Dylan McKay | 6eaa4e4 | 2016-10-27 06:56:46 +0000 | [diff] [blame] | 1 | //===-- AVRMCCodeEmitter.cpp - Convert AVR Code to Machine Code -----------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the AVRMCCodeEmitter class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "AVRMCCodeEmitter.h" |
| 15 | |
| 16 | #include "MCTargetDesc/AVRMCExpr.h" |
| 17 | #include "MCTargetDesc/AVRMCTargetDesc.h" |
| 18 | |
| 19 | #include "llvm/ADT/APFloat.h" |
| 20 | #include "llvm/ADT/SmallVector.h" |
| 21 | #include "llvm/MC/MCContext.h" |
| 22 | #include "llvm/MC/MCExpr.h" |
| 23 | #include "llvm/MC/MCFixup.h" |
| 24 | #include "llvm/MC/MCInst.h" |
| 25 | #include "llvm/MC/MCInstrInfo.h" |
| 26 | #include "llvm/MC/MCRegisterInfo.h" |
| 27 | #include "llvm/MC/MCSubtargetInfo.h" |
Dylan McKay | 2e35987 | 2017-02-08 08:52:46 +0000 | [diff] [blame] | 28 | #include "llvm/Support/Casting.h" |
Dylan McKay | 6eaa4e4 | 2016-10-27 06:56:46 +0000 | [diff] [blame] | 29 | #include "llvm/Support/raw_ostream.h" |
| 30 | |
| 31 | #define DEBUG_TYPE "mccodeemitter" |
| 32 | |
| 33 | #define GET_INSTRMAP_INFO |
| 34 | #include "AVRGenInstrInfo.inc" |
| 35 | #undef GET_INSTRMAP_INFO |
| 36 | |
| 37 | namespace llvm { |
| 38 | |
| 39 | /// Performs a post-encoding step on a `LD` or `ST` instruction. |
| 40 | /// |
| 41 | /// The encoding of the LD/ST family of instructions is inconsistent w.r.t |
| 42 | /// the pointer register and the addressing mode. |
| 43 | /// |
| 44 | /// The permutations of the format are as followed: |
| 45 | /// ld Rd, X `1001 000d dddd 1100` |
| 46 | /// ld Rd, X+ `1001 000d dddd 1101` |
| 47 | /// ld Rd, -X `1001 000d dddd 1110` |
| 48 | /// |
| 49 | /// ld Rd, Y `1000 000d dddd 1000` |
| 50 | /// ld Rd, Y+ `1001 000d dddd 1001` |
| 51 | /// ld Rd, -Y `1001 000d dddd 1010` |
| 52 | /// |
| 53 | /// ld Rd, Z `1000 000d dddd 0000` |
| 54 | /// ld Rd, Z+ `1001 000d dddd 0001` |
| 55 | /// ld Rd, -Z `1001 000d dddd 0010` |
| 56 | /// ^ |
| 57 | /// | |
| 58 | /// Note this one inconsistent bit - it is 1 sometimes and 0 at other times. |
| 59 | /// There is no logical pattern. Looking at a truth table, the following |
| 60 | /// formula can be derived to fit the pattern: |
| 61 | // |
| 62 | /// ``` |
| 63 | /// inconsistent_bit = is_predec OR is_postinc OR is_reg_x |
| 64 | /// ``` |
| 65 | // |
| 66 | /// We manually set this bit in this post encoder method. |
| 67 | unsigned |
| 68 | AVRMCCodeEmitter::loadStorePostEncoder(const MCInst &MI, unsigned EncodedValue, |
| 69 | const MCSubtargetInfo &STI) const { |
| 70 | |
| 71 | assert(MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && |
| 72 | "the load/store operands must be registers"); |
| 73 | |
| 74 | unsigned Opcode = MI.getOpcode(); |
| 75 | |
| 76 | // check whether either of the registers are the X pointer register. |
| 77 | bool IsRegX = MI.getOperand(0).getReg() == AVR::R27R26 || |
| 78 | MI.getOperand(1).getReg() == AVR::R27R26; |
| 79 | |
| 80 | bool IsPredec = Opcode == AVR::LDRdPtrPd || Opcode == AVR::STPtrPdRr; |
| 81 | bool IsPostinc = Opcode == AVR::LDRdPtrPi || Opcode == AVR::STPtrPiRr; |
| 82 | |
| 83 | // Check if we need to set the inconsistent bit |
| 84 | if (IsRegX || IsPredec || IsPostinc) { |
| 85 | EncodedValue |= (1 << 12); |
| 86 | } |
| 87 | |
| 88 | return EncodedValue; |
| 89 | } |
| 90 | |
| 91 | template <AVR::Fixups Fixup> |
| 92 | unsigned |
| 93 | AVRMCCodeEmitter::encodeRelCondBrTarget(const MCInst &MI, unsigned OpNo, |
| 94 | SmallVectorImpl<MCFixup> &Fixups, |
| 95 | const MCSubtargetInfo &STI) const { |
| 96 | const MCOperand &MO = MI.getOperand(OpNo); |
| 97 | |
| 98 | if (MO.isExpr()) { |
| 99 | Fixups.push_back(MCFixup::create(0, MO.getExpr(), |
| 100 | MCFixupKind(Fixup), MI.getLoc())); |
| 101 | return 0; |
| 102 | } |
| 103 | |
| 104 | assert(MO.isImm()); |
| 105 | |
| 106 | // Take the size of the current instruction away. |
| 107 | // With labels, this is implicitly done. |
| 108 | auto target = MO.getImm(); |
| 109 | AVR::fixups::adjustBranchTarget(target); |
| 110 | return target; |
| 111 | } |
| 112 | |
| 113 | unsigned AVRMCCodeEmitter::encodeLDSTPtrReg(const MCInst &MI, unsigned OpNo, |
| 114 | SmallVectorImpl<MCFixup> &Fixups, |
| 115 | const MCSubtargetInfo &STI) const { |
| 116 | auto MO = MI.getOperand(OpNo); |
| 117 | |
| 118 | // The operand should be a pointer register. |
| 119 | assert(MO.isReg()); |
| 120 | |
| 121 | switch (MO.getReg()) { |
| 122 | case AVR::R27R26: return 0x03; // X: 0b11 |
| 123 | case AVR::R29R28: return 0x02; // Y: 0b10 |
| 124 | case AVR::R31R30: return 0x00; // Z: 0b00 |
| 125 | default: |
| 126 | llvm_unreachable("invalid pointer register"); |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | /// Encodes a `memri` operand. |
| 131 | /// The operand is 7-bits. |
| 132 | /// * The lower 6 bits is the immediate |
| 133 | /// * The upper bit is the pointer register bit (Z=0,Y=1) |
| 134 | unsigned AVRMCCodeEmitter::encodeMemri(const MCInst &MI, unsigned OpNo, |
| 135 | SmallVectorImpl<MCFixup> &Fixups, |
| 136 | const MCSubtargetInfo &STI) const { |
| 137 | auto RegOp = MI.getOperand(OpNo); |
| 138 | auto OffsetOp = MI.getOperand(OpNo + 1); |
| 139 | |
| 140 | assert(RegOp.isReg() && "Expected register operand"); |
| 141 | |
| 142 | uint8_t RegBit = 0; |
| 143 | |
| 144 | switch (RegOp.getReg()) { |
| 145 | default: |
| 146 | llvm_unreachable("Expected either Y or Z register"); |
| 147 | case AVR::R31R30: |
| 148 | RegBit = 0; |
| 149 | break; // Z register |
| 150 | case AVR::R29R28: |
| 151 | RegBit = 1; |
| 152 | break; // Y register |
| 153 | } |
| 154 | |
| 155 | int8_t OffsetBits; |
| 156 | |
| 157 | if (OffsetOp.isImm()) { |
| 158 | OffsetBits = OffsetOp.getImm(); |
| 159 | } else if (OffsetOp.isExpr()) { |
| 160 | OffsetBits = 0; |
| 161 | Fixups.push_back(MCFixup::create(0, OffsetOp.getExpr(), |
| 162 | MCFixupKind(AVR::fixup_6), MI.getLoc())); |
| 163 | } else { |
| 164 | llvm_unreachable("invalid value for offset"); |
| 165 | } |
| 166 | |
| 167 | return (RegBit << 6) | OffsetBits; |
| 168 | } |
| 169 | |
| 170 | unsigned AVRMCCodeEmitter::encodeComplement(const MCInst &MI, unsigned OpNo, |
| 171 | SmallVectorImpl<MCFixup> &Fixups, |
| 172 | const MCSubtargetInfo &STI) const { |
| 173 | // The operand should be an immediate. |
| 174 | assert(MI.getOperand(OpNo).isImm()); |
| 175 | |
| 176 | auto Imm = MI.getOperand(OpNo).getImm(); |
| 177 | return (~0) - Imm; |
| 178 | } |
| 179 | |
Dylan McKay | 2e8718b | 2017-04-30 23:33:52 +0000 | [diff] [blame] | 180 | template <AVR::Fixups Fixup, unsigned Offset> |
Dylan McKay | 6eaa4e4 | 2016-10-27 06:56:46 +0000 | [diff] [blame] | 181 | unsigned AVRMCCodeEmitter::encodeImm(const MCInst &MI, unsigned OpNo, |
| 182 | SmallVectorImpl<MCFixup> &Fixups, |
| 183 | const MCSubtargetInfo &STI) const { |
| 184 | auto MO = MI.getOperand(OpNo); |
| 185 | |
| 186 | if (MO.isExpr()) { |
| 187 | if (isa<AVRMCExpr>(MO.getExpr())) { |
| 188 | // If the expression is already an AVRMCExpr (i.e. a lo8(symbol), |
| 189 | // we shouldn't perform any more fixups. Without this check, we would |
| 190 | // instead create a fixup to the symbol named 'lo8(symbol)' which |
| 191 | // is not correct. |
| 192 | return getExprOpValue(MO.getExpr(), Fixups, STI); |
| 193 | } |
| 194 | |
| 195 | MCFixupKind FixupKind = static_cast<MCFixupKind>(Fixup); |
Dylan McKay | 2e8718b | 2017-04-30 23:33:52 +0000 | [diff] [blame] | 196 | Fixups.push_back(MCFixup::create(Offset, MO.getExpr(), FixupKind, MI.getLoc())); |
Dylan McKay | 6eaa4e4 | 2016-10-27 06:56:46 +0000 | [diff] [blame] | 197 | |
| 198 | return 0; |
| 199 | } |
| 200 | |
| 201 | assert(MO.isImm()); |
| 202 | return MO.getImm(); |
| 203 | } |
| 204 | |
| 205 | unsigned AVRMCCodeEmitter::encodeCallTarget(const MCInst &MI, unsigned OpNo, |
| 206 | SmallVectorImpl<MCFixup> &Fixups, |
| 207 | const MCSubtargetInfo &STI) const { |
| 208 | auto MO = MI.getOperand(OpNo); |
| 209 | |
| 210 | if (MO.isExpr()) { |
| 211 | MCFixupKind FixupKind = static_cast<MCFixupKind>(AVR::fixup_call); |
| 212 | Fixups.push_back(MCFixup::create(0, MO.getExpr(), FixupKind, MI.getLoc())); |
| 213 | return 0; |
| 214 | } |
| 215 | |
| 216 | assert(MO.isImm()); |
| 217 | |
| 218 | auto Target = MO.getImm(); |
| 219 | AVR::fixups::adjustBranchTarget(Target); |
| 220 | return Target; |
| 221 | } |
| 222 | |
| 223 | unsigned AVRMCCodeEmitter::getExprOpValue(const MCExpr *Expr, |
| 224 | SmallVectorImpl<MCFixup> &Fixups, |
| 225 | const MCSubtargetInfo &STI) const { |
| 226 | |
| 227 | MCExpr::ExprKind Kind = Expr->getKind(); |
| 228 | |
| 229 | if (Kind == MCExpr::Binary) { |
| 230 | Expr = static_cast<const MCBinaryExpr *>(Expr)->getLHS(); |
| 231 | Kind = Expr->getKind(); |
| 232 | } |
| 233 | |
| 234 | if (Kind == MCExpr::Target) { |
| 235 | AVRMCExpr const *AVRExpr = cast<AVRMCExpr>(Expr); |
| 236 | int64_t Result; |
| 237 | if (AVRExpr->evaluateAsConstant(Result)) { |
| 238 | return Result; |
| 239 | } |
| 240 | |
| 241 | MCFixupKind FixupKind = static_cast<MCFixupKind>(AVRExpr->getFixupKind()); |
| 242 | Fixups.push_back(MCFixup::create(0, AVRExpr, FixupKind)); |
| 243 | return 0; |
| 244 | } |
| 245 | |
| 246 | assert(Kind == MCExpr::SymbolRef); |
| 247 | return 0; |
| 248 | } |
| 249 | |
| 250 | unsigned AVRMCCodeEmitter::getMachineOpValue(const MCInst &MI, |
| 251 | const MCOperand &MO, |
| 252 | SmallVectorImpl<MCFixup> &Fixups, |
| 253 | const MCSubtargetInfo &STI) const { |
| 254 | if (MO.isReg()) return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()); |
| 255 | if (MO.isImm()) return static_cast<unsigned>(MO.getImm()); |
| 256 | |
| 257 | if (MO.isFPImm()) |
| 258 | return static_cast<unsigned>(APFloat(MO.getFPImm()) |
| 259 | .bitcastToAPInt() |
| 260 | .getHiBits(32) |
| 261 | .getLimitedValue()); |
| 262 | |
| 263 | // MO must be an Expr. |
| 264 | assert(MO.isExpr()); |
| 265 | |
| 266 | return getExprOpValue(MO.getExpr(), Fixups, STI); |
| 267 | } |
| 268 | |
| 269 | void AVRMCCodeEmitter::emitInstruction(uint64_t Val, unsigned Size, |
| 270 | const MCSubtargetInfo &STI, |
| 271 | raw_ostream &OS) const { |
| 272 | const uint16_t *Words = reinterpret_cast<uint16_t const *>(&Val); |
| 273 | size_t WordCount = Size / 2; |
| 274 | |
| 275 | for (int64_t i = WordCount - 1; i >= 0; --i) { |
| 276 | uint16_t Word = Words[i]; |
| 277 | |
| 278 | OS << (uint8_t) ((Word & 0x00ff) >> 0); |
| 279 | OS << (uint8_t) ((Word & 0xff00) >> 8); |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | void AVRMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS, |
| 284 | SmallVectorImpl<MCFixup> &Fixups, |
| 285 | const MCSubtargetInfo &STI) const { |
| 286 | const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); |
| 287 | |
| 288 | // Get byte count of instruction |
| 289 | unsigned Size = Desc.getSize(); |
| 290 | |
| 291 | assert(Size > 0 && "Instruction size cannot be zero"); |
| 292 | |
| 293 | uint64_t BinaryOpCode = getBinaryCodeForInstr(MI, Fixups, STI); |
| 294 | emitInstruction(BinaryOpCode, Size, STI, OS); |
| 295 | } |
| 296 | |
| 297 | MCCodeEmitter *createAVRMCCodeEmitter(const MCInstrInfo &MCII, |
| 298 | const MCRegisterInfo &MRI, |
| 299 | MCContext &Ctx) { |
| 300 | return new AVRMCCodeEmitter(MCII, Ctx); |
| 301 | } |
| 302 | |
| 303 | #include "AVRGenMCCodeEmitter.inc" |
| 304 | |
| 305 | } // end of namespace llvm |