blob: 3de5310882409f625789417163c7999e410fcc0e [file] [log] [blame]
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001//===--- HexagonBitTracker.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000010#include "HexagonBitTracker.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000011#include "Hexagon.h"
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000012#include "HexagonInstrInfo.h"
13#include "HexagonRegisterInfo.h"
14#include "HexagonTargetMachine.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000015#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineInstr.h"
17#include "llvm/CodeGen/MachineOperand.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/IR/Argument.h"
20#include "llvm/IR/Attributes.h"
21#include "llvm/IR/Function.h"
22#include "llvm/IR/Type.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include <cassert>
29#include <cstddef>
30#include <cstdint>
31#include <cstdlib>
32#include <utility>
33#include <vector>
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000034
35using namespace llvm;
36
37typedef BitTracker BT;
38
Benjamin Kramerd8861512015-07-13 20:38:16 +000039HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
40 MachineRegisterInfo &mri,
41 const HexagonInstrInfo &tii,
42 MachineFunction &mf)
Matthias Braun941a7052016-07-28 18:40:00 +000043 : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000044 // Populate the VRX map (VR to extension-type).
45 // Go over all the formal parameters of the function. If a given parameter
46 // P is sign- or zero-extended, locate the virtual register holding that
47 // parameter and create an entry in the VRX map indicating the type of ex-
48 // tension (and the source type).
49 // This is a bit complicated to do accurately, since the memory layout in-
50 // formation is necessary to precisely determine whether an aggregate para-
51 // meter will be passed in a register or in memory. What is given in MRI
52 // is the association between the physical register that is live-in (i.e.
53 // holds an argument), and the virtual register that this value will be
54 // copied into. This, by itself, is not sufficient to map back the virtual
55 // register to a formal parameter from Function (since consecutive live-ins
56 // from MRI may not correspond to consecutive formal parameters from Func-
57 // tion). To avoid the complications with in-memory arguments, only consi-
58 // der the initial sequence of formal parameters that are known to be
59 // passed via registers.
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000060 unsigned InVirtReg, InPhysReg = 0;
61 const Function &F = *MF.getFunction();
62 typedef Function::const_arg_iterator arg_iterator;
63 for (arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000064 const Argument &Arg = *I;
65 Type *ATy = Arg.getType();
66 unsigned Width = 0;
67 if (ATy->isIntegerTy())
68 Width = ATy->getIntegerBitWidth();
69 else if (ATy->isPointerTy())
70 Width = 32;
71 // If pointer size is not set through target data, it will default to
72 // Module::AnyPointerSize.
73 if (Width == 0 || Width > 64)
74 break;
Reid Kleckner6652a522017-04-28 18:37:16 +000075 if (Arg.hasAttribute(Attribute::ByVal))
Krzysztof Parzyszek60f0b512016-08-11 18:15:16 +000076 continue;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000077 InPhysReg = getNextPhysReg(InPhysReg, Width);
78 if (!InPhysReg)
79 break;
80 InVirtReg = getVirtRegFor(InPhysReg);
81 if (!InVirtReg)
82 continue;
Reid Kleckner6652a522017-04-28 18:37:16 +000083 if (Arg.hasAttribute(Attribute::SExt))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000084 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
Reid Kleckner6652a522017-04-28 18:37:16 +000085 else if (Arg.hasAttribute(Attribute::ZExt))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000086 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
87 }
88}
89
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000090BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000091 using namespace Hexagon;
92
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000093 if (Sub == 0)
94 return MachineEvaluator::mask(Reg, 0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000095 const TargetRegisterClass *RC = MRI.getRegClass(Reg);
96 unsigned ID = RC->getID();
97 uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +000098 auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
99 bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000100 switch (ID) {
101 case DoubleRegsRegClassID:
Krzysztof Parzyszek195dc8d2015-11-26 04:33:11 +0000102 case VecDblRegsRegClassID:
103 case VecDblRegs128BRegClassID:
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +0000104 return IsSubLo ? BT::BitMask(0, RW-1)
105 : BT::BitMask(RW, 2*RW-1);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000106 default:
107 break;
108 }
109#ifndef NDEBUG
110 dbgs() << PrintReg(Reg, &TRI, Sub) << '\n';
111#endif
112 llvm_unreachable("Unexpected register/subregister");
113}
114
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000115namespace {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000116
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000117class RegisterRefs {
118 std::vector<BT::RegisterRef> Vector;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000119
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000120public:
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000121 RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000122 for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000123 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000124 if (MO.isReg())
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000125 Vector[i] = BT::RegisterRef(MO);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000126 // For indices that don't correspond to registers, the entry will
127 // remain constructed via the default constructor.
128 }
129 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000130
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000131 size_t size() const { return Vector.size(); }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000132
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000133 const BT::RegisterRef &operator[](unsigned n) const {
134 // The main purpose of this operator is to assert with bad argument.
135 assert(n < Vector.size());
136 return Vector[n];
137 }
138};
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000139
140} // end anonymous namespace
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000141
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000142bool HexagonEvaluator::evaluate(const MachineInstr &MI,
143 const CellMapType &Inputs,
144 CellMapType &Outputs) const {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000145 using namespace Hexagon;
146
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000147 unsigned NumDefs = 0;
148
149 // Sanity verification: there should not be any defs with subregisters.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000150 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
151 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000152 if (!MO.isReg() || !MO.isDef())
153 continue;
154 NumDefs++;
155 assert(MO.getSubReg() == 0);
156 }
157
158 if (NumDefs == 0)
159 return false;
160
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +0000161 unsigned Opc = MI.getOpcode();
162
163 if (MI.mayLoad()) {
164 switch (Opc) {
165 // These instructions may be marked as mayLoad, but they are generating
166 // immediate values, so skip them.
167 case CONST32:
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +0000168 case CONST64:
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +0000169 break;
170 default:
171 return evaluateLoad(MI, Inputs, Outputs);
172 }
173 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000174
175 // Check COPY instructions that copy formal parameters into virtual
176 // registers. Such parameters can be sign- or zero-extended at the
177 // call site, and we should take advantage of this knowledge. The MRI
178 // keeps a list of pairs of live-in physical and virtual registers,
179 // which provides information about which virtual registers will hold
180 // the argument values. The function will still contain instructions
181 // defining those virtual registers, and in practice those are COPY
182 // instructions from a physical to a virtual register. In such cases,
183 // applying the argument extension to the virtual register can be seen
184 // as simply mirroring the extension that had already been applied to
185 // the physical register at the call site. If the defining instruction
186 // was not a COPY, it would not be clear how to mirror that extension
187 // on the callee's side. For that reason, only check COPY instructions
188 // for potential extensions.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000189 if (MI.isCopy()) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000190 if (evaluateFormalCopy(MI, Inputs, Outputs))
191 return true;
192 }
193
194 // Beyond this point, if any operand is a global, skip that instruction.
195 // The reason is that certain instructions that can take an immediate
196 // operand can also have a global symbol in that operand. To avoid
197 // checking what kind of operand a given instruction has individually
198 // for each instruction, do it here. Global symbols as operands gene-
199 // rally do not provide any useful information.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000200 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
201 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000202 if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
203 MO.isCPI())
204 return false;
205 }
206
207 RegisterRefs Reg(MI);
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000208#define op(i) MI.getOperand(i)
209#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
210#define im(i) MI.getOperand(i).getImm()
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000211
212 // If the instruction has no register operands, skip it.
213 if (Reg.size() == 0)
214 return false;
215
216 // Record result for register in operand 0.
217 auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
218 -> bool {
219 putCell(Reg[0], Val, Outputs);
220 return true;
221 };
222 // Get the cell corresponding to the N-th operand.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000223 auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
224 uint16_t W) -> BT::RegisterCell {
225 const MachineOperand &Op = MI.getOperand(N);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000226 if (Op.isImm())
227 return eIMM(Op.getImm(), W);
228 if (!Op.isReg())
229 return RegisterCell::self(0, W);
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000230 assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000231 return rc(N);
232 };
233 // Extract RW low bits of the cell.
234 auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
235 -> BT::RegisterCell {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000236 assert(RW <= RC.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000237 return eXTR(RC, 0, RW);
238 };
239 // Extract RW high bits of the cell.
240 auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
241 -> BT::RegisterCell {
242 uint16_t W = RC.width();
243 assert(RW <= W);
244 return eXTR(RC, W-RW, W);
245 };
246 // Extract N-th halfword (counting from the least significant position).
247 auto half = [this] (const BT::RegisterCell &RC, unsigned N)
248 -> BT::RegisterCell {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000249 assert(N*16+16 <= RC.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000250 return eXTR(RC, N*16, N*16+16);
251 };
252 // Shuffle bits (pick even/odd from cells and merge into result).
253 auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
254 uint16_t BW, bool Odd) -> BT::RegisterCell {
255 uint16_t I = Odd, Ws = Rs.width();
256 assert(Ws == Rt.width());
257 RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
258 I += 2;
259 while (I*BW < Ws) {
260 RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
261 I += 2;
262 }
263 return RC;
264 };
265
266 // The bitwidth of the 0th operand. In most (if not all) of the
267 // instructions below, the 0th operand is the defined register.
268 // Pre-compute the bitwidth here, because it is needed in many cases
269 // cases below.
270 uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
271
Krzysztof Parzyszek128e1912017-02-23 22:11:52 +0000272 // Register id of the 0th operand. It can be 0.
273 unsigned Reg0 = Reg[0].Reg;
274
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000275 switch (Opc) {
276 // Transfer immediate:
277
278 case A2_tfrsi:
279 case A2_tfrpi:
280 case CONST32:
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +0000281 case CONST64:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000282 return rr0(eIMM(im(1), W0), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000283 case PS_false:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000284 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000285 case PS_true:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000286 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000287 case PS_fi: {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000288 int FI = op(1).getIndex();
289 int Off = op(2).getImm();
290 unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
291 unsigned L = Log2_32(A);
292 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
293 RC.fill(0, L, BT::BitValue::Zero);
294 return rr0(RC, Outputs);
295 }
296
297 // Transfer register:
298
299 case A2_tfr:
300 case A2_tfrp:
301 case C2_pxfer_map:
302 return rr0(rc(1), Outputs);
303 case C2_tfrpr: {
304 uint16_t RW = W0;
305 uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
306 assert(PW <= RW);
307 RegisterCell PC = eXTR(rc(1), 0, PW);
308 RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
309 RC.fill(PW, RW, BT::BitValue::Zero);
310 return rr0(RC, Outputs);
311 }
312 case C2_tfrrp: {
313 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
314 W0 = 8; // XXX Pred size
315 return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs);
316 }
317
318 // Arithmetic:
319
320 case A2_abs:
321 case A2_absp:
322 // TODO
323 break;
324
325 case A2_addsp: {
326 uint16_t W1 = getRegBitWidth(Reg[1]);
327 assert(W0 == 64 && W1 == 32);
328 RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
329 RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
330 return rr0(RC, Outputs);
331 }
332 case A2_add:
333 case A2_addp:
334 return rr0(eADD(rc(1), rc(2)), Outputs);
335 case A2_addi:
336 return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
337 case S4_addi_asl_ri: {
338 RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
339 return rr0(RC, Outputs);
340 }
341 case S4_addi_lsr_ri: {
342 RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
343 return rr0(RC, Outputs);
344 }
345 case S4_addaddi: {
346 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
347 return rr0(RC, Outputs);
348 }
349 case M4_mpyri_addi: {
350 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
351 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
352 return rr0(RC, Outputs);
353 }
354 case M4_mpyrr_addi: {
355 RegisterCell M = eMLS(rc(2), rc(3));
356 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
357 return rr0(RC, Outputs);
358 }
359 case M4_mpyri_addr_u2: {
360 RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
361 RegisterCell RC = eADD(rc(1), lo(M, W0));
362 return rr0(RC, Outputs);
363 }
364 case M4_mpyri_addr: {
365 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
366 RegisterCell RC = eADD(rc(1), lo(M, W0));
367 return rr0(RC, Outputs);
368 }
369 case M4_mpyrr_addr: {
370 RegisterCell M = eMLS(rc(2), rc(3));
371 RegisterCell RC = eADD(rc(1), lo(M, W0));
372 return rr0(RC, Outputs);
373 }
374 case S4_subaddi: {
375 RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
376 return rr0(RC, Outputs);
377 }
378 case M2_accii: {
379 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
380 return rr0(RC, Outputs);
381 }
382 case M2_acci: {
383 RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
384 return rr0(RC, Outputs);
385 }
386 case M2_subacc: {
387 RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
388 return rr0(RC, Outputs);
389 }
390 case S2_addasl_rrri: {
391 RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
392 return rr0(RC, Outputs);
393 }
394 case C4_addipc: {
395 RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
396 RPC.fill(0, 2, BT::BitValue::Zero);
397 return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
398 }
399 case A2_sub:
400 case A2_subp:
401 return rr0(eSUB(rc(1), rc(2)), Outputs);
402 case A2_subri:
403 return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
404 case S4_subi_asl_ri: {
405 RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
406 return rr0(RC, Outputs);
407 }
408 case S4_subi_lsr_ri: {
409 RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
410 return rr0(RC, Outputs);
411 }
412 case M2_naccii: {
413 RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
414 return rr0(RC, Outputs);
415 }
416 case M2_nacci: {
417 RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
418 return rr0(RC, Outputs);
419 }
420 // 32-bit negation is done by "Rd = A2_subri 0, Rs"
421 case A2_negp:
422 return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
423
424 case M2_mpy_up: {
425 RegisterCell M = eMLS(rc(1), rc(2));
426 return rr0(hi(M, W0), Outputs);
427 }
428 case M2_dpmpyss_s0:
429 return rr0(eMLS(rc(1), rc(2)), Outputs);
430 case M2_dpmpyss_acc_s0:
431 return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
432 case M2_dpmpyss_nac_s0:
433 return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
434 case M2_mpyi: {
435 RegisterCell M = eMLS(rc(1), rc(2));
436 return rr0(lo(M, W0), Outputs);
437 }
438 case M2_macsip: {
439 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
440 RegisterCell RC = eADD(rc(1), lo(M, W0));
441 return rr0(RC, Outputs);
442 }
443 case M2_macsin: {
444 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
445 RegisterCell RC = eSUB(rc(1), lo(M, W0));
446 return rr0(RC, Outputs);
447 }
448 case M2_maci: {
449 RegisterCell M = eMLS(rc(2), rc(3));
450 RegisterCell RC = eADD(rc(1), lo(M, W0));
451 return rr0(RC, Outputs);
452 }
453 case M2_mpysmi: {
454 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
455 return rr0(lo(M, 32), Outputs);
456 }
457 case M2_mpysin: {
458 RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
459 return rr0(lo(M, 32), Outputs);
460 }
461 case M2_mpysip: {
462 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
463 return rr0(lo(M, 32), Outputs);
464 }
465 case M2_mpyu_up: {
466 RegisterCell M = eMLU(rc(1), rc(2));
467 return rr0(hi(M, W0), Outputs);
468 }
469 case M2_dpmpyuu_s0:
470 return rr0(eMLU(rc(1), rc(2)), Outputs);
471 case M2_dpmpyuu_acc_s0:
472 return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
473 case M2_dpmpyuu_nac_s0:
474 return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
475 //case M2_mpysu_up:
476
477 // Logical/bitwise:
478
479 case A2_andir:
480 return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
481 case A2_and:
482 case A2_andp:
483 return rr0(eAND(rc(1), rc(2)), Outputs);
484 case A4_andn:
485 case A4_andnp:
486 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
487 case S4_andi_asl_ri: {
488 RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
489 return rr0(RC, Outputs);
490 }
491 case S4_andi_lsr_ri: {
492 RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
493 return rr0(RC, Outputs);
494 }
495 case M4_and_and:
496 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
497 case M4_and_andn:
498 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
499 case M4_and_or:
500 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
501 case M4_and_xor:
502 return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
503 case A2_orir:
504 return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
505 case A2_or:
506 case A2_orp:
507 return rr0(eORL(rc(1), rc(2)), Outputs);
508 case A4_orn:
509 case A4_ornp:
510 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
511 case S4_ori_asl_ri: {
512 RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
513 return rr0(RC, Outputs);
514 }
515 case S4_ori_lsr_ri: {
516 RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
517 return rr0(RC, Outputs);
518 }
519 case M4_or_and:
520 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
521 case M4_or_andn:
522 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
523 case S4_or_andi:
524 case S4_or_andix: {
525 RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
526 return rr0(RC, Outputs);
527 }
528 case S4_or_ori: {
529 RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
530 return rr0(RC, Outputs);
531 }
532 case M4_or_or:
533 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
534 case M4_or_xor:
535 return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
536 case A2_xor:
537 case A2_xorp:
538 return rr0(eXOR(rc(1), rc(2)), Outputs);
539 case M4_xor_and:
540 return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
541 case M4_xor_andn:
542 return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
543 case M4_xor_or:
544 return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
545 case M4_xor_xacc:
546 return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
547 case A2_not:
548 case A2_notp:
549 return rr0(eNOT(rc(1)), Outputs);
550
551 case S2_asl_i_r:
552 case S2_asl_i_p:
553 return rr0(eASL(rc(1), im(2)), Outputs);
554 case A2_aslh:
555 return rr0(eASL(rc(1), 16), Outputs);
556 case S2_asl_i_r_acc:
557 case S2_asl_i_p_acc:
558 return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
559 case S2_asl_i_r_nac:
560 case S2_asl_i_p_nac:
561 return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
562 case S2_asl_i_r_and:
563 case S2_asl_i_p_and:
564 return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
565 case S2_asl_i_r_or:
566 case S2_asl_i_p_or:
567 return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
568 case S2_asl_i_r_xacc:
569 case S2_asl_i_p_xacc:
570 return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
571 case S2_asl_i_vh:
572 case S2_asl_i_vw:
573 // TODO
574 break;
575
576 case S2_asr_i_r:
577 case S2_asr_i_p:
578 return rr0(eASR(rc(1), im(2)), Outputs);
579 case A2_asrh:
580 return rr0(eASR(rc(1), 16), Outputs);
581 case S2_asr_i_r_acc:
582 case S2_asr_i_p_acc:
583 return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
584 case S2_asr_i_r_nac:
585 case S2_asr_i_p_nac:
586 return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
587 case S2_asr_i_r_and:
588 case S2_asr_i_p_and:
589 return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
590 case S2_asr_i_r_or:
591 case S2_asr_i_p_or:
592 return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
593 case S2_asr_i_r_rnd: {
594 // The input is first sign-extended to 64 bits, then the output
595 // is truncated back to 32 bits.
596 assert(W0 == 32);
597 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
598 RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
599 return rr0(eXTR(RC, 0, W0), Outputs);
600 }
601 case S2_asr_i_r_rnd_goodsyntax: {
602 int64_t S = im(2);
603 if (S == 0)
604 return rr0(rc(1), Outputs);
605 // Result: S2_asr_i_r_rnd Rs, u5-1
606 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
607 RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
608 return rr0(eXTR(RC, 0, W0), Outputs);
609 }
610 case S2_asr_r_vh:
611 case S2_asr_i_vw:
612 case S2_asr_i_svw_trun:
613 // TODO
614 break;
615
616 case S2_lsr_i_r:
617 case S2_lsr_i_p:
618 return rr0(eLSR(rc(1), im(2)), Outputs);
619 case S2_lsr_i_r_acc:
620 case S2_lsr_i_p_acc:
621 return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
622 case S2_lsr_i_r_nac:
623 case S2_lsr_i_p_nac:
624 return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
625 case S2_lsr_i_r_and:
626 case S2_lsr_i_p_and:
627 return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
628 case S2_lsr_i_r_or:
629 case S2_lsr_i_p_or:
630 return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
631 case S2_lsr_i_r_xacc:
632 case S2_lsr_i_p_xacc:
633 return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
634
635 case S2_clrbit_i: {
636 RegisterCell RC = rc(1);
637 RC[im(2)] = BT::BitValue::Zero;
638 return rr0(RC, Outputs);
639 }
640 case S2_setbit_i: {
641 RegisterCell RC = rc(1);
642 RC[im(2)] = BT::BitValue::One;
643 return rr0(RC, Outputs);
644 }
645 case S2_togglebit_i: {
646 RegisterCell RC = rc(1);
647 uint16_t BX = im(2);
648 RC[BX] = RC[BX].is(0) ? BT::BitValue::One
649 : RC[BX].is(1) ? BT::BitValue::Zero
650 : BT::BitValue::self();
651 return rr0(RC, Outputs);
652 }
653
654 case A4_bitspliti: {
655 uint16_t W1 = getRegBitWidth(Reg[1]);
656 uint16_t BX = im(2);
657 // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
658 const BT::BitValue Zero = BT::BitValue::Zero;
659 RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
660 .fill(W1+(W1-BX), W0, Zero);
661 RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
662 RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
663 return rr0(RC, Outputs);
664 }
665 case S4_extract:
666 case S4_extractp:
667 case S2_extractu:
668 case S2_extractup: {
669 uint16_t Wd = im(2), Of = im(3);
670 assert(Wd <= W0);
671 if (Wd == 0)
672 return rr0(eIMM(0, W0), Outputs);
673 // If the width extends beyond the register size, pad the register
674 // with 0 bits.
675 RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
676 RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
677 // Ext is short, need to extend it with 0s or sign bit.
678 RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
679 if (Opc == S2_extractu || Opc == S2_extractup)
680 return rr0(eZXT(RC, Wd), Outputs);
681 return rr0(eSXT(RC, Wd), Outputs);
682 }
683 case S2_insert:
684 case S2_insertp: {
685 uint16_t Wd = im(3), Of = im(4);
686 assert(Wd < W0 && Of < W0);
687 // If Wd+Of exceeds W0, the inserted bits are truncated.
688 if (Wd+Of > W0)
689 Wd = W0-Of;
690 if (Wd == 0)
691 return rr0(rc(1), Outputs);
692 return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
693 }
694
695 // Bit permutations:
696
697 case A2_combineii:
698 case A4_combineii:
699 case A4_combineir:
700 case A4_combineri:
701 case A2_combinew:
Krzysztof Parzyszek23ee12e2016-08-03 18:35:48 +0000702 case V6_vcombine:
703 case V6_vcombine_128B:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000704 assert(W0 % 2 == 0);
705 return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
706 case A2_combine_ll:
707 case A2_combine_lh:
708 case A2_combine_hl:
709 case A2_combine_hh: {
710 assert(W0 == 32);
711 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
712 // Low half in the output is 0 for _ll and _hl, 1 otherwise:
713 unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
714 // High half in the output is 0 for _ll and _lh, 1 otherwise:
715 unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
716 RegisterCell R1 = rc(1);
717 RegisterCell R2 = rc(2);
718 RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
719 return rr0(RC, Outputs);
720 }
721 case S2_packhl: {
722 assert(W0 == 64);
723 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
724 RegisterCell R1 = rc(1);
725 RegisterCell R2 = rc(2);
726 RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
727 .cat(half(R1, 1));
728 return rr0(RC, Outputs);
729 }
730 case S2_shuffeb: {
731 RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
732 return rr0(RC, Outputs);
733 }
734 case S2_shuffeh: {
735 RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
736 return rr0(RC, Outputs);
737 }
738 case S2_shuffob: {
739 RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
740 return rr0(RC, Outputs);
741 }
742 case S2_shuffoh: {
743 RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
744 return rr0(RC, Outputs);
745 }
746 case C2_mask: {
747 uint16_t WR = W0;
748 uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
749 assert(WR == 64 && WP == 8);
750 RegisterCell R1 = rc(1);
751 RegisterCell RC(WR);
752 for (uint16_t i = 0; i < WP; ++i) {
753 const BT::BitValue &V = R1[i];
754 BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
755 RC.fill(i*8, i*8+8, F);
756 }
757 return rr0(RC, Outputs);
758 }
759
760 // Mux:
761
762 case C2_muxii:
763 case C2_muxir:
764 case C2_muxri:
765 case C2_mux: {
766 BT::BitValue PC0 = rc(1)[0];
767 RegisterCell R2 = cop(2, W0);
768 RegisterCell R3 = cop(3, W0);
769 if (PC0.is(0) || PC0.is(1))
770 return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
771 R2.meet(R3, Reg[0].Reg);
772 return rr0(R2, Outputs);
773 }
774 case C2_vmux:
775 // TODO
776 break;
777
778 // Sign- and zero-extension:
779
780 case A2_sxtb:
781 return rr0(eSXT(rc(1), 8), Outputs);
782 case A2_sxth:
783 return rr0(eSXT(rc(1), 16), Outputs);
784 case A2_sxtw: {
785 uint16_t W1 = getRegBitWidth(Reg[1]);
786 assert(W0 == 64 && W1 == 32);
787 RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
788 return rr0(RC, Outputs);
789 }
790 case A2_zxtb:
791 return rr0(eZXT(rc(1), 8), Outputs);
792 case A2_zxth:
793 return rr0(eZXT(rc(1), 16), Outputs);
794
Krzysztof Parzyszek128e1912017-02-23 22:11:52 +0000795 // Saturations
796
797 case A2_satb:
798 return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
799 case A2_sath:
800 return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
801 case A2_satub:
802 return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
803 case A2_satuh:
804 return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
805
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000806 // Bit count:
807
808 case S2_cl0:
809 case S2_cl0p:
810 // Always produce a 32-bit result.
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000811 return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000812 case S2_cl1:
813 case S2_cl1p:
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000814 return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000815 case S2_clb:
816 case S2_clbp: {
817 uint16_t W1 = getRegBitWidth(Reg[1]);
818 RegisterCell R1 = rc(1);
819 BT::BitValue TV = R1[W1-1];
820 if (TV.is(0) || TV.is(1))
821 return rr0(eCLB(R1, TV, 32), Outputs);
822 break;
823 }
824 case S2_ct0:
825 case S2_ct0p:
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000826 return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000827 case S2_ct1:
828 case S2_ct1p:
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000829 return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000830 case S5_popcountp:
831 // TODO
832 break;
833
834 case C2_all8: {
835 RegisterCell P1 = rc(1);
836 bool Has0 = false, All1 = true;
837 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
838 if (!P1[i].is(1))
839 All1 = false;
840 if (!P1[i].is(0))
841 continue;
842 Has0 = true;
843 break;
844 }
845 if (!Has0 && !All1)
846 break;
847 RegisterCell RC(W0);
848 RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
849 return rr0(RC, Outputs);
850 }
851 case C2_any8: {
852 RegisterCell P1 = rc(1);
853 bool Has1 = false, All0 = true;
854 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
855 if (!P1[i].is(0))
856 All0 = false;
857 if (!P1[i].is(1))
858 continue;
859 Has1 = true;
860 break;
861 }
862 if (!Has1 && !All0)
863 break;
864 RegisterCell RC(W0);
865 RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
866 return rr0(RC, Outputs);
867 }
868 case C2_and:
869 return rr0(eAND(rc(1), rc(2)), Outputs);
870 case C2_andn:
871 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
872 case C2_not:
873 return rr0(eNOT(rc(1)), Outputs);
874 case C2_or:
875 return rr0(eORL(rc(1), rc(2)), Outputs);
876 case C2_orn:
877 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
878 case C2_xor:
879 return rr0(eXOR(rc(1), rc(2)), Outputs);
880 case C4_and_and:
881 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
882 case C4_and_andn:
883 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
884 case C4_and_or:
885 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
886 case C4_and_orn:
887 return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
888 case C4_or_and:
889 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
890 case C4_or_andn:
891 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
892 case C4_or_or:
893 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
894 case C4_or_orn:
895 return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
896 case C2_bitsclr:
897 case C2_bitsclri:
898 case C2_bitsset:
899 case C4_nbitsclr:
900 case C4_nbitsclri:
901 case C4_nbitsset:
902 // TODO
903 break;
904 case S2_tstbit_i:
905 case S4_ntstbit_i: {
906 BT::BitValue V = rc(1)[im(2)];
907 if (V.is(0) || V.is(1)) {
908 // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
909 bool TV = (Opc == S2_tstbit_i);
910 BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
911 return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
912 }
913 break;
914 }
915
916 default:
917 return MachineEvaluator::evaluate(MI, Inputs, Outputs);
918 }
919 #undef im
920 #undef rc
921 #undef op
922 return false;
923}
924
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000925bool HexagonEvaluator::evaluate(const MachineInstr &BI,
926 const CellMapType &Inputs,
927 BranchTargetList &Targets,
928 bool &FallsThru) const {
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +0000929 // We need to evaluate one branch at a time. TII::analyzeBranch checks
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000930 // all the branches in a basic block at once, so we cannot use it.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000931 unsigned Opc = BI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000932 bool SimpleBranch = false;
933 bool Negated = false;
934 switch (Opc) {
935 case Hexagon::J2_jumpf:
Krzysztof Parzyszeka243adf2016-08-19 14:14:09 +0000936 case Hexagon::J2_jumpfpt:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000937 case Hexagon::J2_jumpfnew:
938 case Hexagon::J2_jumpfnewpt:
939 Negated = true;
Simon Pilgrim087e87d2017-07-07 13:21:43 +0000940 LLVM_FALLTHROUGH;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000941 case Hexagon::J2_jumpt:
Krzysztof Parzyszeka243adf2016-08-19 14:14:09 +0000942 case Hexagon::J2_jumptpt:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000943 case Hexagon::J2_jumptnew:
944 case Hexagon::J2_jumptnewpt:
945 // Simple branch: if([!]Pn) jump ...
946 // i.e. Op0 = predicate, Op1 = branch target.
947 SimpleBranch = true;
948 break;
949 case Hexagon::J2_jump:
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000950 Targets.insert(BI.getOperand(0).getMBB());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000951 FallsThru = false;
952 return true;
953 default:
954 // If the branch is of unknown type, assume that all successors are
955 // executable.
956 return false;
957 }
958
959 if (!SimpleBranch)
960 return false;
961
962 // BI is a conditional branch if we got here.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000963 RegisterRef PR = BI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000964 RegisterCell PC = getCell(PR, Inputs);
965 const BT::BitValue &Test = PC[0];
966
967 // If the condition is neither true nor false, then it's unknown.
968 if (!Test.is(0) && !Test.is(1))
969 return false;
970
971 // "Test.is(!Negated)" means "branch condition is true".
972 if (!Test.is(!Negated)) {
973 // Condition known to be false.
974 FallsThru = true;
975 return true;
976 }
977
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000978 Targets.insert(BI.getOperand(1).getMBB());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000979 FallsThru = false;
980 return true;
981}
982
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000983bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
984 const CellMapType &Inputs,
985 CellMapType &Outputs) const {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000986 using namespace Hexagon;
987
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000988 if (TII.isPredicated(MI))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000989 return false;
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000990 assert(MI.mayLoad() && "A load that mayn't?");
991 unsigned Opc = MI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000992
993 uint16_t BitNum;
994 bool SignEx;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000995
996 switch (Opc) {
997 default:
998 return false;
999
1000#if 0
1001 // memb_fifo
1002 case L2_loadalignb_pbr:
1003 case L2_loadalignb_pcr:
1004 case L2_loadalignb_pi:
1005 // memh_fifo
1006 case L2_loadalignh_pbr:
1007 case L2_loadalignh_pcr:
1008 case L2_loadalignh_pi:
1009 // membh
1010 case L2_loadbsw2_pbr:
1011 case L2_loadbsw2_pci:
1012 case L2_loadbsw2_pcr:
1013 case L2_loadbsw2_pi:
1014 case L2_loadbsw4_pbr:
1015 case L2_loadbsw4_pci:
1016 case L2_loadbsw4_pcr:
1017 case L2_loadbsw4_pi:
1018 // memubh
1019 case L2_loadbzw2_pbr:
1020 case L2_loadbzw2_pci:
1021 case L2_loadbzw2_pcr:
1022 case L2_loadbzw2_pi:
1023 case L2_loadbzw4_pbr:
1024 case L2_loadbzw4_pci:
1025 case L2_loadbzw4_pcr:
1026 case L2_loadbzw4_pi:
1027#endif
1028
1029 case L2_loadrbgp:
1030 case L2_loadrb_io:
1031 case L2_loadrb_pbr:
1032 case L2_loadrb_pci:
1033 case L2_loadrb_pcr:
1034 case L2_loadrb_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001035 case PS_loadrbabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001036 case L4_loadrb_ap:
1037 case L4_loadrb_rr:
1038 case L4_loadrb_ur:
1039 BitNum = 8;
1040 SignEx = true;
1041 break;
1042
1043 case L2_loadrubgp:
1044 case L2_loadrub_io:
1045 case L2_loadrub_pbr:
1046 case L2_loadrub_pci:
1047 case L2_loadrub_pcr:
1048 case L2_loadrub_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001049 case PS_loadrubabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001050 case L4_loadrub_ap:
1051 case L4_loadrub_rr:
1052 case L4_loadrub_ur:
1053 BitNum = 8;
1054 SignEx = false;
1055 break;
1056
1057 case L2_loadrhgp:
1058 case L2_loadrh_io:
1059 case L2_loadrh_pbr:
1060 case L2_loadrh_pci:
1061 case L2_loadrh_pcr:
1062 case L2_loadrh_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001063 case PS_loadrhabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001064 case L4_loadrh_ap:
1065 case L4_loadrh_rr:
1066 case L4_loadrh_ur:
1067 BitNum = 16;
1068 SignEx = true;
1069 break;
1070
1071 case L2_loadruhgp:
1072 case L2_loadruh_io:
1073 case L2_loadruh_pbr:
1074 case L2_loadruh_pci:
1075 case L2_loadruh_pcr:
1076 case L2_loadruh_pi:
1077 case L4_loadruh_rr:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001078 case PS_loadruhabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001079 case L4_loadruh_ap:
1080 case L4_loadruh_ur:
1081 BitNum = 16;
1082 SignEx = false;
1083 break;
1084
1085 case L2_loadrigp:
1086 case L2_loadri_io:
1087 case L2_loadri_pbr:
1088 case L2_loadri_pci:
1089 case L2_loadri_pcr:
1090 case L2_loadri_pi:
1091 case L2_loadw_locked:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001092 case PS_loadriabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001093 case L4_loadri_ap:
1094 case L4_loadri_rr:
1095 case L4_loadri_ur:
1096 case LDriw_pred:
1097 BitNum = 32;
1098 SignEx = true;
1099 break;
1100
1101 case L2_loadrdgp:
1102 case L2_loadrd_io:
1103 case L2_loadrd_pbr:
1104 case L2_loadrd_pci:
1105 case L2_loadrd_pcr:
1106 case L2_loadrd_pi:
1107 case L4_loadd_locked:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001108 case PS_loadrdabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001109 case L4_loadrd_ap:
1110 case L4_loadrd_rr:
1111 case L4_loadrd_ur:
1112 BitNum = 64;
1113 SignEx = true;
1114 break;
1115 }
1116
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001117 const MachineOperand &MD = MI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001118 assert(MD.isReg() && MD.isDef());
1119 RegisterRef RD = MD;
1120
1121 uint16_t W = getRegBitWidth(RD);
1122 assert(W >= BitNum && BitNum > 0);
1123 RegisterCell Res(W);
1124
1125 for (uint16_t i = 0; i < BitNum; ++i)
1126 Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1127
1128 if (SignEx) {
1129 const BT::BitValue &Sign = Res[BitNum-1];
1130 for (uint16_t i = BitNum; i < W; ++i)
1131 Res[i] = BT::BitValue::ref(Sign);
1132 } else {
1133 for (uint16_t i = BitNum; i < W; ++i)
1134 Res[i] = BT::BitValue::Zero;
1135 }
1136
1137 putCell(RD, Res, Outputs);
1138 return true;
1139}
1140
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001141bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1142 const CellMapType &Inputs,
1143 CellMapType &Outputs) const {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001144 // If MI defines a formal parameter, but is not a copy (loads are handled
1145 // in evaluateLoad), then it's not clear what to do.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001146 assert(MI.isCopy());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001147
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001148 RegisterRef RD = MI.getOperand(0);
1149 RegisterRef RS = MI.getOperand(1);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001150 assert(RD.Sub == 0);
1151 if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg))
1152 return false;
1153 RegExtMap::const_iterator F = VRX.find(RD.Reg);
1154 if (F == VRX.end())
1155 return false;
1156
1157 uint16_t EW = F->second.Width;
1158 // Store RD's cell into the map. This will associate the cell with a virtual
1159 // register, and make zero-/sign-extends possible (otherwise we would be ex-
1160 // tending "self" bit values, which will have no effect, since "self" values
1161 // cannot be references to anything).
1162 putCell(RD, getCell(RS, Inputs), Outputs);
1163
1164 RegisterCell Res;
1165 // Read RD's cell from the outputs instead of RS's cell from the inputs:
1166 if (F->second.Type == ExtType::SExt)
1167 Res = eSXT(getCell(RD, Outputs), EW);
1168 else if (F->second.Type == ExtType::ZExt)
1169 Res = eZXT(getCell(RD, Outputs), EW);
1170
1171 putCell(RD, Res, Outputs);
1172 return true;
1173}
1174
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001175unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1176 using namespace Hexagon;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +00001177
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001178 bool Is64 = DoubleRegsRegClass.contains(PReg);
1179 assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1180
1181 static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1182 static const unsigned Phys64[] = { D0, D1, D2 };
1183 const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1184 const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1185
1186 // Return the first parameter register of the required width.
1187 if (PReg == 0)
1188 return (Width <= 32) ? Phys32[0] : Phys64[0];
1189
1190 // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1191 // next register.
1192 unsigned Idx32 = 0, Idx64 = 0;
1193 if (!Is64) {
1194 while (Idx32 < Num32) {
1195 if (Phys32[Idx32] == PReg)
1196 break;
1197 Idx32++;
1198 }
1199 Idx64 = Idx32/2;
1200 } else {
1201 while (Idx64 < Num64) {
1202 if (Phys64[Idx64] == PReg)
1203 break;
1204 Idx64++;
1205 }
1206 Idx32 = Idx64*2+1;
1207 }
1208
1209 if (Width <= 32)
1210 return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1211 return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1212}
1213
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001214unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
1215 typedef MachineRegisterInfo::livein_iterator iterator;
1216 for (iterator I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) {
1217 if (I->first == PReg)
1218 return I->second;
1219 }
1220 return 0;
1221}