blob: 39589f6d201cd2f2522d3bbe571163a83895a3a4 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the SystemZ target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZTargetMachine.h"
Richard Sandiford97846492013-07-09 09:46:39 +000015#include "llvm/Analysis/AliasAnalysis.h"
Ulrich Weigand5f613df2013-05-06 16:15:19 +000016#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/raw_ostream.h"
19
20using namespace llvm;
21
22namespace {
23// Used to build addressing modes.
24struct SystemZAddressingMode {
25 // The shape of the address.
26 enum AddrForm {
27 // base+displacement
28 FormBD,
29
30 // base+displacement+index for load and store operands
31 FormBDXNormal,
32
33 // base+displacement+index for load address operands
34 FormBDXLA,
35
36 // base+displacement+index+ADJDYNALLOC
37 FormBDXDynAlloc
38 };
39 AddrForm Form;
40
41 // The type of displacement. The enum names here correspond directly
42 // to the definitions in SystemZOperand.td. We could split them into
43 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
44 enum DispRange {
45 Disp12Only,
46 Disp12Pair,
47 Disp20Only,
48 Disp20Only128,
49 Disp20Pair
50 };
51 DispRange DR;
52
53 // The parts of the address. The address is equivalent to:
54 //
55 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
56 SDValue Base;
57 int64_t Disp;
58 SDValue Index;
59 bool IncludesDynAlloc;
60
61 SystemZAddressingMode(AddrForm form, DispRange dr)
62 : Form(form), DR(dr), Base(), Disp(0), Index(),
63 IncludesDynAlloc(false) {}
64
65 // True if the address can have an index register.
66 bool hasIndexField() { return Form != FormBD; }
67
68 // True if the address can (and must) include ADJDYNALLOC.
69 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
70
71 void dump() {
72 errs() << "SystemZAddressingMode " << this << '\n';
73
74 errs() << " Base ";
75 if (Base.getNode() != 0)
76 Base.getNode()->dump();
77 else
78 errs() << "null\n";
79
80 if (hasIndexField()) {
81 errs() << " Index ";
82 if (Index.getNode() != 0)
83 Index.getNode()->dump();
84 else
85 errs() << "null\n";
86 }
87
88 errs() << " Disp " << Disp;
89 if (IncludesDynAlloc)
90 errs() << " + ADJDYNALLOC";
91 errs() << '\n';
92 }
93};
94
95class SystemZDAGToDAGISel : public SelectionDAGISel {
96 const SystemZTargetLowering &Lowering;
97 const SystemZSubtarget &Subtarget;
98
99 // Used by SystemZOperands.td to create integer constants.
100 inline SDValue getImm(const SDNode *Node, uint64_t Imm) {
101 return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
102 }
103
104 // Try to fold more of the base or index of AM into AM, where IsBase
105 // selects between the base and index.
106 bool expandAddress(SystemZAddressingMode &AM, bool IsBase);
107
108 // Try to describe N in AM, returning true on success.
109 bool selectAddress(SDValue N, SystemZAddressingMode &AM);
110
111 // Extract individual target operands from matched address AM.
112 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
113 SDValue &Base, SDValue &Disp);
114 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
115 SDValue &Base, SDValue &Disp, SDValue &Index);
116
117 // Try to match Addr as a FormBD address with displacement type DR.
118 // Return true on success, storing the base and displacement in
119 // Base and Disp respectively.
120 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
121 SDValue &Base, SDValue &Disp);
122
123 // Try to match Addr as a FormBDX* address of form Form with
124 // displacement type DR. Return true on success, storing the base,
125 // displacement and index in Base, Disp and Index respectively.
126 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
127 SystemZAddressingMode::DispRange DR, SDValue Addr,
128 SDValue &Base, SDValue &Disp, SDValue &Index);
129
130 // PC-relative address matching routines used by SystemZOperands.td.
131 bool selectPCRelAddress(SDValue Addr, SDValue &Target) {
132 if (Addr.getOpcode() == SystemZISD::PCREL_WRAPPER) {
133 Target = Addr.getOperand(0);
134 return true;
135 }
136 return false;
137 }
138
139 // BD matching routines used by SystemZOperands.td.
140 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
141 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
142 }
143 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
144 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
145 }
146 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
147 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
148 }
149 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
150 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
151 }
152
153 // BDX matching routines used by SystemZOperands.td.
154 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
155 SDValue &Index) {
156 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
157 SystemZAddressingMode::Disp12Only,
158 Addr, Base, Disp, Index);
159 }
160 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
161 SDValue &Index) {
162 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
163 SystemZAddressingMode::Disp12Pair,
164 Addr, Base, Disp, Index);
165 }
166 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
167 SDValue &Index) {
168 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
169 SystemZAddressingMode::Disp12Only,
170 Addr, Base, Disp, Index);
171 }
172 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
173 SDValue &Index) {
174 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
175 SystemZAddressingMode::Disp20Only,
176 Addr, Base, Disp, Index);
177 }
178 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
179 SDValue &Index) {
180 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
181 SystemZAddressingMode::Disp20Only128,
182 Addr, Base, Disp, Index);
183 }
184 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
185 SDValue &Index) {
186 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
187 SystemZAddressingMode::Disp20Pair,
188 Addr, Base, Disp, Index);
189 }
190 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
191 SDValue &Index) {
192 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
193 SystemZAddressingMode::Disp12Pair,
194 Addr, Base, Disp, Index);
195 }
196 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
197 SDValue &Index) {
198 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
199 SystemZAddressingMode::Disp20Pair,
200 Addr, Base, Disp, Index);
201 }
202
Richard Sandiford84f54a32013-07-11 08:59:12 +0000203 // Return an undefined i64 value.
204 SDValue getUNDEF64(SDLoc DL);
205
206 // Convert N to VT, if it isn't already.
207 SDValue convertTo(SDLoc DL, EVT VT, SDValue N);
208
209 // Try to use RISBG to implement ISD::AND node N. Return the selected
210 // node on success, otherwise return null.
211 SDNode *tryRISBGForAND(SDNode *N);
212
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000213 // If Op0 is null, then Node is a constant that can be loaded using:
214 //
215 // (Opcode UpperVal LowerVal)
216 //
217 // If Op0 is nonnull, then Node can be implemented using:
218 //
219 // (Opcode (Opcode Op0 UpperVal) LowerVal)
220 SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
221 uint64_t UpperVal, uint64_t LowerVal);
222
Richard Sandiford97846492013-07-09 09:46:39 +0000223 bool storeLoadCanUseMVC(SDNode *N) const;
224
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000225public:
226 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
227 : SelectionDAGISel(TM, OptLevel),
228 Lowering(*TM.getTargetLowering()),
229 Subtarget(*TM.getSubtargetImpl()) { }
230
231 // Override MachineFunctionPass.
232 virtual const char *getPassName() const LLVM_OVERRIDE {
233 return "SystemZ DAG->DAG Pattern Instruction Selection";
234 }
235
236 // Override SelectionDAGISel.
237 virtual SDNode *Select(SDNode *Node) LLVM_OVERRIDE;
238 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
239 char ConstraintCode,
240 std::vector<SDValue> &OutOps)
241 LLVM_OVERRIDE;
242
243 // Include the pieces autogenerated from the target description.
244 #include "SystemZGenDAGISel.inc"
245};
246} // end anonymous namespace
247
248FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
249 CodeGenOpt::Level OptLevel) {
250 return new SystemZDAGToDAGISel(TM, OptLevel);
251}
252
253// Return true if Val should be selected as a displacement for an address
254// with range DR. Here we're interested in the range of both the instruction
255// described by DR and of any pairing instruction.
256static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
257 switch (DR) {
258 case SystemZAddressingMode::Disp12Only:
259 return isUInt<12>(Val);
260
261 case SystemZAddressingMode::Disp12Pair:
262 case SystemZAddressingMode::Disp20Only:
263 case SystemZAddressingMode::Disp20Pair:
264 return isInt<20>(Val);
265
266 case SystemZAddressingMode::Disp20Only128:
267 return isInt<20>(Val) && isInt<20>(Val + 8);
268 }
269 llvm_unreachable("Unhandled displacement range");
270}
271
272// Change the base or index in AM to Value, where IsBase selects
273// between the base and index.
274static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
275 SDValue Value) {
276 if (IsBase)
277 AM.Base = Value;
278 else
279 AM.Index = Value;
280}
281
282// The base or index of AM is equivalent to Value + ADJDYNALLOC,
283// where IsBase selects between the base and index. Try to fold the
284// ADJDYNALLOC into AM.
285static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
286 SDValue Value) {
287 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
288 changeComponent(AM, IsBase, Value);
289 AM.IncludesDynAlloc = true;
290 return true;
291 }
292 return false;
293}
294
295// The base of AM is equivalent to Base + Index. Try to use Index as
296// the index register.
297static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
298 SDValue Index) {
299 if (AM.hasIndexField() && !AM.Index.getNode()) {
300 AM.Base = Base;
301 AM.Index = Index;
302 return true;
303 }
304 return false;
305}
306
307// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
308// between the base and index. Try to fold Op1 into AM's displacement.
309static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
310 SDValue Op0, ConstantSDNode *Op1) {
311 // First try adjusting the displacement.
312 int64_t TestDisp = AM.Disp + Op1->getSExtValue();
313 if (selectDisp(AM.DR, TestDisp)) {
314 changeComponent(AM, IsBase, Op0);
315 AM.Disp = TestDisp;
316 return true;
317 }
318
319 // We could consider forcing the displacement into a register and
320 // using it as an index, but it would need to be carefully tuned.
321 return false;
322}
323
324bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
325 bool IsBase) {
326 SDValue N = IsBase ? AM.Base : AM.Index;
327 unsigned Opcode = N.getOpcode();
328 if (Opcode == ISD::TRUNCATE) {
329 N = N.getOperand(0);
330 Opcode = N.getOpcode();
331 }
332 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
333 SDValue Op0 = N.getOperand(0);
334 SDValue Op1 = N.getOperand(1);
335
336 unsigned Op0Code = Op0->getOpcode();
337 unsigned Op1Code = Op1->getOpcode();
338
339 if (Op0Code == SystemZISD::ADJDYNALLOC)
340 return expandAdjDynAlloc(AM, IsBase, Op1);
341 if (Op1Code == SystemZISD::ADJDYNALLOC)
342 return expandAdjDynAlloc(AM, IsBase, Op0);
343
344 if (Op0Code == ISD::Constant)
345 return expandDisp(AM, IsBase, Op1, cast<ConstantSDNode>(Op0));
346 if (Op1Code == ISD::Constant)
347 return expandDisp(AM, IsBase, Op0, cast<ConstantSDNode>(Op1));
348
349 if (IsBase && expandIndex(AM, Op0, Op1))
350 return true;
351 }
352 return false;
353}
354
355// Return true if an instruction with displacement range DR should be
356// used for displacement value Val. selectDisp(DR, Val) must already hold.
357static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
358 assert(selectDisp(DR, Val) && "Invalid displacement");
359 switch (DR) {
360 case SystemZAddressingMode::Disp12Only:
361 case SystemZAddressingMode::Disp20Only:
362 case SystemZAddressingMode::Disp20Only128:
363 return true;
364
365 case SystemZAddressingMode::Disp12Pair:
366 // Use the other instruction if the displacement is too large.
367 return isUInt<12>(Val);
368
369 case SystemZAddressingMode::Disp20Pair:
370 // Use the other instruction if the displacement is small enough.
371 return !isUInt<12>(Val);
372 }
373 llvm_unreachable("Unhandled displacement range");
374}
375
376// Return true if Base + Disp + Index should be performed by LA(Y).
377static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
378 // Don't use LA(Y) for constants.
379 if (!Base)
380 return false;
381
382 // Always use LA(Y) for frame addresses, since we know that the destination
383 // register is almost always (perhaps always) going to be different from
384 // the frame register.
385 if (Base->getOpcode() == ISD::FrameIndex)
386 return true;
387
388 if (Disp) {
389 // Always use LA(Y) if there is a base, displacement and index.
390 if (Index)
391 return true;
392
393 // Always use LA if the displacement is small enough. It should always
394 // be no worse than AGHI (and better if it avoids a move).
395 if (isUInt<12>(Disp))
396 return true;
397
398 // For similar reasons, always use LAY if the constant is too big for AGHI.
399 // LAY should be no worse than AGFI.
400 if (!isInt<16>(Disp))
401 return true;
402 } else {
403 // Don't use LA for plain registers.
404 if (!Index)
405 return false;
406
407 // Don't use LA for plain addition if the index operand is only used
408 // once. It should be a natural two-operand addition in that case.
409 if (Index->hasOneUse())
410 return false;
411
412 // Prefer addition if the second operation is sign-extended, in the
413 // hope of using AGF.
414 unsigned IndexOpcode = Index->getOpcode();
415 if (IndexOpcode == ISD::SIGN_EXTEND ||
416 IndexOpcode == ISD::SIGN_EXTEND_INREG)
417 return false;
418 }
419
420 // Don't use LA for two-operand addition if either operand is only
421 // used once. The addition instructions are better in that case.
422 if (Base->hasOneUse())
423 return false;
424
425 return true;
426}
427
428// Return true if Addr is suitable for AM, updating AM if so.
429bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
430 SystemZAddressingMode &AM) {
431 // Start out assuming that the address will need to be loaded separately,
432 // then try to extend it as much as we can.
433 AM.Base = Addr;
434
435 // First try treating the address as a constant.
436 if (Addr.getOpcode() == ISD::Constant &&
437 expandDisp(AM, true, SDValue(), cast<ConstantSDNode>(Addr)))
438 ;
439 else
440 // Otherwise try expanding each component.
441 while (expandAddress(AM, true) ||
442 (AM.Index.getNode() && expandAddress(AM, false)))
443 continue;
444
445 // Reject cases where it isn't profitable to use LA(Y).
446 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
447 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
448 return false;
449
450 // Reject cases where the other instruction in a pair should be used.
451 if (!isValidDisp(AM.DR, AM.Disp))
452 return false;
453
454 // Make sure that ADJDYNALLOC is included where necessary.
455 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
456 return false;
457
458 DEBUG(AM.dump());
459 return true;
460}
461
462// Insert a node into the DAG at least before Pos. This will reposition
463// the node as needed, and will assign it a node ID that is <= Pos's ID.
464// Note that this does *not* preserve the uniqueness of node IDs!
465// The selection DAG must no longer depend on their uniqueness when this
466// function is used.
467static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
468 if (N.getNode()->getNodeId() == -1 ||
469 N.getNode()->getNodeId() > Pos->getNodeId()) {
470 DAG->RepositionNode(Pos, N.getNode());
471 N.getNode()->setNodeId(Pos->getNodeId());
472 }
473}
474
475void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
476 EVT VT, SDValue &Base,
477 SDValue &Disp) {
478 Base = AM.Base;
479 if (!Base.getNode())
480 // Register 0 means "no base". This is mostly useful for shifts.
481 Base = CurDAG->getRegister(0, VT);
482 else if (Base.getOpcode() == ISD::FrameIndex) {
483 // Lower a FrameIndex to a TargetFrameIndex.
484 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
485 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
486 } else if (Base.getValueType() != VT) {
487 // Truncate values from i64 to i32, for shifts.
488 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
489 "Unexpected truncation");
Andrew Trickef9de2a2013-05-25 02:42:55 +0000490 SDLoc DL(Base);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000491 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
492 insertDAGNode(CurDAG, Base.getNode(), Trunc);
493 Base = Trunc;
494 }
495
496 // Lower the displacement to a TargetConstant.
497 Disp = CurDAG->getTargetConstant(AM.Disp, VT);
498}
499
500void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
501 EVT VT, SDValue &Base,
502 SDValue &Disp, SDValue &Index) {
503 getAddressOperands(AM, VT, Base, Disp);
504
505 Index = AM.Index;
506 if (!Index.getNode())
507 // Register 0 means "no index".
508 Index = CurDAG->getRegister(0, VT);
509}
510
511bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
512 SDValue Addr, SDValue &Base,
513 SDValue &Disp) {
514 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
515 if (!selectAddress(Addr, AM))
516 return false;
517
518 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
519 return true;
520}
521
522bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
523 SystemZAddressingMode::DispRange DR,
524 SDValue Addr, SDValue &Base,
525 SDValue &Disp, SDValue &Index) {
526 SystemZAddressingMode AM(Form, DR);
527 if (!selectAddress(Addr, AM))
528 return false;
529
530 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
531 return true;
532}
533
Richard Sandiford84f54a32013-07-11 08:59:12 +0000534// Return true if Mask matches the regexp 0*1+0*, given that zero masks
535// have already been filtered out. Store the first set bit in LSB and
536// the number of set bits in Length if so.
537static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
538 unsigned First = findFirstSet(Mask);
539 uint64_t Top = (Mask >> First) + 1;
540 if ((Top & -Top) == Top)
541 {
542 LSB = First;
543 Length = findFirstSet(Top);
544 return true;
545 }
546 return false;
547}
548
549// Return a mask with Count low bits set.
550static uint64_t allOnes(unsigned int Count) {
551 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
552}
553
554// Return true if RISBG can be used to extract the bits in Mask from
555// a value that has BitSize bits. Store the start and end operands
556// (I3 and I4) in Start and End if so.
557static bool isRISBGMask(uint64_t Mask, unsigned BitSize, unsigned &Start,
558 unsigned &End) {
559 // Reject trivial all-zero and all-one masks.
560 uint64_t Used = allOnes(BitSize);
561 if (Mask == 0 || Mask == Used)
562 return false;
563
564 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of
565 // the msb and End specifies the index of the lsb.
566 unsigned LSB, Length;
567 if (isStringOfOnes(Mask, LSB, Length))
568 {
569 Start = 63 - (LSB + Length - 1);
570 End = 63 - LSB;
571 return true;
572 }
573
574 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb
575 // of the low 1s and End specifies the lsb of the high 1s.
576 if (isStringOfOnes(Mask ^ Used, LSB, Length))
577 {
578 assert(LSB > 0 && "Bottom bit must be set");
579 assert(LSB + Length < BitSize && "Top bit must be set");
580 Start = 63 - (LSB - 1);
581 End = 63 - (LSB + Length);
582 return true;
583 }
584
585 return false;
586}
587
588SDValue SystemZDAGToDAGISel::getUNDEF64(SDLoc DL) {
589 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64);
590 return SDValue(N, 0);
591}
592
593SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) {
594 if (N.getValueType() == MVT::i32 && VT == MVT::i64) {
595 SDValue Index = CurDAG->getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
596 SDNode *Insert = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG,
597 DL, VT, getUNDEF64(DL), N, Index);
598 return SDValue(Insert, 0);
599 }
600 if (N.getValueType() == MVT::i64 && VT == MVT::i32) {
601 SDValue Index = CurDAG->getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
602 SDNode *Extract = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
603 DL, VT, N, Index);
604 return SDValue(Extract, 0);
605 }
606 assert(N.getValueType() == VT && "Unexpected value types");
607 return N;
608}
609
610SDNode *SystemZDAGToDAGISel::tryRISBGForAND(SDNode *N) {
611 EVT VT = N->getValueType(0);
612 unsigned BitSize = VT.getSizeInBits();
613 unsigned Start, End;
614 ConstantSDNode *MaskNode =
615 dyn_cast<ConstantSDNode>(N->getOperand(1).getNode());
Richard Sandifordea9b6aa2013-07-11 09:10:09 +0000616 if (!MaskNode)
Richard Sandiford84f54a32013-07-11 08:59:12 +0000617 return 0;
618
Richard Sandifordea9b6aa2013-07-11 09:10:09 +0000619 SDValue Input = N->getOperand(0);
620 uint64_t Mask = MaskNode->getZExtValue();
621 if (!isRISBGMask(Mask, BitSize, Start, End)) {
622 APInt KnownZero, KnownOne;
623 CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
624 Mask |= KnownZero.getZExtValue();
625 if (!isRISBGMask(Mask, BitSize, Start, End))
626 return 0;
627 }
628
629 unsigned Rotate = 0;
630 if (Input->getOpcode() == ISD::ROTL && BitSize == 64) {
631 // Any 64-bit rotate left can be merged into the RISBG.
632 if (ConstantSDNode *CountNode =
633 dyn_cast<ConstantSDNode>(Input.getOperand(1).getNode())) {
634 Rotate = CountNode->getZExtValue() & (BitSize - 1);
635 Input = Input->getOperand(0);
636 }
637 } else if (Input->getOpcode() == ISD::SHL) {
638 // Try to convert (and (shl X, count), mask) into
639 // (and (rotl X, count), mask&(~0<<count)), where the new mask
640 // removes bits from the original mask that are zeroed by the shl
641 // but that are not necessarily zero in X.
642 if (ConstantSDNode *CountNode =
643 dyn_cast<ConstantSDNode>(Input.getOperand(1).getNode())) {
644 uint64_t Count = CountNode->getZExtValue();
645 if (Count > 0 &&
646 Count < BitSize &&
647 isRISBGMask(Mask & (allOnes(BitSize - Count) << Count),
648 BitSize, Start, End)) {
649 Rotate = Count;
650 Input = Input->getOperand(0);
651 }
652 }
653 } else if (Input->getOpcode() == ISD::SRL) {
654 // Try to convert (and (srl X, count), mask) into
655 // (and (rotl X, size-count), mask&(~0>>count)), which is similar
656 // to SLL above.
657 if (ConstantSDNode *CountNode =
658 dyn_cast<ConstantSDNode>(Input.getOperand(1).getNode())) {
659 uint64_t Count = CountNode->getZExtValue();
660 if (Count > 0 &&
661 Count < BitSize &&
662 isRISBGMask(Mask & allOnes(BitSize - Count), BitSize, Start, End)) {
663 Rotate = 64 - Count;
664 Input = Input->getOperand(0);
665 }
666 }
667 } else if (Start <= End && Input->getOpcode() == ISD::SRA) {
668 // Try to convert (and (sra X, count), mask) into
669 // (and (rotl X, size-count), mask). The mask must not include
670 // any sign bits.
671 if (ConstantSDNode *CountNode =
672 dyn_cast<ConstantSDNode>(Input.getOperand(1).getNode())) {
673 uint64_t Count = CountNode->getZExtValue();
674 if (Count > 0 && Count < BitSize && Start >= 64 - (BitSize - Count)) {
675 Rotate = 64 - Count;
676 Input = Input->getOperand(0);
677 }
678 }
679 }
680
Richard Sandiford84f54a32013-07-11 08:59:12 +0000681 // Prefer register extensions like LLC over RSIBG.
Richard Sandifordea9b6aa2013-07-11 09:10:09 +0000682 if (Rotate == 0 && (Start == 32 || Start == 48 || Start == 56) && End == 63)
Richard Sandiford84f54a32013-07-11 08:59:12 +0000683 return 0;
684
685 SDValue Ops[5] = {
686 getUNDEF64(SDLoc(N)),
Richard Sandifordea9b6aa2013-07-11 09:10:09 +0000687 convertTo(SDLoc(N), MVT::i64, Input),
Richard Sandiford84f54a32013-07-11 08:59:12 +0000688 CurDAG->getTargetConstant(Start, MVT::i32),
689 CurDAG->getTargetConstant(End | 128, MVT::i32),
Richard Sandifordea9b6aa2013-07-11 09:10:09 +0000690 CurDAG->getTargetConstant(Rotate, MVT::i32)
Richard Sandiford84f54a32013-07-11 08:59:12 +0000691 };
692 N = CurDAG->getMachineNode(SystemZ::RISBG, SDLoc(N), MVT::i64, Ops);
693 return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
694}
695
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000696SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
697 SDValue Op0, uint64_t UpperVal,
698 uint64_t LowerVal) {
699 EVT VT = Node->getValueType(0);
Andrew Trickef9de2a2013-05-25 02:42:55 +0000700 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000701 SDValue Upper = CurDAG->getConstant(UpperVal, VT);
702 if (Op0.getNode())
703 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
704 Upper = SDValue(Select(Upper.getNode()), 0);
705
706 SDValue Lower = CurDAG->getConstant(LowerVal, VT);
707 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
708 return Or.getNode();
709}
710
Richard Sandiford97846492013-07-09 09:46:39 +0000711// N is a (store (load ...), ...) pattern. Return true if it can use MVC.
712bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
713 StoreSDNode *Store = cast<StoreSDNode>(N);
714 LoadSDNode *Load = cast<LoadSDNode>(Store->getValue().getNode());
715
716 // MVC is logically a bytewise copy, so can't be used for volatile accesses.
717 if (Load->isVolatile() || Store->isVolatile())
718 return false;
719
720 // Prefer not to use MVC if either address can use ... RELATIVE LONG
721 // instructions.
722 assert(Load->getMemoryVT() == Store->getMemoryVT() &&
723 "Should already have checked that the types match");
724 uint64_t Size = Load->getMemoryVT().getStoreSize();
725 if (Size > 1 && Size <= 8) {
726 // Prefer LHRL, LRL and LGRL.
727 if (Load->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
728 return false;
729 // Prefer STHRL, STRL and STGRL.
730 if (Store->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
731 return false;
732 }
733
734 // There's no chance of overlap if the load is invariant.
735 if (Load->isInvariant())
736 return true;
737
738 // If both operands are aligned, they must be equal or not overlap.
739 if (Load->getAlignment() >= Size && Store->getAlignment() >= Size)
740 return true;
741
742 // Otherwise we need to check whether there's an alias.
743 const Value *V1 = Load->getSrcValue();
744 const Value *V2 = Store->getSrcValue();
745 if (!V1 || !V2)
746 return false;
747
748 int64_t End1 = Load->getSrcValueOffset() + Size;
749 int64_t End2 = Store->getSrcValueOffset() + Size;
750 return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
751 AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
752}
753
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000754SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
755 // Dump information about the Node being selected
756 DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
757
758 // If we have a custom node, we already have selected!
759 if (Node->isMachineOpcode()) {
760 DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
761 return 0;
762 }
763
764 unsigned Opcode = Node->getOpcode();
Richard Sandiford84f54a32013-07-11 08:59:12 +0000765 SDNode *ResNode = 0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000766 switch (Opcode) {
767 case ISD::OR:
768 case ISD::XOR:
769 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
770 // split the operation into two.
771 if (Node->getValueType(0) == MVT::i64)
772 if (ConstantSDNode *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
773 uint64_t Val = Op1->getZExtValue();
774 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
775 Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
776 Val - uint32_t(Val), uint32_t(Val));
777 }
778 break;
779
Richard Sandiford84f54a32013-07-11 08:59:12 +0000780 case ISD::AND:
781 ResNode = tryRISBGForAND(Node);
782 break;
783
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000784 case ISD::Constant:
785 // If this is a 64-bit constant that is out of the range of LLILF,
786 // LLIHF and LGFI, split it into two 32-bit pieces.
787 if (Node->getValueType(0) == MVT::i64) {
788 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
789 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
790 Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
791 Val - uint32_t(Val), uint32_t(Val));
792 }
793 break;
794
795 case ISD::ATOMIC_LOAD_SUB:
796 // Try to convert subtractions of constants to additions.
797 if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
798 uint64_t Value = -Op2->getZExtValue();
799 EVT VT = Node->getValueType(0);
800 if (VT == MVT::i32 || isInt<32>(Value)) {
801 SDValue Ops[] = { Node->getOperand(0), Node->getOperand(1),
802 CurDAG->getConstant(int32_t(Value), VT) };
803 Node = CurDAG->MorphNodeTo(Node, ISD::ATOMIC_LOAD_ADD,
804 Node->getVTList(), Ops, array_lengthof(Ops));
805 }
806 }
807 break;
808 }
809
810 // Select the default instruction
Richard Sandiford84f54a32013-07-11 08:59:12 +0000811 if (!ResNode)
812 ResNode = SelectCode(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000813
814 DEBUG(errs() << "=> ";
815 if (ResNode == NULL || ResNode == Node)
816 Node->dump(CurDAG);
817 else
818 ResNode->dump(CurDAG);
819 errs() << "\n";
820 );
821 return ResNode;
822}
823
824bool SystemZDAGToDAGISel::
825SelectInlineAsmMemoryOperand(const SDValue &Op,
826 char ConstraintCode,
827 std::vector<SDValue> &OutOps) {
828 assert(ConstraintCode == 'm' && "Unexpected constraint code");
829 // Accept addresses with short displacements, which are compatible
830 // with Q, R, S and T. But keep the index operand for future expansion.
831 SDValue Base, Disp, Index;
832 if (!selectBDXAddr(SystemZAddressingMode::FormBD,
833 SystemZAddressingMode::Disp12Only,
834 Op, Base, Disp, Index))
835 return true;
836 OutOps.push_back(Base);
837 OutOps.push_back(Disp);
838 OutOps.push_back(Index);
839 return false;
840}