16 05:28:59 +0000740 if (!PN->hasOneUse()) {
741 // Walk the use list for the instruction, comparing them to I.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000742 for (User *U : PN->users()) {
743 Instruction *UI = cast<Instruction>(U);
744 if (UI != &I && !I.isIdenticalTo(UI))
Craig Topperf40110f2014-04-25 05:29:35 +0000745 return nullptr;
Chris Lattnerb5e15d12011-01-21 05:29:50 +0000746 }
Chris Lattnerd55581d2011-01-16 05:28:59 +0000747 // Otherwise, we can replace *all* users with the new PHI we form.
748 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000749
Chris Lattnerfacb8672009-09-27 19:57:57 +0000750 // Check to see if all of the operands of the PHI are simple constants
751 // (constantint/constantfp/undef). If there is one non-constant value,
Chris Lattnerae289632009-09-27 20:18:49 +0000752 // remember the BB it is in. If there is more than one or if *it* is a PHI,
753 // bail out. We don't do arbitrary constant expressions here because moving
754 // their computation can be expensive without a cost model.
Craig Topperf40110f2014-04-25 05:29:35 +0000755 BasicBlock *NonConstBB = nullptr;
Chris Lattner25ce2802011-01-16 04:37:29 +0000756 for (unsigned i = 0; i != NumPHIValues; ++i) {
757 Value *InVal = PN->getIncomingValue(i);
758 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
759 continue;
760
Craig Topperf40110f2014-04-25 05:29:35 +0000761 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
762 if (NonConstBB) return nullptr; // More than one non-const value.
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000763
Chris Lattner25ce2802011-01-16 04:37:29 +0000764 NonConstBB = PN->getIncomingBlock(i);
Chris Lattnerff2e7372011-01-16 05:08:00 +0000765
766 // If the InVal is an invoke at the end of the pred block, then we can't
767 // insert a computation after it without breaking the edge.
768 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
769 if (II->getParent() == NonConstBB)
Craig Topperf40110f2014-04-25 05:29:35 +0000770 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000771
Chris Lattnerb5e15d12011-01-21 05:29:50 +0000772 // If the incoming non-constant value is in I's block, we will remove one
773 // instruction, but insert another equivalent one, leading to infinite
774 // instcombine.
Chandler Carruth5175b9a2015-01-20 08:35:24 +0000775 if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI))
Craig Topperf40110f2014-04-25 05:29:35 +0000776 return nullptr;
Chris Lattner25ce2802011-01-16 04:37:29 +0000777 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000778
Chris Lattner04689872006-09-09 22:02:56 +0000779 // If there is exactly one non-constant value, we can insert a copy of the
780 // operation in that block. However, if this is a critical edge, we would be
David Majnemer7e2b9882014-11-03 21:55:12 +0000781 // inserting the computation on some other paths (e.g. inside a loop). Only
Chris Lattner04689872006-09-09 22:02:56 +0000782 // do this if the pred block is unconditionally branching into the phi block.
Craig Topperf40110f2014-04-25 05:29:35 +0000783 if (NonConstBB != nullptr) {
Chris Lattner04689872006-09-09 22:02:56 +0000784 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
Craig Topperf40110f2014-04-25 05:29:35 +0000785 if (!BI || !BI->isUnconditional()) return nullptr;
Chris Lattner04689872006-09-09 22:02:56 +0000786 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000787
788 // Okay, we can do the transformation: create the new PHI node.
Eli Friedman41e509a2011-05-18 23:58:37 +0000789 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
Chris Lattner966526c2009-10-21 23:41:58 +0000790 InsertNewInstBefore(NewPN, *PN);
791 NewPN->takeName(PN);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000792
Chris Lattnerff2e7372011-01-16 05:08:00 +0000793 // If we are going to have to insert a new computation, do so right before the
794 // predecessors terminator.
795 if (NonConstBB)
796 Builder->SetInsertPoint(NonConstBB->getTerminator());
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000797
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000798 // Next, add all of the operands to the PHI.
Chris Lattnerfacb8672009-09-27 19:57:57 +0000799 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
800 // We only currently try to fold the condition of a select when it is a phi,
801 // not the true/false values.
Chris Lattnerae289632009-09-27 20:18:49 +0000802 Value *TrueV = SI->getTrueValue();
803 Value *FalseV = SI->getFalseValue();
Chris Lattner0261b5d2009-09-28 06:49:44 +0000804 BasicBlock *PhiTransBB = PN->getParent();
Chris Lattnerfacb8672009-09-27 19:57:57 +0000805 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerae289632009-09-27 20:18:49 +0000806 BasicBlock *ThisBB = PN->getIncomingBlock(i);
Chris Lattner0261b5d2009-09-28 06:49:44 +0000807 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
808 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Craig Topperf40110f2014-04-25 05:29:35 +0000809 Value *InV = nullptr;
Duncan P. N. Exon Smithce5f93e2013-12-06 21:48:36 +0000810 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
811 // even if currently isNullValue gives false.
812 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
813 if (InC && !isa<ConstantExpr>(InC))
Chris Lattnerae289632009-09-27 20:18:49 +0000814 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000815 else
816 InV = Builder->CreateSelect(PN->getIncomingValue(i),
817 TrueVInPred, FalseVInPred, "phitmp");
Chris Lattnerae289632009-09-27 20:18:49 +0000818 NewPN->addIncoming(InV, ThisBB);
Chris Lattnerfacb8672009-09-27 19:57:57 +0000819 }
Chris Lattnerff2e7372011-01-16 05:08:00 +0000820 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
821 Constant *C = cast<Constant>(I.getOperand(1));
822 for (unsigned i = 0; i != NumPHIValues; ++i) {
Craig Topperf40110f2014-04-25 05:29:35 +0000823 Value *InV = nullptr;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000824 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
825 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
826 else if (isa<ICmpInst>(CI))
827 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
828 C, "phitmp");
829 else
830 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
831 C, "phitmp");
832 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
833 }
Chris Lattnerfacb8672009-09-27 19:57:57 +0000834 } else if (I.getNumOperands() == 2) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000835 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattner7515cab2004-11-14 19:13:23 +0000836 for (unsigned i = 0; i != NumPHIValues; ++i) {
Craig Topperf40110f2014-04-25 05:29:35 +0000837 Value *InV = nullptr;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000838 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
839 InV = ConstantExpr::get(I.getOpcode(), InC, C);
840 else
841 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
842 PN->getIncomingValue(i), C, "phitmp");
Chris Lattner04689872006-09-09 22:02:56 +0000843 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000844 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000845 } else {
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000846 CastInst *CI = cast<CastInst>(&I);
Chris Lattner229907c2011-07-18 04:54:35 +0000847 Type *RetTy = CI->getType();
Chris Lattner7515cab2004-11-14 19:13:23 +0000848 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner04689872006-09-09 22:02:56 +0000849 Value *InV;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000850 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Owen Anderson487375e2009-07-29 18:55:55 +0000851 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000852 else
Chris Lattnerff2e7372011-01-16 05:08:00 +0000853 InV = Builder->CreateCast(CI->getOpcode(),
854 PN->getIncomingValue(i), I.getType(), "phitmp");
Chris Lattner04689872006-09-09 22:02:56 +0000855 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000856 }
857 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000858
Chandler Carruthcdf47882014-03-09 03:16:01 +0000859 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
Chris Lattnerd55581d2011-01-16 05:28:59 +0000860 Instruction *User = cast<Instruction>(*UI++);
861 if (User == &I) continue;
862 ReplaceInstUsesWith(*User, NewPN);
863 EraseInstFromFunction(*User);
864 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000865 return ReplaceInstUsesWith(I, NewPN);
866}
867
Matt Arsenaultd79f7d92013-08-19 22:17:40 +0000868/// FindElementAtOffset - Given a pointer type and a constant offset, determine
869/// whether or not there is a sequence of GEP indices into the pointed type that
870/// will land us at the specified offset. If so, fill them into NewIndices and
871/// return the resultant element type, otherwise return null.
872Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
873 SmallVectorImpl<Value*> &NewIndices) {
874 assert(PtrTy->isPtrOrPtrVectorTy());
875
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000876 if (!DL)
Craig Topperf40110f2014-04-25 05:29:35 +0000877 return nullptr;
Matt Arsenaultd79f7d92013-08-19 22:17:40 +0000878
879 Type *Ty = PtrTy->getPointerElementType();
880 if (!Ty->isSized())
Craig Topperf40110f2014-04-25 05:29:35 +0000881 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000882
Chris Lattnerfef138b2009-01-09 05:44:56 +0000883 // Start with the index over the outer type. Note that the type size
884 // might be zero (even if the offset isn't zero) if the indexed type
885 // is something like [0 x {int, int}]
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000886 Type *IntPtrTy = DL->getIntPtrType(PtrTy);
Chris Lattnerfef138b2009-01-09 05:44:56 +0000887 int64_t FirstIdx = 0;
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000888 if (int64_t TySize = DL->getTypeAllocSize(Ty)) {
Chris Lattnerfef138b2009-01-09 05:44:56 +0000889 FirstIdx = Offset/TySize;
Chris Lattnerbd3c7c82009-01-11 20:41:36 +0000890 Offset -= FirstIdx*TySize;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000891
Benjamin Kramere4c46fe2013-01-23 17:52:29 +0000892 // Handle hosts where % returns negative instead of values [0..TySize).
893 if (Offset < 0) {
894 --FirstIdx;
895 Offset += TySize;
896 assert(Offset >= 0);
897 }
Chris Lattnerfef138b2009-01-09 05:44:56 +0000898 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
899 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000900
Owen Andersonedb4a702009-07-24 23:12:02 +0000901 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000902
Chris Lattnerfef138b2009-01-09 05:44:56 +0000903 // Index into the types. If we fail, set OrigBase to null.
904 while (Offset) {
Chris Lattner171d2d42009-01-11 20:15:20 +0000905 // Indexing into tail padding between struct/array elements.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000906 if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty))
Craig Topperf40110f2014-04-25 05:29:35 +0000907 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000908
Chris Lattner229907c2011-07-18 04:54:35 +0000909 if (StructType *STy = dyn_cast<StructType>(Ty)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000910 const StructLayout *SL = DL->getStructLayout(STy);
Chris Lattner171d2d42009-01-11 20:15:20 +0000911 assert(Offset < (int64_t)SL->getSizeInBytes() &&
912 "Offset must stay within the indexed type");
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000913
Chris Lattnerfef138b2009-01-09 05:44:56 +0000914 unsigned Elt = SL->getElementContainingOffset(Offset);
Chris Lattnerb8906bd2010-01-04 07:02:48 +0000915 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
916 Elt));
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000917
Chris Lattnerfef138b2009-01-09 05:44:56 +0000918 Offset -= SL->getElementOffset(Elt);
919 Ty = STy->getElementType(Elt);
Chris Lattner229907c2011-07-18 04:54:35 +0000920 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000921 uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType());
Chris Lattner171d2d42009-01-11 20:15:20 +0000922 assert(EltSize && "Cannot index into a zero-sized array");
Owen Andersonedb4a702009-07-24 23:12:02 +0000923 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Chris Lattner171d2d42009-01-11 20:15:20 +0000924 Offset %= EltSize;
Chris Lattnerb1915162009-01-11 20:23:52 +0000925 Ty = AT->getElementType();
Chris Lattnerfef138b2009-01-09 05:44:56 +0000926 } else {
Chris Lattner171d2d42009-01-11 20:15:20 +0000927 // Otherwise, we can't index into the middle of this atomic type, bail.
Craig Topperf40110f2014-04-25 05:29:35 +0000928 return nullptr;
Chris Lattnerfef138b2009-01-09 05:44:56 +0000929 }
930 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000931
Chris Lattner72cd68f2009-01-24 01:00:13 +0000932 return Ty;
Chris Lattnerfef138b2009-01-09 05:44:56 +0000933}
934
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +0000935static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
936 // If this GEP has only 0 indices, it is the same pointer as
937 // Src. If Src is not a trivial GEP too, don't combine
938 // the indices.
939 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
940 !Src.hasOneUse())
941 return false;
942 return true;
943}
Chris Lattnerbbbdd852002-05-06 18:06:38 +0000944
Duncan Sands533c8ae2012-10-23 08:28:26 +0000945/// Descale - Return a value X such that Val = X * Scale, or null if none. If
946/// the multiplication is known not to overflow then NoSignedWrap is set.
947Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
948 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
949 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
950 Scale.getBitWidth() && "Scale not compatible with value!");
951
952 // If Val is zero or Scale is one then Val = Val * Scale.
953 if (match(Val, m_Zero()) || Scale == 1) {
954 NoSignedWrap = true;
955 return Val;
956 }
957
958 // If Scale is zero then it does not divide Val.
959 if (Scale.isMinValue())
Craig Topperf40110f2014-04-25 05:29:35 +0000960 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +0000961
962 // Look through chains of multiplications, searching for a constant that is
963 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
964 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
965 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
966 // down from Val:
967 //
968 // Val = M1 * X || Analysis starts here and works down
969 // M1 = M2 * Y || Doesn't descend into terms with more
970 // M2 = Z * 4 \/ than one use
971 //
972 // Then to modify a term at the bottom:
973 //
974 // Val = M1 * X
975 // M1 = Z * Y || Replaced M2 with Z
976 //
977 // Then to work back up correcting nsw flags.
978
979 // Op - the term we are currently analyzing. Starts at Val then drills down.
980 // Replaced with its descaled value before exiting from the drill down loop.
981 Value *Op = Val;
982
983 // Parent - initially null, but after drilling down notes where Op came from.
984 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
985 // 0'th operand of Val.
986 std::pair<Instruction*, unsigned> Parent;
987
988 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
989 // levels that doesn't overflow.
990 bool RequireNoSignedWrap = false;
991
992 // logScale - log base 2 of the scale. Negative if not a power of 2.
993 int32_t logScale = Scale.exactLogBase2();
994
995 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
996
997 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
998 // If Op is a constant divisible by Scale then descale to the quotient.
999 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1000 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1001 if (!Remainder.isMinValue())
1002 // Not divisible by Scale.
Craig Topperf40110f2014-04-25 05:29:35 +00001003 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001004 // Replace with the quotient in the parent.
1005 Op = ConstantInt::get(CI->getType(), Quotient);
1006 NoSignedWrap = true;
1007 break;
1008 }
1009
1010 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1011
1012 if (BO->getOpcode() == Instruction::Mul) {
1013 // Multiplication.
1014 NoSignedWrap = BO->hasNoSignedWrap();
1015 if (RequireNoSignedWrap && !NoSignedWrap)
Craig Topperf40110f2014-04-25 05:29:35 +00001016 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001017
1018 // There are three cases for multiplication: multiplication by exactly
1019 // the scale, multiplication by a constant different to the scale, and
1020 // multiplication by something else.
1021 Value *LHS = BO->getOperand(0);
1022 Value *RHS = BO->getOperand(1);
1023
1024 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1025 // Multiplication by a constant.
1026 if (CI->getValue() == Scale) {
1027 // Multiplication by exactly the scale, replace the multiplication
1028 // by its left-hand side in the parent.
1029 Op = LHS;
1030 break;
1031 }
1032
1033 // Otherwise drill down into the constant.
1034 if (!Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001035 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001036
1037 Parent = std::make_pair(BO, 1);
1038 continue;
1039 }
1040
1041 // Multiplication by something else. Drill down into the left-hand side
1042 // since that's where the reassociate pass puts the good stuff.
1043 if (!Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001044 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001045
1046 Parent = std::make_pair(BO, 0);
1047 continue;
1048 }
1049
1050 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1051 isa<ConstantInt>(BO->getOperand(1))) {
1052 // Multiplication by a power of 2.
1053 NoSignedWrap = BO->hasNoSignedWrap();
1054 if (RequireNoSignedWrap && !NoSignedWrap)
Craig Topperf40110f2014-04-25 05:29:35 +00001055 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001056
1057 Value *LHS = BO->getOperand(0);
1058 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1059 getLimitedValue(Scale.getBitWidth());
1060 // Op = LHS << Amt.
1061
1062 if (Amt == logScale) {
1063 // Multiplication by exactly the scale, replace the multiplication
1064 // by its left-hand side in the parent.
1065 Op = LHS;
1066 break;
1067 }
1068 if (Amt < logScale || !Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001069 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001070
1071 // Multiplication by more than the scale. Reduce the multiplying amount
1072 // by the scale in the parent.
1073 Parent = std::make_pair(BO, 1);
1074 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1075 break;
1076 }
1077 }
1078
1079 if (!Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001080 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001081
1082 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1083 if (Cast->getOpcode() == Instruction::SExt) {
1084 // Op is sign-extended from a smaller type, descale in the smaller type.
1085 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1086 APInt SmallScale = Scale.trunc(SmallSize);
1087 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1088 // descale Op as (sext Y) * Scale. In order to have
1089 // sext (Y * SmallScale) = (sext Y) * Scale
1090 // some conditions need to hold however: SmallScale must sign-extend to
1091 // Scale and the multiplication Y * SmallScale should not overflow.
1092 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1093 // SmallScale does not sign-extend to Scale.
Craig Topperf40110f2014-04-25 05:29:35 +00001094 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001095 assert(SmallScale.exactLogBase2() == logScale);
1096 // Require that Y * SmallScale must not overflow.
1097 RequireNoSignedWrap = true;
1098
1099 // Drill down through the cast.
1100 Parent = std::make_pair(Cast, 0);
1101 Scale = SmallScale;
1102 continue;
1103 }
1104
Duncan Sands5ed39002012-10-23 09:07:02 +00001105 if (Cast->getOpcode() == Instruction::Trunc) {
Duncan Sands533c8ae2012-10-23 08:28:26 +00001106 // Op is truncated from a larger type, descale in the larger type.
1107 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1108 // trunc (Y * sext Scale) = (trunc Y) * Scale
1109 // always holds. However (trunc Y) * Scale may overflow even if
1110 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1111 // from this point up in the expression (see later).
1112 if (RequireNoSignedWrap)
Craig Topperf40110f2014-04-25 05:29:35 +00001113 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001114
1115 // Drill down through the cast.
1116 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1117 Parent = std::make_pair(Cast, 0);
1118 Scale = Scale.sext(LargeSize);
1119 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1120 logScale = -1;
1121 assert(Scale.exactLogBase2() == logScale);
1122 continue;
1123 }
1124 }
1125
1126 // Unsupported expression, bail out.
Craig Topperf40110f2014-04-25 05:29:35 +00001127 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001128 }
1129
Duncan P. N. Exon Smith04934b02014-07-10 17:13:27 +00001130 // If Op is zero then Val = Op * Scale.
1131 if (match(Op, m_Zero())) {
1132 NoSignedWrap = true;
1133 return Op;
1134 }
1135
Duncan Sands533c8ae2012-10-23 08:28:26 +00001136 // We know that we can successfully descale, so from here on we can safely
1137 // modify the IR. Op holds the descaled version of the deepest term in the
1138 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1139 // not to overflow.
1140
1141 if (!Parent.first)
1142 // The expression only had one term.
1143 return Op;
1144
1145 // Rewrite the parent using the descaled version of its operand.
1146 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1147 assert(Op != Parent.first->getOperand(Parent.second) &&
1148 "Descaling was a no-op?");
1149 Parent.first->setOperand(Parent.second, Op);
1150 Worklist.Add(Parent.first);
1151
1152 // Now work back up the expression correcting nsw flags. The logic is based
1153 // on the following observation: if X * Y is known not to overflow as a signed
1154 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1155 // then X * Z will not overflow as a signed multiplication either. As we work
1156 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1157 // current level has strictly smaller absolute value than the original.
1158 Instruction *Ancestor = Parent.first;
1159 do {
1160 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1161 // If the multiplication wasn't nsw then we can't say anything about the
1162 // value of the descaled multiplication, and we have to clear nsw flags
1163 // from this point on up.
1164 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1165 NoSignedWrap &= OpNoSignedWrap;
1166 if (NoSignedWrap != OpNoSignedWrap) {
1167 BO->setHasNoSignedWrap(NoSignedWrap);
1168 Worklist.Add(Ancestor);
1169 }
1170 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1171 // The fact that the descaled input to the trunc has smaller absolute
1172 // value than the original input doesn't tell us anything useful about
1173 // the absolute values of the truncations.
1174 NoSignedWrap = false;
1175 }
1176 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1177 "Failed to keep proper track of nsw flags while drilling down?");
1178
1179 if (Ancestor == Val)
1180 // Got to the top, all done!
1181 return Val;
1182
1183 // Move up one level in the expression.
1184 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
Chandler Carruthcdf47882014-03-09 03:16:01 +00001185 Ancestor = Ancestor->user_back();
Duncan Sands533c8ae2012-10-23 08:28:26 +00001186 } while (1);
1187}
1188
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001189/// \brief Creates node of binary operation with the same attributes as the
1190/// specified one but with other operands.
Serge Pavlove6de9e32014-05-14 09:05:09 +00001191static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1192 InstCombiner::BuilderTy *B) {
1193 Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1194 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) {
1195 if (isa<OverflowingBinaryOperator>(NewBO)) {
1196 NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap());
1197 NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap());
1198 }
1199 if (isa<PossiblyExactOperator>(NewBO))
1200 NewBO->setIsExact(Inst.isExact());
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001201 }
Serge Pavlove6de9e32014-05-14 09:05:09 +00001202 return BORes;
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001203}
1204
1205/// \brief Makes transformation of binary operation specific for vector types.
1206/// \param Inst Binary operator to transform.
1207/// \return Pointer to node that must replace the original binary operator, or
1208/// null pointer if no transformation was made.
1209Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1210 if (!Inst.getType()->isVectorTy()) return nullptr;
1211
Sanjay Patel58814442014-07-09 16:34:54 +00001212 // It may not be safe to reorder shuffles and things like div, urem, etc.
1213 // because we may trap when executing those ops on unknown vector elements.
1214 // See PR20059.
Hal Finkela995f922014-07-10 14:41:31 +00001215 if (!isSafeToSpeculativelyExecute(&Inst, DL)) return nullptr;
Sanjay Patel58814442014-07-09 16:34:54 +00001216
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001217 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1218 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1219 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1220 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1221
1222 // If both arguments of binary operation are shuffles, which use the same
1223 // mask and shuffle within a single vector, it is worthwhile to move the
1224 // shuffle after binary operation:
1225 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1226 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1227 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1228 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1229 if (isa<UndefValue>(LShuf->getOperand(1)) &&
1230 isa<UndefValue>(RShuf->getOperand(1)) &&
Serge Pavlov05811092014-05-12 05:44:53 +00001231 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001232 LShuf->getMask() == RShuf->getMask()) {
Serge Pavlove6de9e32014-05-14 09:05:09 +00001233 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001234 RShuf->getOperand(0), Builder);
1235 Value *Res = Builder->CreateShuffleVector(NewBO,
Serge Pavlov02ff6202014-05-12 10:11:27 +00001236 UndefValue::get(NewBO->getType()), LShuf->getMask());
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001237 return Res;
1238 }
1239 }
1240
1241 // If one argument is a shuffle within one vector, the other is a constant,
1242 // try moving the shuffle after the binary operation.
1243 ShuffleVectorInst *Shuffle = nullptr;
1244 Constant *C1 = nullptr;
1245 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1246 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1247 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1248 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
Benjamin Kramer6de78662014-06-24 10:38:10 +00001249 if (Shuffle && C1 &&
1250 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1251 isa<UndefValue>(Shuffle->getOperand(1)) &&
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001252 Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1253 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1254 // Find constant C2 that has property:
1255 // shuffle(C2, ShMask) = C1
1256 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1257 // reorder is not possible.
1258 SmallVector<Constant*, 16> C2M(VWidth,
1259 UndefValue::get(C1->getType()->getScalarType()));
1260 bool MayChange = true;
1261 for (unsigned I = 0; I < VWidth; ++I) {
1262 if (ShMask[I] >= 0) {
1263 assert(ShMask[I] < (int)VWidth);
1264 if (!isa<UndefValue>(C2M[ShMask[I]])) {
1265 MayChange = false;
1266 break;
1267 }
1268 C2M[ShMask[I]] = C1->getAggregateElement(I);
1269 }
1270 }
1271 if (MayChange) {
1272 Constant *C2 = ConstantVector::get(C2M);
1273 Value *NewLHS, *NewRHS;
1274 if (isa<Constant>(LHS)) {
1275 NewLHS = C2;
1276 NewRHS = Shuffle->getOperand(0);
1277 } else {
1278 NewLHS = Shuffle->getOperand(0);
1279 NewRHS = C2;
1280 }
Serge Pavlove6de9e32014-05-14 09:05:09 +00001281 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001282 Value *Res = Builder->CreateShuffleVector(NewBO,
1283 UndefValue::get(Inst.getType()), Shuffle->getMask());
1284 return Res;
1285 }
1286 }
1287
1288 return nullptr;
1289}
1290
Chris Lattner113f4f42002-06-25 16:13:24 +00001291Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner8574aba2009-11-27 00:29:05 +00001292 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1293
Chandler Carruth66b31302015-01-04 12:03:27 +00001294 if (Value *V = SimplifyGEPInst(Ops, DL, TLI, DT, AC))
Chris Lattner8574aba2009-11-27 00:29:05 +00001295 return ReplaceInstUsesWith(GEP, V);
1296
Chris Lattner5f667a62004-05-07 22:09:22 +00001297 Value *PtrOp = GEP.getOperand(0);
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001298
Duncan Sandsc133c542010-11-22 16:32:50 +00001299 // Eliminate unneeded casts for indices, and replace indices which displace
1300 // by multiples of a zero size type with zero.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001301 if (DL) {
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001302 bool MadeChange = false;
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001303 Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType());
Duncan Sandsc133c542010-11-22 16:32:50 +00001304
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001305 gep_type_iterator GTI = gep_type_begin(GEP);
1306 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1307 I != E; ++I, ++GTI) {
Duncan Sandsc133c542010-11-22 16:32:50 +00001308 // Skip indices into struct types.
Chris Lattner229907c2011-07-18 04:54:35 +00001309 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
Duncan Sandsc133c542010-11-22 16:32:50 +00001310 if (!SeqTy) continue;
1311
1312 // If the element type has zero size then any index over it is equivalent
1313 // to an index of zero, so replace it with zero if it is not zero already.
1314 if (SeqTy->getElementType()->isSized() &&
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001315 DL->getTypeAllocSize(SeqTy->getElementType()) == 0)
Duncan Sandsc133c542010-11-22 16:32:50 +00001316 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1317 *I = Constant::getNullValue(IntPtrTy);
1318 MadeChange = true;
1319 }
1320
Nadav Rotem3924cb02011-12-05 06:29:09 +00001321 Type *IndexTy = (*I)->getType();
Duncan Sandsa318ef62012-11-03 11:44:17 +00001322 if (IndexTy != IntPtrTy) {
Duncan Sandsc133c542010-11-22 16:32:50 +00001323 // If we are using a wider index than needed for this platform, shrink
1324 // it to what we need. If narrower, sign-extend it to what we need.
1325 // This explicit cast can make subsequent optimizations more obvious.
1326 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1327 MadeChange = true;
1328 }
Chris Lattner69193f92004-04-05 01:30:19 +00001329 }
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001330 if (MadeChange) return &GEP;
Chris Lattner9bf53ff2007-03-25 20:43:09 +00001331 }
Chris Lattner69193f92004-04-05 01:30:19 +00001332
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001333 // Check to see if the inputs to the PHI node are getelementptr instructions.
1334 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1335 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1336 if (!Op1)
1337 return nullptr;
1338
1339 signed DI = -1;
1340
1341 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1342 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1343 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1344 return nullptr;
1345
Chandler Carruth3012a1b2014-05-29 23:05:52 +00001346 // Keep track of the type as we walk the GEP.
1347 Type *CurTy = Op1->getOperand(0)->getType()->getScalarType();
1348
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001349 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1350 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1351 return nullptr;
1352
1353 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1354 if (DI == -1) {
1355 // We have not seen any differences yet in the GEPs feeding the
1356 // PHI yet, so we record this one if it is allowed to be a
1357 // variable.
1358
1359 // The first two arguments can vary for any GEP, the rest have to be
1360 // static for struct slots
Chandler Carruth3012a1b2014-05-29 23:05:52 +00001361 if (J > 1 && CurTy->isStructTy())
1362 return nullptr;
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001363
1364 DI = J;
1365 } else {
1366 // The GEP is different by more than one input. While this could be
1367 // extended to support GEPs that vary by more than one variable it
1368 // doesn't make sense since it greatly increases the complexity and
1369 // would result in an R+R+R addressing mode which no backend
1370 // directly supports and would need to be broken into several
1371 // simpler instructions anyway.
1372 return nullptr;
1373 }
1374 }
Chandler Carruthfdc0e0b2014-05-29 23:21:12 +00001375
1376 // Sink down a layer of the type for the next iteration.
1377 if (J > 0) {
1378 if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1379 CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1380 } else {
1381 CurTy = nullptr;
1382 }
1383 }
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001384 }
1385 }
1386
1387 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1388
1389 if (DI == -1) {
1390 // All the GEPs feeding the PHI are identical. Clone one down into our
1391 // BB so that it can be merged with the current GEP.
1392 GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(),
1393 NewGEP);
1394 } else {
1395 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1396 // into the current block so it can be merged, and create a new PHI to
1397 // set that index.
1398 Instruction *InsertPt = Builder->GetInsertPoint();
1399 Builder->SetInsertPoint(PN);
1400 PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1401 PN->getNumOperands());
1402 Builder->SetInsertPoint(InsertPt);
1403
1404 for (auto &I : PN->operands())
1405 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1406 PN->getIncomingBlock(I));
1407
1408 NewGEP->setOperand(DI, NewPN);
1409 GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(),
1410 NewGEP);
1411 NewGEP->setOperand(DI, NewPN);
1412 }
1413
1414 GEP.setOperand(0, NewGEP);
1415 PtrOp = NewGEP;
1416 }
1417
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001418 // Combine Indices - If the source pointer to this getelementptr instruction
1419 // is a getelementptr instruction, combine the indices of the two
1420 // getelementptr instructions into a single instruction.
1421 //
Dan Gohman31a9b982009-07-28 01:40:03 +00001422 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +00001423 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
Craig Topperf40110f2014-04-25 05:29:35 +00001424 return nullptr;
Rafael Espindola40325672011-07-11 03:43:47 +00001425
Duncan Sands533c8ae2012-10-23 08:28:26 +00001426 // Note that if our source is a gep chain itself then we wait for that
Chris Lattner5f667a62004-05-07 22:09:22 +00001427 // chain to be resolved before we perform this transformation. This
1428 // avoids us creating a TON of code in some cases.
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +00001429 if (GEPOperator *SrcGEP =
1430 dyn_cast<GEPOperator>(Src->getOperand(0)))
1431 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
Craig Topperf40110f2014-04-25 05:29:35 +00001432 return nullptr; // Wait until our source is folded to completion.
Chris Lattner5f667a62004-05-07 22:09:22 +00001433
Chris Lattneraf6094f2007-02-15 22:48:32 +00001434 SmallVector<Value*, 8> Indices;
Chris Lattner5f667a62004-05-07 22:09:22 +00001435
1436 // Find out whether the last index in the source GEP is a sequential idx.
1437 bool EndsWithSequential = false;
Chris Lattnerb2995e12009-08-30 05:30:55 +00001438 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1439 I != E; ++I)
Duncan Sands19d0b472010-02-16 11:11:14 +00001440 EndsWithSequential = !(*I)->isStructTy();
Misha Brukmanb1c93172005-04-21 23:48:37 +00001441
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001442 // Can we combine the two pointer arithmetics offsets?
Chris Lattner5f667a62004-05-07 22:09:22 +00001443 if (EndsWithSequential) {
Chris Lattner235af562003-03-05 22:33:14 +00001444 // Replace: gep (gep %P, long B), long A, ...
1445 // With: T = long A+B; gep %P, T, ...
1446 //
Chris Lattner06c687b2009-08-30 05:08:50 +00001447 Value *Sum;
1448 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1449 Value *GO1 = GEP.getOperand(1);
Owen Anderson5a1acd92009-07-31 20:28:14 +00001450 if (SO1 == Constant::getNullValue(SO1->getType())) {
Chris Lattner69193f92004-04-05 01:30:19 +00001451 Sum = GO1;
Owen Anderson5a1acd92009-07-31 20:28:14 +00001452 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
Chris Lattner69193f92004-04-05 01:30:19 +00001453 Sum = SO1;
1454 } else {
Chris Lattnerb2995e12009-08-30 05:30:55 +00001455 // If they aren't the same type, then the input hasn't been processed
1456 // by the loop above yet (which canonicalizes sequential index types to
1457 // intptr_t). Just avoid transforming this until the input has been
1458 // normalized.
1459 if (SO1->getType() != GO1->getType())
Craig Topperf40110f2014-04-25 05:29:35 +00001460 return nullptr;
Chris Lattner59663412009-08-30 18:50:58 +00001461 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Chris Lattner69193f92004-04-05 01:30:19 +00001462 }
Chris Lattner5f667a62004-05-07 22:09:22 +00001463
Chris Lattnerb2995e12009-08-30 05:30:55 +00001464 // Update the GEP in place if possible.
Chris Lattner06c687b2009-08-30 05:08:50 +00001465 if (Src->getNumOperands() == 2) {
1466 GEP.setOperand(0, Src->getOperand(0));
Chris Lattner5f667a62004-05-07 22:09:22 +00001467 GEP.setOperand(1, Sum);
1468 return &GEP;
Chris Lattner5f667a62004-05-07 22:09:22 +00001469 }
Chris Lattnerb2995e12009-08-30 05:30:55 +00001470 Indices.append(Src->op_begin()+1, Src->op_end()-1);
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001471 Indices.push_back(Sum);
Chris Lattnerb2995e12009-08-30 05:30:55 +00001472 Indices.append(GEP.op_begin()+2, GEP.op_end());
Misha Brukmanb1c93172005-04-21 23:48:37 +00001473 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner69193f92004-04-05 01:30:19 +00001474 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Chris Lattner06c687b2009-08-30 05:08:50 +00001475 Src->getNumOperands() != 1) {
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001476 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerb2995e12009-08-30 05:30:55 +00001477 Indices.append(Src->op_begin()+1, Src->op_end());
1478 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001479 }
1480
Dan Gohman1b849082009-09-07 23:54:19 +00001481 if (!Indices.empty())
Chris Lattnere903f382010-01-05 07:42:10 +00001482 return (GEP.isInBounds() && Src->isInBounds()) ?
Jay Foadd1b78492011-07-25 09:48:08 +00001483 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1484 GEP.getName()) :
1485 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
Chris Lattnere26bf172009-08-30 05:00:50 +00001486 }
Nadav Rotema069c6c2011-04-05 14:29:52 +00001487
David Majnemerd2df5012014-09-01 21:10:02 +00001488 if (DL && GEP.getNumIndices() == 1) {
Matt Arsenaultbfa37e52013-10-03 18:15:57 +00001489 unsigned AS = GEP.getPointerAddressSpace();
David Majnemerd2df5012014-09-01 21:10:02 +00001490 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001491 DL->getPointerSizeInBits(AS)) {
David Majnemerd2df5012014-09-01 21:10:02 +00001492 Type *PtrTy = GEP.getPointerOperandType();
1493 Type *Ty = PtrTy->getPointerElementType();
1494 uint64_t TyAllocSize = DL->getTypeAllocSize(Ty);
1495
1496 bool Matched = false;
1497 uint64_t C;
1498 Value *V = nullptr;
1499 if (TyAllocSize == 1) {
1500 V = GEP.getOperand(1);
1501 Matched = true;
1502 } else if (match(GEP.getOperand(1),
1503 m_AShr(m_Value(V), m_ConstantInt(C)))) {
1504 if (TyAllocSize == 1ULL << C)
1505 Matched = true;
1506 } else if (match(GEP.getOperand(1),
1507 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1508 if (TyAllocSize == C)
1509 Matched = true;
1510 }
1511
1512 if (Matched) {
1513 // Canonicalize (gep i8* X, -(ptrtoint Y))
1514 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1515 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1516 // pointer arithmetic.
1517 if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1518 Operator *Index = cast<Operator>(V);
1519 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1520 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1521 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1522 }
1523 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1524 // to (bitcast Y)
1525 Value *Y;
1526 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1527 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
1528 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
1529 GEP.getType());
1530 }
1531 }
Matt Arsenaultbfa37e52013-10-03 18:15:57 +00001532 }
Benjamin Kramere6461e32013-09-20 14:38:44 +00001533 }
1534
Chris Lattner06c687b2009-08-30 05:08:50 +00001535 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Chris Lattnere903f382010-01-05 07:42:10 +00001536 Value *StrippedPtr = PtrOp->stripPointerCasts();
Nadav Roteme63e59c2012-03-26 20:39:18 +00001537 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1538
Nadav Rotema8f35622012-03-26 21:00:53 +00001539 // We do not handle pointer-vector geps here.
1540 if (!StrippedPtrTy)
Craig Topperf40110f2014-04-25 05:29:35 +00001541 return nullptr;
Nadav Rotema8f35622012-03-26 21:00:53 +00001542
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001543 if (StrippedPtr != PtrOp) {
Chris Lattner8574aba2009-11-27 00:29:05 +00001544 bool HasZeroPointerIndex = false;
1545 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1546 HasZeroPointerIndex = C->isZero();
Nadav Rotema069c6c2011-04-05 14:29:52 +00001547
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001548 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1549 // into : GEP [10 x i8]* X, i32 0, ...
1550 //
1551 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1552 // into : GEP i8* X, ...
Nadav Rotema069c6c2011-04-05 14:29:52 +00001553 //
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001554 // This occurs when the program declares an array extern like "int X[];"
Chris Lattnere26bf172009-08-30 05:00:50 +00001555 if (HasZeroPointerIndex) {
Chris Lattner229907c2011-07-18 04:54:35 +00001556 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1557 if (ArrayType *CATy =
Duncan Sands5795a602009-03-02 09:18:21 +00001558 dyn_cast<ArrayType>(CPTy->getElementType())) {
1559 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
Chris Lattnere903f382010-01-05 07:42:10 +00001560 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
Duncan Sands5795a602009-03-02 09:18:21 +00001561 // -> GEP i8* X, ...
Chris Lattnere903f382010-01-05 07:42:10 +00001562 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1563 GetElementPtrInst *Res =
Jay Foadd1b78492011-07-25 09:48:08 +00001564 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
Chris Lattnere903f382010-01-05 07:42:10 +00001565 Res->setIsInBounds(GEP.isInBounds());
Eli Bendersky9966b262014-04-03 17:51:58 +00001566 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1567 return Res;
1568 // Insert Res, and create an addrspacecast.
1569 // e.g.,
1570 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1571 // ->
1572 // %0 = GEP i8 addrspace(1)* X, ...
1573 // addrspacecast i8 addrspace(1)* %0 to i8*
1574 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001575 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001576
Chris Lattner229907c2011-07-18 04:54:35 +00001577 if (ArrayType *XATy =
Chris Lattnere903f382010-01-05 07:42:10 +00001578 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
Duncan Sands5795a602009-03-02 09:18:21 +00001579 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
Chris Lattner567b81f2005-09-13 00:40:14 +00001580 if (CATy->getElementType() == XATy->getElementType()) {
Duncan Sands5795a602009-03-02 09:18:21 +00001581 // -> GEP [10 x i8]* X, i32 0, ...
Chris Lattner567b81f2005-09-13 00:40:14 +00001582 // At this point, we know that the cast source type is a pointer
1583 // to an array of the same type as the destination pointer
1584 // array. Because the array type is never stepped over (there
1585 // is a leading zero) we can fold the cast into this GEP.
Eli Bendersky9966b262014-04-03 17:51:58 +00001586 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1587 GEP.setOperand(0, StrippedPtr);
1588 return &GEP;
1589 }
1590 // Cannot replace the base pointer directly because StrippedPtr's
1591 // address space is different. Instead, create a new GEP followed by
1592 // an addrspacecast.
1593 // e.g.,
1594 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1595 // i32 0, ...
1596 // ->
1597 // %0 = GEP [10 x i8] addrspace(1)* X, ...
1598 // addrspacecast i8 addrspace(1)* %0 to i8*
1599 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1600 Value *NewGEP = GEP.isInBounds() ?
1601 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1602 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1603 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Chris Lattner567b81f2005-09-13 00:40:14 +00001604 }
Duncan Sands5795a602009-03-02 09:18:21 +00001605 }
1606 }
Chris Lattner567b81f2005-09-13 00:40:14 +00001607 } else if (GEP.getNumOperands() == 2) {
1608 // Transform things like:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001609 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1610 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattner229907c2011-07-18 04:54:35 +00001611 Type *SrcElTy = StrippedPtrTy->getElementType();
Matt Arsenaultfc00f7e2013-08-14 00:24:34 +00001612 Type *ResElTy = PtrOp->getType()->getPointerElementType();
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001613 if (DL && SrcElTy->isArrayTy() &&
1614 DL->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1615 DL->getTypeAllocSize(ResElTy)) {
1616 Type *IdxType = DL->getIntPtrType(GEP.getType());
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001617 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
Chris Lattnere903f382010-01-05 07:42:10 +00001618 Value *NewGEP = GEP.isInBounds() ?
Jay Foad040dd822011-07-22 08:16:57 +00001619 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1620 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001621
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001622 // V and GEP are both pointer types --> BitCast
Manuel Jacob405fb182014-07-16 20:13:45 +00001623 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1624 GEP.getType());
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001625 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001626
Chris Lattner2a893292005-09-13 18:36:04 +00001627 // Transform things like:
Duncan Sands533c8ae2012-10-23 08:28:26 +00001628 // %V = mul i64 %N, 4
1629 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1630 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001631 if (DL && ResElTy->isSized() && SrcElTy->isSized()) {
Duncan Sands533c8ae2012-10-23 08:28:26 +00001632 // Check that changing the type amounts to dividing the index by a scale
1633 // factor.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001634 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
1635 uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy);
Duncan Sands533c8ae2012-10-23 08:28:26 +00001636 if (ResSize && SrcSize % ResSize == 0) {
1637 Value *Idx = GEP.getOperand(1);
1638 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1639 uint64_t Scale = SrcSize / ResSize;
1640
1641 // Earlier transforms ensure that the index has type IntPtrType, which
1642 // considerably simplifies the logic by eliminating implicit casts.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001643 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001644 "Index not cast to pointer width?");
1645
1646 bool NSW;
1647 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1648 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1649 // If the multiplication NewIdx * Scale may overflow then the new
1650 // GEP may not be "inbounds".
1651 Value *NewGEP = GEP.isInBounds() && NSW ?
1652 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1653 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001654
Duncan Sands533c8ae2012-10-23 08:28:26 +00001655 // The NewGEP must be pointer typed, so must the old one -> BitCast
Manuel Jacob405fb182014-07-16 20:13:45 +00001656 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1657 GEP.getType());
Duncan Sands533c8ae2012-10-23 08:28:26 +00001658 }
1659 }
1660 }
1661
1662 // Similarly, transform things like:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001663 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner2a893292005-09-13 18:36:04 +00001664 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001665 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001666 if (DL && ResElTy->isSized() && SrcElTy->isSized() &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001667 SrcElTy->isArrayTy()) {
1668 // Check that changing to the array element type amounts to dividing the
1669 // index by a scale factor.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001670 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
Matt Arsenaultfc00f7e2013-08-14 00:24:34 +00001671 uint64_t ArrayEltSize
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001672 = DL->getTypeAllocSize(SrcElTy->getArrayElementType());
Duncan Sands533c8ae2012-10-23 08:28:26 +00001673 if (ResSize && ArrayEltSize % ResSize == 0) {
1674 Value *Idx = GEP.getOperand(1);
1675 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1676 uint64_t Scale = ArrayEltSize / ResSize;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001677
Duncan Sands533c8ae2012-10-23 08:28:26 +00001678 // Earlier transforms ensure that the index has type IntPtrType, which
1679 // considerably simplifies the logic by eliminating implicit casts.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001680 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001681 "Index not cast to pointer width?");
1682
1683 bool NSW;
1684 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1685 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1686 // If the multiplication NewIdx * Scale may overflow then the new
1687 // GEP may not be "inbounds".
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001688 Value *Off[2] = {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001689 Constant::getNullValue(DL->getIntPtrType(GEP.getType())),
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001690 NewIdx
1691 };
1692
Duncan Sands533c8ae2012-10-23 08:28:26 +00001693 Value *NewGEP = GEP.isInBounds() && NSW ?
1694 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1695 Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1696 // The NewGEP must be pointer typed, so must the old one -> BitCast
Manuel Jacob405fb182014-07-16 20:13:45 +00001697 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1698 GEP.getType());
Chris Lattner2a893292005-09-13 18:36:04 +00001699 }
1700 }
Chris Lattner2a893292005-09-13 18:36:04 +00001701 }
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001702 }
Chris Lattnerca081252001-12-14 16:52:21 +00001703 }
Nadav Rotema069c6c2011-04-05 14:29:52 +00001704
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001705 if (!DL)
Craig Topperf40110f2014-04-25 05:29:35 +00001706 return nullptr;
Matt Arsenault98f34e32013-08-19 22:17:34 +00001707
Matt Arsenault4815f092014-08-12 19:46:13 +00001708 // addrspacecast between types is canonicalized as a bitcast, then an
1709 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
1710 // through the addrspacecast.
1711 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
1712 // X = bitcast A addrspace(1)* to B addrspace(1)*
1713 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
1714 // Z = gep Y, <...constant indices...>
1715 // Into an addrspacecasted GEP of the struct.
1716 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
1717 PtrOp = BC;
1718 }
1719
Chris Lattnerfef138b2009-01-09 05:44:56 +00001720 /// See if we can simplify:
Chris Lattner97fd3592009-08-30 05:55:36 +00001721 /// X = bitcast A* to B*
Chris Lattnerfef138b2009-01-09 05:44:56 +00001722 /// Y = gep X, <...constant indices...>
1723 /// into a gep of the original struct. This is important for SROA and alias
1724 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
Chris Lattnera784a2c2009-01-09 04:53:57 +00001725 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Matt Arsenault98f34e32013-08-19 22:17:34 +00001726 Value *Operand = BCI->getOperand(0);
1727 PointerType *OpType = cast<PointerType>(Operand->getType());
Matt Arsenault4815f092014-08-12 19:46:13 +00001728 unsigned OffsetBits = DL->getPointerTypeSizeInBits(GEP.getType());
Matt Arsenault98f34e32013-08-19 22:17:34 +00001729 APInt Offset(OffsetBits, 0);
1730 if (!isa<BitCastInst>(Operand) &&
Matt Arsenault4815f092014-08-12 19:46:13 +00001731 GEP.accumulateConstantOffset(*DL, Offset)) {
Nadav Rotema069c6c2011-04-05 14:29:52 +00001732
Chris Lattnerfef138b2009-01-09 05:44:56 +00001733 // If this GEP instruction doesn't move the pointer, just replace the GEP
1734 // with a bitcast of the real input to the dest type.
Nuno Lopesb6ad9822012-12-30 16:25:48 +00001735 if (!Offset) {
Chris Lattnerfef138b2009-01-09 05:44:56 +00001736 // If the bitcast is of an allocation, and the allocation will be
1737 // converted to match the type of the cast, don't touch this.
Matt Arsenault98f34e32013-08-19 22:17:34 +00001738 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
Chris Lattnerfef138b2009-01-09 05:44:56 +00001739 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1740 if (Instruction *I = visitBitCast(*BCI)) {
1741 if (I != BCI) {
1742 I->takeName(BCI);
1743 BCI->getParent()->getInstList().insert(BCI, I);
1744 ReplaceInstUsesWith(*BCI, I);
1745 }
1746 return &GEP;
Chris Lattnera784a2c2009-01-09 04:53:57 +00001747 }
Chris Lattnera784a2c2009-01-09 04:53:57 +00001748 }
Matt Arsenault4815f092014-08-12 19:46:13 +00001749
1750 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1751 return new AddrSpaceCastInst(Operand, GEP.getType());
Matt Arsenault98f34e32013-08-19 22:17:34 +00001752 return new BitCastInst(Operand, GEP.getType());
Chris Lattnera784a2c2009-01-09 04:53:57 +00001753 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001754
Chris Lattnerfef138b2009-01-09 05:44:56 +00001755 // Otherwise, if the offset is non-zero, we need to find out if there is a
1756 // field at Offset in 'A's type. If so, we can pull the cast through the
1757 // GEP.
1758 SmallVector<Value*, 8> NewIndices;
Matt Arsenaultd79f7d92013-08-19 22:17:40 +00001759 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
Chris Lattnere903f382010-01-05 07:42:10 +00001760 Value *NGEP = GEP.isInBounds() ?
Matt Arsenault98f34e32013-08-19 22:17:34 +00001761 Builder->CreateInBoundsGEP(Operand, NewIndices) :
1762 Builder->CreateGEP(Operand, NewIndices);
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001763
Chris Lattner59663412009-08-30 18:50:58 +00001764 if (NGEP->getType() == GEP.getType())
1765 return ReplaceInstUsesWith(GEP, NGEP);
Chris Lattnerfef138b2009-01-09 05:44:56 +00001766 NGEP->takeName(&GEP);
Matt Arsenault4815f092014-08-12 19:46:13 +00001767
1768 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1769 return new AddrSpaceCastInst(NGEP, GEP.getType());
Chris Lattnerfef138b2009-01-09 05:44:56 +00001770 return new BitCastInst(NGEP, GEP.getType());
1771 }
Chris Lattnera784a2c2009-01-09 04:53:57 +00001772 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001773 }
1774
Craig Topperf40110f2014-04-25 05:29:35 +00001775 return nullptr;
Chris Lattnerca081252001-12-14 16:52:21 +00001776}
1777
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001778static bool
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001779isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1780 const TargetLibraryInfo *TLI) {
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001781 SmallVector<Instruction*, 4> Worklist;
1782 Worklist.push_back(AI);
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001783
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001784 do {
1785 Instruction *PI = Worklist.pop_back_val();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001786 for (User *U : PI->users()) {
1787 Instruction *I = cast<Instruction>(U);
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001788 switch (I->getOpcode()) {
1789 default:
1790 // Give up the moment we see something we can't handle.
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001791 return false;
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001792
1793 case Instruction::BitCast:
1794 case Instruction::GetElementPtr:
1795 Users.push_back(I);
1796 Worklist.push_back(I);
1797 continue;
1798
1799 case Instruction::ICmp: {
1800 ICmpInst *ICI = cast<ICmpInst>(I);
1801 // We can fold eq/ne comparisons with null to false/true, respectively.
1802 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1803 return false;
1804 Users.push_back(I);
1805 continue;
1806 }
1807
1808 case Instruction::Call:
1809 // Ignore no-op and store intrinsics.
1810 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1811 switch (II->getIntrinsicID()) {
1812 default:
1813 return false;
1814
1815 case Intrinsic::memmove:
1816 case Intrinsic::memcpy:
1817 case Intrinsic::memset: {
1818 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1819 if (MI->isVolatile() || MI->getRawDest() != PI)
1820 return false;
1821 }
1822 // fall through
1823 case Intrinsic::dbg_declare:
1824 case Intrinsic::dbg_value:
1825 case Intrinsic::invariant_start:
1826 case Intrinsic::invariant_end:
1827 case Intrinsic::lifetime_start:
1828 case Intrinsic::lifetime_end:
1829 case Intrinsic::objectsize:
1830 Users.push_back(I);
1831 continue;
1832 }
1833 }
1834
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001835 if (isFreeCall(I, TLI)) {
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001836 Users.push_back(I);
1837 continue;
1838 }
1839 return false;
1840
1841 case Instruction::Store: {
1842 StoreInst *SI = cast<StoreInst>(I);
1843 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1844 return false;
1845 Users.push_back(I);
1846 continue;
1847 }
1848 }
1849 llvm_unreachable("missing a return?");
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001850 }
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001851 } while (!Worklist.empty());
Duncan Sandsf162eac2010-05-27 19:09:06 +00001852 return true;
1853}
1854
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001855Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
Duncan Sandsf162eac2010-05-27 19:09:06 +00001856 // If we have a malloc call which is only used in any amount of comparisons
1857 // to null and free calls, delete the calls and replace the comparisons with
1858 // true or false as appropriate.
Nick Lewycky50f49662011-08-03 00:43:35 +00001859 SmallVector<WeakVH, 64> Users;
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001860 if (isAllocSiteRemovable(&MI, Users, TLI)) {
Nick Lewycky50f49662011-08-03 00:43:35 +00001861 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1862 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1863 if (!I) continue;
Duncan Sandsf162eac2010-05-27 19:09:06 +00001864
Nick Lewycky50f49662011-08-03 00:43:35 +00001865 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001866 ReplaceInstUsesWith(*C,
1867 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1868 C->isFalseWhenEqual()));
Nick Lewycky50f49662011-08-03 00:43:35 +00001869 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001870 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001871 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1872 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1873 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1874 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1875 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1876 }
Duncan Sandsf162eac2010-05-27 19:09:06 +00001877 }
Nick Lewycky50f49662011-08-03 00:43:35 +00001878 EraseInstFromFunction(*I);
Duncan Sandsf162eac2010-05-27 19:09:06 +00001879 }
Nuno Lopesdc6085e2012-06-21 21:25:05 +00001880
1881 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
Nuno Lopes9ac46612012-06-28 22:31:24 +00001882 // Replace invoke with a NOP intrinsic to maintain the original CFG
Nuno Lopes07594cb2012-06-25 17:11:47 +00001883 Module *M = II->getParent()->getParent()->getParent();
Nuno Lopes9ac46612012-06-28 22:31:24 +00001884 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1885 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
Dmitri Gribenko3238fb72013-05-05 00:40:33 +00001886 None, "", II->getParent());
Nuno Lopesdc6085e2012-06-21 21:25:05 +00001887 }
Duncan Sandsf162eac2010-05-27 19:09:06 +00001888 return EraseInstFromFunction(MI);
1889 }
Craig Topperf40110f2014-04-25 05:29:35 +00001890 return nullptr;
Duncan Sandsf162eac2010-05-27 19:09:06 +00001891}
1892
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001893/// \brief Move the call to free before a NULL test.
1894///
1895/// Check if this free is accessed after its argument has been test
1896/// against NULL (property 0).
1897/// If yes, it is legal to move this call in its predecessor block.
1898///
1899/// The move is performed only if the block containing the call to free
1900/// will be removed, i.e.:
1901/// 1. it has only one predecessor P, and P has two successors
1902/// 2. it contains the call and an unconditional branch
1903/// 3. its successor is the same as its predecessor's successor
1904///
1905/// The profitability is out-of concern here and this function should
1906/// be called only if the caller knows this transformation would be
1907/// profitable (e.g., for code size).
1908static Instruction *
1909tryToMoveFreeBeforeNullTest(CallInst &FI) {
1910 Value *Op = FI.getArgOperand(0);
1911 BasicBlock *FreeInstrBB = FI.getParent();
1912 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1913
1914 // Validate part of constraint #1: Only one predecessor
1915 // FIXME: We can extend the number of predecessor, but in that case, we
1916 // would duplicate the call to free in each predecessor and it may
1917 // not be profitable even for code size.
1918 if (!PredBB)
Craig Topperf40110f2014-04-25 05:29:35 +00001919 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001920
1921 // Validate constraint #2: Does this block contains only the call to
1922 // free and an unconditional branch?
1923 // FIXME: We could check if we can speculate everything in the
1924 // predecessor block
1925 if (FreeInstrBB->size() != 2)
Craig Topperf40110f2014-04-25 05:29:35 +00001926 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001927 BasicBlock *SuccBB;
1928 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
Craig Topperf40110f2014-04-25 05:29:35 +00001929 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001930
1931 // Validate the rest of constraint #1 by matching on the pred branch.
1932 TerminatorInst *TI = PredBB->getTerminator();
1933 BasicBlock *TrueBB, *FalseBB;
1934 ICmpInst::Predicate Pred;
1935 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
Craig Topperf40110f2014-04-25 05:29:35 +00001936 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001937 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
Craig Topperf40110f2014-04-25 05:29:35 +00001938 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001939
1940 // Validate constraint #3: Ensure the null case just falls through.
1941 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
Craig Topperf40110f2014-04-25 05:29:35 +00001942 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001943 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1944 "Broken CFG: missing edge from predecessor to successor");
1945
1946 FI.moveBefore(TI);
1947 return &FI;
1948}
Duncan Sandsf162eac2010-05-27 19:09:06 +00001949
1950
Gabor Greif75f69432010-06-24 12:21:15 +00001951Instruction *InstCombiner::visitFree(CallInst &FI) {
1952 Value *Op = FI.getArgOperand(0);
Victor Hernandeze2971492009-10-24 04:23:03 +00001953
1954 // free undef -> unreachable.
1955 if (isa<UndefValue>(Op)) {
1956 // Insert a new store to null because we cannot modify the CFG here.
Eli Friedman41e509a2011-05-18 23:58:37 +00001957 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1958 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
Victor Hernandeze2971492009-10-24 04:23:03 +00001959 return EraseInstFromFunction(FI);
1960 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001961
Victor Hernandeze2971492009-10-24 04:23:03 +00001962 // If we have 'free null' delete the instruction. This can happen in stl code
1963 // when lots of inlining happens.
1964 if (isa<ConstantPointerNull>(Op))
1965 return EraseInstFromFunction(FI);
1966
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001967 // If we optimize for code size, try to move the call to free before the null
1968 // test so that simplify cfg can remove the empty block and dead code
1969 // elimination the branch. I.e., helps to turn something like:
1970 // if (foo) free(foo);
1971 // into
1972 // free(foo);
1973 if (MinimizeSize)
1974 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1975 return I;
1976
Craig Topperf40110f2014-04-25 05:29:35 +00001977 return nullptr;
Victor Hernandeze2971492009-10-24 04:23:03 +00001978}
Chris Lattner8427bff2003-12-07 01:24:23 +00001979
Hal Finkel93873cc12014-09-07 21:28:34 +00001980Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
1981 if (RI.getNumOperands() == 0) // ret void
1982 return nullptr;
Chris Lattner14a251b2007-04-15 00:07:55 +00001983
Hal Finkel93873cc12014-09-07 21:28:34 +00001984 Value *ResultOp = RI.getOperand(0);
1985 Type *VTy = ResultOp->getType();
1986 if (!VTy->isIntegerTy())
1987 return nullptr;
1988
1989 // There might be assume intrinsics dominating this return that completely
1990 // determine the value. If so, constant fold it.
1991 unsigned BitWidth = VTy->getPrimitiveSizeInBits();
1992 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1993 computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
1994 if ((KnownZero|KnownOne).isAllOnesValue())
1995 RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
1996
1997 return nullptr;
1998}
Chris Lattner31f486c2005-01-31 05:36:43 +00001999
Chris Lattner9eef8a72003-06-04 04:46:00 +00002000Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2001 // Change br (not X), label True, label False to: br X, label False, True
Craig Topperf40110f2014-04-25 05:29:35 +00002002 Value *X = nullptr;
Chris Lattnerd4252a72004-07-30 07:50:03 +00002003 BasicBlock *TrueDest;
2004 BasicBlock *FalseDest;
Dan Gohman5476cfd2009-08-12 16:23:25 +00002005 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
Chris Lattnerd4252a72004-07-30 07:50:03 +00002006 !isa<Constant>(X)) {
2007 // Swap Destinations and condition...
2008 BI.setCondition(X);
Chandler Carruth3e8aa652011-10-17 01:11:57 +00002009 BI.swapSuccessors();
Chris Lattnerd4252a72004-07-30 07:50:03 +00002010 return &BI;
2011 }
2012
Alp Tokercb402912014-01-24 17:20:08 +00002013 // Canonicalize fcmp_one -> fcmp_oeq
Reid Spencer266e42b2006-12-23 06:05:41 +00002014 FCmpInst::Predicate FPred; Value *Y;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002015 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
Chris Lattner905976b2009-08-30 06:13:40 +00002016 TrueDest, FalseDest)) &&
2017 BI.getCondition()->hasOneUse())
2018 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
2019 FPred == FCmpInst::FCMP_OGE) {
2020 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
2021 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002022
Chris Lattner905976b2009-08-30 06:13:40 +00002023 // Swap Destinations and condition.
Chandler Carruth3e8aa652011-10-17 01:11:57 +00002024 BI.swapSuccessors();
Chris Lattner905976b2009-08-30 06:13:40 +00002025 Worklist.Add(Cond);
Reid Spencer266e42b2006-12-23 06:05:41 +00002026 return &BI;
2027 }
2028
Alp Tokercb402912014-01-24 17:20:08 +00002029 // Canonicalize icmp_ne -> icmp_eq
Reid Spencer266e42b2006-12-23 06:05:41 +00002030 ICmpInst::Predicate IPred;
2031 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
Chris Lattner905976b2009-08-30 06:13:40 +00002032 TrueDest, FalseDest)) &&
2033 BI.getCondition()->hasOneUse())
2034 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
2035 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
2036 IPred == ICmpInst::ICMP_SGE) {
2037 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
2038 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
2039 // Swap Destinations and condition.
Chandler Carruth3e8aa652011-10-17 01:11:57 +00002040 BI.swapSuccessors();
Chris Lattner905976b2009-08-30 06:13:40 +00002041 Worklist.Add(Cond);
Chris Lattnere967b342003-06-04 05:10:11 +00002042 return &BI;
2043 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002044
Craig Topperf40110f2014-04-25 05:29:35 +00002045 return nullptr;
Chris Lattner9eef8a72003-06-04 04:46:00 +00002046}
Chris Lattner1085bdf2002-11-04 16:18:53 +00002047
Chris Lattner4c9c20a2004-07-03 00:26:11 +00002048Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2049 Value *Cond = SI.getCondition();
Akira Hatanaka5c221ef2014-10-16 06:00:46 +00002050 unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
2051 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2052 computeKnownBits(Cond, KnownZero, KnownOne);
2053 unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
2054 unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
2055
2056 // Compute the number of leading bits we can ignore.
2057 for (auto &C : SI.cases()) {
2058 LeadingKnownZeros = std::min(
2059 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2060 LeadingKnownOnes = std::min(
2061 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2062 }
2063
2064 unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
2065
2066 // Truncate the condition operand if the new type is equal to or larger than
2067 // the largest legal integer type. We need to be conservative here since
2068 // x86 generates redundant zero-extenstion instructions if the operand is
2069 // truncated to i8 or i16.
Bruno Cardoso Lopesf6cf8ad2014-12-19 17:12:35 +00002070 bool TruncCond = false;
David Majnemerb2a6e742014-11-24 07:26:20 +00002071 if (DL && BitWidth > NewWidth &&
2072 NewWidth >= DL->getLargestLegalIntTypeSize()) {
Bruno Cardoso Lopesf6cf8ad2014-12-19 17:12:35 +00002073 TruncCond = true;
Akira Hatanaka5c221ef2014-10-16 06:00:46 +00002074 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2075 Builder->SetInsertPoint(&SI);
2076 Value *NewCond = Builder->CreateTrunc(SI.getCondition(), Ty, "trunc");
2077 SI.setCondition(NewCond);
2078
2079 for (auto &C : SI.cases())
2080 static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
2081 SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
2082 }
2083
Chris Lattner4c9c20a2004-07-03 00:26:11 +00002084 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
2085 if (I->getOpcode() == Instruction::Add)
2086 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
2087 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
Eli Friedman95031ed2011-09-29 20:21:17 +00002088 // Skip the first item since that's the default case.
Stepan Dyatkovskiy97b02fc2012-03-11 06:09:17 +00002089 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00002090 i != e; ++i) {
2091 ConstantInt* CaseVal = i.getCaseValue();
Bruno Cardoso Lopesf6cf8ad2014-12-19 17:12:35 +00002092 Constant *LHS = CaseVal;
2093 if (TruncCond)
2094 LHS = LeadingKnownZeros
2095 ? ConstantExpr::getZExt(CaseVal, Cond->getType())
2096 : ConstantExpr::getSExt(CaseVal, Cond->getType());
2097 Constant* NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
Eli Friedman95031ed2011-09-29 20:21:17 +00002098 assert(isa<ConstantInt>(NewCaseVal) &&
2099 "Result of expression should be constant");
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00002100 i.setValue(cast<ConstantInt>(NewCaseVal));
Eli Friedman95031ed2011-09-29 20:21:17 +00002101 }
2102 SI.setCondition(I->getOperand(0));
Chris Lattner905976b2009-08-30 06:13:40 +00002103 Worklist.Add(I);
Chris Lattner4c9c20a2004-07-03 00:26:11 +00002104 return &SI;
2105 }
2106 }
Bruno Cardoso Lopesf6cf8ad2014-12-19 17:12:35 +00002107
2108 return TruncCond ? &SI : nullptr;
Chris Lattner4c9c20a2004-07-03 00:26:11 +00002109}
2110
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00002111Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002112 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00002113
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002114 if (!EV.hasIndices())
2115 return ReplaceInstUsesWith(EV, Agg);
2116
2117 if (Constant *C = dyn_cast<Constant>(Agg)) {
Chris Lattnerfa775002012-01-26 02:32:04 +00002118 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
2119 if (EV.getNumIndices() == 0)
2120 return ReplaceInstUsesWith(EV, C2);
2121 // Extract the remaining indices out of the constant indexed by the
2122 // first index
2123 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002124 }
Craig Topperf40110f2014-04-25 05:29:35 +00002125 return nullptr; // Can't handle other constants
Chris Lattnerfa775002012-01-26 02:32:04 +00002126 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002127
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002128 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2129 // We're extracting from an insertvalue instruction, compare the indices
2130 const unsigned *exti, *exte, *insi, *inse;
2131 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2132 exte = EV.idx_end(), inse = IV->idx_end();
2133 exti != exte && insi != inse;
2134 ++exti, ++insi) {
2135 if (*insi != *exti)
2136 // The insert and extract both reference distinctly different elements.
2137 // This means the extract is not influenced by the insert, and we can
2138 // replace the aggregate operand of the extract with the aggregate
2139 // operand of the insert. i.e., replace
2140 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2141 // %E = extractvalue { i32, { i32 } } %I, 0
2142 // with
2143 // %E = extractvalue { i32, { i32 } } %A, 0
2144 return ExtractValueInst::Create(IV->getAggregateOperand(),
Jay Foad57aa6362011-07-13 10:26:04 +00002145 EV.getIndices());
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002146 }
2147 if (exti == exte && insi == inse)
2148 // Both iterators are at the end: Index lists are identical. Replace
2149 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2150 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2151 // with "i32 42"
2152 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
2153 if (exti == exte) {
2154 // The extract list is a prefix of the insert list. i.e. replace
2155 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2156 // %E = extractvalue { i32, { i32 } } %I, 1
2157 // with
2158 // %X = extractvalue { i32, { i32 } } %A, 1
2159 // %E = insertvalue { i32 } %X, i32 42, 0
2160 // by switching the order of the insert and extract (though the
2161 // insertvalue should be left in, since it may have other uses).
Chris Lattner59663412009-08-30 18:50:58 +00002162 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
Jay Foad57aa6362011-07-13 10:26:04 +00002163 EV.getIndices());
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002164 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002165 makeArrayRef(insi, inse));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002166 }
2167 if (insi == inse)
2168 // The insert list is a prefix of the extract list
2169 // We can simply remove the common indices from the extract and make it
2170 // operate on the inserted value instead of the insertvalue result.
2171 // i.e., replace
2172 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2173 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2174 // with
2175 // %E extractvalue { i32 } { i32 42 }, 0
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002176 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002177 makeArrayRef(exti, exte));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002178 }
Chris Lattner39c07b22009-11-09 07:07:56 +00002179 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2180 // We're extracting from an intrinsic, see if we're the only user, which
2181 // allows us to simplify multiple result intrinsics to simpler things that
Gabor Greif75f69432010-06-24 12:21:15 +00002182 // just get one value.
Chris Lattner39c07b22009-11-09 07:07:56 +00002183 if (II->hasOneUse()) {
2184 // Check if we're grabbing the overflow bit or the result of a 'with
2185 // overflow' intrinsic. If it's the latter we can remove the intrinsic
2186 // and replace it with a traditional binary instruction.
2187 switch (II->getIntrinsicID()) {
2188 case Intrinsic::uadd_with_overflow:
2189 case Intrinsic::sadd_with_overflow:
2190 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00002191 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00002192 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00002193 EraseInstFromFunction(*II);
2194 return BinaryOperator::CreateAdd(LHS, RHS);
2195 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002196
Chris Lattner3e635d22010-12-19 19:43:52 +00002197 // If the normal result of the add is dead, and the RHS is a constant,
2198 // we can transform this into a range comparison.
2199 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
Chris Lattner4fb9dd42010-12-19 23:24:04 +00002200 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2201 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2202 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2203 ConstantExpr::getNot(CI));
Chris Lattner39c07b22009-11-09 07:07:56 +00002204 break;
2205 case Intrinsic::usub_with_overflow:
2206 case Intrinsic::ssub_with_overflow:
2207 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00002208 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00002209 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00002210 EraseInstFromFunction(*II);
2211 return BinaryOperator::CreateSub(LHS, RHS);
2212 }
2213 break;
2214 case Intrinsic::umul_with_overflow:
2215 case Intrinsic::smul_with_overflow:
2216 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00002217 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00002218 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00002219 EraseInstFromFunction(*II);
2220 return BinaryOperator::CreateMul(LHS, RHS);
2221 }
2222 break;
2223 default:
2224 break;
2225 }
2226 }
2227 }
Frits van Bommel28218aa2010-11-29 21:56:20 +00002228 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2229 // If the (non-volatile) load only has one use, we can rewrite this to a
2230 // load from a GEP. This reduces the size of the load.
2231 // FIXME: If a load is used only by extractvalue instructions then this
2232 // could be done regardless of having multiple uses.
Eli Friedman8bc586e2011-08-15 22:09:40 +00002233 if (L->isSimple() && L->hasOneUse()) {
Frits van Bommel28218aa2010-11-29 21:56:20 +00002234 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2235 SmallVector<Value*, 4> Indices;
2236 // Prefix an i32 0 since we need the first element.
2237 Indices.push_back(Builder->getInt32(0));
2238 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2239 I != E; ++I)
2240 Indices.push_back(Builder->getInt32(*I));
2241
2242 // We need to insert these at the location of the old load, not at that of
2243 // the extractvalue.
2244 Builder->SetInsertPoint(L->getParent(), L);
Jay Foad040dd822011-07-22 08:16:57 +00002245 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
Frits van Bommel28218aa2010-11-29 21:56:20 +00002246 // Returning the load directly will cause the main loop to insert it in
2247 // the wrong spot, so use ReplaceInstUsesWith().
2248 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2249 }
2250 // We could simplify extracts from other values. Note that nested extracts may
2251 // already be simplified implicitly by the above: extract (extract (insert) )
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002252 // will be translated into extract ( insert ( extract ) ) first and then just
Frits van Bommel28218aa2010-11-29 21:56:20 +00002253 // the value inserted, if appropriate. Similarly for extracts from single-use
2254 // loads: extract (extract (load)) will be translated to extract (load (gep))
2255 // and if again single-use then via load (gep (gep)) to load (gep).
2256 // However, double extracts from e.g. function arguments or return values
2257 // aren't handled yet.
Craig Topperf40110f2014-04-25 05:29:35 +00002258 return nullptr;
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00002259}
2260
Duncan Sands5c055792011-09-30 13:12:16 +00002261enum Personality_Type {
2262 Unknown_Personality,
2263 GNU_Ada_Personality,
Bill Wendlingc68c8cb2011-10-17 21:20:24 +00002264 GNU_CXX_Personality,
2265 GNU_ObjC_Personality
Duncan Sands5c055792011-09-30 13:12:16 +00002266};
2267
2268/// RecognizePersonality - See if the given exception handling personality
2269/// function is one that we understand. If so, return a description of it;
2270/// otherwise return Unknown_Personality.
2271static Personality_Type RecognizePersonality(Value *Pers) {
2272 Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
2273 if (!F)
2274 return Unknown_Personality;
2275 return StringSwitch<Personality_Type>(F->getName())
2276 .Case("__gnat_eh_personality", GNU_Ada_Personality)
Bill Wendlingc68c8cb2011-10-17 21:20:24 +00002277 .Case("__gxx_personality_v0", GNU_CXX_Personality)
2278 .Case("__objc_personality_v0", GNU_ObjC_Personality)
Duncan Sands5c055792011-09-30 13:12:16 +00002279 .Default(Unknown_Personality);
2280}
2281
2282/// isCatchAll - Return 'true' if the given typeinfo will match anything.
2283static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
2284 switch (Personality) {
2285 case Unknown_Personality:
2286 return false;
2287 case GNU_Ada_Personality:
2288 // While __gnat_all_others_value will match any Ada exception, it doesn't
2289 // match foreign exceptions (or didn't, before gcc-4.7).
2290 return false;
2291 case GNU_CXX_Personality:
Bill Wendlingc68c8cb2011-10-17 21:20:24 +00002292 case GNU_ObjC_Personality:
Duncan Sands5c055792011-09-30 13:12:16 +00002293 return TypeInfo->isNullValue();
2294 }
2295 llvm_unreachable("Unknown personality!");
2296}
2297
2298static bool shorter_filter(const Value *LHS, const Value *RHS) {
2299 return
2300 cast<ArrayType>(LHS->getType())->getNumElements()
2301 <
2302 cast<ArrayType>(RHS->getType())->getNumElements();
2303}
2304
2305Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2306 // The logic here should be correct for any real-world personality function.
2307 // However if that turns out not to be true, the offending logic can always
2308 // be conditioned on the personality function, like the catch-all logic is.
2309 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
2310
2311 // Simplify the list of clauses, eg by removing repeated catch clauses
2312 // (these are often created by inlining).
2313 bool MakeNewInstruction = false; // If true, recreate using the following:
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002314 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
Duncan Sands5c055792011-09-30 13:12:16 +00002315 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2316
2317 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2318 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2319 bool isLastClause = i + 1 == e;
2320 if (LI.isCatch(i)) {
2321 // A catch clause.
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002322 Constant *CatchClause = LI.getClause(i);
Rafael Espindola78598d92014-06-04 19:01:48 +00002323 Constant *TypeInfo = CatchClause->stripPointerCasts();
Duncan Sands5c055792011-09-30 13:12:16 +00002324
2325 // If we already saw this clause, there is no point in having a second
2326 // copy of it.
David Blaikie70573dc2014-11-19 07:49:26 +00002327 if (AlreadyCaught.insert(TypeInfo).second) {
Duncan Sands5c055792011-09-30 13:12:16 +00002328 // This catch clause was not already seen.
2329 NewClauses.push_back(CatchClause);
2330 } else {
2331 // Repeated catch clause - drop the redundant copy.
2332 MakeNewInstruction = true;
2333 }
2334
2335 // If this is a catch-all then there is no point in keeping any following
2336 // clauses or marking the landingpad as having a cleanup.
2337 if (isCatchAll(Personality, TypeInfo)) {
2338 if (!isLastClause)
2339 MakeNewInstruction = true;
2340 CleanupFlag = false;
2341 break;
2342 }
2343 } else {
2344 // A filter clause. If any of the filter elements were already caught
2345 // then they can be dropped from the filter. It is tempting to try to
2346 // exploit the filter further by saying that any typeinfo that does not
2347 // occur in the filter can't be caught later (and thus can be dropped).
2348 // However this would be wrong, since typeinfos can match without being
2349 // equal (for example if one represents a C++ class, and the other some
2350 // class derived from it).
2351 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002352 Constant *FilterClause = LI.getClause(i);
Duncan Sands5c055792011-09-30 13:12:16 +00002353 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2354 unsigned NumTypeInfos = FilterType->getNumElements();
2355
2356 // An empty filter catches everything, so there is no point in keeping any
2357 // following clauses or marking the landingpad as having a cleanup. By
2358 // dealing with this case here the following code is made a bit simpler.
2359 if (!NumTypeInfos) {
2360 NewClauses.push_back(FilterClause);
2361 if (!isLastClause)
2362 MakeNewInstruction = true;
2363 CleanupFlag = false;
2364 break;
2365 }
2366
2367 bool MakeNewFilter = false; // If true, make a new filter.
2368 SmallVector<Constant *, 16> NewFilterElts; // New elements.
2369 if (isa<ConstantAggregateZero>(FilterClause)) {
2370 // Not an empty filter - it contains at least one null typeinfo.
2371 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2372 Constant *TypeInfo =
2373 Constant::getNullValue(FilterType->getElementType());
2374 // If this typeinfo is a catch-all then the filter can never match.
2375 if (isCatchAll(Personality, TypeInfo)) {
2376 // Throw the filter away.
2377 MakeNewInstruction = true;
2378 continue;
2379 }
2380
2381 // There is no point in having multiple copies of this typeinfo, so
2382 // discard all but the first copy if there is more than one.
2383 NewFilterElts.push_back(TypeInfo);
2384 if (NumTypeInfos > 1)
2385 MakeNewFilter = true;
2386 } else {
2387 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2388 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2389 NewFilterElts.reserve(NumTypeInfos);
2390
2391 // Remove any filter elements that were already caught or that already
2392 // occurred in the filter. While there, see if any of the elements are
2393 // catch-alls. If so, the filter can be discarded.
2394 bool SawCatchAll = false;
2395 for (unsigned j = 0; j != NumTypeInfos; ++j) {
Rafael Espindola78598d92014-06-04 19:01:48 +00002396 Constant *Elt = Filter->getOperand(j);
2397 Constant *TypeInfo = Elt->stripPointerCasts();
Duncan Sands5c055792011-09-30 13:12:16 +00002398 if (isCatchAll(Personality, TypeInfo)) {
2399 // This element is a catch-all. Bail out, noting this fact.
2400 SawCatchAll = true;
2401 break;
2402 }
2403 if (AlreadyCaught.count(TypeInfo))
2404 // Already caught by an earlier clause, so having it in the filter
2405 // is pointless.
2406 continue;
2407 // There is no point in having multiple copies of the same typeinfo in
2408 // a filter, so only add it if we didn't already.
David Blaikie70573dc2014-11-19 07:49:26 +00002409 if (SeenInFilter.insert(TypeInfo).second)
Duncan Sands5c055792011-09-30 13:12:16 +00002410 NewFilterElts.push_back(cast<Constant>(Elt));
2411 }
2412 // A filter containing a catch-all cannot match anything by definition.
2413 if (SawCatchAll) {
2414 // Throw the filter away.
2415 MakeNewInstruction = true;
2416 continue;
2417 }
2418
2419 // If we dropped something from the filter, make a new one.
2420 if (NewFilterElts.size() < NumTypeInfos)
2421 MakeNewFilter = true;
2422 }
2423 if (MakeNewFilter) {
2424 FilterType = ArrayType::get(FilterType->getElementType(),
2425 NewFilterElts.size());
2426 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2427 MakeNewInstruction = true;
2428 }
2429
2430 NewClauses.push_back(FilterClause);
2431
2432 // If the new filter is empty then it will catch everything so there is
2433 // no point in keeping any following clauses or marking the landingpad
2434 // as having a cleanup. The case of the original filter being empty was
2435 // already handled above.
2436 if (MakeNewFilter && !NewFilterElts.size()) {
2437 assert(MakeNewInstruction && "New filter but not a new instruction!");
2438 CleanupFlag = false;
2439 break;
2440 }
2441 }
2442 }
2443
2444 // If several filters occur in a row then reorder them so that the shortest
2445 // filters come first (those with the smallest number of elements). This is
2446 // advantageous because shorter filters are more likely to match, speeding up
2447 // unwinding, but mostly because it increases the effectiveness of the other
2448 // filter optimizations below.
2449 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2450 unsigned j;
2451 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2452 for (j = i; j != e; ++j)
2453 if (!isa<ArrayType>(NewClauses[j]->getType()))
2454 break;
2455
2456 // Check whether the filters are already sorted by length. We need to know
2457 // if sorting them is actually going to do anything so that we only make a
2458 // new landingpad instruction if it does.
2459 for (unsigned k = i; k + 1 < j; ++k)
2460 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2461 // Not sorted, so sort the filters now. Doing an unstable sort would be
2462 // correct too but reordering filters pointlessly might confuse users.
2463 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2464 shorter_filter);
2465 MakeNewInstruction = true;
2466 break;
2467 }
2468
2469 // Look for the next batch of filters.
2470 i = j + 1;
2471 }
2472
2473 // If typeinfos matched if and only if equal, then the elements of a filter L
2474 // that occurs later than a filter F could be replaced by the intersection of
2475 // the elements of F and L. In reality two typeinfos can match without being
2476 // equal (for example if one represents a C++ class, and the other some class
2477 // derived from it) so it would be wrong to perform this transform in general.
2478 // However the transform is correct and useful if F is a subset of L. In that
2479 // case L can be replaced by F, and thus removed altogether since repeating a
2480 // filter is pointless. So here we look at all pairs of filters F and L where
2481 // L follows F in the list of clauses, and remove L if every element of F is
2482 // an element of L. This can occur when inlining C++ functions with exception
2483 // specifications.
2484 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2485 // Examine each filter in turn.
2486 Value *Filter = NewClauses[i];
2487 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2488 if (!FTy)
2489 // Not a filter - skip it.
2490 continue;
2491 unsigned FElts = FTy->getNumElements();
2492 // Examine each filter following this one. Doing this backwards means that
2493 // we don't have to worry about filters disappearing under us when removed.
2494 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2495 Value *LFilter = NewClauses[j];
2496 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2497 if (!LTy)
2498 // Not a filter - skip it.
2499 continue;
2500 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2501 // an element of LFilter, then discard LFilter.
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002502 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
Duncan Sands5c055792011-09-30 13:12:16 +00002503 // If Filter is empty then it is a subset of LFilter.
2504 if (!FElts) {
2505 // Discard LFilter.
2506 NewClauses.erase(J);
2507 MakeNewInstruction = true;
2508 // Move on to the next filter.
2509 continue;
2510 }
2511 unsigned LElts = LTy->getNumElements();
2512 // If Filter is longer than LFilter then it cannot be a subset of it.
2513 if (FElts > LElts)
2514 // Move on to the next filter.
2515 continue;
2516 // At this point we know that LFilter has at least one element.
2517 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002518 // Filter is a subset of LFilter iff Filter contains only zeros (as we
Duncan Sands5c055792011-09-30 13:12:16 +00002519 // already know that Filter is not longer than LFilter).
2520 if (isa<ConstantAggregateZero>(Filter)) {
2521 assert(FElts <= LElts && "Should have handled this case earlier!");
2522 // Discard LFilter.
2523 NewClauses.erase(J);
2524 MakeNewInstruction = true;
2525 }
2526 // Move on to the next filter.
2527 continue;
2528 }
2529 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2530 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2531 // Since Filter is non-empty and contains only zeros, it is a subset of
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002532 // LFilter iff LFilter contains a zero.
Duncan Sands5c055792011-09-30 13:12:16 +00002533 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2534 for (unsigned l = 0; l != LElts; ++l)
2535 if (LArray->getOperand(l)->isNullValue()) {
2536 // LFilter contains a zero - discard it.
2537 NewClauses.erase(J);
2538 MakeNewInstruction = true;
2539 break;
2540 }
2541 // Move on to the next filter.
2542 continue;
2543 }
2544 // At this point we know that both filters are ConstantArrays. Loop over
2545 // operands to see whether every element of Filter is also an element of
2546 // LFilter. Since filters tend to be short this is probably faster than
2547 // using a method that scales nicely.
2548 ConstantArray *FArray = cast<ConstantArray>(Filter);
2549 bool AllFound = true;
2550 for (unsigned f = 0; f != FElts; ++f) {
2551 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2552 AllFound = false;
2553 for (unsigned l = 0; l != LElts; ++l) {
2554 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2555 if (LTypeInfo == FTypeInfo) {
2556 AllFound = true;
2557 break;
2558 }
2559 }
2560 if (!AllFound)
2561 break;
2562 }
2563 if (AllFound) {
2564 // Discard LFilter.
2565 NewClauses.erase(J);
2566 MakeNewInstruction = true;
2567 }
2568 // Move on to the next filter.
2569 }
2570 }
2571
2572 // If we changed any of the clauses, replace the old landingpad instruction
2573 // with a new one.
2574 if (MakeNewInstruction) {
2575 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2576 LI.getPersonalityFn(),
2577 NewClauses.size());
2578 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2579 NLI->addClause(NewClauses[i]);
2580 // A landing pad with no clauses must have the cleanup flag set. It is
2581 // theoretically possible, though highly unlikely, that we eliminated all
2582 // clauses. If so, force the cleanup flag to true.
2583 if (NewClauses.empty())
2584 CleanupFlag = true;
2585 NLI->setCleanup(CleanupFlag);
2586 return NLI;
2587 }
2588
2589 // Even if none of the clauses changed, we may nonetheless have understood
2590 // that the cleanup flag is pointless. Clear it if so.
2591 if (LI.isCleanup() != CleanupFlag) {
2592 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2593 LI.setCleanup(CleanupFlag);
2594 return &LI;
2595 }
2596
Craig Topperf40110f2014-04-25 05:29:35 +00002597 return nullptr;
Duncan Sands5c055792011-09-30 13:12:16 +00002598}
2599
Chris Lattnerfbb77a42006-04-10 22:45:52 +00002600
Robert Bocchinoa8352962006-01-13 22:48:06 +00002601
Chris Lattner39c98bb2004-12-08 23:43:58 +00002602
2603/// TryToSinkInstruction - Try to move the specified instruction from its
2604/// current block into the beginning of DestBlock, which can only happen if it's
2605/// safe to move the instruction past all of the instructions between it and the
2606/// end of its block.
2607static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2608 assert(I->hasOneUse() && "Invariants didn't hold!");
2609
Bill Wendlinge86965e2011-08-15 21:14:31 +00002610 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Bill Wendlinga9ee09f2011-08-17 20:36:44 +00002611 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2612 isa<TerminatorInst>(I))
Chris Lattnera4ee1f52008-05-09 15:07:33 +00002613 return false;
Misha Brukmanb1c93172005-04-21 23:48:37 +00002614
Chris Lattner39c98bb2004-12-08 23:43:58 +00002615 // Do not sink alloca instructions out of the entry block.
Dan Gohmandcb291f2007-03-22 16:38:57 +00002616 if (isa<AllocaInst>(I) && I->getParent() ==
2617 &DestBlock->getParent()->getEntryBlock())
Chris Lattner39c98bb2004-12-08 23:43:58 +00002618 return false;
2619
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002620 // We can only sink load instructions if there is nothing between the load and
2621 // the end of block that could change the value.
Chris Lattner49a594e2008-05-08 17:37:37 +00002622 if (I->mayReadFromMemory()) {
2623 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002624 Scan != E; ++Scan)
2625 if (Scan->mayWriteToMemory())
2626 return false;
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002627 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00002628
Bill Wendling8ddfc092011-08-16 20:45:24 +00002629 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
Chris Lattner9f269e42005-08-08 19:11:57 +00002630 I->moveBefore(InsertPos);
Chris Lattner39c98bb2004-12-08 23:43:58 +00002631 ++NumSunkInst;
2632 return true;
2633}
2634
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002635
2636/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2637/// all reachable code to the worklist.
2638///
2639/// This has a couple of tricks to make the code faster and more powerful. In
2640/// particular, we constant fold and DCE instructions as we go, to avoid adding
2641/// them to the worklist (this significantly speeds up instcombine on code where
2642/// many instructions are dead or constant). Additionally, if we find a branch
2643/// whose condition is a known constant, we only visit the reachable successors.
2644///
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002645static bool AddReachableCodeToWorklist(BasicBlock *BB,
Craig Topper71b7b682014-08-21 05:55:13 +00002646 SmallPtrSetImpl<BasicBlock*> &Visited,
Chris Lattnerb15e2b12007-03-02 21:28:56 +00002647 InstCombiner &IC,
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002648 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00002649 const TargetLibraryInfo *TLI) {
Chris Lattnerc855b452009-10-15 04:59:28 +00002650 bool MadeIRChange = false;
Chris Lattner1d239152008-08-15 04:03:01 +00002651 SmallVector<BasicBlock*, 256> Worklist;
Chris Lattner12b89cc2007-03-23 19:17:18 +00002652 Worklist.push_back(BB);
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002653
Benjamin Kramer76229bc2010-10-23 17:10:24 +00002654 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
Eli Friedman68aab452011-05-24 18:52:07 +00002655 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2656
Dan Gohman28943872010-01-05 16:27:25 +00002657 do {
2658 BB = Worklist.pop_back_val();
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002659
Chris Lattner12b89cc2007-03-23 19:17:18 +00002660 // We have now visited this block! If we've already been here, ignore it.
David Blaikie70573dc2014-11-19 07:49:26 +00002661 if (!Visited.insert(BB).second)
2662 continue;
Devang Patel7ed6c532008-11-19 18:56:50 +00002663
Chris Lattner12b89cc2007-03-23 19:17:18 +00002664 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2665 Instruction *Inst = BBI++;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002666
Chris Lattner12b89cc2007-03-23 19:17:18 +00002667 // DCE instruction if trivially dead.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002668 if (isInstructionTriviallyDead(Inst, TLI)) {
Chris Lattner12b89cc2007-03-23 19:17:18 +00002669 ++NumDeadInst;
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002670 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
Chris Lattner12b89cc2007-03-23 19:17:18 +00002671 Inst->eraseFromParent();
2672 continue;
2673 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002674
Chris Lattner12b89cc2007-03-23 19:17:18 +00002675 // ConstantProp instruction if trivially constant.
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002676 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002677 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002678 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002679 << *Inst << '\n');
2680 Inst->replaceAllUsesWith(C);
2681 ++NumConstProp;
2682 Inst->eraseFromParent();
2683 continue;
2684 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002685
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002686 if (DL) {
Chris Lattnerc855b452009-10-15 04:59:28 +00002687 // See if we can constant fold its operands.
2688 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2689 i != e; ++i) {
2690 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
Craig Topperf40110f2014-04-25 05:29:35 +00002691 if (CE == nullptr) continue;
Eli Friedman68aab452011-05-24 18:52:07 +00002692
2693 Constant*& FoldRes = FoldedConstants[CE];
2694 if (!FoldRes)
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002695 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
Eli Friedman68aab452011-05-24 18:52:07 +00002696 if (!FoldRes)
2697 FoldRes = CE;
2698
2699 if (FoldRes != CE) {
2700 *i = FoldRes;
Chris Lattnerc855b452009-10-15 04:59:28 +00002701 MadeIRChange = true;
2702 }
2703 }
2704 }
Devang Patel7ed6c532008-11-19 18:56:50 +00002705
Chris Lattner8abd5722009-10-12 03:58:40 +00002706 InstrsForInstCombineWorklist.push_back(Inst);
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002707 }
Chris Lattner12b89cc2007-03-23 19:17:18 +00002708
2709 // Recursively visit successors. If this is a branch or switch on a
2710 // constant, only visit the reachable successor.
2711 TerminatorInst *TI = BB->getTerminator();
2712 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2713 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2714 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewycky271506f2008-03-09 08:50:23 +00002715 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewycky4d43d3c2008-04-25 16:53:59 +00002716 Worklist.push_back(ReachableBB);
Chris Lattner12b89cc2007-03-23 19:17:18 +00002717 continue;
2718 }
2719 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2720 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2721 // See if this is an explicit destination.
Stepan Dyatkovskiy97b02fc2012-03-11 06:09:17 +00002722 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00002723 i != e; ++i)
2724 if (i.getCaseValue() == Cond) {
2725 BasicBlock *ReachableBB = i.getCaseSuccessor();
Nick Lewycky4d43d3c2008-04-25 16:53:59 +00002726 Worklist.push_back(ReachableBB);
Chris Lattner12b89cc2007-03-23 19:17:18 +00002727 continue;
2728 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002729
Chris Lattner12b89cc2007-03-23 19:17:18 +00002730 // Otherwise it is the default destination.
Stepan Dyatkovskiy513aaa52012-02-01 07:49:51 +00002731 Worklist.push_back(SI->getDefaultDest());
Chris Lattner12b89cc2007-03-23 19:17:18 +00002732 continue;
2733 }
2734 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002735
Chris Lattner12b89cc2007-03-23 19:17:18 +00002736 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2737 Worklist.push_back(TI->getSuccessor(i));
Dan Gohman28943872010-01-05 16:27:25 +00002738 } while (!Worklist.empty());
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002739
Chris Lattner8abd5722009-10-12 03:58:40 +00002740 // Once we've found all of the instructions to add to instcombine's worklist,
2741 // add them in reverse order. This way instcombine will visit from the top
2742 // of the function down. This jives well with the way that it adds all uses
2743 // of instructions to the worklist after doing a transformation, thus avoiding
2744 // some N^2 behavior in pathological cases.
2745 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2746 InstrsForInstCombineWorklist.size());
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002747
Chris Lattnerc855b452009-10-15 04:59:28 +00002748 return MadeIRChange;
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002749}
2750
Chris Lattner960a5432007-03-03 02:04:50 +00002751bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002752 MadeIRChange = false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002753
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002754 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
Benjamin Kramer1f97a5a2011-11-15 16:27:03 +00002755 << F.getName() << "\n");
Chris Lattnerca081252001-12-14 16:52:21 +00002756
Chris Lattner4ed40f72005-07-07 20:40:38 +00002757 {
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002758 // Do a depth-first traversal of the function, populate the worklist with
2759 // the reachable instructions. Ignore blocks that are not reachable. Keep
2760 // track of which blocks we visit.
Chris Lattner7907e5f2007-02-15 19:41:52 +00002761 SmallPtrSet<BasicBlock*, 64> Visited;
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002762 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00002763 TLI);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00002764
Chris Lattner4ed40f72005-07-07 20:40:38 +00002765 // Do a quick scan over the function. If we find any blocks that are
2766 // unreachable, remove any instructions inside of them. This prevents
2767 // the instcombine code from having to deal with some bad special cases.
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002768 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2769 if (Visited.count(BB)) continue;
2770
Bill Wendling321fb372011-09-04 09:43:36 +00002771 // Delete the instructions backwards, as it has a reduced likelihood of
2772 // having to update as many def-use and use-def chains.
2773 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2774 while (EndInst != BB->begin()) {
2775 // Delete the next to last instruction.
2776 BasicBlock::iterator I = EndInst;
2777 Instruction *Inst = --I;
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002778 if (!Inst->use_empty())
2779 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
Bill Wendling321fb372011-09-04 09:43:36 +00002780 if (isa<LandingPadInst>(Inst)) {
2781 EndInst = Inst;
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002782 continue;
Bill Wendling321fb372011-09-04 09:43:36 +00002783 }
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002784 if (!isa<DbgInfoIntrinsic>(Inst)) {
2785 ++NumDeadInst;
2786 MadeIRChange = true;
Chris Lattner4ed40f72005-07-07 20:40:38 +00002787 }
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002788 Inst->eraseFromParent();
Chris Lattner4ed40f72005-07-07 20:40:38 +00002789 }
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002790 }
Chris Lattner4ed40f72005-07-07 20:40:38 +00002791 }
Chris Lattnerca081252001-12-14 16:52:21 +00002792
Chris Lattner97fd3592009-08-30 05:55:36 +00002793 while (!Worklist.isEmpty()) {
2794 Instruction *I = Worklist.RemoveOne();
Craig Topperf40110f2014-04-25 05:29:35 +00002795 if (I == nullptr) continue; // skip null values.
Chris Lattnerca081252001-12-14 16:52:21 +00002796
Chris Lattner1443bc52006-05-11 17:11:52 +00002797 // Check to see if we can DCE the instruction.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002798 if (isInstructionTriviallyDead(I, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002799 DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
Chris Lattner905976b2009-08-30 06:13:40 +00002800 EraseInstFromFunction(*I);
2801 ++NumDeadInst;
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002802 MadeIRChange = true;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002803 continue;
2804 }
Chris Lattner99f48c62002-09-02 04:59:56 +00002805
Chris Lattner1443bc52006-05-11 17:11:52 +00002806 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002807 if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002808 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002809 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
Chris Lattnercd517ff2005-01-28 19:32:01 +00002810
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002811 // Add operands to the worklist.
2812 ReplaceInstUsesWith(*I, C);
2813 ++NumConstProp;
2814 EraseInstFromFunction(*I);
2815 MadeIRChange = true;
2816 continue;
2817 }
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002818
Chris Lattner39c98bb2004-12-08 23:43:58 +00002819 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohmanfa1211f2008-07-23 00:34:11 +00002820 if (I->hasOneUse()) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002821 BasicBlock *BB = I->getParent();
Chandler Carruthcdf47882014-03-09 03:16:01 +00002822 Instruction *UserInst = cast<Instruction>(*I->user_begin());
Chris Lattner6b9044d2009-10-14 15:21:58 +00002823 BasicBlock *UserParent;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002824
Chris Lattner6b9044d2009-10-14 15:21:58 +00002825 // Get the block the use occurs in.
2826 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
Chandler Carruthcdf47882014-03-09 03:16:01 +00002827 UserParent = PN->getIncomingBlock(*I->use_begin());
Chris Lattner6b9044d2009-10-14 15:21:58 +00002828 else
2829 UserParent = UserInst->getParent();
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002830
Chris Lattner39c98bb2004-12-08 23:43:58 +00002831 if (UserParent != BB) {
2832 bool UserIsSuccessor = false;
2833 // See if the user is one of our successors.
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00002834 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2835 if (*SI == UserParent) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002836 UserIsSuccessor = true;
2837 break;
2838 }
2839
2840 // If the user is one of our immediate successors, and if that successor
2841 // only has us as a predecessors (we'd have to split the critical edge
2842 // otherwise), we can keep going.
Aditya Nandakumar0b5a6742014-07-11 21:49:39 +00002843 if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002844 // Okay, the CFG is simple enough, try to sink this instruction.
Aditya Nandakumar0b5a6742014-07-11 21:49:39 +00002845 if (TryToSinkInstruction(I, UserParent)) {
2846 MadeIRChange = true;
2847 // We'll add uses of the sunk instruction below, but since sinking
2848 // can expose opportunities for it's *operands* add them to the
2849 // worklist
2850 for (Use &U : I->operands())
2851 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
2852 Worklist.Add(OpI);
2853 }
2854 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00002855 }
2856 }
2857
Chris Lattner022a5822009-08-30 07:44:24 +00002858 // Now that we have an instruction, try combining it to simplify it.
2859 Builder->SetInsertPoint(I->getParent(), I);
Eli Friedman96254a02011-05-18 01:28:27 +00002860 Builder->SetCurrentDebugLocation(I->getDebugLoc());
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002861
Reid Spencer755d0e72007-03-26 17:44:01 +00002862#ifndef NDEBUG
2863 std::string OrigI;
2864#endif
Chris Lattnerb25de3f2009-08-23 04:37:46 +00002865 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002866 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
Jeffrey Yasskindafd08e2009-10-08 00:12:24 +00002867
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002868 if (Instruction *Result = visit(*I)) {
Chris Lattner0b18c1d2002-05-10 15:38:35 +00002869 ++NumCombined;
Chris Lattner260ab202002-04-18 17:39:14 +00002870 // Should we replace the old instruction with a new one?
Chris Lattner053c0932002-05-14 15:24:07 +00002871 if (Result != I) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002872 DEBUG(dbgs() << "IC: Old = " << *I << '\n'
Jim Grosbach8f9acfa2011-10-05 20:44:29 +00002873 << " New = " << *Result << '\n');
2874
Eli Friedman35211c62011-05-27 00:19:40 +00002875 if (!I->getDebugLoc().isUnknown())
2876 Result->setDebugLoc(I->getDebugLoc());
Chris Lattner396dbfe2004-06-09 05:08:07 +00002877 // Everything uses the new instruction now.
2878 I->replaceAllUsesWith(Result);
2879
Jim Grosbache7abae02011-10-05 20:53:43 +00002880 // Move the name to the new instruction first.
2881 Result->takeName(I);
2882
Jim Grosbach8f9acfa2011-10-05 20:44:29 +00002883 // Push the new instruction and any users onto the worklist.
2884 Worklist.Add(Result);
2885 Worklist.AddUsersToWorkList(*Result);
2886
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002887 // Insert the new instruction into the basic block...
2888 BasicBlock *InstParent = I->getParent();
Chris Lattner7515cab2004-11-14 19:13:23 +00002889 BasicBlock::iterator InsertPos = I;
2890
Eli Friedmana49b8282011-11-01 04:49:29 +00002891 // If we replace a PHI with something that isn't a PHI, fix up the
2892 // insertion point.
2893 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2894 InsertPos = InstParent->getFirstInsertionPt();
Chris Lattner7515cab2004-11-14 19:13:23 +00002895
2896 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002897
Chris Lattner905976b2009-08-30 06:13:40 +00002898 EraseInstFromFunction(*I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002899 } else {
Evan Chenga4ed8a52007-03-27 16:44:48 +00002900#ifndef NDEBUG
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002901 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
Chris Lattnerb25de3f2009-08-23 04:37:46 +00002902 << " New = " << *I << '\n');
Evan Chenga4ed8a52007-03-27 16:44:48 +00002903#endif
Chris Lattner7d2a5392004-03-13 23:54:27 +00002904
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002905 // If the instruction was modified, it's possible that it is now dead.
2906 // if so, remove it.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002907 if (isInstructionTriviallyDead(I, TLI)) {
Chris Lattner905976b2009-08-30 06:13:40 +00002908 EraseInstFromFunction(*I);
Chris Lattner396dbfe2004-06-09 05:08:07 +00002909 } else {
Chris Lattner905976b2009-08-30 06:13:40 +00002910 Worklist.Add(I);
Chris Lattnerbacd05c2009-08-30 06:22:51 +00002911 Worklist.AddUsersToWorkList(*I);
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002912 }
Chris Lattner053c0932002-05-14 15:24:07 +00002913 }
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002914 MadeIRChange = true;
Chris Lattnerca081252001-12-14 16:52:21 +00002915 }
2916 }
2917
Chris Lattner97fd3592009-08-30 05:55:36 +00002918 Worklist.Zap();
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002919 return MadeIRChange;
Chris Lattner04805fa2002-02-26 21:46:54 +00002920}
2921
Chandler Carruth1edb9d62015-01-20 22:44:35 +00002922// FIXME: Passing all of the analyses here in the run method is ugly. We should
2923// separate out the worklist from the combiner so that we can construct
2924// a combiner once per function while re-using the storage of an external
2925// worklist.
2926bool InstCombiner::run(Function &F, AssumptionCache *AC, const DataLayout *DL,
2927 TargetLibraryInfo *TLI, DominatorTree *DT,
2928 LoopInfo *LI) {
2929 // Set up our analysis pointers.
2930 this->AC = AC;
2931 this->DL = DL;
2932 this->TLI = TLI;
2933 this->DT = DT;
2934 this->LI = LI;
Hal Finkel60db0582014-09-07 18:57:58 +00002935
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00002936 // Minimizing size?
2937 MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2938 Attribute::MinSize);
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002939
Chris Lattner022a5822009-08-30 07:44:24 +00002940 /// Builder - This is an IRBuilder that automatically inserts new
2941 /// instructions into the worklist when they are created.
Chandler Carruth66b31302015-01-04 12:03:27 +00002942 IRBuilder<true, TargetFolder, InstCombineIRInserter> TheBuilder(
2943 F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, AC));
Chris Lattner022a5822009-08-30 07:44:24 +00002944 Builder = &TheBuilder;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002945
Chris Lattner960a5432007-03-03 02:04:50 +00002946 bool EverMadeChange = false;
2947
Devang Patelaad34d82011-03-17 22:18:16 +00002948 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2949 // by instcombiner.
2950 EverMadeChange = LowerDbgDeclare(F);
2951
Chris Lattner960a5432007-03-03 02:04:50 +00002952 // Iterate while there is work to do.
2953 unsigned Iteration = 0;
Bill Wendling37169522008-05-14 22:45:20 +00002954 while (DoOneIteration(F, Iteration++))
Chris Lattner960a5432007-03-03 02:04:50 +00002955 EverMadeChange = true;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002956
Craig Topperf40110f2014-04-25 05:29:35 +00002957 Builder = nullptr;
Chris Lattner960a5432007-03-03 02:04:50 +00002958 return EverMadeChange;
2959}
2960
Chandler Carruth1edb9d62015-01-20 22:44:35 +00002961namespace {
2962/// \brief The legacy pass manager's instcombine pass.
2963///
2964/// This is a basic whole-function wrapper around the instcombine utility. It
2965/// will try to combine all instructions in the function.
2966class InstructionCombiningPass : public FunctionPass {
2967 InstCombiner IC;
2968
2969public:
2970 static char ID; // Pass identification, replacement for typeid
2971
2972 InstructionCombiningPass() : FunctionPass(ID) {
2973 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
2974 }
2975
2976 void getAnalysisUsage(AnalysisUsage &AU) const override;
2977 bool runOnFunction(Function &F) override;
2978};
2979}
2980
2981void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
2982 AU.setPreservesCFG();
2983 AU.addRequired<AssumptionCacheTracker>();
2984 AU.addRequired<TargetLibraryInfoWrapperPass>();
2985 AU.addRequired<DominatorTreeWrapperPass>();
2986 AU.addPreserved<DominatorTreeWrapperPass>();
2987}
2988
2989bool InstructionCombiningPass::runOnFunction(Function &F) {
2990 if (skipOptnoneFunction(F))
2991 return false;
2992
2993 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2994 auto *DLP = getAnalysisIfAvailable<DataLayoutPass>();
2995 auto *DL = DLP ? &DLP->getDataLayout() : nullptr;
2996 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2997 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2998 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2999 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3000
3001 return IC.run(F, &AC, DL, &TLI, &DT, LI);
3002}
3003
3004char InstructionCombiningPass::ID = 0;
3005INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3006 "Combine redundant instructions", false, false)
3007INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3008INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3009INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3010INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3011 "Combine redundant instructions", false, false)
3012
3013// Initialization Routines
3014void llvm::initializeInstCombine(PassRegistry &Registry) {
3015 initializeInstructionCombiningPassPass(Registry);
3016}
3017
3018void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3019 initializeInstructionCombiningPassPass(*unwrap(R));
3020}
3021
Brian Gaeke38b79e82004-07-27 17:43:21 +00003022FunctionPass *llvm::createInstructionCombiningPass() {
Chandler Carruth1edb9d62015-01-20 22:44:35 +00003023 return new InstructionCombiningPass();
Chris Lattner04805fa2002-02-26 21:46:54 +00003024}