blob: ae10d48155774e4fc2ebcb7f239d458ceae37683 [file] [log] [blame]
Rui Ueyama0b289522016-02-25 18:43:51 +00001//===- ICF.cpp ------------------------------------------------------------===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000010// ICF is short for Identical Code Folding. This is a size optimization to
Rui Ueyama91ae8612016-12-01 19:45:22 +000011// identify and merge two or more read-only sections (typically functions)
12// that happened to have the same contents. It usually reduces output size
13// by a few percent.
Rui Ueyama0b289522016-02-25 18:43:51 +000014//
Rui Ueyama91ae8612016-12-01 19:45:22 +000015// In ICF, two sections are considered identical if they have the same
16// section flags, section data, and relocations. Relocations are tricky,
17// because two relocations are considered the same if they have the same
18// relocation types, values, and if they point to the same sections *in
19// terms of ICF*.
Rui Ueyama0b289522016-02-25 18:43:51 +000020//
Rui Ueyama91ae8612016-12-01 19:45:22 +000021// Here is an example. If foo and bar defined below are compiled to the
22// same machine instructions, ICF can and should merge the two, although
23// their relocations point to each other.
Rui Ueyama0b289522016-02-25 18:43:51 +000024//
25// void foo() { bar(); }
26// void bar() { foo(); }
27//
Rui Ueyama91ae8612016-12-01 19:45:22 +000028// If you merge the two, their relocations point to the same section and
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000029// thus you know they are mergeable, but how do you know they are
30// mergeable in the first place? This is not an easy problem to solve.
Rui Ueyama91ae8612016-12-01 19:45:22 +000031//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000032// What we are doing in LLD is to partition sections into equivalence
33// classes. Sections in the same equivalence class when the algorithm
34// terminates are considered identical. Here are details:
Rui Ueyama91ae8612016-12-01 19:45:22 +000035//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000036// 1. First, we partition sections using their hash values as keys. Hash
37// values contain section types, section contents and numbers of
38// relocations. During this step, relocation targets are not taken into
39// account. We just put sections that apparently differ into different
40// equivalence classes.
Rui Ueyama91ae8612016-12-01 19:45:22 +000041//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000042// 2. Next, for each equivalence class, we visit sections to compare
43// relocation targets. Relocation targets are considered equivalent if
44// their targets are in the same equivalence class. Sections with
45// different relocation targets are put into different equivalence
46// clases.
Rui Ueyama91ae8612016-12-01 19:45:22 +000047//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000048// 3. If we split an equivalence class in step 2, two relocations
49// previously target the same equivalence class may now target
50// different equivalence classes. Therefore, we repeat step 2 until a
51// convergence is obtained.
Rui Ueyama91ae8612016-12-01 19:45:22 +000052//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000053// 4. For each equivalence class C, pick an arbitrary section in C, and
54// merge all the other sections in C with it.
Rui Ueyama91ae8612016-12-01 19:45:22 +000055//
56// For small programs, this algorithm needs 3-5 iterations. For large
57// programs such as Chromium, it takes more than 20 iterations.
58//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000059// This algorithm was mentioned as an "optimistic algorithm" in [1],
60// though gold implements a different algorithm than this.
61//
Rui Ueyama91ae8612016-12-01 19:45:22 +000062// We parallelize each step so that multiple threads can work on different
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000063// equivalence classes concurrently. That gave us a large performance
64// boost when applying ICF on large programs. For example, MSVC link.exe
65// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
66// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
67// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
68// faster than MSVC or gold though.
69//
70// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
71// in the Gold Linker
72// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
Rui Ueyama0b289522016-02-25 18:43:51 +000073//
74//===----------------------------------------------------------------------===//
75
76#include "ICF.h"
77#include "Config.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000078#include "SymbolTable.h"
Bob Haarman4f5c8c22017-10-13 18:22:55 +000079#include "lld/Common/Threads.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000080#include "llvm/ADT/Hashing.h"
Zachary Turner264b5d92017-06-07 03:48:56 +000081#include "llvm/BinaryFormat/ELF.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000082#include "llvm/Object/ELF.h"
Rui Ueyamaa05134e2016-11-19 20:15:55 +000083#include <algorithm>
Rui Ueyama1b6bab02016-12-02 05:35:46 +000084#include <atomic>
Rui Ueyama0b289522016-02-25 18:43:51 +000085
86using namespace lld;
Rafael Espindolae0df00b2016-02-28 00:25:54 +000087using namespace lld::elf;
Rui Ueyama0b289522016-02-25 18:43:51 +000088using namespace llvm;
89using namespace llvm::ELF;
90using namespace llvm::object;
91
Rui Ueyamabd1f0632016-11-20 02:39:59 +000092namespace {
Rui Ueyama0b289522016-02-25 18:43:51 +000093template <class ELFT> class ICF {
Rui Ueyama0b289522016-02-25 18:43:51 +000094public:
Rui Ueyama4f8d21f2016-05-02 19:30:42 +000095 void run();
Rui Ueyama0b289522016-02-25 18:43:51 +000096
97private:
Rui Ueyama1b6bab02016-12-02 05:35:46 +000098 void segregate(size_t Begin, size_t End, bool Constant);
Rui Ueyama0b289522016-02-25 18:43:51 +000099
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000100 template <class RelTy>
Peter Collingbournebfd51132017-06-12 00:05:54 +0000101 bool constantEq(const InputSection *A, ArrayRef<RelTy> RelsA,
102 const InputSection *B, ArrayRef<RelTy> RelsB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000103
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000104 template <class RelTy>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000105 bool variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
106 const InputSection *B, ArrayRef<RelTy> RelsB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000107
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000108 bool equalsConstant(const InputSection *A, const InputSection *B);
109 bool equalsVariable(const InputSection *A, const InputSection *B);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000110
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000111 size_t findBoundary(size_t Begin, size_t End);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000112
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000113 void forEachClassRange(size_t Begin, size_t End,
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000114 std::function<void(size_t, size_t)> Fn);
115
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000116 void forEachClass(std::function<void(size_t, size_t)> Fn);
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000117
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000118 std::vector<InputSection *> Sections;
Rui Ueyama045d8282016-12-04 16:33:13 +0000119
120 // We repeat the main loop while `Repeat` is true.
121 std::atomic<bool> Repeat;
122
123 // The main loop counter.
Rui Ueyamac1835312016-12-01 17:09:04 +0000124 int Cnt = 0;
Rui Ueyama045d8282016-12-04 16:33:13 +0000125
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000126 // We have two locations for equivalence classes. On the first iteration
127 // of the main loop, Class[0] has a valid value, and Class[1] contains
128 // garbage. We read equivalence classes from slot 0 and write to slot 1.
129 // So, Class[0] represents the current class, and Class[1] represents
130 // the next class. On each iteration, we switch their roles and use them
131 // alternately.
Rui Ueyama045d8282016-12-04 16:33:13 +0000132 //
133 // Why are we doing this? Recall that other threads may be working on
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000134 // other equivalence classes in parallel. They may read sections that we
135 // are updating. We cannot update equivalence classes in place because
136 // it breaks the invariance that all possibly-identical sections must be
137 // in the same equivalence class at any moment. In other words, the for
138 // loop to update equivalence classes is not atomic, and that is
139 // observable from other threads. By writing new classes to other
140 // places, we can keep the invariance.
Rui Ueyama045d8282016-12-04 16:33:13 +0000141 //
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000142 // Below, `Current` has the index of the current class, and `Next` has
143 // the index of the next class. If threading is enabled, they are either
144 // (0, 1) or (1, 0).
Rui Ueyama045d8282016-12-04 16:33:13 +0000145 //
146 // Note on single-thread: if that's the case, they are always (0, 0)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000147 // because we can safely read the next class without worrying about race
Rui Ueyama045d8282016-12-04 16:33:13 +0000148 // conditions. Using the same location makes this algorithm converge
149 // faster because it uses results of the same iteration earlier.
150 int Current = 0;
151 int Next = 0;
Rui Ueyama0b289522016-02-25 18:43:51 +0000152};
153}
Rui Ueyama0b289522016-02-25 18:43:51 +0000154
Rui Ueyama0b289522016-02-25 18:43:51 +0000155// Returns a hash value for S. Note that the information about
156// relocation targets is not included in the hash value.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000157template <class ELFT> static uint32_t getHash(InputSection *S) {
Rui Ueyama274aa2f2017-10-02 01:21:07 +0000158 return hash_combine(S->Flags, S->getSize(), S->NumRelocations, S->Data);
Rui Ueyama0b289522016-02-25 18:43:51 +0000159}
160
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000161// Returns true if section S is subject of ICF.
Rui Ueyama536a2672017-02-27 02:32:08 +0000162static bool isEligible(InputSection *S) {
Rui Ueyama0b289522016-02-25 18:43:51 +0000163 // .init and .fini contains instructions that must be executed to
164 // initialize and finalize the process. They cannot and should not
165 // be merged.
Rui Ueyama13ed0b62017-02-28 22:42:49 +0000166 return S->Live && (S->Flags & SHF_ALLOC) && (S->Flags & SHF_EXECINSTR) &&
167 !(S->Flags & SHF_WRITE) && S->Name != ".init" && S->Name != ".fini";
Rui Ueyama0b289522016-02-25 18:43:51 +0000168}
169
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000170// Split an equivalence class into smaller classes.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000171template <class ELFT>
172void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
173 // This loop rearranges sections in [Begin, End) so that all sections
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000174 // that are equal in terms of equals{Constant,Variable} are contiguous
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000175 // in [Begin, End).
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000176 //
177 // The algorithm is quadratic in the worst case, but that is not an
178 // issue in practice because the number of the distinct sections in
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000179 // each range is usually very small.
Rui Ueyamac1835312016-12-01 17:09:04 +0000180
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000181 while (Begin < End) {
182 // Divide [Begin, End) into two. Let Mid be the start index of the
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000183 // second group.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000184 auto Bound =
185 std::stable_partition(Sections.begin() + Begin + 1,
186 Sections.begin() + End, [&](InputSection *S) {
187 if (Constant)
188 return equalsConstant(Sections[Begin], S);
189 return equalsVariable(Sections[Begin], S);
190 });
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000191 size_t Mid = Bound - Sections.begin();
Rui Ueyama0b289522016-02-25 18:43:51 +0000192
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000193 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
Rui Ueyamac9df1722017-01-15 02:34:42 +0000194 // updating the sections in [Begin, Mid). We use Mid as an equivalence
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000195 // class ID because every group ends with a unique index.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000196 for (size_t I = Begin; I < Mid; ++I)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000197 Sections[I]->Class[Next] = Mid;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000198
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000199 // If we created a group, we need to iterate the main loop again.
200 if (Mid != End)
201 Repeat = true;
202
203 Begin = Mid;
Rui Ueyama0b289522016-02-25 18:43:51 +0000204 }
205}
206
207// Compare two lists of relocations.
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000208template <class ELFT>
209template <class RelTy>
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000210bool ICF<ELFT>::constantEq(const InputSection *SecA, ArrayRef<RelTy> RA,
211 const InputSection *SecB, ArrayRef<RelTy> RB) {
212 if (RA.size() != RB.size())
213 return false;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000214
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000215 for (size_t I = 0; I < RA.size(); ++I) {
216 if (RA[I].r_offset != RB[I].r_offset ||
217 RA[I].getType(Config->IsMips64EL) != RB[I].getType(Config->IsMips64EL))
218 return false;
219
220 uint64_t AddA = getAddend<ELFT>(RA[I]);
221 uint64_t AddB = getAddend<ELFT>(RB[I]);
222
Rui Ueyamaf52496e2017-11-03 21:21:47 +0000223 Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
224 Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000225 if (&SA == &SB) {
226 if (AddA == AddB)
227 continue;
228 return false;
229 }
Peter Collingbournebfd51132017-06-12 00:05:54 +0000230
Peter Collingbournee9a9e0a2017-11-06 04:35:31 +0000231 auto *DA = dyn_cast<Defined>(&SA);
232 auto *DB = dyn_cast<Defined>(&SB);
Peter Collingbournebfd51132017-06-12 00:05:54 +0000233 if (!DA || !DB)
234 return false;
235
236 // Relocations referring to absolute symbols are constant-equal if their
237 // values are equal.
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000238 if (!DA->Section && !DB->Section && DA->Value + AddA == DB->Value + AddB)
239 continue;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000240 if (!DA->Section || !DB->Section)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000241 return false;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000242
243 if (DA->Section->kind() != DB->Section->kind())
244 return false;
245
246 // Relocations referring to InputSections are constant-equal if their
247 // section offsets are equal.
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000248 if (isa<InputSection>(DA->Section)) {
249 if (DA->Value + AddA == DB->Value + AddB)
250 continue;
251 return false;
252 }
Peter Collingbournebfd51132017-06-12 00:05:54 +0000253
254 // Relocations referring to MergeInputSections are constant-equal if their
255 // offsets in the output section are equal.
256 auto *X = dyn_cast<MergeInputSection>(DA->Section);
257 if (!X)
258 return false;
259 auto *Y = cast<MergeInputSection>(DB->Section);
260 if (X->getParent() != Y->getParent())
261 return false;
262
263 uint64_t OffsetA =
264 SA.isSection() ? X->getOffset(AddA) : X->getOffset(DA->Value) + AddA;
265 uint64_t OffsetB =
266 SB.isSection() ? Y->getOffset(AddB) : Y->getOffset(DB->Value) + AddB;
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000267 if (OffsetA != OffsetB)
268 return false;
269 }
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000270
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000271 return true;
Rui Ueyama0b289522016-02-25 18:43:51 +0000272}
273
274// Compare "non-moving" part of two InputSections, namely everything
275// except relocation targets.
276template <class ELFT>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000277bool ICF<ELFT>::equalsConstant(const InputSection *A, const InputSection *B) {
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000278 if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
Rafael Espindola76b6bd32017-03-08 15:44:30 +0000279 A->getSize() != B->getSize() || A->Data != B->Data)
Rui Ueyama0b289522016-02-25 18:43:51 +0000280 return false;
281
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000282 if (A->AreRelocsRela)
Peter Collingbournebfd51132017-06-12 00:05:54 +0000283 return constantEq(A, A->template relas<ELFT>(), B,
284 B->template relas<ELFT>());
285 return constantEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
Rui Ueyama0b289522016-02-25 18:43:51 +0000286}
287
Rui Ueyama7bed9ee2016-11-20 23:15:54 +0000288// Compare two lists of relocations. Returns true if all pairs of
289// relocations point to the same section in terms of ICF.
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000290template <class ELFT>
291template <class RelTy>
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000292bool ICF<ELFT>::variableEq(const InputSection *SecA, ArrayRef<RelTy> RA,
293 const InputSection *SecB, ArrayRef<RelTy> RB) {
294 assert(RA.size() == RB.size());
295
296 for (size_t I = 0; I < RA.size(); ++I) {
Rui Ueyama91ae8612016-12-01 19:45:22 +0000297 // The two sections must be identical.
Rui Ueyamaf52496e2017-11-03 21:21:47 +0000298 Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
299 Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
Rafael Espindola67d72c02016-03-11 12:06:30 +0000300 if (&SA == &SB)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000301 continue;
Rui Ueyama0b289522016-02-25 18:43:51 +0000302
Peter Collingbournee9a9e0a2017-11-06 04:35:31 +0000303 auto *DA = cast<Defined>(&SA);
304 auto *DB = cast<Defined>(&SB);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000305
Peter Collingbournebfd51132017-06-12 00:05:54 +0000306 // We already dealt with absolute and non-InputSection symbols in
307 // constantEq, and for InputSections we have already checked everything
308 // except the equivalence class.
309 if (!DA->Section)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000310 continue;
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000311 auto *X = dyn_cast<InputSection>(DA->Section);
Peter Collingbournebfd51132017-06-12 00:05:54 +0000312 if (!X)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000313 continue;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000314 auto *Y = cast<InputSection>(DB->Section);
Rui Ueyamac1835312016-12-01 17:09:04 +0000315
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000316 // Ineligible sections are in the special equivalence class 0.
317 // They can never be the same in terms of the equivalence class.
318 if (X->Class[Current] == 0)
Rui Ueyama83ec6812016-12-02 17:23:58 +0000319 return false;
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000320 if (X->Class[Current] != Y->Class[Current])
321 return false;
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000322 };
323
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000324 return true;
Rui Ueyama0b289522016-02-25 18:43:51 +0000325}
326
327// Compare "moving" part of two InputSections, namely relocation targets.
328template <class ELFT>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000329bool ICF<ELFT>::equalsVariable(const InputSection *A, const InputSection *B) {
Rafael Espindola9f0c4bb2016-11-10 14:53:24 +0000330 if (A->AreRelocsRela)
Rafael Espindolab4c9b812017-02-23 02:28:28 +0000331 return variableEq(A, A->template relas<ELFT>(), B,
332 B->template relas<ELFT>());
333 return variableEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
Rui Ueyama0b289522016-02-25 18:43:51 +0000334}
335
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000336template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000337 uint32_t Class = Sections[Begin]->Class[Current];
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000338 for (size_t I = Begin + 1; I < End; ++I)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000339 if (Class != Sections[I]->Class[Current])
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000340 return I;
341 return End;
342}
343
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000344// Sections in the same equivalence class are contiguous in Sections
345// vector. Therefore, Sections vector can be considered as contiguous
346// groups of sections, grouped by the class.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000347//
348// This function calls Fn on every group that starts within [Begin, End).
Rui Ueyamac9df1722017-01-15 02:34:42 +0000349// Note that a group must start in that range but doesn't necessarily
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000350// have to end before End.
351template <class ELFT>
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000352void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End,
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000353 std::function<void(size_t, size_t)> Fn) {
354 if (Begin > 0)
355 Begin = findBoundary(Begin - 1, End);
356
357 while (Begin < End) {
358 size_t Mid = findBoundary(Begin, Sections.size());
359 Fn(Begin, Mid);
360 Begin = Mid;
361 }
362}
363
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000364// Call Fn on each equivalence class.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000365template <class ELFT>
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000366void ICF<ELFT>::forEachClass(std::function<void(size_t, size_t)> Fn) {
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000367 // If threading is disabled or the number of sections are
368 // too small to use threading, call Fn sequentially.
Bob Haarman4f5c8c22017-10-13 18:22:55 +0000369 if (!ThreadsEnabled || Sections.size() < 1024) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000370 forEachClassRange(0, Sections.size(), Fn);
Rui Ueyama045d8282016-12-04 16:33:13 +0000371 ++Cnt;
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000372 return;
373 }
374
Rui Ueyama045d8282016-12-04 16:33:13 +0000375 Current = Cnt % 2;
376 Next = (Cnt + 1) % 2;
377
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000378 // Split sections into 256 shards and call Fn in parallel.
379 size_t NumShards = 256;
380 size_t Step = Sections.size() / NumShards;
Rui Ueyama33d903d2017-05-10 20:02:19 +0000381 parallelForEachN(0, NumShards, [&](size_t I) {
Rui Ueyamaf04c0482017-05-24 19:22:34 +0000382 size_t End = (I == NumShards - 1) ? Sections.size() : (I + 1) * Step;
383 forEachClassRange(I * Step, End, Fn);
Rui Ueyama4995afd2017-03-22 23:03:35 +0000384 });
Rui Ueyama045d8282016-12-04 16:33:13 +0000385 ++Cnt;
Rui Ueyamac1835312016-12-01 17:09:04 +0000386}
387
Rui Ueyama0b289522016-02-25 18:43:51 +0000388// The main function of ICF.
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000389template <class ELFT> void ICF<ELFT>::run() {
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000390 // Collect sections to merge.
Rui Ueyama536a2672017-02-27 02:32:08 +0000391 for (InputSectionBase *Sec : InputSections)
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000392 if (auto *S = dyn_cast<InputSection>(Sec))
Rui Ueyama536a2672017-02-27 02:32:08 +0000393 if (isEligible(S))
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000394 Sections.push_back(S);
395
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000396 // Initially, we use hash values to partition sections.
Rui Ueyama274aa2f2017-10-02 01:21:07 +0000397 parallelForEach(Sections, [&](InputSection *S) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000398 // Set MSB to 1 to avoid collisions with non-hash IDs.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000399 S->Class[0] = getHash<ELFT>(S) | (1 << 31);
Rui Ueyama274aa2f2017-10-02 01:21:07 +0000400 });
Rui Ueyama0b289522016-02-25 18:43:51 +0000401
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000402 // From now on, sections in Sections vector are ordered so that sections
403 // in the same equivalence class are consecutive in the vector.
Rui Ueyamae2dfbc12016-11-19 23:14:23 +0000404 std::stable_sort(Sections.begin(), Sections.end(),
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000405 [](InputSection *A, InputSection *B) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000406 return A->Class[0] < B->Class[0];
Rui Ueyama0b289522016-02-25 18:43:51 +0000407 });
408
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000409 // Compare static contents and assign unique IDs for each static content.
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000410 forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000411
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000412 // Split groups by comparing relocations until convergence is obtained.
413 do {
414 Repeat = false;
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000415 forEachClass(
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000416 [&](size_t Begin, size_t End) { segregate(Begin, End, false); });
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000417 } while (Repeat);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000418
419 log("ICF needed " + Twine(Cnt) + " iterations");
Rui Ueyama0b289522016-02-25 18:43:51 +0000420
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000421 // Merge sections by the equivalence class.
422 forEachClass([&](size_t Begin, size_t End) {
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000423 if (End - Begin == 1)
424 return;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000425
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000426 log("selected " + Sections[Begin]->Name);
427 for (size_t I = Begin + 1; I < End; ++I) {
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000428 log(" removed " + Sections[I]->Name);
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000429 Sections[Begin]->replace(Sections[I]);
Rui Ueyama0b289522016-02-25 18:43:51 +0000430 }
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000431 });
Peter Smithcec1e262017-04-13 08:52:58 +0000432
433 // Mark ARM Exception Index table sections that refer to folded code
434 // sections as not live. These sections have an implict dependency
435 // via the link order dependency.
436 if (Config->EMachine == EM_ARM)
437 for (InputSectionBase *Sec : InputSections)
438 if (auto *S = dyn_cast<InputSection>(Sec))
439 if (S->Flags & SHF_LINK_ORDER)
440 S->Live = S->getLinkOrderDep()->Live;
Rui Ueyama0b289522016-02-25 18:43:51 +0000441}
442
443// ICF entry point function.
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000444template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
Rui Ueyama0b289522016-02-25 18:43:51 +0000445
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000446template void elf::doIcf<ELF32LE>();
447template void elf::doIcf<ELF32BE>();
448template void elf::doIcf<ELF64LE>();
449template void elf::doIcf<ELF64BE>();