blob: d43140b355159ea598a62dd9f094b3e9ea3cc9d3 [file] [log] [blame]
Zhou Shengdac63782007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengdac63782007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencera41e93b2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengdac63782007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
Mehdi Amini47b292d2016-04-16 07:51:28 +000016#include "llvm/ADT/ArrayRef.h"
Ted Kremenek5c75d542008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000018#include "llvm/ADT/Hashing.h"
Chris Lattner17f71652008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000020#include "llvm/ADT/StringRef.h"
Reid Spencera5e0d202007-02-24 03:58:46 +000021#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000022#include "llvm/Support/ErrorHandling.h"
Zhou Shengdac63782007-02-06 03:00:16 +000023#include "llvm/Support/MathExtras.h"
Chris Lattner0c19df42008-08-23 22:23:09 +000024#include "llvm/Support/raw_ostream.h"
Vassil Vassilev2ec8b152016-09-14 08:55:18 +000025#include <climits>
Chris Lattner17f71652008-08-17 07:19:36 +000026#include <cmath>
Zhou Shengdac63782007-02-06 03:00:16 +000027#include <cstdlib>
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include <cstring>
Zhou Shengdac63782007-02-06 03:00:16 +000029using namespace llvm;
30
Chandler Carruth64648262014-04-22 03:07:47 +000031#define DEBUG_TYPE "apint"
32
Reid Spencera41e93b2007-02-25 19:32:03 +000033/// A utility function for allocating memory, checking for allocation failures,
34/// and ensuring the contents are zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000035inline static uint64_t* getClearedMemory(unsigned numWords) {
Reid Spencera856b6e2007-02-18 18:38:44 +000036 uint64_t * result = new uint64_t[numWords];
37 assert(result && "APInt memory allocation fails!");
38 memset(result, 0, numWords * sizeof(uint64_t));
39 return result;
Zhou Sheng94b623a2007-02-06 06:04:53 +000040}
41
Eric Christopher820256b2009-08-21 04:06:45 +000042/// A utility function for allocating memory and checking for allocation
Reid Spencera41e93b2007-02-25 19:32:03 +000043/// failure. The content is not zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000044inline static uint64_t* getMemory(unsigned numWords) {
Reid Spencera856b6e2007-02-18 18:38:44 +000045 uint64_t * result = new uint64_t[numWords];
46 assert(result && "APInt memory allocation fails!");
47 return result;
48}
49
Erick Tryzelaardadb15712009-08-21 03:15:28 +000050/// A utility function that converts a character to a digit.
51inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000052 unsigned r;
53
Douglas Gregor663c0682011-09-14 15:54:46 +000054 if (radix == 16 || radix == 36) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000055 r = cdigit - '0';
56 if (r <= 9)
57 return r;
58
59 r = cdigit - 'A';
Douglas Gregorc98ac852011-09-20 18:33:29 +000060 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000061 return r + 10;
62
63 r = cdigit - 'a';
Douglas Gregorc98ac852011-09-20 18:33:29 +000064 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000065 return r + 10;
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +000066
Douglas Gregore4e20f42011-09-20 18:11:52 +000067 radix = 10;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000068 }
69
Erick Tryzelaar60964092009-08-21 06:48:37 +000070 r = cdigit - '0';
71 if (r < radix)
72 return r;
73
74 return -1U;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000075}
76
77
Pawel Bylica68304012016-06-27 08:31:48 +000078void APInt::initSlowCase(uint64_t val, bool isSigned) {
Craig Topperb339c6d2017-05-03 15:46:24 +000079 U.pVal = getClearedMemory(getNumWords());
80 U.pVal[0] = val;
Eric Christopher820256b2009-08-21 04:06:45 +000081 if (isSigned && int64_t(val) < 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +000082 for (unsigned i = 1; i < getNumWords(); ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +000083 U.pVal[i] = WORD_MAX;
Craig Topperf78a6f02017-03-01 21:06:18 +000084 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +000085}
86
Chris Lattnerd57b7602008-10-11 22:07:19 +000087void APInt::initSlowCase(const APInt& that) {
Craig Topperb339c6d2017-05-03 15:46:24 +000088 U.pVal = getMemory(getNumWords());
89 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
Chris Lattnerd57b7602008-10-11 22:07:19 +000090}
91
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000092void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +000093 assert(BitWidth && "Bitwidth too small");
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000094 assert(bigVal.data() && "Null pointer detected!");
Zhou Shengdac63782007-02-06 03:00:16 +000095 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +000096 U.VAL = bigVal[0];
Zhou Shengdac63782007-02-06 03:00:16 +000097 else {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000098 // Get memory, cleared to 0
Craig Topperb339c6d2017-05-03 15:46:24 +000099 U.pVal = getClearedMemory(getNumWords());
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000100 // Calculate the number of words to copy
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000101 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000102 // Copy the words from bigVal to pVal
Craig Topperb339c6d2017-05-03 15:46:24 +0000103 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000104 }
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000105 // Make sure unused high bits are cleared
106 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000107}
108
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000109APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
Craig Topper0085ffb2017-03-20 01:29:52 +0000110 : BitWidth(numBits) {
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000111 initFromArray(bigVal);
112}
113
114APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Craig Topper0085ffb2017-03-20 01:29:52 +0000115 : BitWidth(numBits) {
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000116 initFromArray(makeArrayRef(bigVal, numWords));
117}
118
Benjamin Kramer92d89982010-07-14 22:38:02 +0000119APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
Craig Topperb339c6d2017-05-03 15:46:24 +0000120 : BitWidth(numbits) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000121 assert(BitWidth && "Bitwidth too small");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000122 fromString(numbits, Str, radix);
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000123}
124
Craig Topperc67fe572017-04-19 17:01:58 +0000125void APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer7c16cd22007-02-26 23:38:21 +0000126 // Don't do anything for X = X
127 if (this == &RHS)
Craig Topperc67fe572017-04-19 17:01:58 +0000128 return;
Reid Spencer7c16cd22007-02-26 23:38:21 +0000129
Reid Spencer7c16cd22007-02-26 23:38:21 +0000130 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner1ac3e252008-08-20 17:02:31 +0000131 // assume same bit-width single-word case is already handled
132 assert(!isSingleWord());
Craig Topperb339c6d2017-05-03 15:46:24 +0000133 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
Craig Topperc67fe572017-04-19 17:01:58 +0000134 return;
Reid Spencer7c16cd22007-02-26 23:38:21 +0000135 }
136
Chris Lattner1ac3e252008-08-20 17:02:31 +0000137 if (isSingleWord()) {
138 // assume case where both are single words is already handled
139 assert(!RHS.isSingleWord());
Craig Topperb339c6d2017-05-03 15:46:24 +0000140 U.pVal = getMemory(RHS.getNumWords());
141 memcpy(U.pVal, RHS.U.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Eric Christopher820256b2009-08-21 04:06:45 +0000142 } else if (getNumWords() == RHS.getNumWords())
Craig Topperb339c6d2017-05-03 15:46:24 +0000143 memcpy(U.pVal, RHS.U.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Reid Spencer7c16cd22007-02-26 23:38:21 +0000144 else if (RHS.isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000145 delete [] U.pVal;
146 U.VAL = RHS.U.VAL;
Reid Spencer7c16cd22007-02-26 23:38:21 +0000147 } else {
Craig Topperb339c6d2017-05-03 15:46:24 +0000148 delete [] U.pVal;
149 U.pVal = getMemory(RHS.getNumWords());
150 memcpy(U.pVal, RHS.U.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Reid Spencer7c16cd22007-02-26 23:38:21 +0000151 }
152 BitWidth = RHS.BitWidth;
Craig Topperc67fe572017-04-19 17:01:58 +0000153 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000154}
155
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000156/// This method 'profiles' an APInt for use with FoldingSet.
Ted Kremenek5c75d542008-01-19 04:23:33 +0000157void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek901540f2008-02-19 20:50:41 +0000158 ID.AddInteger(BitWidth);
Eric Christopher820256b2009-08-21 04:06:45 +0000159
Ted Kremenek5c75d542008-01-19 04:23:33 +0000160 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000161 ID.AddInteger(U.VAL);
Ted Kremenek5c75d542008-01-19 04:23:33 +0000162 return;
163 }
164
Chris Lattner77527f52009-01-21 18:09:24 +0000165 unsigned NumWords = getNumWords();
Ted Kremenek5c75d542008-01-19 04:23:33 +0000166 for (unsigned i = 0; i < NumWords; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000167 ID.AddInteger(U.pVal[i]);
Ted Kremenek5c75d542008-01-19 04:23:33 +0000168}
169
Zhou Shengdac63782007-02-06 03:00:16 +0000170/// @brief Prefix increment operator. Increments the APInt by one.
171APInt& APInt::operator++() {
Eric Christopher820256b2009-08-21 04:06:45 +0000172 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000173 ++U.VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000174 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000175 tcIncrement(U.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000176 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000177}
178
Zhou Shengdac63782007-02-06 03:00:16 +0000179/// @brief Prefix decrement operator. Decrements the APInt by one.
180APInt& APInt::operator--() {
Eric Christopher820256b2009-08-21 04:06:45 +0000181 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000182 --U.VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000183 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000184 tcDecrement(U.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000185 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000186}
187
Reid Spencera41e93b2007-02-25 19:32:03 +0000188/// Adds the RHS APint to this APInt.
189/// @returns this, after addition of RHS.
Eric Christopher820256b2009-08-21 04:06:45 +0000190/// @brief Addition assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000191APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000192 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000193 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000194 U.VAL += RHS.U.VAL;
Craig Topper15e484a2017-04-02 06:59:43 +0000195 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000196 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000197 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000198}
199
Pete Cooperfea21392016-07-22 20:55:46 +0000200APInt& APInt::operator+=(uint64_t RHS) {
201 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000202 U.VAL += RHS;
Pete Cooperfea21392016-07-22 20:55:46 +0000203 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000204 tcAddPart(U.pVal, RHS, getNumWords());
Pete Cooperfea21392016-07-22 20:55:46 +0000205 return clearUnusedBits();
206}
207
Reid Spencera41e93b2007-02-25 19:32:03 +0000208/// Subtracts the RHS APInt from this APInt
209/// @returns this, after subtraction
Eric Christopher820256b2009-08-21 04:06:45 +0000210/// @brief Subtraction assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000211APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000212 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000213 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000214 U.VAL -= RHS.U.VAL;
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000215 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000216 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000217 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000218}
219
Pete Cooperfea21392016-07-22 20:55:46 +0000220APInt& APInt::operator-=(uint64_t RHS) {
221 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000222 U.VAL -= RHS;
Pete Cooperfea21392016-07-22 20:55:46 +0000223 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000224 tcSubtractPart(U.pVal, RHS, getNumWords());
Pete Cooperfea21392016-07-22 20:55:46 +0000225 return clearUnusedBits();
226}
227
Craig Topper93c68e12017-05-04 17:00:41 +0000228APInt APInt::operator*(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +0000229 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Craig Topper93c68e12017-05-04 17:00:41 +0000230 if (isSingleWord())
231 return APInt(BitWidth, U.VAL * RHS.U.VAL);
Reid Spencer58a6a432007-02-21 08:21:52 +0000232
Craig Topper93c68e12017-05-04 17:00:41 +0000233 APInt Result(getMemory(getNumWords()), getBitWidth());
Reid Spencer58a6a432007-02-21 08:21:52 +0000234
Craig Topper93c68e12017-05-04 17:00:41 +0000235 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
Reid Spencer58a6a432007-02-21 08:21:52 +0000236
Craig Topper93c68e12017-05-04 17:00:41 +0000237 Result.clearUnusedBits();
238 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000239}
240
Craig Topperc67fe572017-04-19 17:01:58 +0000241void APInt::AndAssignSlowCase(const APInt& RHS) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000242 tcAnd(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000243}
244
Craig Topperc67fe572017-04-19 17:01:58 +0000245void APInt::OrAssignSlowCase(const APInt& RHS) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000246 tcOr(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000247}
248
Craig Topperc67fe572017-04-19 17:01:58 +0000249void APInt::XorAssignSlowCase(const APInt& RHS) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000250 tcXor(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000251}
252
Craig Topper93c68e12017-05-04 17:00:41 +0000253APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000254 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Craig Topper93c68e12017-05-04 17:00:41 +0000255 *this = *this * RHS;
256 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000257}
258
Craig Toppera51941f2017-05-08 04:55:09 +0000259APInt& APInt::operator*=(uint64_t RHS) {
260 if (isSingleWord()) {
261 U.VAL *= RHS;
262 } else {
263 unsigned NumWords = getNumWords();
264 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
265 }
266 return clearUnusedBits();
267}
268
Chris Lattner1ac3e252008-08-20 17:02:31 +0000269bool APInt::EqualSlowCase(const APInt& RHS) const {
Craig Topperb339c6d2017-05-03 15:46:24 +0000270 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
Zhou Shengdac63782007-02-06 03:00:16 +0000271}
272
Craig Topper1dc8fc82017-04-21 16:13:15 +0000273int APInt::compare(const APInt& RHS) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000274 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
275 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000276 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
Reid Spencera41e93b2007-02-25 19:32:03 +0000277
Craig Topperb339c6d2017-05-03 15:46:24 +0000278 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000279}
280
Craig Topper1dc8fc82017-04-21 16:13:15 +0000281int APInt::compareSigned(const APInt& RHS) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000282 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000283 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000284 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
285 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
Craig Topper1dc8fc82017-04-21 16:13:15 +0000286 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
Reid Spencer1d072122007-02-16 22:36:51 +0000287 }
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000288
Reid Spencer54abdcf2007-02-27 18:23:40 +0000289 bool lhsNeg = isNegative();
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000290 bool rhsNeg = RHS.isNegative();
Reid Spencera41e93b2007-02-25 19:32:03 +0000291
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000292 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
293 if (lhsNeg != rhsNeg)
Craig Topper1dc8fc82017-04-21 16:13:15 +0000294 return lhsNeg ? -1 : 1;
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000295
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000296 // Otherwise we can just use an unsigned comparison, because even negative
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000297 // numbers compare correctly this way if both have the same signed-ness.
Craig Topperb339c6d2017-05-03 15:46:24 +0000298 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000299}
300
Craig Topperbafdd032017-03-07 01:56:01 +0000301void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
302 unsigned loWord = whichWord(loBit);
303 unsigned hiWord = whichWord(hiBit);
Simon Pilgrimaed35222017-02-24 10:15:29 +0000304
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000305 // Create an initial mask for the low word with zeros below loBit.
Craig Topper5e113742017-04-22 06:31:36 +0000306 uint64_t loMask = WORD_MAX << whichBit(loBit);
Simon Pilgrimaed35222017-02-24 10:15:29 +0000307
Craig Topperbafdd032017-03-07 01:56:01 +0000308 // If hiBit is not aligned, we need a high mask.
309 unsigned hiShiftAmt = whichBit(hiBit);
310 if (hiShiftAmt != 0) {
311 // Create a high mask with zeros above hiBit.
Craig Topper5e113742017-04-22 06:31:36 +0000312 uint64_t hiMask = WORD_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
Craig Topperbafdd032017-03-07 01:56:01 +0000313 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
314 // set the bits in hiWord.
315 if (hiWord == loWord)
316 loMask &= hiMask;
317 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000318 U.pVal[hiWord] |= hiMask;
Simon Pilgrimaed35222017-02-24 10:15:29 +0000319 }
Craig Topperbafdd032017-03-07 01:56:01 +0000320 // Apply the mask to the low word.
Craig Topperb339c6d2017-05-03 15:46:24 +0000321 U.pVal[loWord] |= loMask;
Craig Topperbafdd032017-03-07 01:56:01 +0000322
323 // Fill any words between loWord and hiWord with all ones.
324 for (unsigned word = loWord + 1; word < hiWord; ++word)
Craig Topperb339c6d2017-05-03 15:46:24 +0000325 U.pVal[word] = WORD_MAX;
Simon Pilgrimaed35222017-02-24 10:15:29 +0000326}
327
Zhou Shengdac63782007-02-06 03:00:16 +0000328/// @brief Toggle every bit to its opposite value.
Craig Topperafc9e352017-03-27 17:10:21 +0000329void APInt::flipAllBitsSlowCase() {
Craig Topperb339c6d2017-05-03 15:46:24 +0000330 tcComplement(U.pVal, getNumWords());
Craig Topperafc9e352017-03-27 17:10:21 +0000331 clearUnusedBits();
332}
Zhou Shengdac63782007-02-06 03:00:16 +0000333
Eric Christopher820256b2009-08-21 04:06:45 +0000334/// Toggle a given bit to its opposite value whose position is given
Zhou Shengdac63782007-02-06 03:00:16 +0000335/// as "bitPosition".
336/// @brief Toggles a given bit to its opposite value.
Jay Foad25a5e4c2010-12-01 08:53:58 +0000337void APInt::flipBit(unsigned bitPosition) {
Reid Spencer1d072122007-02-16 22:36:51 +0000338 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Jay Foad25a5e4c2010-12-01 08:53:58 +0000339 if ((*this)[bitPosition]) clearBit(bitPosition);
340 else setBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000341}
342
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000343void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
344 unsigned subBitWidth = subBits.getBitWidth();
345 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&
346 "Illegal bit insertion");
347
348 // Insertion is a direct copy.
349 if (subBitWidth == BitWidth) {
350 *this = subBits;
351 return;
352 }
353
354 // Single word result can be done as a direct bitmask.
355 if (isSingleWord()) {
Craig Topper5e113742017-04-22 06:31:36 +0000356 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
Craig Topperb339c6d2017-05-03 15:46:24 +0000357 U.VAL &= ~(mask << bitPosition);
358 U.VAL |= (subBits.U.VAL << bitPosition);
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000359 return;
360 }
361
362 unsigned loBit = whichBit(bitPosition);
363 unsigned loWord = whichWord(bitPosition);
364 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
365
366 // Insertion within a single word can be done as a direct bitmask.
367 if (loWord == hi1Word) {
Craig Topper5e113742017-04-22 06:31:36 +0000368 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
Craig Topperb339c6d2017-05-03 15:46:24 +0000369 U.pVal[loWord] &= ~(mask << loBit);
370 U.pVal[loWord] |= (subBits.U.VAL << loBit);
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000371 return;
372 }
373
374 // Insert on word boundaries.
375 if (loBit == 0) {
376 // Direct copy whole words.
377 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
Craig Topperb339c6d2017-05-03 15:46:24 +0000378 memcpy(U.pVal + loWord, subBits.getRawData(),
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000379 numWholeSubWords * APINT_WORD_SIZE);
380
381 // Mask+insert remaining bits.
382 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
383 if (remainingBits != 0) {
Craig Topper5e113742017-04-22 06:31:36 +0000384 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - remainingBits);
Craig Topperb339c6d2017-05-03 15:46:24 +0000385 U.pVal[hi1Word] &= ~mask;
386 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000387 }
388 return;
389 }
390
391 // General case - set/clear individual bits in dst based on src.
392 // TODO - there is scope for optimization here, but at the moment this code
393 // path is barely used so prefer readability over performance.
394 for (unsigned i = 0; i != subBitWidth; ++i) {
395 if (subBits[i])
396 setBit(bitPosition + i);
397 else
398 clearBit(bitPosition + i);
399 }
400}
401
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000402APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
403 assert(numBits > 0 && "Can't extract zero bits");
404 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
405 "Illegal bit extraction");
406
407 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000408 return APInt(numBits, U.VAL >> bitPosition);
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000409
410 unsigned loBit = whichBit(bitPosition);
411 unsigned loWord = whichWord(bitPosition);
412 unsigned hiWord = whichWord(bitPosition + numBits - 1);
413
414 // Single word result extracting bits from a single word source.
415 if (loWord == hiWord)
Craig Topperb339c6d2017-05-03 15:46:24 +0000416 return APInt(numBits, U.pVal[loWord] >> loBit);
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000417
418 // Extracting bits that start on a source word boundary can be done
419 // as a fast memory copy.
420 if (loBit == 0)
Craig Topperb339c6d2017-05-03 15:46:24 +0000421 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000422
423 // General case - shift + copy source words directly into place.
424 APInt Result(numBits, 0);
425 unsigned NumSrcWords = getNumWords();
426 unsigned NumDstWords = Result.getNumWords();
427
428 for (unsigned word = 0; word < NumDstWords; ++word) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000429 uint64_t w0 = U.pVal[loWord + word];
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000430 uint64_t w1 =
Craig Topperb339c6d2017-05-03 15:46:24 +0000431 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
432 Result.U.pVal[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000433 }
434
435 return Result.clearUnusedBits();
436}
437
Benjamin Kramer92d89982010-07-14 22:38:02 +0000438unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000439 assert(!str.empty() && "Invalid string length");
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000440 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +0000441 radix == 36) &&
442 "Radix should be 2, 8, 10, 16, or 36!");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000443
444 size_t slen = str.size();
Reid Spencer9329e7b2007-04-13 19:19:07 +0000445
Eric Christopher43a1dec2009-08-21 04:10:31 +0000446 // Each computation below needs to know if it's negative.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000447 StringRef::iterator p = str.begin();
Eric Christopher43a1dec2009-08-21 04:10:31 +0000448 unsigned isNegative = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000449 if (*p == '-' || *p == '+') {
450 p++;
Reid Spencer9329e7b2007-04-13 19:19:07 +0000451 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +0000452 assert(slen && "String is only a sign, needs a value.");
Reid Spencer9329e7b2007-04-13 19:19:07 +0000453 }
Eric Christopher43a1dec2009-08-21 04:10:31 +0000454
Reid Spencer9329e7b2007-04-13 19:19:07 +0000455 // For radixes of power-of-two values, the bits required is accurately and
456 // easily computed
457 if (radix == 2)
458 return slen + isNegative;
459 if (radix == 8)
460 return slen * 3 + isNegative;
461 if (radix == 16)
462 return slen * 4 + isNegative;
463
Douglas Gregor663c0682011-09-14 15:54:46 +0000464 // FIXME: base 36
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000465
Reid Spencer9329e7b2007-04-13 19:19:07 +0000466 // This is grossly inefficient but accurate. We could probably do something
467 // with a computation of roughly slen*64/20 and then adjust by the value of
468 // the first few digits. But, I'm not sure how accurate that could be.
469
470 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000471 // be too large. This avoids the assertion in the constructor. This
472 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
473 // bits in that case.
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000474 unsigned sufficient
Douglas Gregor663c0682011-09-14 15:54:46 +0000475 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
476 : (slen == 1 ? 7 : slen * 16/3);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000477
478 // Convert to the actual binary value.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000479 APInt tmp(sufficient, StringRef(p, slen), radix);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000480
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000481 // Compute how many bits are required. If the log is infinite, assume we need
482 // just bit.
483 unsigned log = tmp.logBase2();
484 if (log == (unsigned)-1) {
485 return isNegative + 1;
486 } else {
487 return isNegative + log + 1;
488 }
Reid Spencer9329e7b2007-04-13 19:19:07 +0000489}
490
Chandler Carruth71bd7d12012-03-04 12:02:57 +0000491hash_code llvm::hash_value(const APInt &Arg) {
492 if (Arg.isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000493 return hash_combine(Arg.U.VAL);
Reid Spencerb2bc9852007-02-26 21:02:27 +0000494
Craig Topperb339c6d2017-05-03 15:46:24 +0000495 return hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords());
Reid Spencerb2bc9852007-02-26 21:02:27 +0000496}
497
Benjamin Kramerb4b51502015-03-25 16:49:59 +0000498bool APInt::isSplat(unsigned SplatSizeInBits) const {
499 assert(getBitWidth() % SplatSizeInBits == 0 &&
500 "SplatSizeInBits must divide width!");
501 // We can check that all parts of an integer are equal by making use of a
502 // little trick: rotate and check if it's still the same value.
503 return *this == rotl(SplatSizeInBits);
504}
505
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000506/// This function returns the high "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000507APInt APInt::getHiBits(unsigned numBits) const {
Craig Toppere7e35602017-03-31 18:48:14 +0000508 return this->lshr(BitWidth - numBits);
Zhou Shengdac63782007-02-06 03:00:16 +0000509}
510
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000511/// This function returns the low "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000512APInt APInt::getLoBits(unsigned numBits) const {
Craig Toppere7e35602017-03-31 18:48:14 +0000513 APInt Result(getLowBitsSet(BitWidth, numBits));
514 Result &= *this;
515 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000516}
517
Craig Topper9881bd92017-05-02 06:32:27 +0000518/// Return a value containing V broadcasted over NewLen bits.
519APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
520 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
521
522 APInt Val = V.zextOrSelf(NewLen);
523 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
524 Val |= Val << I;
525
526 return Val;
527}
528
Chris Lattner77527f52009-01-21 18:09:24 +0000529unsigned APInt::countLeadingZerosSlowCase() const {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000530 unsigned Count = 0;
531 for (int i = getNumWords()-1; i >= 0; --i) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000532 uint64_t V = U.pVal[i];
Matthias Brauna6be4e82016-02-15 20:06:22 +0000533 if (V == 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +0000534 Count += APINT_BITS_PER_WORD;
535 else {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000536 Count += llvm::countLeadingZeros(V);
Chris Lattner1ac3e252008-08-20 17:02:31 +0000537 break;
Reid Spencer74cf82e2007-02-21 00:29:48 +0000538 }
Zhou Shengdac63782007-02-06 03:00:16 +0000539 }
Matthias Brauna6be4e82016-02-15 20:06:22 +0000540 // Adjust for unused bits in the most significant word (they are zero).
541 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
542 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
John McCalldf951bd2010-02-03 03:42:44 +0000543 return Count;
Zhou Shengdac63782007-02-06 03:00:16 +0000544}
545
Chris Lattner77527f52009-01-21 18:09:24 +0000546unsigned APInt::countLeadingOnes() const {
Reid Spencer31acef52007-02-27 21:59:26 +0000547 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000548 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
Reid Spencer31acef52007-02-27 21:59:26 +0000549
Chris Lattner77527f52009-01-21 18:09:24 +0000550 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwinec39eb82009-01-27 18:06:03 +0000551 unsigned shift;
552 if (!highWordBits) {
553 highWordBits = APINT_BITS_PER_WORD;
554 shift = 0;
555 } else {
556 shift = APINT_BITS_PER_WORD - highWordBits;
557 }
Reid Spencer31acef52007-02-27 21:59:26 +0000558 int i = getNumWords() - 1;
Craig Topperb339c6d2017-05-03 15:46:24 +0000559 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
Reid Spencer31acef52007-02-27 21:59:26 +0000560 if (Count == highWordBits) {
561 for (i--; i >= 0; --i) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000562 if (U.pVal[i] == WORD_MAX)
Reid Spencer31acef52007-02-27 21:59:26 +0000563 Count += APINT_BITS_PER_WORD;
564 else {
Craig Topperb339c6d2017-05-03 15:46:24 +0000565 Count += llvm::countLeadingOnes(U.pVal[i]);
Reid Spencer31acef52007-02-27 21:59:26 +0000566 break;
567 }
568 }
569 }
570 return Count;
571}
572
Chris Lattner77527f52009-01-21 18:09:24 +0000573unsigned APInt::countTrailingZeros() const {
Zhou Shengdac63782007-02-06 03:00:16 +0000574 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000575 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
Chris Lattner77527f52009-01-21 18:09:24 +0000576 unsigned Count = 0;
577 unsigned i = 0;
Craig Topperb339c6d2017-05-03 15:46:24 +0000578 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000579 Count += APINT_BITS_PER_WORD;
580 if (i < getNumWords())
Craig Topperb339c6d2017-05-03 15:46:24 +0000581 Count += llvm::countTrailingZeros(U.pVal[i]);
Chris Lattnerc2c4c742007-11-23 22:36:25 +0000582 return std::min(Count, BitWidth);
Zhou Shengdac63782007-02-06 03:00:16 +0000583}
584
Chris Lattner77527f52009-01-21 18:09:24 +0000585unsigned APInt::countTrailingOnesSlowCase() const {
586 unsigned Count = 0;
587 unsigned i = 0;
Craig Topperb339c6d2017-05-03 15:46:24 +0000588 for (; i < getNumWords() && U.pVal[i] == WORD_MAX; ++i)
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000589 Count += APINT_BITS_PER_WORD;
590 if (i < getNumWords())
Craig Topperb339c6d2017-05-03 15:46:24 +0000591 Count += llvm::countTrailingOnes(U.pVal[i]);
Craig Topper3a29e3b82017-04-22 19:59:11 +0000592 assert(Count <= BitWidth);
593 return Count;
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000594}
595
Chris Lattner77527f52009-01-21 18:09:24 +0000596unsigned APInt::countPopulationSlowCase() const {
597 unsigned Count = 0;
598 for (unsigned i = 0; i < getNumWords(); ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000599 Count += llvm::countPopulation(U.pVal[i]);
Zhou Shengdac63782007-02-06 03:00:16 +0000600 return Count;
601}
602
Craig Topperbaa392e2017-04-20 02:11:27 +0000603bool APInt::intersectsSlowCase(const APInt &RHS) const {
604 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000605 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
Craig Topperbaa392e2017-04-20 02:11:27 +0000606 return true;
607
608 return false;
609}
610
Craig Toppera8129a12017-04-20 16:17:13 +0000611bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
612 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000613 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
Craig Toppera8129a12017-04-20 16:17:13 +0000614 return false;
615
616 return true;
617}
618
Reid Spencer1d072122007-02-16 22:36:51 +0000619APInt APInt::byteSwap() const {
620 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
621 if (BitWidth == 16)
Craig Topperb339c6d2017-05-03 15:46:24 +0000622 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000623 if (BitWidth == 32)
Craig Topperb339c6d2017-05-03 15:46:24 +0000624 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000625 if (BitWidth == 48) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000626 unsigned Tmp1 = unsigned(U.VAL >> 16);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000627 Tmp1 = ByteSwap_32(Tmp1);
Craig Topperb339c6d2017-05-03 15:46:24 +0000628 uint16_t Tmp2 = uint16_t(U.VAL);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000629 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohene06855e2007-03-20 20:42:36 +0000630 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000631 }
Richard Smith4f9a8082011-11-23 21:33:37 +0000632 if (BitWidth == 64)
Craig Topperb339c6d2017-05-03 15:46:24 +0000633 return APInt(BitWidth, ByteSwap_64(U.VAL));
Richard Smith4f9a8082011-11-23 21:33:37 +0000634
635 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
636 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
Craig Topperb339c6d2017-05-03 15:46:24 +0000637 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
Richard Smith4f9a8082011-11-23 21:33:37 +0000638 if (Result.BitWidth != BitWidth) {
Richard Smith55bd3752017-04-13 20:29:59 +0000639 Result.lshrInPlace(Result.BitWidth - BitWidth);
Richard Smith4f9a8082011-11-23 21:33:37 +0000640 Result.BitWidth = BitWidth;
641 }
642 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000643}
644
Matt Arsenault155dda92016-03-21 15:00:35 +0000645APInt APInt::reverseBits() const {
646 switch (BitWidth) {
647 case 64:
Craig Topperb339c6d2017-05-03 15:46:24 +0000648 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000649 case 32:
Craig Topperb339c6d2017-05-03 15:46:24 +0000650 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000651 case 16:
Craig Topperb339c6d2017-05-03 15:46:24 +0000652 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000653 case 8:
Craig Topperb339c6d2017-05-03 15:46:24 +0000654 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000655 default:
656 break;
657 }
658
659 APInt Val(*this);
Craig Topper9eaef072017-04-18 05:02:21 +0000660 APInt Reversed(BitWidth, 0);
661 unsigned S = BitWidth;
Matt Arsenault155dda92016-03-21 15:00:35 +0000662
Craig Topper9eaef072017-04-18 05:02:21 +0000663 for (; Val != 0; Val.lshrInPlace(1)) {
Matt Arsenault155dda92016-03-21 15:00:35 +0000664 Reversed <<= 1;
Craig Topper9eaef072017-04-18 05:02:21 +0000665 Reversed |= Val[0];
Matt Arsenault155dda92016-03-21 15:00:35 +0000666 --S;
667 }
668
669 Reversed <<= S;
670 return Reversed;
671}
672
Craig Topper278ebd22017-04-01 20:30:57 +0000673APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
Richard Smith55bd3752017-04-13 20:29:59 +0000674 // Fast-path a common case.
675 if (A == B) return A;
676
677 // Corner cases: if either operand is zero, the other is the gcd.
678 if (!A) return B;
679 if (!B) return A;
680
681 // Count common powers of 2 and remove all other powers of 2.
682 unsigned Pow2;
683 {
684 unsigned Pow2_A = A.countTrailingZeros();
685 unsigned Pow2_B = B.countTrailingZeros();
686 if (Pow2_A > Pow2_B) {
687 A.lshrInPlace(Pow2_A - Pow2_B);
688 Pow2 = Pow2_B;
689 } else if (Pow2_B > Pow2_A) {
690 B.lshrInPlace(Pow2_B - Pow2_A);
691 Pow2 = Pow2_A;
692 } else {
693 Pow2 = Pow2_A;
694 }
Zhou Shengdac63782007-02-06 03:00:16 +0000695 }
Richard Smith55bd3752017-04-13 20:29:59 +0000696
697 // Both operands are odd multiples of 2^Pow_2:
698 //
699 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
700 //
701 // This is a modified version of Stein's algorithm, taking advantage of
702 // efficient countTrailingZeros().
703 while (A != B) {
704 if (A.ugt(B)) {
705 A -= B;
706 A.lshrInPlace(A.countTrailingZeros() - Pow2);
707 } else {
708 B -= A;
709 B.lshrInPlace(B.countTrailingZeros() - Pow2);
710 }
711 }
712
Zhou Shengdac63782007-02-06 03:00:16 +0000713 return A;
714}
Chris Lattner28cbd1d2007-02-06 05:38:37 +0000715
Chris Lattner77527f52009-01-21 18:09:24 +0000716APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd707d632007-02-12 20:02:55 +0000717 union {
718 double D;
719 uint64_t I;
720 } T;
721 T.D = Double;
Reid Spencer974551a2007-02-27 01:28:10 +0000722
723 // Get the sign bit from the highest order bit
Zhou Shengd707d632007-02-12 20:02:55 +0000724 bool isNeg = T.I >> 63;
Reid Spencer974551a2007-02-27 01:28:10 +0000725
726 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd707d632007-02-12 20:02:55 +0000727 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer974551a2007-02-27 01:28:10 +0000728
729 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd707d632007-02-12 20:02:55 +0000730 if (exp < 0)
Reid Spencer66d0d572007-02-28 01:30:08 +0000731 return APInt(width, 0u);
Reid Spencer974551a2007-02-27 01:28:10 +0000732
733 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
734 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
735
736 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd707d632007-02-12 20:02:55 +0000737 if (exp < 52)
Eric Christopher820256b2009-08-21 04:06:45 +0000738 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Reid Spencer54abdcf2007-02-27 18:23:40 +0000739 APInt(width, mantissa >> (52 - exp));
740
741 // If the client didn't provide enough bits for us to shift the mantissa into
742 // then the result is undefined, just return 0
743 if (width <= exp - 52)
744 return APInt(width, 0);
Reid Spencer974551a2007-02-27 01:28:10 +0000745
746 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer54abdcf2007-02-27 18:23:40 +0000747 APInt Tmp(width, mantissa);
Craig Topper24e71012017-04-28 03:36:24 +0000748 Tmp <<= (unsigned)exp - 52;
Zhou Shengd707d632007-02-12 20:02:55 +0000749 return isNeg ? -Tmp : Tmp;
750}
751
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000752/// This function converts this APInt to a double.
Zhou Shengd707d632007-02-12 20:02:55 +0000753/// The layout for double is as following (IEEE Standard 754):
754/// --------------------------------------
755/// | Sign Exponent Fraction Bias |
756/// |-------------------------------------- |
757/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopher820256b2009-08-21 04:06:45 +0000758/// --------------------------------------
Reid Spencer1d072122007-02-16 22:36:51 +0000759double APInt::roundToDouble(bool isSigned) const {
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000760
761 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen54be7852009-08-12 18:04:11 +0000762 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000763 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
764 if (isSigned) {
David Majnemer03992262016-06-24 21:15:36 +0000765 int64_t sext = SignExtend64(getWord(0), BitWidth);
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000766 return double(sext);
767 } else
Dale Johannesen34c08bb2009-08-12 17:42:34 +0000768 return double(getWord(0));
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000769 }
770
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000771 // Determine if the value is negative.
Reid Spencer1d072122007-02-16 22:36:51 +0000772 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000773
774 // Construct the absolute value if we're negative.
Zhou Shengd707d632007-02-12 20:02:55 +0000775 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000776
777 // Figure out how many bits we're using.
Chris Lattner77527f52009-01-21 18:09:24 +0000778 unsigned n = Tmp.getActiveBits();
Zhou Shengd707d632007-02-12 20:02:55 +0000779
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000780 // The exponent (without bias normalization) is just the number of bits
781 // we are using. Note that the sign bit is gone since we constructed the
782 // absolute value.
783 uint64_t exp = n;
Zhou Shengd707d632007-02-12 20:02:55 +0000784
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000785 // Return infinity for exponent overflow
786 if (exp > 1023) {
787 if (!isSigned || !isNeg)
Jeff Cohene06855e2007-03-20 20:42:36 +0000788 return std::numeric_limits<double>::infinity();
Eric Christopher820256b2009-08-21 04:06:45 +0000789 else
Jeff Cohene06855e2007-03-20 20:42:36 +0000790 return -std::numeric_limits<double>::infinity();
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000791 }
792 exp += 1023; // Increment for 1023 bias
793
794 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
795 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd707d632007-02-12 20:02:55 +0000796 uint64_t mantissa;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000797 unsigned hiWord = whichWord(n-1);
798 if (hiWord == 0) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000799 mantissa = Tmp.U.pVal[0];
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000800 if (n > 52)
801 mantissa >>= n - 52; // shift down, we want the top 52 bits.
802 } else {
803 assert(hiWord > 0 && "huh?");
Craig Topperb339c6d2017-05-03 15:46:24 +0000804 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
805 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000806 mantissa = hibits | lobits;
807 }
808
Zhou Shengd707d632007-02-12 20:02:55 +0000809 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencerfbd48a52007-02-18 00:44:22 +0000810 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd707d632007-02-12 20:02:55 +0000811 union {
812 double D;
813 uint64_t I;
814 } T;
815 T.I = sign | (exp << 52) | mantissa;
816 return T.D;
817}
818
Reid Spencer1d072122007-02-16 22:36:51 +0000819// Truncate to new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000820APInt APInt::trunc(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000821 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner1ac3e252008-08-20 17:02:31 +0000822 assert(width && "Can't truncate to 0 bits");
Jay Foad583abbc2010-12-07 08:25:19 +0000823
824 if (width <= APINT_BITS_PER_WORD)
825 return APInt(width, getRawData()[0]);
826
827 APInt Result(getMemory(getNumWords(width)), width);
828
829 // Copy full words.
830 unsigned i;
831 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
Craig Topperb339c6d2017-05-03 15:46:24 +0000832 Result.U.pVal[i] = U.pVal[i];
Jay Foad583abbc2010-12-07 08:25:19 +0000833
834 // Truncate and copy any partial word.
835 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
836 if (bits != 0)
Craig Topperb339c6d2017-05-03 15:46:24 +0000837 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
Jay Foad583abbc2010-12-07 08:25:19 +0000838
839 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000840}
841
842// Sign extend to a new width.
Craig Topper1dec2812017-04-24 17:37:10 +0000843APInt APInt::sext(unsigned Width) const {
844 assert(Width > BitWidth && "Invalid APInt SignExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +0000845
Craig Topper1dec2812017-04-24 17:37:10 +0000846 if (Width <= APINT_BITS_PER_WORD)
Craig Topperb339c6d2017-05-03 15:46:24 +0000847 return APInt(Width, SignExtend64(U.VAL, BitWidth));
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000848
Craig Topper1dec2812017-04-24 17:37:10 +0000849 APInt Result(getMemory(getNumWords(Width)), Width);
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000850
Craig Topper1dec2812017-04-24 17:37:10 +0000851 // Copy words.
Craig Topperb339c6d2017-05-03 15:46:24 +0000852 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000853
Craig Topper1dec2812017-04-24 17:37:10 +0000854 // Sign extend the last word since there may be unused bits in the input.
Craig Topperb339c6d2017-05-03 15:46:24 +0000855 Result.U.pVal[getNumWords() - 1] =
856 SignExtend64(Result.U.pVal[getNumWords() - 1],
Craig Topper1dec2812017-04-24 17:37:10 +0000857 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
Jay Foad583abbc2010-12-07 08:25:19 +0000858
Craig Topper1dec2812017-04-24 17:37:10 +0000859 // Fill with sign bits.
Craig Topperb339c6d2017-05-03 15:46:24 +0000860 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
Craig Topper1dec2812017-04-24 17:37:10 +0000861 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
862 Result.clearUnusedBits();
Jay Foad583abbc2010-12-07 08:25:19 +0000863 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000864}
865
866// Zero extend to a new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000867APInt APInt::zext(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000868 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +0000869
870 if (width <= APINT_BITS_PER_WORD)
Craig Topperb339c6d2017-05-03 15:46:24 +0000871 return APInt(width, U.VAL);
Jay Foad583abbc2010-12-07 08:25:19 +0000872
873 APInt Result(getMemory(getNumWords(width)), width);
874
875 // Copy words.
Craig Topperb339c6d2017-05-03 15:46:24 +0000876 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
Jay Foad583abbc2010-12-07 08:25:19 +0000877
878 // Zero remaining words.
Craig Topperb339c6d2017-05-03 15:46:24 +0000879 std::memset(Result.U.pVal + getNumWords(), 0,
Craig Topper1dec2812017-04-24 17:37:10 +0000880 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
Jay Foad583abbc2010-12-07 08:25:19 +0000881
882 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000883}
884
Jay Foad583abbc2010-12-07 08:25:19 +0000885APInt APInt::zextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +0000886 if (BitWidth < width)
887 return zext(width);
888 if (BitWidth > width)
889 return trunc(width);
890 return *this;
891}
892
Jay Foad583abbc2010-12-07 08:25:19 +0000893APInt APInt::sextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +0000894 if (BitWidth < width)
895 return sext(width);
896 if (BitWidth > width)
897 return trunc(width);
898 return *this;
899}
900
Rafael Espindolabb893fe2012-01-27 23:33:07 +0000901APInt APInt::zextOrSelf(unsigned width) const {
902 if (BitWidth < width)
903 return zext(width);
904 return *this;
905}
906
907APInt APInt::sextOrSelf(unsigned width) const {
908 if (BitWidth < width)
909 return sext(width);
910 return *this;
911}
912
Zhou Shenge93db8f2007-02-09 07:48:24 +0000913/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000914/// @brief Arithmetic right-shift function.
Craig Topper8b373262017-04-24 17:18:47 +0000915void APInt::ashrInPlace(const APInt &shiftAmt) {
916 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +0000917}
918
919/// Arithmetic right-shift this APInt by shiftAmt.
920/// @brief Arithmetic right-shift function.
Craig Topper8b373262017-04-24 17:18:47 +0000921void APInt::ashrSlowCase(unsigned ShiftAmt) {
922 // Don't bother performing a no-op shift.
923 if (!ShiftAmt)
924 return;
Reid Spencer1825dd02007-03-02 22:39:11 +0000925
Craig Topper8b373262017-04-24 17:18:47 +0000926 // Save the original sign bit for later.
927 bool Negative = isNegative();
Reid Spencer522ca7c2007-02-25 01:56:07 +0000928
Craig Topper8b373262017-04-24 17:18:47 +0000929 // WordShift is the inter-part shift; BitShift is is intra-part shift.
930 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
931 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000932
Craig Topper8b373262017-04-24 17:18:47 +0000933 unsigned WordsToMove = getNumWords() - WordShift;
934 if (WordsToMove != 0) {
935 // Sign extend the last word to fill in the unused bits.
Craig Topperb339c6d2017-05-03 15:46:24 +0000936 U.pVal[getNumWords() - 1] = SignExtend64(
937 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
Renato Golincc4a9122017-04-23 12:02:07 +0000938
Craig Topper8b373262017-04-24 17:18:47 +0000939 // Fastpath for moving by whole words.
940 if (BitShift == 0) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000941 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
Craig Topper8b373262017-04-24 17:18:47 +0000942 } else {
943 // Move the words containing significant bits.
944 for (unsigned i = 0; i != WordsToMove - 1; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000945 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
946 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
Renato Golincc4a9122017-04-23 12:02:07 +0000947
Craig Topper8b373262017-04-24 17:18:47 +0000948 // Handle the last word which has no high bits to copy.
Craig Topperb339c6d2017-05-03 15:46:24 +0000949 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
Craig Topper8b373262017-04-24 17:18:47 +0000950 // Sign extend one more time.
Craig Topperb339c6d2017-05-03 15:46:24 +0000951 U.pVal[WordsToMove - 1] =
952 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
Chris Lattnerdad2d092007-05-03 18:15:36 +0000953 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000954 }
955
Craig Topper8b373262017-04-24 17:18:47 +0000956 // Fill in the remainder based on the original sign.
Craig Topperb339c6d2017-05-03 15:46:24 +0000957 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
Craig Topper8b373262017-04-24 17:18:47 +0000958 WordShift * APINT_WORD_SIZE);
959 clearUnusedBits();
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000960}
961
Zhou Shenge93db8f2007-02-09 07:48:24 +0000962/// Logical right-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000963/// @brief Logical right-shift function.
Craig Topperfc947bc2017-04-18 17:14:21 +0000964void APInt::lshrInPlace(const APInt &shiftAmt) {
965 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +0000966}
967
968/// Logical right-shift this APInt by shiftAmt.
969/// @brief Logical right-shift function.
Craig Topperae8bd672017-04-18 19:13:27 +0000970void APInt::lshrSlowCase(unsigned ShiftAmt) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000971 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000972}
973
Zhou Shenge93db8f2007-02-09 07:48:24 +0000974/// Left-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000975/// @brief Left-shift function.
Craig Topper24e71012017-04-28 03:36:24 +0000976APInt &APInt::operator<<=(const APInt &shiftAmt) {
Nick Lewycky030c4502009-01-19 17:42:33 +0000977 // It's undefined behavior in C to shift by BitWidth or greater.
Craig Topper24e71012017-04-28 03:36:24 +0000978 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
979 return *this;
Dan Gohman105c1d42008-02-29 01:40:47 +0000980}
981
Craig Toppera8a4f0d2017-04-18 04:39:48 +0000982void APInt::shlSlowCase(unsigned ShiftAmt) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000983 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
Craig Toppera8a4f0d2017-04-18 04:39:48 +0000984 clearUnusedBits();
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000985}
986
Joey Gouly51c0ae52017-02-07 11:58:22 +0000987// Calculate the rotate amount modulo the bit width.
988static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
989 unsigned rotBitWidth = rotateAmt.getBitWidth();
990 APInt rot = rotateAmt;
991 if (rotBitWidth < BitWidth) {
992 // Extend the rotate APInt, so that the urem doesn't divide by 0.
993 // e.g. APInt(1, 32) would give APInt(1, 0).
994 rot = rotateAmt.zext(BitWidth);
995 }
996 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
997 return rot.getLimitedValue(BitWidth);
998}
999
Dan Gohman105c1d42008-02-29 01:40:47 +00001000APInt APInt::rotl(const APInt &rotateAmt) const {
Joey Gouly51c0ae52017-02-07 11:58:22 +00001001 return rotl(rotateModulo(BitWidth, rotateAmt));
Dan Gohman105c1d42008-02-29 01:40:47 +00001002}
1003
Chris Lattner77527f52009-01-21 18:09:24 +00001004APInt APInt::rotl(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001005 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001006 if (rotateAmt == 0)
1007 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001008 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001009}
1010
Dan Gohman105c1d42008-02-29 01:40:47 +00001011APInt APInt::rotr(const APInt &rotateAmt) const {
Joey Gouly51c0ae52017-02-07 11:58:22 +00001012 return rotr(rotateModulo(BitWidth, rotateAmt));
Dan Gohman105c1d42008-02-29 01:40:47 +00001013}
1014
Chris Lattner77527f52009-01-21 18:09:24 +00001015APInt APInt::rotr(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001016 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001017 if (rotateAmt == 0)
1018 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001019 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001020}
Reid Spencerd99feaf2007-03-01 05:39:56 +00001021
1022// Square Root - this method computes and returns the square root of "this".
1023// Three mechanisms are used for computation. For small values (<= 5 bits),
1024// a table lookup is done. This gets some performance for common cases. For
1025// values using less than 52 bits, the value is converted to double and then
1026// the libc sqrt function is called. The result is rounded and then converted
1027// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopher820256b2009-08-21 04:06:45 +00001028// the Babylonian method for computing square roots is used.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001029APInt APInt::sqrt() const {
1030
1031 // Determine the magnitude of the value.
Chris Lattner77527f52009-01-21 18:09:24 +00001032 unsigned magnitude = getActiveBits();
Reid Spencerd99feaf2007-03-01 05:39:56 +00001033
1034 // Use a fast table for some small values. This also gets rid of some
1035 // rounding errors in libc sqrt for small values.
1036 if (magnitude <= 5) {
Reid Spencer2f6ad4d2007-03-01 17:47:31 +00001037 static const uint8_t results[32] = {
Reid Spencerc8841d22007-03-01 06:23:32 +00001038 /* 0 */ 0,
1039 /* 1- 2 */ 1, 1,
Eric Christopher820256b2009-08-21 04:06:45 +00001040 /* 3- 6 */ 2, 2, 2, 2,
Reid Spencerc8841d22007-03-01 06:23:32 +00001041 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1042 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1043 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1044 /* 31 */ 6
1045 };
Craig Topperb339c6d2017-05-03 15:46:24 +00001046 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
Reid Spencerd99feaf2007-03-01 05:39:56 +00001047 }
1048
1049 // If the magnitude of the value fits in less than 52 bits (the precision of
1050 // an IEEE double precision floating point value), then we can use the
1051 // libc sqrt function which will probably use a hardware sqrt computation.
1052 // This should be faster than the algorithm below.
Jeff Cohenb622c112007-03-05 00:00:42 +00001053 if (magnitude < 52) {
Eric Christopher820256b2009-08-21 04:06:45 +00001054 return APInt(BitWidth,
Craig Topperb339c6d2017-05-03 15:46:24 +00001055 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1056 : U.pVal[0])))));
Jeff Cohenb622c112007-03-05 00:00:42 +00001057 }
Reid Spencerd99feaf2007-03-01 05:39:56 +00001058
1059 // Okay, all the short cuts are exhausted. We must compute it. The following
1060 // is a classical Babylonian method for computing the square root. This code
Sanjay Patel4cb54e02014-09-11 15:41:01 +00001061 // was adapted to APInt from a wikipedia article on such computations.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001062 // See http://www.wikipedia.org/ and go to the page named
Eric Christopher820256b2009-08-21 04:06:45 +00001063 // Calculate_an_integer_square_root.
Chris Lattner77527f52009-01-21 18:09:24 +00001064 unsigned nbits = BitWidth, i = 4;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001065 APInt testy(BitWidth, 16);
1066 APInt x_old(BitWidth, 1);
1067 APInt x_new(BitWidth, 0);
1068 APInt two(BitWidth, 2);
1069
1070 // Select a good starting value using binary logarithms.
Eric Christopher820256b2009-08-21 04:06:45 +00001071 for (;; i += 2, testy = testy.shl(2))
Reid Spencerd99feaf2007-03-01 05:39:56 +00001072 if (i >= nbits || this->ule(testy)) {
1073 x_old = x_old.shl(i / 2);
1074 break;
1075 }
1076
Eric Christopher820256b2009-08-21 04:06:45 +00001077 // Use the Babylonian method to arrive at the integer square root:
Reid Spencerd99feaf2007-03-01 05:39:56 +00001078 for (;;) {
1079 x_new = (this->udiv(x_old) + x_old).udiv(two);
1080 if (x_old.ule(x_new))
1081 break;
1082 x_old = x_new;
1083 }
1084
1085 // Make sure we return the closest approximation
Eric Christopher820256b2009-08-21 04:06:45 +00001086 // NOTE: The rounding calculation below is correct. It will produce an
Reid Spencercf817562007-03-02 04:21:55 +00001087 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopher820256b2009-08-21 04:06:45 +00001088 // determined to be a rounding issue with pari/gp as it begins to use a
Reid Spencercf817562007-03-02 04:21:55 +00001089 // floating point representation after 192 bits. There are no discrepancies
1090 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001091 APInt square(x_old * x_old);
1092 APInt nextSquare((x_old + 1) * (x_old +1));
1093 if (this->ult(square))
1094 return x_old;
David Blaikie54c94622011-12-01 20:58:30 +00001095 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1096 APInt midpoint((nextSquare - square).udiv(two));
1097 APInt offset(*this - square);
1098 if (offset.ult(midpoint))
1099 return x_old;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001100 return x_old + 1;
1101}
1102
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001103/// Computes the multiplicative inverse of this APInt for a given modulo. The
1104/// iterative extended Euclidean algorithm is used to solve for this value,
1105/// however we simplify it to speed up calculating only the inverse, and take
1106/// advantage of div+rem calculations. We also use some tricks to avoid copying
1107/// (potentially large) APInts around.
1108APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1109 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1110
1111 // Using the properties listed at the following web page (accessed 06/21/08):
1112 // http://www.numbertheory.org/php/euclid.html
1113 // (especially the properties numbered 3, 4 and 9) it can be proved that
1114 // BitWidth bits suffice for all the computations in the algorithm implemented
1115 // below. More precisely, this number of bits suffice if the multiplicative
1116 // inverse exists, but may not suffice for the general extended Euclidean
1117 // algorithm.
1118
1119 APInt r[2] = { modulo, *this };
1120 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1121 APInt q(BitWidth, 0);
Eric Christopher820256b2009-08-21 04:06:45 +00001122
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001123 unsigned i;
1124 for (i = 0; r[i^1] != 0; i ^= 1) {
1125 // An overview of the math without the confusing bit-flipping:
1126 // q = r[i-2] / r[i-1]
1127 // r[i] = r[i-2] % r[i-1]
1128 // t[i] = t[i-2] - t[i-1] * q
1129 udivrem(r[i], r[i^1], q, r[i]);
1130 t[i] -= t[i^1] * q;
1131 }
1132
1133 // If this APInt and the modulo are not coprime, there is no multiplicative
1134 // inverse, so return 0. We check this by looking at the next-to-last
1135 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1136 // algorithm.
1137 if (r[i] != 1)
1138 return APInt(BitWidth, 0);
1139
1140 // The next-to-last t is the multiplicative inverse. However, we are
1141 // interested in a positive inverse. Calcuate a positive one from a negative
1142 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00001143 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001144 return t[i].isNegative() ? t[i] + modulo : t[i];
1145}
1146
Jay Foadfe0c6482009-04-30 10:15:35 +00001147/// Calculate the magic numbers required to implement a signed integer division
1148/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1149/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1150/// Warren, Jr., chapter 10.
1151APInt::ms APInt::magic() const {
1152 const APInt& d = *this;
1153 unsigned p;
1154 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foadfe0c6482009-04-30 10:15:35 +00001155 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foadfe0c6482009-04-30 10:15:35 +00001156 struct ms mag;
Eric Christopher820256b2009-08-21 04:06:45 +00001157
Jay Foadfe0c6482009-04-30 10:15:35 +00001158 ad = d.abs();
1159 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1160 anc = t - 1 - t.urem(ad); // absolute value of nc
1161 p = d.getBitWidth() - 1; // initialize p
1162 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1163 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1164 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1165 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1166 do {
1167 p = p + 1;
1168 q1 = q1<<1; // update q1 = 2p/abs(nc)
1169 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1170 if (r1.uge(anc)) { // must be unsigned comparison
1171 q1 = q1 + 1;
1172 r1 = r1 - anc;
1173 }
1174 q2 = q2<<1; // update q2 = 2p/abs(d)
1175 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1176 if (r2.uge(ad)) { // must be unsigned comparison
1177 q2 = q2 + 1;
1178 r2 = r2 - ad;
1179 }
1180 delta = ad - r2;
Cameron Zwarich8731d0c2011-02-21 00:22:02 +00001181 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
Eric Christopher820256b2009-08-21 04:06:45 +00001182
Jay Foadfe0c6482009-04-30 10:15:35 +00001183 mag.m = q2 + 1;
1184 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1185 mag.s = p - d.getBitWidth(); // resulting shift
1186 return mag;
1187}
1188
1189/// Calculate the magic numbers required to implement an unsigned integer
1190/// division by a constant as a sequence of multiplies, adds and shifts.
1191/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1192/// S. Warren, Jr., chapter 10.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001193/// LeadingZeros can be used to simplify the calculation if the upper bits
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001194/// of the divided value are known zero.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001195APInt::mu APInt::magicu(unsigned LeadingZeros) const {
Jay Foadfe0c6482009-04-30 10:15:35 +00001196 const APInt& d = *this;
1197 unsigned p;
1198 APInt nc, delta, q1, r1, q2, r2;
1199 struct mu magu;
1200 magu.a = 0; // initialize "add" indicator
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001201 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
Jay Foadfe0c6482009-04-30 10:15:35 +00001202 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1203 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1204
Benjamin Kramer3aab6a82012-07-11 18:31:59 +00001205 nc = allOnes - (allOnes - d).urem(d);
Jay Foadfe0c6482009-04-30 10:15:35 +00001206 p = d.getBitWidth() - 1; // initialize p
1207 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1208 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1209 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1210 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1211 do {
1212 p = p + 1;
1213 if (r1.uge(nc - r1)) {
1214 q1 = q1 + q1 + 1; // update q1
1215 r1 = r1 + r1 - nc; // update r1
1216 }
1217 else {
1218 q1 = q1+q1; // update q1
1219 r1 = r1+r1; // update r1
1220 }
1221 if ((r2 + 1).uge(d - r2)) {
1222 if (q2.uge(signedMax)) magu.a = 1;
1223 q2 = q2+q2 + 1; // update q2
1224 r2 = r2+r2 + 1 - d; // update r2
1225 }
1226 else {
1227 if (q2.uge(signedMin)) magu.a = 1;
1228 q2 = q2+q2; // update q2
1229 r2 = r2+r2 + 1; // update r2
1230 }
1231 delta = d - 1 - r2;
1232 } while (p < d.getBitWidth()*2 &&
1233 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1234 magu.m = q2 + 1; // resulting magic number
1235 magu.s = p - d.getBitWidth(); // resulting shift
1236 return magu;
1237}
1238
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001239/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1240/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1241/// variables here have the same names as in the algorithm. Comments explain
1242/// the algorithm and any deviation from it.
Craig Topper6271bc72017-05-10 18:15:20 +00001243static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
Chris Lattner77527f52009-01-21 18:09:24 +00001244 unsigned m, unsigned n) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001245 assert(u && "Must provide dividend");
1246 assert(v && "Must provide divisor");
1247 assert(q && "Must provide quotient");
Yaron Keren39fc5a62015-03-26 19:45:19 +00001248 assert(u != v && u != q && v != q && "Must use different memory");
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001249 assert(n>1 && "n must be > 1");
1250
Yaron Keren39fc5a62015-03-26 19:45:19 +00001251 // b denotes the base of the number system. In our case b is 2^32.
George Burgess IV381fc0e2016-08-25 01:05:08 +00001252 const uint64_t b = uint64_t(1) << 32;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001253
David Greenef32fcb42010-01-05 01:28:52 +00001254 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1255 DEBUG(dbgs() << "KnuthDiv: original:");
1256 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1257 DEBUG(dbgs() << " by");
1258 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1259 DEBUG(dbgs() << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001260 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1261 // u and v by d. Note that we have taken Knuth's advice here to use a power
1262 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1263 // 2 allows us to shift instead of multiply and it is easy to determine the
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001264 // shift amount from the leading zeros. We are basically normalizing the u
1265 // and v so that its high bits are shifted to the top of v's range without
1266 // overflow. Note that this can require an extra word in u so that u must
1267 // be of length m+n+1.
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001268 unsigned shift = countLeadingZeros(v[n-1]);
Craig Topper6271bc72017-05-10 18:15:20 +00001269 uint32_t v_carry = 0;
1270 uint32_t u_carry = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001271 if (shift) {
Chris Lattner77527f52009-01-21 18:09:24 +00001272 for (unsigned i = 0; i < m+n; ++i) {
Craig Topper6271bc72017-05-10 18:15:20 +00001273 uint32_t u_tmp = u[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001274 u[i] = (u[i] << shift) | u_carry;
1275 u_carry = u_tmp;
Reid Spencer100502d2007-02-17 03:16:00 +00001276 }
Chris Lattner77527f52009-01-21 18:09:24 +00001277 for (unsigned i = 0; i < n; ++i) {
Craig Topper6271bc72017-05-10 18:15:20 +00001278 uint32_t v_tmp = v[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001279 v[i] = (v[i] << shift) | v_carry;
1280 v_carry = v_tmp;
1281 }
1282 }
1283 u[m+n] = u_carry;
Yaron Keren39fc5a62015-03-26 19:45:19 +00001284
David Greenef32fcb42010-01-05 01:28:52 +00001285 DEBUG(dbgs() << "KnuthDiv: normal:");
1286 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1287 DEBUG(dbgs() << " by");
1288 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1289 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001290
1291 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1292 int j = m;
1293 do {
David Greenef32fcb42010-01-05 01:28:52 +00001294 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001295 // D3. [Calculate q'.].
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001296 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1297 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1298 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1299 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1300 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopher820256b2009-08-21 04:06:45 +00001301 // value qp is one too large, and it eliminates all cases where qp is two
1302 // too large.
Reid Spencercb292e42007-02-23 01:57:13 +00001303 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
David Greenef32fcb42010-01-05 01:28:52 +00001304 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencercb292e42007-02-23 01:57:13 +00001305 uint64_t qp = dividend / v[n-1];
1306 uint64_t rp = dividend % v[n-1];
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001307 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1308 qp--;
1309 rp += v[n-1];
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001310 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencera5e0d202007-02-24 03:58:46 +00001311 qp--;
Reid Spencercb292e42007-02-23 01:57:13 +00001312 }
David Greenef32fcb42010-01-05 01:28:52 +00001313 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001314
Reid Spencercb292e42007-02-23 01:57:13 +00001315 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1316 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1317 // consists of a simple multiplication by a one-place number, combined with
Eric Christopher820256b2009-08-21 04:06:45 +00001318 // a subtraction.
Yaron Keren39fc5a62015-03-26 19:45:19 +00001319 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1320 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1321 // true value plus b**(n+1), namely as the b's complement of
1322 // the true value, and a "borrow" to the left should be remembered.
Pawel Bylica86ac4472015-04-24 07:38:39 +00001323 int64_t borrow = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001324 for (unsigned i = 0; i < n; ++i) {
Pawel Bylica86ac4472015-04-24 07:38:39 +00001325 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1326 int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p;
1327 u[j+i] = (unsigned)subres;
1328 borrow = (p >> 32) - (subres >> 32);
1329 DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i]
Daniel Dunbar763ace92009-07-13 05:27:30 +00001330 << ", borrow = " << borrow << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001331 }
Pawel Bylica86ac4472015-04-24 07:38:39 +00001332 bool isNeg = u[j+n] < borrow;
1333 u[j+n] -= (unsigned)borrow;
1334
David Greenef32fcb42010-01-05 01:28:52 +00001335 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1336 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1337 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001338
Eric Christopher820256b2009-08-21 04:06:45 +00001339 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001340 // negative, go to step D6; otherwise go on to step D7.
Chris Lattner77527f52009-01-21 18:09:24 +00001341 q[j] = (unsigned)qp;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001342 if (isNeg) {
Eric Christopher820256b2009-08-21 04:06:45 +00001343 // D6. [Add back]. The probability that this step is necessary is very
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001344 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopher820256b2009-08-21 04:06:45 +00001345 // this possibility. Decrease q[j] by 1
Reid Spencercb292e42007-02-23 01:57:13 +00001346 q[j]--;
Eric Christopher820256b2009-08-21 04:06:45 +00001347 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1348 // A carry will occur to the left of u[j+n], and it should be ignored
Reid Spencercb292e42007-02-23 01:57:13 +00001349 // since it cancels with the borrow that occurred in D4.
1350 bool carry = false;
Chris Lattner77527f52009-01-21 18:09:24 +00001351 for (unsigned i = 0; i < n; i++) {
Craig Topper6271bc72017-05-10 18:15:20 +00001352 uint32_t limit = std::min(u[j+i],v[i]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001353 u[j+i] += v[i] + carry;
Reid Spencera5e0d202007-02-24 03:58:46 +00001354 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001355 }
Reid Spencera5e0d202007-02-24 03:58:46 +00001356 u[j+n] += carry;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001357 }
David Greenef32fcb42010-01-05 01:28:52 +00001358 DEBUG(dbgs() << "KnuthDiv: after correction:");
Yaron Keren39fc5a62015-03-26 19:45:19 +00001359 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
David Greenef32fcb42010-01-05 01:28:52 +00001360 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001361
Reid Spencercb292e42007-02-23 01:57:13 +00001362 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1363 } while (--j >= 0);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001364
David Greenef32fcb42010-01-05 01:28:52 +00001365 DEBUG(dbgs() << "KnuthDiv: quotient:");
1366 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1367 DEBUG(dbgs() << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001368
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001369 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1370 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1371 // compute the remainder (urem uses this).
1372 if (r) {
1373 // The value d is expressed by the "shift" value above since we avoided
1374 // multiplication by d by using a shift left. So, all we have to do is
Simon Pilgrim0099beb2017-03-09 13:57:04 +00001375 // shift right here.
Reid Spencer468ad9112007-02-24 20:38:01 +00001376 if (shift) {
Craig Topper6271bc72017-05-10 18:15:20 +00001377 uint32_t carry = 0;
David Greenef32fcb42010-01-05 01:28:52 +00001378 DEBUG(dbgs() << "KnuthDiv: remainder:");
Reid Spencer468ad9112007-02-24 20:38:01 +00001379 for (int i = n-1; i >= 0; i--) {
1380 r[i] = (u[i] >> shift) | carry;
1381 carry = u[i] << (32 - shift);
David Greenef32fcb42010-01-05 01:28:52 +00001382 DEBUG(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001383 }
1384 } else {
1385 for (int i = n-1; i >= 0; i--) {
1386 r[i] = u[i];
David Greenef32fcb42010-01-05 01:28:52 +00001387 DEBUG(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001388 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001389 }
David Greenef32fcb42010-01-05 01:28:52 +00001390 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001391 }
David Greenef32fcb42010-01-05 01:28:52 +00001392 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001393}
1394
Benjamin Kramerc321e532016-06-08 19:09:22 +00001395void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS,
1396 unsigned rhsWords, APInt *Quotient, APInt *Remainder) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001397 assert(lhsWords >= rhsWords && "Fractional result");
1398
Eric Christopher820256b2009-08-21 04:06:45 +00001399 // First, compose the values into an array of 32-bit words instead of
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001400 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohman4a618822010-02-10 16:03:48 +00001401 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopher820256b2009-08-21 04:06:45 +00001402 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1403 // can't use 64-bit operands here because we don't have native results of
1404 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001405 // work on large-endian machines.
Chris Lattner77527f52009-01-21 18:09:24 +00001406 unsigned n = rhsWords * 2;
1407 unsigned m = (lhsWords * 2) - n;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001408
1409 // Allocate space for the temporary values we need either on the stack, if
1410 // it will fit, or on the heap if it won't.
Craig Topper6271bc72017-05-10 18:15:20 +00001411 uint32_t SPACE[128];
1412 uint32_t *U = nullptr;
1413 uint32_t *V = nullptr;
1414 uint32_t *Q = nullptr;
1415 uint32_t *R = nullptr;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001416 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1417 U = &SPACE[0];
1418 V = &SPACE[m+n+1];
1419 Q = &SPACE[(m+n+1) + n];
1420 if (Remainder)
1421 R = &SPACE[(m+n+1) + n + (m+n)];
1422 } else {
Craig Topper6271bc72017-05-10 18:15:20 +00001423 U = new uint32_t[m + n + 1];
1424 V = new uint32_t[n];
1425 Q = new uint32_t[m+n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001426 if (Remainder)
Craig Topper6271bc72017-05-10 18:15:20 +00001427 R = new uint32_t[n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001428 }
1429
1430 // Initialize the dividend
Craig Topper6271bc72017-05-10 18:15:20 +00001431 memset(U, 0, (m+n+1)*sizeof(uint32_t));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001432 for (unsigned i = 0; i < lhsWords; ++i) {
Craig Topperf86b9d52017-05-10 18:15:17 +00001433 uint64_t tmp = LHS.getRawData()[i];
Craig Topper6271bc72017-05-10 18:15:20 +00001434 U[i * 2] = Lo_32(tmp);
1435 U[i * 2 + 1] = Hi_32(tmp);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001436 }
1437 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1438
Reid Spencer522ca7c2007-02-25 01:56:07 +00001439 // Initialize the divisor
Craig Topper6271bc72017-05-10 18:15:20 +00001440 memset(V, 0, (n)*sizeof(uint32_t));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001441 for (unsigned i = 0; i < rhsWords; ++i) {
Craig Topperf86b9d52017-05-10 18:15:17 +00001442 uint64_t tmp = RHS.getRawData()[i];
Craig Topper6271bc72017-05-10 18:15:20 +00001443 V[i * 2] = Lo_32(tmp);
1444 V[i * 2 + 1] = Hi_32(tmp);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001445 }
1446
Reid Spencer522ca7c2007-02-25 01:56:07 +00001447 // initialize the quotient and remainder
Craig Topper6271bc72017-05-10 18:15:20 +00001448 memset(Q, 0, (m+n) * sizeof(uint32_t));
Reid Spencer522ca7c2007-02-25 01:56:07 +00001449 if (Remainder)
Craig Topper6271bc72017-05-10 18:15:20 +00001450 memset(R, 0, n * sizeof(uint32_t));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001451
Eric Christopher820256b2009-08-21 04:06:45 +00001452 // Now, adjust m and n for the Knuth division. n is the number of words in
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001453 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopher820256b2009-08-21 04:06:45 +00001454 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001455 // contain any zero words or the Knuth algorithm fails.
1456 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1457 n--;
1458 m++;
1459 }
1460 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1461 m--;
1462
1463 // If we're left with only a single word for the divisor, Knuth doesn't work
1464 // so we implement the short division algorithm here. This is much simpler
1465 // and faster because we are certain that we can divide a 64-bit quantity
1466 // by a 32-bit quantity at hardware speed and short division is simply a
1467 // series of such operations. This is just like doing short division but we
1468 // are using base 2^32 instead of base 10.
1469 assert(n != 0 && "Divide by zero?");
1470 if (n == 1) {
Craig Topper6271bc72017-05-10 18:15:20 +00001471 uint32_t divisor = V[0];
1472 uint32_t remainder = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001473 for (int i = m+n-1; i >= 0; i--) {
Craig Topper6271bc72017-05-10 18:15:20 +00001474 uint64_t partial_dividend = Make_64(remainder, U[i]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001475 if (partial_dividend == 0) {
1476 Q[i] = 0;
1477 remainder = 0;
1478 } else if (partial_dividend < divisor) {
1479 Q[i] = 0;
Craig Topper6271bc72017-05-10 18:15:20 +00001480 remainder = Lo_32(partial_dividend);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001481 } else if (partial_dividend == divisor) {
1482 Q[i] = 1;
1483 remainder = 0;
1484 } else {
Craig Topper6271bc72017-05-10 18:15:20 +00001485 Q[i] = Lo_32(partial_dividend / divisor);
1486 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001487 }
1488 }
1489 if (R)
1490 R[0] = remainder;
1491 } else {
1492 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1493 // case n > 1.
1494 KnuthDiv(U, V, Q, R, m, n);
1495 }
1496
1497 // If the caller wants the quotient
1498 if (Quotient) {
1499 // Set up the Quotient value's memory.
1500 if (Quotient->BitWidth != LHS.BitWidth) {
1501 if (Quotient->isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +00001502 Quotient->U.VAL = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001503 else
Craig Topperb339c6d2017-05-03 15:46:24 +00001504 delete [] Quotient->U.pVal;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001505 Quotient->BitWidth = LHS.BitWidth;
1506 if (!Quotient->isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +00001507 Quotient->U.pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001508 } else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001509 Quotient->clearAllBits();
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001510
Eric Christopher820256b2009-08-21 04:06:45 +00001511 // The quotient is in Q. Reconstitute the quotient into Quotient's low
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001512 // order words.
Yaron Keren39fc5a62015-03-26 19:45:19 +00001513 // This case is currently dead as all users of divide() handle trivial cases
1514 // earlier.
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001515 if (lhsWords == 1) {
Craig Topper6271bc72017-05-10 18:15:20 +00001516 uint64_t tmp = Make_64(Q[1], Q[0]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001517 if (Quotient->isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +00001518 Quotient->U.VAL = tmp;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001519 else
Craig Topperb339c6d2017-05-03 15:46:24 +00001520 Quotient->U.pVal[0] = tmp;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001521 } else {
1522 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1523 for (unsigned i = 0; i < lhsWords; ++i)
Craig Topper6271bc72017-05-10 18:15:20 +00001524 Quotient->U.pVal[i] = Make_64(Q[i*2+1], Q[i*2]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001525 }
1526 }
1527
1528 // If the caller wants the remainder
1529 if (Remainder) {
1530 // Set up the Remainder value's memory.
1531 if (Remainder->BitWidth != RHS.BitWidth) {
1532 if (Remainder->isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +00001533 Remainder->U.VAL = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001534 else
Craig Topperb339c6d2017-05-03 15:46:24 +00001535 delete [] Remainder->U.pVal;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001536 Remainder->BitWidth = RHS.BitWidth;
1537 if (!Remainder->isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +00001538 Remainder->U.pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001539 } else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001540 Remainder->clearAllBits();
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001541
1542 // The remainder is in R. Reconstitute the remainder into Remainder's low
1543 // order words.
1544 if (rhsWords == 1) {
Craig Topper6271bc72017-05-10 18:15:20 +00001545 uint64_t tmp = Make_64(R[1], R[0]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001546 if (Remainder->isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +00001547 Remainder->U.VAL = tmp;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001548 else
Craig Topperb339c6d2017-05-03 15:46:24 +00001549 Remainder->U.pVal[0] = tmp;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001550 } else {
1551 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1552 for (unsigned i = 0; i < rhsWords; ++i)
Craig Topper6271bc72017-05-10 18:15:20 +00001553 Remainder->U.pVal[i] = Make_64(R[i*2+1], R[i*2]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001554 }
1555 }
1556
1557 // Clean up the memory we allocated.
Reid Spencer522ca7c2007-02-25 01:56:07 +00001558 if (U != &SPACE[0]) {
1559 delete [] U;
1560 delete [] V;
1561 delete [] Q;
1562 delete [] R;
1563 }
Reid Spencer100502d2007-02-17 03:16:00 +00001564}
1565
Reid Spencer1d072122007-02-16 22:36:51 +00001566APInt APInt::udiv(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001567 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001568
1569 // First, deal with the easy case
1570 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +00001571 assert(RHS.U.VAL != 0 && "Divide by zero?");
1572 return APInt(BitWidth, U.VAL / RHS.U.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001573 }
Reid Spencer39867762007-02-17 02:07:07 +00001574
Reid Spencer39867762007-02-17 02:07:07 +00001575 // Get some facts about the LHS and RHS number of bits and words
Craig Topper62de0392017-05-10 07:50:15 +00001576 unsigned rhsWords = getNumWords(RHS.getActiveBits());
Reid Spencer39867762007-02-17 02:07:07 +00001577 assert(rhsWords && "Divided by zero???");
Craig Topper62de0392017-05-10 07:50:15 +00001578 unsigned lhsWords = getNumWords(getActiveBits());
Reid Spencer39867762007-02-17 02:07:07 +00001579
1580 // Deal with some degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001581 if (!lhsWords)
Reid Spencer58a6a432007-02-21 08:21:52 +00001582 // 0 / X ===> 0
Eric Christopher820256b2009-08-21 04:06:45 +00001583 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001584 if (lhsWords < rhsWords || this->ult(RHS))
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001585 // X / Y ===> 0, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001586 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001587 if (*this == RHS)
Reid Spencer58a6a432007-02-21 08:21:52 +00001588 // X / X ===> 1
1589 return APInt(BitWidth, 1);
Craig Topper24ae6952017-05-08 23:49:49 +00001590 if (lhsWords == 1 && rhsWords == 1)
Reid Spencer39867762007-02-17 02:07:07 +00001591 // All high words are zero, just use native divide
Craig Topperb339c6d2017-05-03 15:46:24 +00001592 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001593
1594 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Craig Topper3369f8c2017-05-08 23:49:54 +00001595 APInt Quotient; // to hold result.
Craig Topperc10719f2014-04-07 04:17:22 +00001596 divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001597 return Quotient;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001598}
1599
Jakub Staszak6605c602013-02-20 00:17:42 +00001600APInt APInt::sdiv(const APInt &RHS) const {
1601 if (isNegative()) {
1602 if (RHS.isNegative())
1603 return (-(*this)).udiv(-RHS);
1604 return -((-(*this)).udiv(RHS));
1605 }
1606 if (RHS.isNegative())
1607 return -(this->udiv(-RHS));
1608 return this->udiv(RHS);
1609}
1610
Reid Spencer1d072122007-02-16 22:36:51 +00001611APInt APInt::urem(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001612 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001613 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +00001614 assert(RHS.U.VAL != 0 && "Remainder by zero?");
1615 return APInt(BitWidth, U.VAL % RHS.U.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001616 }
Reid Spencer39867762007-02-17 02:07:07 +00001617
Reid Spencer58a6a432007-02-21 08:21:52 +00001618 // Get some facts about the LHS
Craig Topper62de0392017-05-10 07:50:15 +00001619 unsigned lhsWords = getNumWords(getActiveBits());
Reid Spencer39867762007-02-17 02:07:07 +00001620
1621 // Get some facts about the RHS
Craig Topper62de0392017-05-10 07:50:15 +00001622 unsigned rhsWords = getNumWords(RHS.getActiveBits());
Reid Spencer39867762007-02-17 02:07:07 +00001623 assert(rhsWords && "Performing remainder operation by zero ???");
1624
Reid Spencer39867762007-02-17 02:07:07 +00001625 // Check the degenerate cases
Craig Topper24ae6952017-05-08 23:49:49 +00001626 if (lhsWords == 0)
Reid Spencer58a6a432007-02-21 08:21:52 +00001627 // 0 % Y ===> 0
1628 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001629 if (lhsWords < rhsWords || this->ult(RHS))
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001630 // X % Y ===> X, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001631 return *this;
Craig Topper24ae6952017-05-08 23:49:49 +00001632 if (*this == RHS)
Reid Spencer39867762007-02-17 02:07:07 +00001633 // X % X == 0;
Reid Spencer58a6a432007-02-21 08:21:52 +00001634 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001635 if (lhsWords == 1)
Reid Spencer39867762007-02-17 02:07:07 +00001636 // All high words are zero, just use native remainder
Craig Topperb339c6d2017-05-03 15:46:24 +00001637 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001638
Reid Spencer4c50b522007-05-13 23:44:59 +00001639 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Craig Topper3369f8c2017-05-08 23:49:54 +00001640 APInt Remainder;
Craig Topperc10719f2014-04-07 04:17:22 +00001641 divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001642 return Remainder;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001643}
Reid Spencer100502d2007-02-17 03:16:00 +00001644
Jakub Staszak6605c602013-02-20 00:17:42 +00001645APInt APInt::srem(const APInt &RHS) const {
1646 if (isNegative()) {
1647 if (RHS.isNegative())
1648 return -((-(*this)).urem(-RHS));
1649 return -((-(*this)).urem(RHS));
1650 }
1651 if (RHS.isNegative())
1652 return this->urem(-RHS);
1653 return this->urem(RHS);
1654}
1655
Eric Christopher820256b2009-08-21 04:06:45 +00001656void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Reid Spencer4c50b522007-05-13 23:44:59 +00001657 APInt &Quotient, APInt &Remainder) {
David Majnemer7f039202014-12-14 09:41:56 +00001658 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1659
1660 // First, deal with the easy case
1661 if (LHS.isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +00001662 assert(RHS.U.VAL != 0 && "Divide by zero?");
1663 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1664 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
David Majnemer7f039202014-12-14 09:41:56 +00001665 Quotient = APInt(LHS.BitWidth, QuotVal);
1666 Remainder = APInt(LHS.BitWidth, RemVal);
1667 return;
1668 }
1669
Reid Spencer4c50b522007-05-13 23:44:59 +00001670 // Get some size facts about the dividend and divisor
Craig Topper62de0392017-05-10 07:50:15 +00001671 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1672 unsigned rhsWords = getNumWords(RHS.getActiveBits());
Reid Spencer4c50b522007-05-13 23:44:59 +00001673
1674 // Check the degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001675 if (lhsWords == 0) {
Reid Spencer4c50b522007-05-13 23:44:59 +00001676 Quotient = 0; // 0 / Y ===> 0
1677 Remainder = 0; // 0 % Y ===> 0
1678 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001679 }
1680
1681 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001682 Remainder = LHS; // X % Y ===> X, iff X < Y
1683 Quotient = 0; // X / Y ===> 0, iff X < Y
Reid Spencer4c50b522007-05-13 23:44:59 +00001684 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001685 }
1686
Reid Spencer4c50b522007-05-13 23:44:59 +00001687 if (LHS == RHS) {
1688 Quotient = 1; // X / X ===> 1
1689 Remainder = 0; // X % X ===> 0;
1690 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001691 }
1692
Reid Spencer4c50b522007-05-13 23:44:59 +00001693 if (lhsWords == 1 && rhsWords == 1) {
1694 // There is only one word to consider so use the native versions.
Craig Topper93eabae2017-05-10 18:15:14 +00001695 uint64_t lhsValue = LHS.U.pVal[0];
1696 uint64_t rhsValue = RHS.U.pVal[0];
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001697 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1698 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Reid Spencer4c50b522007-05-13 23:44:59 +00001699 return;
1700 }
1701
1702 // Okay, lets do it the long way
1703 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1704}
1705
Jakub Staszak6605c602013-02-20 00:17:42 +00001706void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1707 APInt &Quotient, APInt &Remainder) {
1708 if (LHS.isNegative()) {
1709 if (RHS.isNegative())
1710 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1711 else {
1712 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1713 Quotient = -Quotient;
1714 }
1715 Remainder = -Remainder;
1716 } else if (RHS.isNegative()) {
1717 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1718 Quotient = -Quotient;
1719 } else {
1720 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1721 }
1722}
1723
Chris Lattner2c819b02010-10-13 23:54:10 +00001724APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001725 APInt Res = *this+RHS;
1726 Overflow = isNonNegative() == RHS.isNonNegative() &&
1727 Res.isNonNegative() != isNonNegative();
1728 return Res;
1729}
1730
Chris Lattner698661c2010-10-14 00:05:07 +00001731APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1732 APInt Res = *this+RHS;
1733 Overflow = Res.ult(RHS);
1734 return Res;
1735}
1736
Chris Lattner2c819b02010-10-13 23:54:10 +00001737APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001738 APInt Res = *this - RHS;
1739 Overflow = isNonNegative() != RHS.isNonNegative() &&
1740 Res.isNonNegative() != isNonNegative();
1741 return Res;
1742}
1743
Chris Lattner698661c2010-10-14 00:05:07 +00001744APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerb9681ad2010-10-14 00:30:00 +00001745 APInt Res = *this-RHS;
1746 Overflow = Res.ugt(*this);
Chris Lattner698661c2010-10-14 00:05:07 +00001747 return Res;
1748}
1749
Chris Lattner2c819b02010-10-13 23:54:10 +00001750APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001751 // MININT/-1 --> overflow.
1752 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
1753 return sdiv(RHS);
1754}
1755
Chris Lattner2c819b02010-10-13 23:54:10 +00001756APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001757 APInt Res = *this * RHS;
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001758
Chris Lattner79bdd882010-10-13 23:46:33 +00001759 if (*this != 0 && RHS != 0)
1760 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1761 else
1762 Overflow = false;
1763 return Res;
1764}
1765
Frits van Bommel0bb2ad22011-03-27 14:26:13 +00001766APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1767 APInt Res = *this * RHS;
1768
1769 if (*this != 0 && RHS != 0)
1770 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
1771 else
1772 Overflow = false;
1773 return Res;
1774}
1775
David Majnemera2521382014-10-13 21:48:30 +00001776APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1777 Overflow = ShAmt.uge(getBitWidth());
Chris Lattner79bdd882010-10-13 23:46:33 +00001778 if (Overflow)
David Majnemera2521382014-10-13 21:48:30 +00001779 return APInt(BitWidth, 0);
Chris Lattner79bdd882010-10-13 23:46:33 +00001780
1781 if (isNonNegative()) // Don't allow sign change.
David Majnemera2521382014-10-13 21:48:30 +00001782 Overflow = ShAmt.uge(countLeadingZeros());
Chris Lattner79bdd882010-10-13 23:46:33 +00001783 else
David Majnemera2521382014-10-13 21:48:30 +00001784 Overflow = ShAmt.uge(countLeadingOnes());
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001785
Chris Lattner79bdd882010-10-13 23:46:33 +00001786 return *this << ShAmt;
1787}
1788
David Majnemera2521382014-10-13 21:48:30 +00001789APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
1790 Overflow = ShAmt.uge(getBitWidth());
1791 if (Overflow)
1792 return APInt(BitWidth, 0);
1793
1794 Overflow = ShAmt.ugt(countLeadingZeros());
1795
1796 return *this << ShAmt;
1797}
1798
Chris Lattner79bdd882010-10-13 23:46:33 +00001799
1800
1801
Benjamin Kramer92d89982010-07-14 22:38:02 +00001802void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
Reid Spencer1ba83352007-02-21 03:55:44 +00001803 // Check our assumptions here
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00001804 assert(!str.empty() && "Invalid string length");
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001805 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +00001806 radix == 36) &&
1807 "Radix should be 2, 8, 10, 16, or 36!");
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00001808
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00001809 StringRef::iterator p = str.begin();
1810 size_t slen = str.size();
1811 bool isNeg = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00001812 if (*p == '-' || *p == '+') {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00001813 p++;
1814 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +00001815 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00001816 }
Chris Lattnerdad2d092007-05-03 18:15:36 +00001817 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattnerb869a0a2009-04-25 18:34:04 +00001818 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
1819 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Dan Gohmanb452d4e2010-03-24 19:38:02 +00001820 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
1821 "Insufficient bit width");
Reid Spencer1ba83352007-02-21 03:55:44 +00001822
Craig Topperb339c6d2017-05-03 15:46:24 +00001823 // Allocate memory if needed
1824 if (isSingleWord())
1825 U.VAL = 0;
1826 else
1827 U.pVal = getClearedMemory(getNumWords());
Reid Spencer1ba83352007-02-21 03:55:44 +00001828
1829 // Figure out if we can shift instead of multiply
Chris Lattner77527f52009-01-21 18:09:24 +00001830 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer1ba83352007-02-21 03:55:44 +00001831
Reid Spencer1ba83352007-02-21 03:55:44 +00001832 // Enter digit traversal loop
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00001833 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaardadb15712009-08-21 03:15:28 +00001834 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar60964092009-08-21 06:48:37 +00001835 assert(digit < radix && "Invalid character in digit string");
Reid Spencer1ba83352007-02-21 03:55:44 +00001836
Reid Spencera93c9812007-05-16 19:18:22 +00001837 // Shift or multiply the value by the radix
Chris Lattnerb869a0a2009-04-25 18:34:04 +00001838 if (slen > 1) {
1839 if (shift)
1840 *this <<= shift;
1841 else
Craig Topperf15bec52017-05-08 04:55:12 +00001842 *this *= radix;
Chris Lattnerb869a0a2009-04-25 18:34:04 +00001843 }
Reid Spencer1ba83352007-02-21 03:55:44 +00001844
1845 // Add in the digit we just interpreted
Craig Topperb7d8faa2017-04-02 06:59:38 +00001846 *this += digit;
Reid Spencer100502d2007-02-17 03:16:00 +00001847 }
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001848 // If its negative, put it in two's complement form
Craig Topperef0114c2017-05-10 20:01:38 +00001849 if (isNeg)
1850 this->negate();
Reid Spencer100502d2007-02-17 03:16:00 +00001851}
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001852
Chris Lattner17f71652008-08-17 07:19:36 +00001853void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Ted Kremenekb05f02e2011-06-15 00:51:55 +00001854 bool Signed, bool formatAsCLiteral) const {
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001855 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +00001856 Radix == 36) &&
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00001857 "Radix should be 2, 8, 10, 16, or 36!");
Eric Christopher820256b2009-08-21 04:06:45 +00001858
Ted Kremenekb05f02e2011-06-15 00:51:55 +00001859 const char *Prefix = "";
1860 if (formatAsCLiteral) {
1861 switch (Radix) {
1862 case 2:
1863 // Binary literals are a non-standard extension added in gcc 4.3:
1864 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
1865 Prefix = "0b";
1866 break;
1867 case 8:
1868 Prefix = "0";
1869 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00001870 case 10:
1871 break; // No prefix
Ted Kremenekb05f02e2011-06-15 00:51:55 +00001872 case 16:
1873 Prefix = "0x";
1874 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00001875 default:
1876 llvm_unreachable("Invalid radix!");
Ted Kremenekb05f02e2011-06-15 00:51:55 +00001877 }
1878 }
1879
Chris Lattner17f71652008-08-17 07:19:36 +00001880 // First, check for a zero value and just short circuit the logic below.
1881 if (*this == 0) {
Ted Kremenekb05f02e2011-06-15 00:51:55 +00001882 while (*Prefix) {
1883 Str.push_back(*Prefix);
1884 ++Prefix;
1885 };
Chris Lattner17f71652008-08-17 07:19:36 +00001886 Str.push_back('0');
1887 return;
1888 }
Eric Christopher820256b2009-08-21 04:06:45 +00001889
Douglas Gregor663c0682011-09-14 15:54:46 +00001890 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
Eric Christopher820256b2009-08-21 04:06:45 +00001891
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001892 if (isSingleWord()) {
Chris Lattner17f71652008-08-17 07:19:36 +00001893 char Buffer[65];
1894 char *BufPtr = Buffer+65;
Eric Christopher820256b2009-08-21 04:06:45 +00001895
Chris Lattner17f71652008-08-17 07:19:36 +00001896 uint64_t N;
Chris Lattnerb91c9032010-08-18 00:33:47 +00001897 if (!Signed) {
Chris Lattner17f71652008-08-17 07:19:36 +00001898 N = getZExtValue();
Chris Lattnerb91c9032010-08-18 00:33:47 +00001899 } else {
1900 int64_t I = getSExtValue();
1901 if (I >= 0) {
1902 N = I;
1903 } else {
1904 Str.push_back('-');
1905 N = -(uint64_t)I;
1906 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001907 }
Eric Christopher820256b2009-08-21 04:06:45 +00001908
Ted Kremenekb05f02e2011-06-15 00:51:55 +00001909 while (*Prefix) {
1910 Str.push_back(*Prefix);
1911 ++Prefix;
1912 };
1913
Chris Lattner17f71652008-08-17 07:19:36 +00001914 while (N) {
1915 *--BufPtr = Digits[N % Radix];
1916 N /= Radix;
1917 }
1918 Str.append(BufPtr, Buffer+65);
1919 return;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001920 }
1921
Chris Lattner17f71652008-08-17 07:19:36 +00001922 APInt Tmp(*this);
Eric Christopher820256b2009-08-21 04:06:45 +00001923
Chris Lattner17f71652008-08-17 07:19:36 +00001924 if (Signed && isNegative()) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001925 // They want to print the signed version and it is a negative value
1926 // Flip the bits and add one to turn it into the equivalent positive
1927 // value and put a '-' in the result.
Craig Topperef0114c2017-05-10 20:01:38 +00001928 Tmp.negate();
Chris Lattner17f71652008-08-17 07:19:36 +00001929 Str.push_back('-');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001930 }
Eric Christopher820256b2009-08-21 04:06:45 +00001931
Ted Kremenekb05f02e2011-06-15 00:51:55 +00001932 while (*Prefix) {
1933 Str.push_back(*Prefix);
1934 ++Prefix;
1935 };
1936
Chris Lattner17f71652008-08-17 07:19:36 +00001937 // We insert the digits backward, then reverse them to get the right order.
1938 unsigned StartDig = Str.size();
Eric Christopher820256b2009-08-21 04:06:45 +00001939
1940 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
1941 // because the number of bits per digit (1, 3 and 4 respectively) divides
Craig Topperd7ed50d2017-04-02 06:59:36 +00001942 // equally. We just shift until the value is zero.
Douglas Gregor663c0682011-09-14 15:54:46 +00001943 if (Radix == 2 || Radix == 8 || Radix == 16) {
Chris Lattner17f71652008-08-17 07:19:36 +00001944 // Just shift tmp right for each digit width until it becomes zero
1945 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
1946 unsigned MaskAmt = Radix - 1;
Eric Christopher820256b2009-08-21 04:06:45 +00001947
Craig Topperecb97da2017-05-10 18:15:24 +00001948 while (Tmp.getBoolValue()) {
Chris Lattner17f71652008-08-17 07:19:36 +00001949 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
1950 Str.push_back(Digits[Digit]);
Craig Topperfc947bc2017-04-18 17:14:21 +00001951 Tmp.lshrInPlace(ShiftAmt);
Chris Lattner17f71652008-08-17 07:19:36 +00001952 }
1953 } else {
Craig Topperecb97da2017-05-10 18:15:24 +00001954 APInt divisor(Tmp.getBitWidth(), Radix);
1955 APInt APdigit;
1956 APInt tmp2(Tmp.getBitWidth(), 0);
1957 while (Tmp.getBoolValue()) {
1958 udivrem(Tmp, divisor, tmp2, APdigit);
Chris Lattner77527f52009-01-21 18:09:24 +00001959 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner17f71652008-08-17 07:19:36 +00001960 assert(Digit < Radix && "divide failed");
1961 Str.push_back(Digits[Digit]);
Craig Topperecb97da2017-05-10 18:15:24 +00001962 // Move the quotient into Tmp and move the old allocation of Tmp into
1963 // tmp2 to be used on the next loop iteration.
1964 std::swap(Tmp, tmp2);
Chris Lattner17f71652008-08-17 07:19:36 +00001965 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001966 }
Eric Christopher820256b2009-08-21 04:06:45 +00001967
Chris Lattner17f71652008-08-17 07:19:36 +00001968 // Reverse the digits before returning.
1969 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001970}
1971
Pawel Bylica6eeeac72015-04-06 13:31:39 +00001972/// Returns the APInt as a std::string. Note that this is an inefficient method.
1973/// It is better to pass in a SmallVector/SmallString to the methods above.
Chris Lattner17f71652008-08-17 07:19:36 +00001974std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
1975 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00001976 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
Daniel Dunbar8b0b1152009-08-19 20:07:03 +00001977 return S.str();
Reid Spencer1ba83352007-02-21 03:55:44 +00001978}
Chris Lattner6b695682007-08-16 15:56:55 +00001979
Matthias Braun8c209aa2017-01-28 02:02:38 +00001980#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Yaron Kereneb2a2542016-01-29 20:50:44 +00001981LLVM_DUMP_METHOD void APInt::dump() const {
Chris Lattner17f71652008-08-17 07:19:36 +00001982 SmallString<40> S, U;
1983 this->toStringUnsigned(U);
1984 this->toStringSigned(S);
David Greenef32fcb42010-01-05 01:28:52 +00001985 dbgs() << "APInt(" << BitWidth << "b, "
Davide Italiano5a473d22017-01-31 21:26:18 +00001986 << U << "u " << S << "s)\n";
Chris Lattner17f71652008-08-17 07:19:36 +00001987}
Matthias Braun8c209aa2017-01-28 02:02:38 +00001988#endif
Chris Lattner17f71652008-08-17 07:19:36 +00001989
Chris Lattner0c19df42008-08-23 22:23:09 +00001990void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner17f71652008-08-17 07:19:36 +00001991 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00001992 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
Yaron Keren92e1b622015-03-18 10:17:07 +00001993 OS << S;
Chris Lattner17f71652008-08-17 07:19:36 +00001994}
1995
Chris Lattner6b695682007-08-16 15:56:55 +00001996// This implements a variety of operations on a representation of
1997// arbitrary precision, two's-complement, bignum integer values.
1998
Chris Lattner96cffa62009-08-23 23:11:28 +00001999// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2000// and unrestricting assumption.
Craig Topper55229b72017-04-02 19:17:22 +00002001static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2002 "Part width must be divisible by 2!");
Chris Lattner6b695682007-08-16 15:56:55 +00002003
2004/* Some handy functions local to this file. */
Chris Lattner6b695682007-08-16 15:56:55 +00002005
Craig Topper76f42462017-03-28 05:32:53 +00002006/* Returns the integer part with the least significant BITS set.
2007 BITS cannot be zero. */
Craig Topper55229b72017-04-02 19:17:22 +00002008static inline APInt::WordType lowBitMask(unsigned bits) {
2009 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002010
Craig Topper55229b72017-04-02 19:17:22 +00002011 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
Craig Topper76f42462017-03-28 05:32:53 +00002012}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002013
Craig Topper76f42462017-03-28 05:32:53 +00002014/* Returns the value of the lower half of PART. */
Craig Topper55229b72017-04-02 19:17:22 +00002015static inline APInt::WordType lowHalf(APInt::WordType part) {
2016 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
Craig Topper76f42462017-03-28 05:32:53 +00002017}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002018
Craig Topper76f42462017-03-28 05:32:53 +00002019/* Returns the value of the upper half of PART. */
Craig Topper55229b72017-04-02 19:17:22 +00002020static inline APInt::WordType highHalf(APInt::WordType part) {
2021 return part >> (APInt::APINT_BITS_PER_WORD / 2);
Craig Topper76f42462017-03-28 05:32:53 +00002022}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002023
Craig Topper76f42462017-03-28 05:32:53 +00002024/* Returns the bit number of the most significant set bit of a part.
2025 If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002026static unsigned partMSB(APInt::WordType value) {
Craig Topper76f42462017-03-28 05:32:53 +00002027 return findLastSet(value, ZB_Max);
2028}
Chris Lattner6b695682007-08-16 15:56:55 +00002029
Craig Topper76f42462017-03-28 05:32:53 +00002030/* Returns the bit number of the least significant set bit of a
2031 part. If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002032static unsigned partLSB(APInt::WordType value) {
Craig Topper76f42462017-03-28 05:32:53 +00002033 return findFirstSet(value, ZB_Max);
Alexander Kornienkof00654e2015-06-23 09:49:53 +00002034}
Chris Lattner6b695682007-08-16 15:56:55 +00002035
2036/* Sets the least significant part of a bignum to the input value, and
2037 zeroes out higher parts. */
Craig Topper55229b72017-04-02 19:17:22 +00002038void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002039 assert(parts > 0);
Neil Boothb6182162007-10-08 13:47:12 +00002040
Chris Lattner6b695682007-08-16 15:56:55 +00002041 dst[0] = part;
Craig Topperb0038162017-03-28 05:32:52 +00002042 for (unsigned i = 1; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002043 dst[i] = 0;
2044}
2045
2046/* Assign one bignum to another. */
Craig Topper55229b72017-04-02 19:17:22 +00002047void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002048 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002049 dst[i] = src[i];
2050}
2051
2052/* Returns true if a bignum is zero, false otherwise. */
Craig Topper55229b72017-04-02 19:17:22 +00002053bool APInt::tcIsZero(const WordType *src, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002054 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002055 if (src[i])
2056 return false;
2057
2058 return true;
2059}
2060
2061/* Extract the given bit of a bignum; returns 0 or 1. */
Craig Topper55229b72017-04-02 19:17:22 +00002062int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
Craig Topper00b47ee2017-04-02 19:35:18 +00002063 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002064}
2065
John McCalldcb9a7a2010-02-28 02:51:25 +00002066/* Set the given bit of a bignum. */
Craig Topper55229b72017-04-02 19:17:22 +00002067void APInt::tcSetBit(WordType *parts, unsigned bit) {
Craig Topper00b47ee2017-04-02 19:35:18 +00002068 parts[whichWord(bit)] |= maskBit(bit);
Chris Lattner6b695682007-08-16 15:56:55 +00002069}
2070
John McCalldcb9a7a2010-02-28 02:51:25 +00002071/* Clears the given bit of a bignum. */
Craig Topper55229b72017-04-02 19:17:22 +00002072void APInt::tcClearBit(WordType *parts, unsigned bit) {
Craig Topper00b47ee2017-04-02 19:35:18 +00002073 parts[whichWord(bit)] &= ~maskBit(bit);
John McCalldcb9a7a2010-02-28 02:51:25 +00002074}
2075
Neil Boothc8b650a2007-10-06 00:43:45 +00002076/* Returns the bit number of the least significant set bit of a
2077 number. If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002078unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
Craig Topperb0038162017-03-28 05:32:52 +00002079 for (unsigned i = 0; i < n; i++) {
2080 if (parts[i] != 0) {
2081 unsigned lsb = partLSB(parts[i]);
Chris Lattner6b695682007-08-16 15:56:55 +00002082
Craig Topper55229b72017-04-02 19:17:22 +00002083 return lsb + i * APINT_BITS_PER_WORD;
Craig Topperb0038162017-03-28 05:32:52 +00002084 }
Chris Lattner6b695682007-08-16 15:56:55 +00002085 }
2086
2087 return -1U;
2088}
2089
Neil Boothc8b650a2007-10-06 00:43:45 +00002090/* Returns the bit number of the most significant set bit of a number.
2091 If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002092unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
Chris Lattner6b695682007-08-16 15:56:55 +00002093 do {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002094 --n;
Chris Lattner6b695682007-08-16 15:56:55 +00002095
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002096 if (parts[n] != 0) {
Craig Topperb0038162017-03-28 05:32:52 +00002097 unsigned msb = partMSB(parts[n]);
Chris Lattner6b695682007-08-16 15:56:55 +00002098
Craig Topper55229b72017-04-02 19:17:22 +00002099 return msb + n * APINT_BITS_PER_WORD;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002100 }
Chris Lattner6b695682007-08-16 15:56:55 +00002101 } while (n);
2102
2103 return -1U;
2104}
2105
Neil Boothb6182162007-10-08 13:47:12 +00002106/* Copy the bit vector of width srcBITS from SRC, starting at bit
2107 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2108 the least significant bit of DST. All high bits above srcBITS in
2109 DST are zero-filled. */
2110void
Craig Topper55229b72017-04-02 19:17:22 +00002111APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
Craig Topper6a8518082017-03-28 05:32:55 +00002112 unsigned srcBits, unsigned srcLSB) {
Craig Topper55229b72017-04-02 19:17:22 +00002113 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002114 assert(dstParts <= dstCount);
Neil Boothb6182162007-10-08 13:47:12 +00002115
Craig Topper55229b72017-04-02 19:17:22 +00002116 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
Neil Boothb6182162007-10-08 13:47:12 +00002117 tcAssign (dst, src + firstSrcPart, dstParts);
2118
Craig Topper55229b72017-04-02 19:17:22 +00002119 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
Neil Boothb6182162007-10-08 13:47:12 +00002120 tcShiftRight (dst, dstParts, shift);
2121
Craig Topper55229b72017-04-02 19:17:22 +00002122 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
Neil Boothb6182162007-10-08 13:47:12 +00002123 in DST. If this is less that srcBits, append the rest, else
2124 clear the high bits. */
Craig Topper55229b72017-04-02 19:17:22 +00002125 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
Neil Boothb6182162007-10-08 13:47:12 +00002126 if (n < srcBits) {
Craig Topper55229b72017-04-02 19:17:22 +00002127 WordType mask = lowBitMask (srcBits - n);
Neil Boothb6182162007-10-08 13:47:12 +00002128 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
Craig Topper55229b72017-04-02 19:17:22 +00002129 << n % APINT_BITS_PER_WORD);
Neil Boothb6182162007-10-08 13:47:12 +00002130 } else if (n > srcBits) {
Craig Topper55229b72017-04-02 19:17:22 +00002131 if (srcBits % APINT_BITS_PER_WORD)
2132 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
Neil Boothb6182162007-10-08 13:47:12 +00002133 }
2134
2135 /* Clear high parts. */
2136 while (dstParts < dstCount)
2137 dst[dstParts++] = 0;
2138}
2139
Chris Lattner6b695682007-08-16 15:56:55 +00002140/* DST += RHS + C where C is zero or one. Returns the carry flag. */
Craig Topper55229b72017-04-02 19:17:22 +00002141APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2142 WordType c, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002143 assert(c <= 1);
2144
Craig Topperb0038162017-03-28 05:32:52 +00002145 for (unsigned i = 0; i < parts; i++) {
Craig Topper55229b72017-04-02 19:17:22 +00002146 WordType l = dst[i];
Chris Lattner6b695682007-08-16 15:56:55 +00002147 if (c) {
2148 dst[i] += rhs[i] + 1;
2149 c = (dst[i] <= l);
2150 } else {
2151 dst[i] += rhs[i];
2152 c = (dst[i] < l);
2153 }
2154 }
2155
2156 return c;
2157}
2158
Craig Topper92fc4772017-04-13 04:36:06 +00002159/// This function adds a single "word" integer, src, to the multiple
2160/// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2161/// 1 is returned if there is a carry out, otherwise 0 is returned.
2162/// @returns the carry of the addition.
2163APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2164 unsigned parts) {
2165 for (unsigned i = 0; i < parts; ++i) {
2166 dst[i] += src;
2167 if (dst[i] >= src)
2168 return 0; // No need to carry so exit early.
2169 src = 1; // Carry one to next digit.
2170 }
2171
2172 return 1;
2173}
2174
Chris Lattner6b695682007-08-16 15:56:55 +00002175/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
Craig Topper55229b72017-04-02 19:17:22 +00002176APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2177 WordType c, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002178 assert(c <= 1);
2179
Craig Topperb0038162017-03-28 05:32:52 +00002180 for (unsigned i = 0; i < parts; i++) {
Craig Topper55229b72017-04-02 19:17:22 +00002181 WordType l = dst[i];
Chris Lattner6b695682007-08-16 15:56:55 +00002182 if (c) {
2183 dst[i] -= rhs[i] + 1;
2184 c = (dst[i] >= l);
2185 } else {
2186 dst[i] -= rhs[i];
2187 c = (dst[i] > l);
2188 }
2189 }
2190
2191 return c;
2192}
2193
Craig Topper92fc4772017-04-13 04:36:06 +00002194/// This function subtracts a single "word" (64-bit word), src, from
2195/// the multi-word integer array, dst[], propagating the borrowed 1 value until
2196/// no further borrowing is needed or it runs out of "words" in dst. The result
2197/// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2198/// exhausted. In other words, if src > dst then this function returns 1,
2199/// otherwise 0.
2200/// @returns the borrow out of the subtraction
2201APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2202 unsigned parts) {
2203 for (unsigned i = 0; i < parts; ++i) {
2204 WordType Dst = dst[i];
2205 dst[i] -= src;
2206 if (src <= Dst)
2207 return 0; // No need to borrow so exit early.
2208 src = 1; // We have to "borrow 1" from next "word"
2209 }
2210
2211 return 1;
2212}
2213
Chris Lattner6b695682007-08-16 15:56:55 +00002214/* Negate a bignum in-place. */
Craig Topper55229b72017-04-02 19:17:22 +00002215void APInt::tcNegate(WordType *dst, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002216 tcComplement(dst, parts);
2217 tcIncrement(dst, parts);
2218}
2219
Neil Boothc8b650a2007-10-06 00:43:45 +00002220/* DST += SRC * MULTIPLIER + CARRY if add is true
2221 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner6b695682007-08-16 15:56:55 +00002222
2223 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2224 they must start at the same point, i.e. DST == SRC.
2225
2226 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2227 returned. Otherwise DST is filled with the least significant
2228 DSTPARTS parts of the result, and if all of the omitted higher
2229 parts were zero return zero, otherwise overflow occurred and
2230 return one. */
Craig Topper55229b72017-04-02 19:17:22 +00002231int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2232 WordType multiplier, WordType carry,
Craig Topper6a8518082017-03-28 05:32:55 +00002233 unsigned srcParts, unsigned dstParts,
2234 bool add) {
Chris Lattner6b695682007-08-16 15:56:55 +00002235 /* Otherwise our writes of DST kill our later reads of SRC. */
2236 assert(dst <= src || dst >= src + srcParts);
2237 assert(dstParts <= srcParts + 1);
2238
2239 /* N loops; minimum of dstParts and srcParts. */
Craig Topper0cbab7c2017-05-08 06:34:39 +00002240 unsigned n = std::min(dstParts, srcParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002241
Craig Topperc96a84d2017-05-08 06:34:41 +00002242 for (unsigned i = 0; i < n; i++) {
Craig Topper55229b72017-04-02 19:17:22 +00002243 WordType low, mid, high, srcPart;
Chris Lattner6b695682007-08-16 15:56:55 +00002244
2245 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2246
2247 This cannot overflow, because
2248
2249 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2250
2251 which is less than n^2. */
2252
2253 srcPart = src[i];
2254
Craig Topper6a8518082017-03-28 05:32:55 +00002255 if (multiplier == 0 || srcPart == 0) {
Chris Lattner6b695682007-08-16 15:56:55 +00002256 low = carry;
2257 high = 0;
2258 } else {
2259 low = lowHalf(srcPart) * lowHalf(multiplier);
2260 high = highHalf(srcPart) * highHalf(multiplier);
2261
2262 mid = lowHalf(srcPart) * highHalf(multiplier);
2263 high += highHalf(mid);
Craig Topper55229b72017-04-02 19:17:22 +00002264 mid <<= APINT_BITS_PER_WORD / 2;
Chris Lattner6b695682007-08-16 15:56:55 +00002265 if (low + mid < low)
2266 high++;
2267 low += mid;
2268
2269 mid = highHalf(srcPart) * lowHalf(multiplier);
2270 high += highHalf(mid);
Craig Topper55229b72017-04-02 19:17:22 +00002271 mid <<= APINT_BITS_PER_WORD / 2;
Chris Lattner6b695682007-08-16 15:56:55 +00002272 if (low + mid < low)
2273 high++;
2274 low += mid;
2275
2276 /* Now add carry. */
2277 if (low + carry < low)
2278 high++;
2279 low += carry;
2280 }
2281
2282 if (add) {
2283 /* And now DST[i], and store the new low part there. */
2284 if (low + dst[i] < low)
2285 high++;
2286 dst[i] += low;
2287 } else
2288 dst[i] = low;
2289
2290 carry = high;
2291 }
2292
Craig Topperc96a84d2017-05-08 06:34:41 +00002293 if (srcParts < dstParts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002294 /* Full multiplication, there is no overflow. */
Craig Topperc96a84d2017-05-08 06:34:41 +00002295 assert(srcParts + 1 == dstParts);
2296 dst[srcParts] = carry;
Chris Lattner6b695682007-08-16 15:56:55 +00002297 return 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002298 }
Craig Toppera6c142a2017-05-08 06:34:36 +00002299
2300 /* We overflowed if there is carry. */
2301 if (carry)
2302 return 1;
2303
2304 /* We would overflow if any significant unwritten parts would be
2305 non-zero. This is true if any remaining src parts are non-zero
2306 and the multiplier is non-zero. */
2307 if (multiplier)
Craig Topperc96a84d2017-05-08 06:34:41 +00002308 for (unsigned i = dstParts; i < srcParts; i++)
Craig Toppera6c142a2017-05-08 06:34:36 +00002309 if (src[i])
2310 return 1;
2311
2312 /* We fitted in the narrow destination. */
2313 return 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002314}
2315
2316/* DST = LHS * RHS, where DST has the same width as the operands and
2317 is filled with the least significant parts of the result. Returns
2318 one if overflow occurred, otherwise zero. DST must be disjoint
2319 from both operands. */
Craig Topper55229b72017-04-02 19:17:22 +00002320int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2321 const WordType *rhs, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002322 assert(dst != lhs && dst != rhs);
2323
Craig Topperb0038162017-03-28 05:32:52 +00002324 int overflow = 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002325 tcSet(dst, 0, parts);
2326
Craig Topperb0038162017-03-28 05:32:52 +00002327 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002328 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2329 parts - i, true);
2330
2331 return overflow;
2332}
2333
Craig Topper0acb6652017-05-09 16:47:33 +00002334/// DST = LHS * RHS, where DST has width the sum of the widths of the
2335/// operands. No overflow occurs. DST must be disjoint from both operands.
2336void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2337 const WordType *rhs, unsigned lhsParts,
2338 unsigned rhsParts) {
Neil Booth0ea72a92007-10-06 00:24:48 +00002339 /* Put the narrower number on the LHS for less loops below. */
Craig Toppera6c142a2017-05-08 06:34:36 +00002340 if (lhsParts > rhsParts)
Neil Booth0ea72a92007-10-06 00:24:48 +00002341 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002342
Craig Toppera6c142a2017-05-08 06:34:36 +00002343 assert(dst != lhs && dst != rhs);
Chris Lattner6b695682007-08-16 15:56:55 +00002344
Craig Toppera6c142a2017-05-08 06:34:36 +00002345 tcSet(dst, 0, rhsParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002346
Craig Toppera6c142a2017-05-08 06:34:36 +00002347 for (unsigned i = 0; i < lhsParts; i++)
2348 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
Chris Lattner6b695682007-08-16 15:56:55 +00002349}
2350
2351/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2352 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2353 set REMAINDER to the remainder, return zero. i.e.
2354
2355 OLD_LHS = RHS * LHS + REMAINDER
2356
2357 SCRATCH is a bignum of the same size as the operands and result for
2358 use by the routine; its contents need not be initialized and are
2359 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2360*/
Craig Topper55229b72017-04-02 19:17:22 +00002361int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2362 WordType *remainder, WordType *srhs,
Craig Topper6a8518082017-03-28 05:32:55 +00002363 unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002364 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2365
Craig Topperb0038162017-03-28 05:32:52 +00002366 unsigned shiftCount = tcMSB(rhs, parts) + 1;
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002367 if (shiftCount == 0)
Chris Lattner6b695682007-08-16 15:56:55 +00002368 return true;
2369
Craig Topper55229b72017-04-02 19:17:22 +00002370 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2371 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2372 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
Chris Lattner6b695682007-08-16 15:56:55 +00002373
2374 tcAssign(srhs, rhs, parts);
2375 tcShiftLeft(srhs, parts, shiftCount);
2376 tcAssign(remainder, lhs, parts);
2377 tcSet(lhs, 0, parts);
2378
2379 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2380 the total. */
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002381 for (;;) {
Craig Toppera584af52017-05-10 07:50:17 +00002382 int compare = tcCompare(remainder, srhs, parts);
2383 if (compare >= 0) {
2384 tcSubtract(remainder, srhs, 0, parts);
2385 lhs[n] |= mask;
2386 }
Chris Lattner6b695682007-08-16 15:56:55 +00002387
Craig Toppera584af52017-05-10 07:50:17 +00002388 if (shiftCount == 0)
2389 break;
2390 shiftCount--;
2391 tcShiftRight(srhs, parts, 1);
2392 if ((mask >>= 1) == 0) {
2393 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2394 n--;
2395 }
Chris Lattner6b695682007-08-16 15:56:55 +00002396 }
2397
2398 return false;
2399}
2400
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002401/// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2402/// no restrictions on Count.
2403void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2404 // Don't bother performing a no-op shift.
2405 if (!Count)
2406 return;
Chris Lattner6b695682007-08-16 15:56:55 +00002407
Craig Topperc6b05682017-04-24 17:00:22 +00002408 // WordShift is the inter-part shift; BitShift is the intra-part shift.
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002409 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2410 unsigned BitShift = Count % APINT_BITS_PER_WORD;
Chris Lattner6b695682007-08-16 15:56:55 +00002411
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002412 // Fastpath for moving by whole words.
2413 if (BitShift == 0) {
2414 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2415 } else {
2416 while (Words-- > WordShift) {
2417 Dst[Words] = Dst[Words - WordShift] << BitShift;
2418 if (Words > WordShift)
2419 Dst[Words] |=
2420 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
Neil Boothb6182162007-10-08 13:47:12 +00002421 }
Neil Boothb6182162007-10-08 13:47:12 +00002422 }
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002423
2424 // Fill in the remainder with 0s.
2425 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
Chris Lattner6b695682007-08-16 15:56:55 +00002426}
2427
Craig Topper9575d8f2017-04-17 21:43:43 +00002428/// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2429/// are no restrictions on Count.
2430void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2431 // Don't bother performing a no-op shift.
2432 if (!Count)
2433 return;
Chris Lattner6b695682007-08-16 15:56:55 +00002434
Craig Topperc6b05682017-04-24 17:00:22 +00002435 // WordShift is the inter-part shift; BitShift is the intra-part shift.
Craig Topper9575d8f2017-04-17 21:43:43 +00002436 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2437 unsigned BitShift = Count % APINT_BITS_PER_WORD;
Chris Lattner6b695682007-08-16 15:56:55 +00002438
Craig Topper9575d8f2017-04-17 21:43:43 +00002439 unsigned WordsToMove = Words - WordShift;
2440 // Fastpath for moving by whole words.
2441 if (BitShift == 0) {
2442 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2443 } else {
2444 for (unsigned i = 0; i != WordsToMove; ++i) {
2445 Dst[i] = Dst[i + WordShift] >> BitShift;
2446 if (i + 1 != WordsToMove)
2447 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
Neil Boothb6182162007-10-08 13:47:12 +00002448 }
Chris Lattner6b695682007-08-16 15:56:55 +00002449 }
Craig Topper9575d8f2017-04-17 21:43:43 +00002450
2451 // Fill in the remainder with 0s.
2452 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
Chris Lattner6b695682007-08-16 15:56:55 +00002453}
2454
2455/* Bitwise and of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002456void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002457 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002458 dst[i] &= rhs[i];
2459}
2460
2461/* Bitwise inclusive or of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002462void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002463 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002464 dst[i] |= rhs[i];
2465}
2466
2467/* Bitwise exclusive or of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002468void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002469 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002470 dst[i] ^= rhs[i];
2471}
2472
2473/* Complement a bignum in-place. */
Craig Topper55229b72017-04-02 19:17:22 +00002474void APInt::tcComplement(WordType *dst, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002475 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002476 dst[i] = ~dst[i];
2477}
2478
2479/* Comparison (unsigned) of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002480int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
Craig Topper6a8518082017-03-28 05:32:55 +00002481 unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002482 while (parts) {
Craig Topper99cfe4f2017-04-01 21:50:06 +00002483 parts--;
Craig Topper1dc8fc82017-04-21 16:13:15 +00002484 if (lhs[parts] != rhs[parts])
2485 return (lhs[parts] > rhs[parts]) ? 1 : -1;
Craig Topper99cfe4f2017-04-01 21:50:06 +00002486 }
Chris Lattner6b695682007-08-16 15:56:55 +00002487
2488 return 0;
2489}
2490
Chris Lattner6b695682007-08-16 15:56:55 +00002491/* Set the least significant BITS bits of a bignum, clear the
2492 rest. */
Craig Topper55229b72017-04-02 19:17:22 +00002493void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
Craig Topper6a8518082017-03-28 05:32:55 +00002494 unsigned bits) {
Craig Topperb0038162017-03-28 05:32:52 +00002495 unsigned i = 0;
Craig Topper55229b72017-04-02 19:17:22 +00002496 while (bits > APINT_BITS_PER_WORD) {
2497 dst[i++] = ~(WordType) 0;
2498 bits -= APINT_BITS_PER_WORD;
Chris Lattner6b695682007-08-16 15:56:55 +00002499 }
2500
2501 if (bits)
Craig Topper55229b72017-04-02 19:17:22 +00002502 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
Chris Lattner6b695682007-08-16 15:56:55 +00002503
2504 while (i < parts)
2505 dst[i++] = 0;
2506}