blob: fd3fbc0d86ad631fc2a413c35bc7dfec8a965dc0 [file] [log] [blame]
Hal Finkel7529c552014-09-02 21:43:13 +00001//===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_STRATIFIEDSETS_H
11#define LLVM_ADT_STRATIFIEDSETS_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/Optional.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/SmallVector.h"
Hal Finkel7d7087c2014-09-02 22:13:00 +000018#include "llvm/Support/Compiler.h"
Hal Finkel7529c552014-09-02 21:43:13 +000019#include <bitset>
20#include <cassert>
21#include <cmath>
22#include <limits>
23#include <type_traits>
Hal Finkel8d1590d2014-09-02 22:52:30 +000024#include <utility>
Hal Finkel7529c552014-09-02 21:43:13 +000025#include <vector>
26
27namespace llvm {
28// \brief An index into Stratified Sets.
29typedef unsigned StratifiedIndex;
30// NOTE: ^ This can't be a short -- bootstrapping clang has a case where
31// ~1M sets exist.
32
33// \brief Container of information related to a value in a StratifiedSet.
34struct StratifiedInfo {
35 StratifiedIndex Index;
36 // For field sensitivity, etc. we can tack attributes on to this struct.
37};
38
39// The number of attributes that StratifiedAttrs should contain. Attributes are
40// described below, and 32 was an arbitrary choice because it fits nicely in 32
41// bits (because we use a bitset for StratifiedAttrs).
Hal Finkel981602a2014-09-02 22:26:06 +000042static const unsigned NumStratifiedAttrs = 32;
Hal Finkel7529c552014-09-02 21:43:13 +000043
44// These are attributes that the users of StratifiedSets/StratifiedSetBuilders
45// may use for various purposes. These also have the special property of that
46// they are merged down. So, if set A is above set B, and one decides to set an
47// attribute in set A, then the attribute will automatically be set in set B.
48typedef std::bitset<NumStratifiedAttrs> StratifiedAttrs;
49
50// \brief A "link" between two StratifiedSets.
51struct StratifiedLink {
52 // \brief This is a value used to signify "does not exist" where
53 // the StratifiedIndex type is used. This is used instead of
54 // Optional<StratifiedIndex> because Optional<StratifiedIndex> would
55 // eat up a considerable amount of extra memory, after struct
56 // padding/alignment is taken into account.
Hal Finkel1ae325f2014-09-02 23:50:01 +000057 static const StratifiedIndex SetSentinel;
Hal Finkel7529c552014-09-02 21:43:13 +000058
59 // \brief The index for the set "above" current
60 StratifiedIndex Above;
61
62 // \brief The link for the set "below" current
63 StratifiedIndex Below;
64
65 // \brief Attributes for these StratifiedSets.
66 StratifiedAttrs Attrs;
67
68 StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
69
70 bool hasBelow() const { return Below != SetSentinel; }
71 bool hasAbove() const { return Above != SetSentinel; }
72
73 void clearBelow() { Below = SetSentinel; }
74 void clearAbove() { Above = SetSentinel; }
75};
76
77// \brief These are stratified sets, as described in "Fast algorithms for
78// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
79// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
80// of Value*s. If two Value*s are in the same set, or if both sets have
81// overlapping attributes, then the Value*s are said to alias.
82//
83// Sets may be related by position, meaning that one set may be considered as
84// above or below another. In CFL Alias Analysis, this gives us an indication
85// of how two variables are related; if the set of variable A is below a set
86// containing variable B, then at some point, a variable that has interacted
87// with B (or B itself) was either used in order to extract the variable A, or
88// was used as storage of variable A.
89//
90// Sets may also have attributes (as noted above). These attributes are
91// generally used for noting whether a variable in the set has interacted with
92// a variable whose origins we don't quite know (i.e. globals/arguments), or if
93// the variable may have had operations performed on it (modified in a function
94// call). All attributes that exist in a set A must exist in all sets marked as
95// below set A.
96template <typename T> class StratifiedSets {
97public:
98 StratifiedSets() {}
99
100 StratifiedSets(DenseMap<T, StratifiedInfo> Map,
101 std::vector<StratifiedLink> Links)
102 : Values(std::move(Map)), Links(std::move(Links)) {}
103
104 StratifiedSets(StratifiedSets<T> &&Other) { *this = std::move(Other); }
105
106 StratifiedSets &operator=(StratifiedSets<T> &&Other) {
107 Values = std::move(Other.Values);
108 Links = std::move(Other.Links);
109 return *this;
110 }
111
112 Optional<StratifiedInfo> find(const T &Elem) const {
113 auto Iter = Values.find(Elem);
114 if (Iter == Values.end()) {
115 return NoneType();
116 }
117 return Iter->second;
118 }
119
120 const StratifiedLink &getLink(StratifiedIndex Index) const {
121 assert(inbounds(Index));
122 return Links[Index];
123 }
124
125private:
126 DenseMap<T, StratifiedInfo> Values;
127 std::vector<StratifiedLink> Links;
128
129 bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
130};
131
132// \brief Generic Builder class that produces StratifiedSets instances.
133//
134// The goal of this builder is to efficiently produce correct StratifiedSets
135// instances. To this end, we use a few tricks:
136// > Set chains (A method for linking sets together)
137// > Set remaps (A method for marking a set as an alias [irony?] of another)
138//
139// ==== Set chains ====
140// This builder has a notion of some value A being above, below, or with some
141// other value B:
142// > The `A above B` relationship implies that there is a reference edge going
143// from A to B. Namely, it notes that A can store anything in B's set.
144// > The `A below B` relationship is the opposite of `A above B`. It implies
145// that there's a dereference edge going from A to B.
146// > The `A with B` relationship states that there's an assignment edge going
147// from A to B, and that A and B should be treated as equals.
148//
149// As an example, take the following code snippet:
150//
151// %a = alloca i32, align 4
152// %ap = alloca i32*, align 8
153// %app = alloca i32**, align 8
154// store %a, %ap
155// store %ap, %app
156// %aw = getelementptr %ap, 0
157//
158// Given this, the follow relations exist:
159// - %a below %ap & %ap above %a
160// - %ap below %app & %app above %ap
161// - %aw with %ap & %ap with %aw
162//
163// These relations produce the following sets:
164// [{%a}, {%ap, %aw}, {%app}]
165//
166// ...Which states that the only MayAlias relationship in the above program is
167// between %ap and %aw.
168//
169// Life gets more complicated when we actually have logic in our programs. So,
170// we either must remove this logic from our programs, or make consessions for
171// it in our AA algorithms. In this case, we have decided to select the latter
172// option.
173//
174// First complication: Conditionals
175// Motivation:
176// %ad = alloca int, align 4
177// %a = alloca int*, align 8
178// %b = alloca int*, align 8
179// %bp = alloca int**, align 8
180// %c = call i1 @SomeFunc()
181// %k = select %c, %ad, %bp
182// store %ad, %a
183// store %b, %bp
184//
185// %k has 'with' edges to both %a and %b, which ordinarily would not be linked
186// together. So, we merge the set that contains %a with the set that contains
187// %b. We then recursively merge the set above %a with the set above %b, and
188// the set below %a with the set below %b, etc. Ultimately, the sets for this
189// program would end up like: {%ad}, {%a, %b, %k}, {%bp}, where {%ad} is below
190// {%a, %b, %c} is below {%ad}.
191//
192// Second complication: Arbitrary casts
193// Motivation:
194// %ip = alloca int*, align 8
195// %ipp = alloca int**, align 8
196// %i = bitcast ipp to int
197// store %ip, %ipp
198// store %i, %ip
199//
200// This is impossible to construct with any of the rules above, because a set
201// containing both {%i, %ipp} is supposed to exist, the set with %i is supposed
202// to be below the set with %ip, and the set with %ip is supposed to be below
203// the set with %ipp. Because we don't allow circular relationships like this,
204// we merge all concerned sets into one. So, the above code would generate a
205// single StratifiedSet: {%ip, %ipp, %i}.
206//
207// ==== Set remaps ====
208// More of an implementation detail than anything -- when merging sets, we need
209// to update the numbers of all of the elements mapped to those sets. Rather
210// than doing this at each merge, we note in the BuilderLink structure that a
211// remap has occurred, and use this information so we can defer renumbering set
212// elements until build time.
213template <typename T> class StratifiedSetsBuilder {
214 // \brief Represents a Stratified Set, with information about the Stratified
215 // Set above it, the set below it, and whether the current set has been
216 // remapped to another.
217 struct BuilderLink {
218 const StratifiedIndex Number;
219
220 BuilderLink(StratifiedIndex N) : Number(N) {
221 Remap = StratifiedLink::SetSentinel;
222 }
223
224 bool hasAbove() const {
225 assert(!isRemapped());
226 return Link.hasAbove();
227 }
228
229 bool hasBelow() const {
230 assert(!isRemapped());
231 return Link.hasBelow();
232 }
233
234 void setBelow(StratifiedIndex I) {
235 assert(!isRemapped());
236 Link.Below = I;
237 }
238
239 void setAbove(StratifiedIndex I) {
240 assert(!isRemapped());
241 Link.Above = I;
242 }
243
244 void clearBelow() {
245 assert(!isRemapped());
246 Link.clearBelow();
247 }
248
249 void clearAbove() {
250 assert(!isRemapped());
251 Link.clearAbove();
252 }
253
254 StratifiedIndex getBelow() const {
255 assert(!isRemapped());
256 assert(hasBelow());
257 return Link.Below;
258 }
259
260 StratifiedIndex getAbove() const {
261 assert(!isRemapped());
262 assert(hasAbove());
263 return Link.Above;
264 }
265
266 StratifiedAttrs &getAttrs() {
267 assert(!isRemapped());
268 return Link.Attrs;
269 }
270
271 void setAttr(unsigned index) {
272 assert(!isRemapped());
273 assert(index < NumStratifiedAttrs);
274 Link.Attrs.set(index);
275 }
276
277 void setAttrs(const StratifiedAttrs &other) {
278 assert(!isRemapped());
279 Link.Attrs |= other;
280 }
281
282 bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
283
284 // \brief For initial remapping to another set
285 void remapTo(StratifiedIndex Other) {
286 assert(!isRemapped());
287 Remap = Other;
288 }
289
290 StratifiedIndex getRemapIndex() const {
291 assert(isRemapped());
292 return Remap;
293 }
294
295 // \brief Should only be called when we're already remapped.
296 void updateRemap(StratifiedIndex Other) {
297 assert(isRemapped());
298 Remap = Other;
299 }
300
301 // \brief Prefer the above functions to calling things directly on what's
302 // returned from this -- they guard against unexpected calls when the
303 // current BuilderLink is remapped.
304 const StratifiedLink &getLink() const { return Link; }
305
306 private:
307 StratifiedLink Link;
308 StratifiedIndex Remap;
309 };
310
311 // \brief This function performs all of the set unioning/value renumbering
312 // that we've been putting off, and generates a vector<StratifiedLink> that
313 // may be placed in a StratifiedSets instance.
314 void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
315 DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
316 for (auto &Link : Links) {
317 if (Link.isRemapped()) {
318 continue;
319 }
320
321 StratifiedIndex Number = StratLinks.size();
Hal Finkel8d1590d2014-09-02 22:52:30 +0000322 Remaps.insert(std::make_pair(Link.Number, Number));
Hal Finkel7529c552014-09-02 21:43:13 +0000323 StratLinks.push_back(Link.getLink());
324 }
325
326 for (auto &Link : StratLinks) {
327 if (Link.hasAbove()) {
328 auto &Above = linksAt(Link.Above);
329 auto Iter = Remaps.find(Above.Number);
330 assert(Iter != Remaps.end());
331 Link.Above = Iter->second;
332 }
333
334 if (Link.hasBelow()) {
335 auto &Below = linksAt(Link.Below);
336 auto Iter = Remaps.find(Below.Number);
337 assert(Iter != Remaps.end());
338 Link.Below = Iter->second;
339 }
340 }
341
342 for (auto &Pair : Values) {
343 auto &Info = Pair.second;
344 auto &Link = linksAt(Info.Index);
345 auto Iter = Remaps.find(Link.Number);
346 assert(Iter != Remaps.end());
347 Info.Index = Iter->second;
348 }
349 }
350
351 // \brief There's a guarantee in StratifiedLink where all bits set in a
352 // Link.externals will be set in all Link.externals "below" it.
353 static void propagateAttrs(std::vector<StratifiedLink> &Links) {
354 const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
355 const auto *Link = &Links[Idx];
356 while (Link->hasAbove()) {
357 Idx = Link->Above;
358 Link = &Links[Idx];
359 }
360 return Idx;
361 };
362
363 SmallSet<StratifiedIndex, 16> Visited;
364 for (unsigned I = 0, E = Links.size(); I < E; ++I) {
365 auto CurrentIndex = getHighestParentAbove(I);
David Blaikie70573dc2014-11-19 07:49:26 +0000366 if (!Visited.insert(CurrentIndex).second) {
Hal Finkel7529c552014-09-02 21:43:13 +0000367 continue;
368 }
369
370 while (Links[CurrentIndex].hasBelow()) {
371 auto &CurrentBits = Links[CurrentIndex].Attrs;
372 auto NextIndex = Links[CurrentIndex].Below;
373 auto &NextBits = Links[NextIndex].Attrs;
374 NextBits |= CurrentBits;
375 CurrentIndex = NextIndex;
376 }
377 }
378 }
379
380public:
381 // \brief Builds a StratifiedSet from the information we've been given since
382 // either construction or the prior build() call.
383 StratifiedSets<T> build() {
384 std::vector<StratifiedLink> StratLinks;
385 finalizeSets(StratLinks);
386 propagateAttrs(StratLinks);
387 Links.clear();
388 return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
389 }
390
391 std::size_t size() const { return Values.size(); }
392 std::size_t numSets() const { return Links.size(); }
393
394 bool has(const T &Elem) const { return get(Elem).hasValue(); }
395
396 bool add(const T &Main) {
397 if (get(Main).hasValue())
398 return false;
399
400 auto NewIndex = getNewUnlinkedIndex();
401 return addAtMerging(Main, NewIndex);
402 }
403
404 // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
405 // set above "Main". There are some cases where this is not possible (see
406 // above), so we merge them such that ToAdd and Main are in the same set.
407 bool addAbove(const T &Main, const T &ToAdd) {
408 assert(has(Main));
409 auto Index = *indexOf(Main);
410 if (!linksAt(Index).hasAbove())
411 addLinkAbove(Index);
412
413 auto Above = linksAt(Index).getAbove();
414 return addAtMerging(ToAdd, Above);
415 }
416
417 // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
418 // set below "Main". There are some cases where this is not possible (see
419 // above), so we merge them such that ToAdd and Main are in the same set.
420 bool addBelow(const T &Main, const T &ToAdd) {
421 assert(has(Main));
422 auto Index = *indexOf(Main);
423 if (!linksAt(Index).hasBelow())
424 addLinkBelow(Index);
425
426 auto Below = linksAt(Index).getBelow();
427 return addAtMerging(ToAdd, Below);
428 }
429
430 bool addWith(const T &Main, const T &ToAdd) {
431 assert(has(Main));
432 auto MainIndex = *indexOf(Main);
433 return addAtMerging(ToAdd, MainIndex);
434 }
435
436 void noteAttribute(const T &Main, unsigned AttrNum) {
437 assert(has(Main));
438 assert(AttrNum < StratifiedLink::SetSentinel);
439 auto *Info = *get(Main);
440 auto &Link = linksAt(Info->Index);
441 Link.setAttr(AttrNum);
442 }
443
444 void noteAttributes(const T &Main, const StratifiedAttrs &NewAttrs) {
445 assert(has(Main));
446 auto *Info = *get(Main);
447 auto &Link = linksAt(Info->Index);
448 Link.setAttrs(NewAttrs);
449 }
450
451 StratifiedAttrs getAttributes(const T &Main) {
452 assert(has(Main));
453 auto *Info = *get(Main);
454 auto *Link = &linksAt(Info->Index);
455 auto Attrs = Link->getAttrs();
456 while (Link->hasAbove()) {
457 Link = &linksAt(Link->getAbove());
458 Attrs |= Link->getAttrs();
459 }
460
461 return Attrs;
462 }
463
464 bool getAttribute(const T &Main, unsigned AttrNum) {
465 assert(AttrNum < StratifiedLink::SetSentinel);
466 auto Attrs = getAttributes(Main);
467 return Attrs[AttrNum];
468 }
469
470 // \brief Gets the attributes that have been applied to the set that Main
471 // belongs to. It ignores attributes in any sets above the one that Main
472 // resides in.
473 StratifiedAttrs getRawAttributes(const T &Main) {
474 assert(has(Main));
475 auto *Info = *get(Main);
476 auto &Link = linksAt(Info->Index);
477 return Link.getAttrs();
478 }
479
480 // \brief Gets an attribute from the attributes that have been applied to the
481 // set that Main belongs to. It ignores attributes in any sets above the one
482 // that Main resides in.
483 bool getRawAttribute(const T &Main, unsigned AttrNum) {
484 assert(AttrNum < StratifiedLink::SetSentinel);
485 auto Attrs = getRawAttributes(Main);
486 return Attrs[AttrNum];
487 }
488
489private:
490 DenseMap<T, StratifiedInfo> Values;
491 std::vector<BuilderLink> Links;
492
493 // \brief Adds the given element at the given index, merging sets if
494 // necessary.
495 bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
496 StratifiedInfo Info = {Index};
Hal Finkel8d1590d2014-09-02 22:52:30 +0000497 auto Pair = Values.insert(std::make_pair(ToAdd, Info));
Hal Finkel7529c552014-09-02 21:43:13 +0000498 if (Pair.second)
499 return true;
500
501 auto &Iter = Pair.first;
502 auto &IterSet = linksAt(Iter->second.Index);
503 auto &ReqSet = linksAt(Index);
504
505 // Failed to add where we wanted to. Merge the sets.
506 if (&IterSet != &ReqSet)
507 merge(IterSet.Number, ReqSet.Number);
508
509 return false;
510 }
511
512 // \brief Gets the BuilderLink at the given index, taking set remapping into
513 // account.
514 BuilderLink &linksAt(StratifiedIndex Index) {
515 auto *Start = &Links[Index];
516 if (!Start->isRemapped())
517 return *Start;
518
519 auto *Current = Start;
520 while (Current->isRemapped())
521 Current = &Links[Current->getRemapIndex()];
522
523 auto NewRemap = Current->Number;
524
525 // Run through everything that has yet to be updated, and update them to
526 // remap to NewRemap
527 Current = Start;
528 while (Current->isRemapped()) {
529 auto *Next = &Links[Current->getRemapIndex()];
530 Current->updateRemap(NewRemap);
531 Current = Next;
532 }
533
534 return *Current;
535 }
536
537 // \brief Merges two sets into one another. Assumes that these sets are not
538 // already one in the same
539 void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
540 assert(inbounds(Idx1) && inbounds(Idx2));
541 assert(&linksAt(Idx1) != &linksAt(Idx2) &&
542 "Merging a set into itself is not allowed");
543
544 // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
545 // both the
546 // given sets, and all sets between them, into one.
547 if (tryMergeUpwards(Idx1, Idx2))
548 return;
549
550 if (tryMergeUpwards(Idx2, Idx1))
551 return;
552
553 // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
554 // We therefore need to merge the two chains together.
555 mergeDirect(Idx1, Idx2);
556 }
557
558 // \brief Merges two sets assuming that the set at `Idx1` is unreachable from
559 // traversing above or below the set at `Idx2`.
560 void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
561 assert(inbounds(Idx1) && inbounds(Idx2));
562
563 auto *LinksInto = &linksAt(Idx1);
564 auto *LinksFrom = &linksAt(Idx2);
565 // Merging everything above LinksInto then proceeding to merge everything
566 // below LinksInto becomes problematic, so we go as far "up" as possible!
567 while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
568 LinksInto = &linksAt(LinksInto->getAbove());
569 LinksFrom = &linksAt(LinksFrom->getAbove());
570 }
571
572 if (LinksFrom->hasAbove()) {
573 LinksInto->setAbove(LinksFrom->getAbove());
574 auto &NewAbove = linksAt(LinksInto->getAbove());
575 NewAbove.setBelow(LinksInto->Number);
576 }
577
578 // Merging strategy:
579 // > If neither has links below, stop.
580 // > If only `LinksInto` has links below, stop.
581 // > If only `LinksFrom` has links below, reset `LinksInto.Below` to
582 // match `LinksFrom.Below`
583 // > If both have links above, deal with those next.
584 while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
585 auto &FromAttrs = LinksFrom->getAttrs();
586 LinksInto->setAttrs(FromAttrs);
587
588 // Remap needs to happen after getBelow(), but before
589 // assignment of LinksFrom
590 auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
591 LinksFrom->remapTo(LinksInto->Number);
592 LinksFrom = NewLinksFrom;
593 LinksInto = &linksAt(LinksInto->getBelow());
594 }
595
596 if (LinksFrom->hasBelow()) {
597 LinksInto->setBelow(LinksFrom->getBelow());
598 auto &NewBelow = linksAt(LinksInto->getBelow());
599 NewBelow.setAbove(LinksInto->Number);
600 }
601
602 LinksFrom->remapTo(LinksInto->Number);
603 }
604
605 // \brief Checks to see if lowerIndex is at a level lower than upperIndex.
606 // If so, it will merge lowerIndex with upperIndex (and all of the sets
607 // between) and return true. Otherwise, it will return false.
608 bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
609 assert(inbounds(LowerIndex) && inbounds(UpperIndex));
610 auto *Lower = &linksAt(LowerIndex);
611 auto *Upper = &linksAt(UpperIndex);
612 if (Lower == Upper)
613 return true;
614
615 SmallVector<BuilderLink *, 8> Found;
616 auto *Current = Lower;
617 auto Attrs = Current->getAttrs();
618 while (Current->hasAbove() && Current != Upper) {
619 Found.push_back(Current);
620 Attrs |= Current->getAttrs();
621 Current = &linksAt(Current->getAbove());
622 }
623
624 if (Current != Upper)
625 return false;
626
627 Upper->setAttrs(Attrs);
628
629 if (Lower->hasBelow()) {
630 auto NewBelowIndex = Lower->getBelow();
631 Upper->setBelow(NewBelowIndex);
632 auto &NewBelow = linksAt(NewBelowIndex);
633 NewBelow.setAbove(UpperIndex);
634 } else {
635 Upper->clearBelow();
636 }
637
638 for (const auto &Ptr : Found)
639 Ptr->remapTo(Upper->Number);
640
641 return true;
642 }
643
644 Optional<const StratifiedInfo *> get(const T &Val) const {
645 auto Result = Values.find(Val);
646 if (Result == Values.end())
647 return NoneType();
648 return &Result->second;
649 }
650
651 Optional<StratifiedInfo *> get(const T &Val) {
652 auto Result = Values.find(Val);
653 if (Result == Values.end())
654 return NoneType();
655 return &Result->second;
656 }
657
658 Optional<StratifiedIndex> indexOf(const T &Val) {
659 auto MaybeVal = get(Val);
660 if (!MaybeVal.hasValue())
661 return NoneType();
662 auto *Info = *MaybeVal;
663 auto &Link = linksAt(Info->Index);
664 return Link.Number;
665 }
666
667 StratifiedIndex addLinkBelow(StratifiedIndex Set) {
668 auto At = addLinks();
669 Links[Set].setBelow(At);
670 Links[At].setAbove(Set);
671 return At;
672 }
673
674 StratifiedIndex addLinkAbove(StratifiedIndex Set) {
675 auto At = addLinks();
676 Links[At].setBelow(Set);
677 Links[Set].setAbove(At);
678 return At;
679 }
680
681 StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
682
683 StratifiedIndex addLinks() {
684 auto Link = Links.size();
685 Links.push_back(BuilderLink(Link));
686 return Link;
687 }
688
Hal Finkel42b7e012014-09-02 22:36:58 +0000689 bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
Hal Finkel7529c552014-09-02 21:43:13 +0000690};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000691}
Hal Finkel7529c552014-09-02 21:43:13 +0000692#endif // LLVM_ADT_STRATIFIEDSETS_H