blob: 4dbbce8c205e21cf5acb4039b81060d83606b111 [file] [log] [blame]
Dylan McKay6eaa4e42016-10-27 06:56:46 +00001//===-- AVRMCCodeEmitter.cpp - Convert AVR Code to Machine Code -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AVRMCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AVRMCCodeEmitter.h"
15
16#include "MCTargetDesc/AVRMCExpr.h"
17#include "MCTargetDesc/AVRMCTargetDesc.h"
18
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/MC/MCContext.h"
22#include "llvm/MC/MCExpr.h"
23#include "llvm/MC/MCFixup.h"
24#include "llvm/MC/MCInst.h"
25#include "llvm/MC/MCInstrInfo.h"
26#include "llvm/MC/MCRegisterInfo.h"
27#include "llvm/MC/MCSubtargetInfo.h"
Dylan McKay2e359872017-02-08 08:52:46 +000028#include "llvm/Support/Casting.h"
Dylan McKay6eaa4e42016-10-27 06:56:46 +000029#include "llvm/Support/raw_ostream.h"
30
31#define DEBUG_TYPE "mccodeemitter"
32
33#define GET_INSTRMAP_INFO
34#include "AVRGenInstrInfo.inc"
35#undef GET_INSTRMAP_INFO
36
37namespace llvm {
38
39/// Performs a post-encoding step on a `LD` or `ST` instruction.
40///
41/// The encoding of the LD/ST family of instructions is inconsistent w.r.t
42/// the pointer register and the addressing mode.
43///
44/// The permutations of the format are as followed:
45/// ld Rd, X `1001 000d dddd 1100`
46/// ld Rd, X+ `1001 000d dddd 1101`
47/// ld Rd, -X `1001 000d dddd 1110`
48///
49/// ld Rd, Y `1000 000d dddd 1000`
50/// ld Rd, Y+ `1001 000d dddd 1001`
51/// ld Rd, -Y `1001 000d dddd 1010`
52///
53/// ld Rd, Z `1000 000d dddd 0000`
54/// ld Rd, Z+ `1001 000d dddd 0001`
55/// ld Rd, -Z `1001 000d dddd 0010`
56/// ^
57/// |
58/// Note this one inconsistent bit - it is 1 sometimes and 0 at other times.
59/// There is no logical pattern. Looking at a truth table, the following
60/// formula can be derived to fit the pattern:
61//
62/// ```
63/// inconsistent_bit = is_predec OR is_postinc OR is_reg_x
64/// ```
65//
66/// We manually set this bit in this post encoder method.
67unsigned
68AVRMCCodeEmitter::loadStorePostEncoder(const MCInst &MI, unsigned EncodedValue,
69 const MCSubtargetInfo &STI) const {
70
71 assert(MI.getOperand(0).isReg() && MI.getOperand(1).isReg() &&
72 "the load/store operands must be registers");
73
74 unsigned Opcode = MI.getOpcode();
75
76 // check whether either of the registers are the X pointer register.
77 bool IsRegX = MI.getOperand(0).getReg() == AVR::R27R26 ||
78 MI.getOperand(1).getReg() == AVR::R27R26;
79
80 bool IsPredec = Opcode == AVR::LDRdPtrPd || Opcode == AVR::STPtrPdRr;
81 bool IsPostinc = Opcode == AVR::LDRdPtrPi || Opcode == AVR::STPtrPiRr;
82
83 // Check if we need to set the inconsistent bit
84 if (IsRegX || IsPredec || IsPostinc) {
85 EncodedValue |= (1 << 12);
86 }
87
88 return EncodedValue;
89}
90
91template <AVR::Fixups Fixup>
92unsigned
93AVRMCCodeEmitter::encodeRelCondBrTarget(const MCInst &MI, unsigned OpNo,
94 SmallVectorImpl<MCFixup> &Fixups,
95 const MCSubtargetInfo &STI) const {
96 const MCOperand &MO = MI.getOperand(OpNo);
97
98 if (MO.isExpr()) {
99 Fixups.push_back(MCFixup::create(0, MO.getExpr(),
100 MCFixupKind(Fixup), MI.getLoc()));
101 return 0;
102 }
103
104 assert(MO.isImm());
105
106 // Take the size of the current instruction away.
107 // With labels, this is implicitly done.
108 auto target = MO.getImm();
109 AVR::fixups::adjustBranchTarget(target);
110 return target;
111}
112
113unsigned AVRMCCodeEmitter::encodeLDSTPtrReg(const MCInst &MI, unsigned OpNo,
114 SmallVectorImpl<MCFixup> &Fixups,
115 const MCSubtargetInfo &STI) const {
116 auto MO = MI.getOperand(OpNo);
117
118 // The operand should be a pointer register.
119 assert(MO.isReg());
120
121 switch (MO.getReg()) {
122 case AVR::R27R26: return 0x03; // X: 0b11
123 case AVR::R29R28: return 0x02; // Y: 0b10
124 case AVR::R31R30: return 0x00; // Z: 0b00
125 default:
126 llvm_unreachable("invalid pointer register");
127 }
128}
129
130/// Encodes a `memri` operand.
131/// The operand is 7-bits.
132/// * The lower 6 bits is the immediate
133/// * The upper bit is the pointer register bit (Z=0,Y=1)
134unsigned AVRMCCodeEmitter::encodeMemri(const MCInst &MI, unsigned OpNo,
135 SmallVectorImpl<MCFixup> &Fixups,
136 const MCSubtargetInfo &STI) const {
137 auto RegOp = MI.getOperand(OpNo);
138 auto OffsetOp = MI.getOperand(OpNo + 1);
139
140 assert(RegOp.isReg() && "Expected register operand");
141
142 uint8_t RegBit = 0;
143
144 switch (RegOp.getReg()) {
145 default:
146 llvm_unreachable("Expected either Y or Z register");
147 case AVR::R31R30:
148 RegBit = 0;
149 break; // Z register
150 case AVR::R29R28:
151 RegBit = 1;
152 break; // Y register
153 }
154
155 int8_t OffsetBits;
156
157 if (OffsetOp.isImm()) {
158 OffsetBits = OffsetOp.getImm();
159 } else if (OffsetOp.isExpr()) {
160 OffsetBits = 0;
161 Fixups.push_back(MCFixup::create(0, OffsetOp.getExpr(),
162 MCFixupKind(AVR::fixup_6), MI.getLoc()));
163 } else {
164 llvm_unreachable("invalid value for offset");
165 }
166
167 return (RegBit << 6) | OffsetBits;
168}
169
170unsigned AVRMCCodeEmitter::encodeComplement(const MCInst &MI, unsigned OpNo,
171 SmallVectorImpl<MCFixup> &Fixups,
172 const MCSubtargetInfo &STI) const {
173 // The operand should be an immediate.
174 assert(MI.getOperand(OpNo).isImm());
175
176 auto Imm = MI.getOperand(OpNo).getImm();
177 return (~0) - Imm;
178}
179
Dylan McKay2e8718b2017-04-30 23:33:52 +0000180template <AVR::Fixups Fixup, unsigned Offset>
Dylan McKay6eaa4e42016-10-27 06:56:46 +0000181unsigned AVRMCCodeEmitter::encodeImm(const MCInst &MI, unsigned OpNo,
182 SmallVectorImpl<MCFixup> &Fixups,
183 const MCSubtargetInfo &STI) const {
184 auto MO = MI.getOperand(OpNo);
185
186 if (MO.isExpr()) {
187 if (isa<AVRMCExpr>(MO.getExpr())) {
188 // If the expression is already an AVRMCExpr (i.e. a lo8(symbol),
189 // we shouldn't perform any more fixups. Without this check, we would
190 // instead create a fixup to the symbol named 'lo8(symbol)' which
191 // is not correct.
192 return getExprOpValue(MO.getExpr(), Fixups, STI);
193 }
194
195 MCFixupKind FixupKind = static_cast<MCFixupKind>(Fixup);
Dylan McKay2e8718b2017-04-30 23:33:52 +0000196 Fixups.push_back(MCFixup::create(Offset, MO.getExpr(), FixupKind, MI.getLoc()));
Dylan McKay6eaa4e42016-10-27 06:56:46 +0000197
198 return 0;
199 }
200
201 assert(MO.isImm());
202 return MO.getImm();
203}
204
205unsigned AVRMCCodeEmitter::encodeCallTarget(const MCInst &MI, unsigned OpNo,
206 SmallVectorImpl<MCFixup> &Fixups,
207 const MCSubtargetInfo &STI) const {
208 auto MO = MI.getOperand(OpNo);
209
210 if (MO.isExpr()) {
211 MCFixupKind FixupKind = static_cast<MCFixupKind>(AVR::fixup_call);
212 Fixups.push_back(MCFixup::create(0, MO.getExpr(), FixupKind, MI.getLoc()));
213 return 0;
214 }
215
216 assert(MO.isImm());
217
218 auto Target = MO.getImm();
219 AVR::fixups::adjustBranchTarget(Target);
220 return Target;
221}
222
223unsigned AVRMCCodeEmitter::getExprOpValue(const MCExpr *Expr,
224 SmallVectorImpl<MCFixup> &Fixups,
225 const MCSubtargetInfo &STI) const {
226
227 MCExpr::ExprKind Kind = Expr->getKind();
228
229 if (Kind == MCExpr::Binary) {
230 Expr = static_cast<const MCBinaryExpr *>(Expr)->getLHS();
231 Kind = Expr->getKind();
232 }
233
234 if (Kind == MCExpr::Target) {
235 AVRMCExpr const *AVRExpr = cast<AVRMCExpr>(Expr);
236 int64_t Result;
237 if (AVRExpr->evaluateAsConstant(Result)) {
238 return Result;
239 }
240
241 MCFixupKind FixupKind = static_cast<MCFixupKind>(AVRExpr->getFixupKind());
242 Fixups.push_back(MCFixup::create(0, AVRExpr, FixupKind));
243 return 0;
244 }
245
246 assert(Kind == MCExpr::SymbolRef);
247 return 0;
248}
249
250unsigned AVRMCCodeEmitter::getMachineOpValue(const MCInst &MI,
251 const MCOperand &MO,
252 SmallVectorImpl<MCFixup> &Fixups,
253 const MCSubtargetInfo &STI) const {
254 if (MO.isReg()) return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
255 if (MO.isImm()) return static_cast<unsigned>(MO.getImm());
256
257 if (MO.isFPImm())
258 return static_cast<unsigned>(APFloat(MO.getFPImm())
259 .bitcastToAPInt()
260 .getHiBits(32)
261 .getLimitedValue());
262
263 // MO must be an Expr.
264 assert(MO.isExpr());
265
266 return getExprOpValue(MO.getExpr(), Fixups, STI);
267}
268
269void AVRMCCodeEmitter::emitInstruction(uint64_t Val, unsigned Size,
270 const MCSubtargetInfo &STI,
271 raw_ostream &OS) const {
272 const uint16_t *Words = reinterpret_cast<uint16_t const *>(&Val);
273 size_t WordCount = Size / 2;
274
275 for (int64_t i = WordCount - 1; i >= 0; --i) {
276 uint16_t Word = Words[i];
277
278 OS << (uint8_t) ((Word & 0x00ff) >> 0);
279 OS << (uint8_t) ((Word & 0xff00) >> 8);
280 }
281}
282
283void AVRMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
284 SmallVectorImpl<MCFixup> &Fixups,
285 const MCSubtargetInfo &STI) const {
286 const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
287
288 // Get byte count of instruction
289 unsigned Size = Desc.getSize();
290
291 assert(Size > 0 && "Instruction size cannot be zero");
292
293 uint64_t BinaryOpCode = getBinaryCodeForInstr(MI, Fixups, STI);
294 emitInstruction(BinaryOpCode, Size, STI, OS);
295}
296
297MCCodeEmitter *createAVRMCCodeEmitter(const MCInstrInfo &MCII,
298 const MCRegisterInfo &MRI,
299 MCContext &Ctx) {
300 return new AVRMCCodeEmitter(MCII, Ctx);
301}
302
303#include "AVRGenMCCodeEmitter.inc"
304
305} // end of namespace llvm