blob: cbdacad8f28b50addb6ec83185e3829dc1ebb009 [file] [log] [blame]
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001//===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// The InductiveRangeCheckElimination pass splits a loop's iteration space into
10// three disjoint ranges. It does that in a way such that the loop running in
11// the middle loop provably does not need range checks. As an example, it will
12// convert
13//
14// len = < known positive >
15// for (i = 0; i < n; i++) {
16// if (0 <= i && i < len) {
17// do_something();
18// } else {
19// throw_out_of_bounds();
20// }
21// }
22//
23// to
24//
25// len = < known positive >
26// limit = smin(n, len)
27// // no first segment
28// for (i = 0; i < limit; i++) {
29// if (0 <= i && i < len) { // this check is fully redundant
30// do_something();
31// } else {
32// throw_out_of_bounds();
33// }
34// }
35// for (i = limit; i < n; i++) {
36// if (0 <= i && i < len) {
37// do_something();
38// } else {
39// throw_out_of_bounds();
40// }
41// }
42//===----------------------------------------------------------------------===//
43
44#include "llvm/ADT/Optional.h"
Sanjoy Dasdcf26512015-01-27 21:38:12 +000045#include "llvm/Analysis/BranchProbabilityInfo.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000046#include "llvm/Analysis/InstructionSimplify.h"
47#include "llvm/Analysis/LoopInfo.h"
48#include "llvm/Analysis/LoopPass.h"
49#include "llvm/Analysis/ScalarEvolution.h"
50#include "llvm/Analysis/ScalarEvolutionExpander.h"
51#include "llvm/Analysis/ScalarEvolutionExpressions.h"
52#include "llvm/Analysis/ValueTracking.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000053#include "llvm/IR/Dominators.h"
54#include "llvm/IR/Function.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000055#include "llvm/IR/IRBuilder.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000056#include "llvm/IR/Instructions.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000057#include "llvm/IR/Module.h"
58#include "llvm/IR/PatternMatch.h"
59#include "llvm/IR/ValueHandle.h"
60#include "llvm/IR/Verifier.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000061#include "llvm/Pass.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000062#include "llvm/Support/Debug.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000063#include "llvm/Support/raw_ostream.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000064#include "llvm/Transforms/Scalar.h"
65#include "llvm/Transforms/Utils/BasicBlockUtils.h"
66#include "llvm/Transforms/Utils/Cloning.h"
67#include "llvm/Transforms/Utils/LoopUtils.h"
68#include "llvm/Transforms/Utils/SimplifyIndVar.h"
69#include "llvm/Transforms/Utils/UnrollLoop.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000070#include <array>
71
72using namespace llvm;
73
Benjamin Kramer970eac42015-02-06 17:51:54 +000074static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
75 cl::init(64));
Sanjoy Dasa1837a32015-01-16 01:03:22 +000076
Benjamin Kramer970eac42015-02-06 17:51:54 +000077static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
78 cl::init(false));
Sanjoy Dasa1837a32015-01-16 01:03:22 +000079
Sanjoy Das9c1bfae2015-03-17 01:40:22 +000080static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
81 cl::init(false));
82
Sanjoy Dase91665d2015-02-26 08:56:04 +000083static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
84 cl::Hidden, cl::init(10));
85
Sanjoy Dasa1837a32015-01-16 01:03:22 +000086#define DEBUG_TYPE "irce"
87
88namespace {
89
90/// An inductive range check is conditional branch in a loop with
91///
92/// 1. a very cold successor (i.e. the branch jumps to that successor very
93/// rarely)
94///
95/// and
96///
Sanjoy Dase2cde6f2015-03-17 00:42:13 +000097/// 2. a condition that is provably true for some contiguous range of values
98/// taken by the containing loop's induction variable.
Sanjoy Dasa1837a32015-01-16 01:03:22 +000099///
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000100class InductiveRangeCheck {
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000101 // Classifies a range check
Reid Kleckner0b168592015-03-17 16:50:20 +0000102 enum RangeCheckKind : unsigned {
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000103 // Range check of the form "0 <= I".
104 RANGE_CHECK_LOWER = 1,
105
106 // Range check of the form "I < L" where L is known positive.
107 RANGE_CHECK_UPPER = 2,
108
109 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
110 // conditions.
111 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
112
113 // Unrecognized range check condition.
114 RANGE_CHECK_UNKNOWN = (unsigned)-1
115 };
116
117 static const char *rangeCheckKindToStr(RangeCheckKind);
118
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000119 const SCEV *Offset;
120 const SCEV *Scale;
121 Value *Length;
122 BranchInst *Branch;
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000123 RangeCheckKind Kind;
124
Sanjoy Das337d46b2015-03-24 19:29:18 +0000125 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
126 ScalarEvolution &SE, Value *&Index,
127 Value *&Length);
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000128
129 static InductiveRangeCheck::RangeCheckKind
130 parseRangeCheck(Loop *L, ScalarEvolution &SE, Value *Condition,
131 const SCEV *&Index, Value *&UpperLimit);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000132
133 InductiveRangeCheck() :
134 Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { }
135
136public:
137 const SCEV *getOffset() const { return Offset; }
138 const SCEV *getScale() const { return Scale; }
139 Value *getLength() const { return Length; }
140
141 void print(raw_ostream &OS) const {
142 OS << "InductiveRangeCheck:\n";
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000143 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n";
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000144 OS << " Offset: ";
145 Offset->print(OS);
146 OS << " Scale: ";
147 Scale->print(OS);
148 OS << " Length: ";
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000149 if (Length)
150 Length->print(OS);
151 else
152 OS << "(null)";
153 OS << "\n Branch: ";
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000154 getBranch()->print(OS);
Sanjoy Das48c75812015-02-26 04:03:31 +0000155 OS << "\n";
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000156 }
157
158#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
159 void dump() {
160 print(dbgs());
161 }
162#endif
163
164 BranchInst *getBranch() const { return Branch; }
165
Sanjoy Das351db052015-01-22 09:32:02 +0000166 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
167 /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
168
169 class Range {
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000170 const SCEV *Begin;
171 const SCEV *End;
Sanjoy Das351db052015-01-22 09:32:02 +0000172
173 public:
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000174 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
Sanjoy Das351db052015-01-22 09:32:02 +0000175 assert(Begin->getType() == End->getType() && "ill-typed range!");
176 }
177
178 Type *getType() const { return Begin->getType(); }
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000179 const SCEV *getBegin() const { return Begin; }
180 const SCEV *getEnd() const { return End; }
Sanjoy Das351db052015-01-22 09:32:02 +0000181 };
182
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000183 typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
184
185 /// This is the value the condition of the branch needs to evaluate to for the
186 /// branch to take the hot successor (see (1) above).
187 bool getPassingDirection() { return true; }
188
Sanjoy Das95c476d2015-02-21 22:20:22 +0000189 /// Computes a range for the induction variable (IndVar) in which the range
190 /// check is redundant and can be constant-folded away. The induction
191 /// variable is not required to be the canonical {0,+,1} induction variable.
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000192 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
Sanjoy Das95c476d2015-02-21 22:20:22 +0000193 const SCEVAddRecExpr *IndVar,
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000194 IRBuilder<> &B) const;
195
196 /// Create an inductive range check out of BI if possible, else return
197 /// nullptr.
198 static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI,
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000199 Loop *L, ScalarEvolution &SE,
200 BranchProbabilityInfo &BPI);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000201};
202
203class InductiveRangeCheckElimination : public LoopPass {
204 InductiveRangeCheck::AllocatorTy Allocator;
205
206public:
207 static char ID;
208 InductiveRangeCheckElimination() : LoopPass(ID) {
209 initializeInductiveRangeCheckEliminationPass(
210 *PassRegistry::getPassRegistry());
211 }
212
213 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000214 AU.addRequired<LoopInfoWrapperPass>();
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000215 AU.addRequiredID(LoopSimplifyID);
216 AU.addRequiredID(LCSSAID);
217 AU.addRequired<ScalarEvolution>();
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000218 AU.addRequired<BranchProbabilityInfo>();
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000219 }
220
221 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
222};
223
224char InductiveRangeCheckElimination::ID = 0;
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000225}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000226
227INITIALIZE_PASS(InductiveRangeCheckElimination, "irce",
228 "Inductive range check elimination", false, false)
229
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000230const char *InductiveRangeCheck::rangeCheckKindToStr(
231 InductiveRangeCheck::RangeCheckKind RCK) {
232 switch (RCK) {
233 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
234 return "RANGE_CHECK_UNKNOWN";
235
236 case InductiveRangeCheck::RANGE_CHECK_UPPER:
237 return "RANGE_CHECK_UPPER";
238
239 case InductiveRangeCheck::RANGE_CHECK_LOWER:
240 return "RANGE_CHECK_LOWER";
241
242 case InductiveRangeCheck::RANGE_CHECK_BOTH:
243 return "RANGE_CHECK_BOTH";
244 }
245
246 llvm_unreachable("unknown range check type!");
247}
248
249/// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI`
250/// cannot
251/// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
252/// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value
253/// being
254/// range checked, and set `Length` to the upper limit `Index` is being range
255/// checked with if (and only if) the range check type is stronger or equal to
256/// RANGE_CHECK_UPPER.
257///
258InductiveRangeCheck::RangeCheckKind
Sanjoy Das337d46b2015-03-24 19:29:18 +0000259InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
260 ScalarEvolution &SE, Value *&Index,
261 Value *&Length) {
262
263 auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
264 const SCEV *S = SE.getSCEV(V);
265 if (isa<SCEVCouldNotCompute>(S))
266 return false;
267
268 return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
269 SE.isKnownNonNegative(S);
270 };
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000271
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000272 using namespace llvm::PatternMatch;
273
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000274 ICmpInst::Predicate Pred = ICI->getPredicate();
275 Value *LHS = ICI->getOperand(0);
276 Value *RHS = ICI->getOperand(1);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000277
278 switch (Pred) {
279 default:
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000280 return RANGE_CHECK_UNKNOWN;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000281
282 case ICmpInst::ICMP_SLE:
283 std::swap(LHS, RHS);
284 // fallthrough
285 case ICmpInst::ICMP_SGE:
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000286 if (match(RHS, m_ConstantInt<0>())) {
287 Index = LHS;
288 return RANGE_CHECK_LOWER;
289 }
290 return RANGE_CHECK_UNKNOWN;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000291
292 case ICmpInst::ICMP_SLT:
293 std::swap(LHS, RHS);
294 // fallthrough
295 case ICmpInst::ICMP_SGT:
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000296 if (match(RHS, m_ConstantInt<-1>())) {
297 Index = LHS;
298 return RANGE_CHECK_LOWER;
299 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000300
Sanjoy Das337d46b2015-03-24 19:29:18 +0000301 if (IsNonNegativeAndNotLoopVarying(LHS)) {
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000302 Index = RHS;
303 Length = LHS;
304 return RANGE_CHECK_UPPER;
305 }
306 return RANGE_CHECK_UNKNOWN;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000307
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000308 case ICmpInst::ICMP_ULT:
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000309 std::swap(LHS, RHS);
310 // fallthrough
311 case ICmpInst::ICMP_UGT:
Sanjoy Das337d46b2015-03-24 19:29:18 +0000312 if (IsNonNegativeAndNotLoopVarying(LHS)) {
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000313 Index = RHS;
314 Length = LHS;
315 return RANGE_CHECK_BOTH;
316 }
317 return RANGE_CHECK_UNKNOWN;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000318 }
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000319
320 llvm_unreachable("default clause returns!");
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000321}
322
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000323/// Parses an arbitrary condition into a range check. `Length` is set only if
324/// the range check is recognized to be `RANGE_CHECK_UPPER` or stronger.
325InductiveRangeCheck::RangeCheckKind
326InductiveRangeCheck::parseRangeCheck(Loop *L, ScalarEvolution &SE,
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000327 Value *Condition, const SCEV *&Index,
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000328 Value *&Length) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000329 using namespace llvm::PatternMatch;
330
331 Value *A = nullptr;
332 Value *B = nullptr;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000333
334 if (match(Condition, m_And(m_Value(A), m_Value(B)))) {
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000335 Value *IndexA = nullptr, *IndexB = nullptr;
336 Value *LengthA = nullptr, *LengthB = nullptr;
337 ICmpInst *ICmpA = dyn_cast<ICmpInst>(A), *ICmpB = dyn_cast<ICmpInst>(B);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000338
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000339 if (!ICmpA || !ICmpB)
340 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000341
Sanjoy Das337d46b2015-03-24 19:29:18 +0000342 auto RCKindA = parseRangeCheckICmp(L, ICmpA, SE, IndexA, LengthA);
343 auto RCKindB = parseRangeCheckICmp(L, ICmpB, SE, IndexB, LengthB);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000344
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000345 if (RCKindA == InductiveRangeCheck::RANGE_CHECK_UNKNOWN ||
346 RCKindB == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
347 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000348
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000349 if (IndexA != IndexB)
350 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
351
352 if (LengthA != nullptr && LengthB != nullptr && LengthA != LengthB)
353 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
354
355 Index = SE.getSCEV(IndexA);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000356 if (isa<SCEVCouldNotCompute>(Index))
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000357 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000358
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000359 Length = LengthA == nullptr ? LengthB : LengthA;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000360
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000361 return (InductiveRangeCheck::RangeCheckKind)(RCKindA | RCKindB);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000362 }
363
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000364 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
365 Value *IndexVal = nullptr;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000366
Sanjoy Das337d46b2015-03-24 19:29:18 +0000367 auto RCKind = parseRangeCheckICmp(L, ICI, SE, IndexVal, Length);
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000368
369 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
370 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
371
372 Index = SE.getSCEV(IndexVal);
373 if (isa<SCEVCouldNotCompute>(Index))
374 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
375
376 return RCKind;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000377 }
378
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000379 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000380}
381
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000382
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000383InductiveRangeCheck *
384InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000385 Loop *L, ScalarEvolution &SE,
386 BranchProbabilityInfo &BPI) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000387
388 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
389 return nullptr;
390
Sanjoy Dasdcf26512015-01-27 21:38:12 +0000391 BranchProbability LikelyTaken(15, 16);
392
393 if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken)
394 return nullptr;
395
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000396 Value *Length = nullptr;
397 const SCEV *IndexSCEV = nullptr;
398
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000399 auto RCKind = InductiveRangeCheck::parseRangeCheck(L, SE, BI->getCondition(),
400 IndexSCEV, Length);
401
402 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000403 return nullptr;
404
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000405 assert(IndexSCEV && "contract with SplitRangeCheckCondition!");
David Blaikiec4dfa632015-03-17 17:48:24 +0000406 assert((!(RCKind & InductiveRangeCheck::RANGE_CHECK_UPPER) || Length) &&
407 "contract with SplitRangeCheckCondition!");
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000408
409 const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV);
410 bool IsAffineIndex =
411 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
412
413 if (!IsAffineIndex)
414 return nullptr;
415
416 InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck;
417 IRC->Length = Length;
418 IRC->Offset = IndexAddRec->getStart();
419 IRC->Scale = IndexAddRec->getStepRecurrence(SE);
420 IRC->Branch = BI;
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000421 IRC->Kind = RCKind;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000422 return IRC;
423}
424
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000425namespace {
426
Sanjoy Dase75ed922015-02-26 08:19:31 +0000427// Keeps track of the structure of a loop. This is similar to llvm::Loop,
428// except that it is more lightweight and can track the state of a loop through
429// changing and potentially invalid IR. This structure also formalizes the
430// kinds of loops we can deal with -- ones that have a single latch that is also
431// an exiting block *and* have a canonical induction variable.
432struct LoopStructure {
433 const char *Tag;
434
435 BasicBlock *Header;
436 BasicBlock *Latch;
437
438 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
439 // successor is `LatchExit', the exit block of the loop.
440 BranchInst *LatchBr;
441 BasicBlock *LatchExit;
442 unsigned LatchBrExitIdx;
443
444 Value *IndVarNext;
445 Value *IndVarStart;
446 Value *LoopExitAt;
447 bool IndVarIncreasing;
448
449 LoopStructure()
450 : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
451 LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
452 IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
453
454 template <typename M> LoopStructure map(M Map) const {
455 LoopStructure Result;
456 Result.Tag = Tag;
457 Result.Header = cast<BasicBlock>(Map(Header));
458 Result.Latch = cast<BasicBlock>(Map(Latch));
459 Result.LatchBr = cast<BranchInst>(Map(LatchBr));
460 Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
461 Result.LatchBrExitIdx = LatchBrExitIdx;
462 Result.IndVarNext = Map(IndVarNext);
463 Result.IndVarStart = Map(IndVarStart);
464 Result.LoopExitAt = Map(LoopExitAt);
465 Result.IndVarIncreasing = IndVarIncreasing;
466 return Result;
467 }
468
Sanjoy Dase91665d2015-02-26 08:56:04 +0000469 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
470 BranchProbabilityInfo &BPI,
471 Loop &,
Sanjoy Dase75ed922015-02-26 08:19:31 +0000472 const char *&);
473};
474
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000475/// This class is used to constrain loops to run within a given iteration space.
476/// The algorithm this class implements is given a Loop and a range [Begin,
477/// End). The algorithm then tries to break out a "main loop" out of the loop
478/// it is given in a way that the "main loop" runs with the induction variable
479/// in a subset of [Begin, End). The algorithm emits appropriate pre and post
480/// loops to run any remaining iterations. The pre loop runs any iterations in
481/// which the induction variable is < Begin, and the post loop runs any
482/// iterations in which the induction variable is >= End.
483///
484class LoopConstrainer {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000485 // The representation of a clone of the original loop we started out with.
486 struct ClonedLoop {
487 // The cloned blocks
488 std::vector<BasicBlock *> Blocks;
489
490 // `Map` maps values in the clonee into values in the cloned version
491 ValueToValueMapTy Map;
492
493 // An instance of `LoopStructure` for the cloned loop
494 LoopStructure Structure;
495 };
496
497 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
498 // more details on what these fields mean.
499 struct RewrittenRangeInfo {
500 BasicBlock *PseudoExit;
501 BasicBlock *ExitSelector;
502 std::vector<PHINode *> PHIValuesAtPseudoExit;
Sanjoy Dase75ed922015-02-26 08:19:31 +0000503 PHINode *IndVarEnd;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000504
Sanjoy Dase75ed922015-02-26 08:19:31 +0000505 RewrittenRangeInfo()
506 : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000507 };
508
509 // Calculated subranges we restrict the iteration space of the main loop to.
510 // See the implementation of `calculateSubRanges' for more details on how
Sanjoy Dase75ed922015-02-26 08:19:31 +0000511 // these fields are computed. `LowLimit` is None if there is no restriction
512 // on low end of the restricted iteration space of the main loop. `HighLimit`
513 // is None if there is no restriction on high end of the restricted iteration
514 // space of the main loop.
515
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000516 struct SubRanges {
Sanjoy Dase75ed922015-02-26 08:19:31 +0000517 Optional<const SCEV *> LowLimit;
518 Optional<const SCEV *> HighLimit;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000519 };
520
521 // A utility function that does a `replaceUsesOfWith' on the incoming block
522 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
523 // incoming block list with `ReplaceBy'.
524 static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
525 BasicBlock *ReplaceBy);
526
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000527 // Compute a safe set of limits for the main loop to run in -- effectively the
528 // intersection of `Range' and the iteration space of the original loop.
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000529 // Return None if unable to compute the set of subranges.
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000530 //
Sanjoy Dase75ed922015-02-26 08:19:31 +0000531 Optional<SubRanges> calculateSubRanges() const;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000532
533 // Clone `OriginalLoop' and return the result in CLResult. The IR after
534 // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
535 // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
536 // but there is no such edge.
537 //
538 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
539
540 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
541 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
542 // iteration space is not changed. `ExitLoopAt' is assumed to be slt
543 // `OriginalHeaderCount'.
544 //
545 // If there are iterations left to execute, control is made to jump to
546 // `ContinuationBlock', otherwise they take the normal loop exit. The
547 // returned `RewrittenRangeInfo' object is populated as follows:
548 //
549 // .PseudoExit is a basic block that unconditionally branches to
550 // `ContinuationBlock'.
551 //
552 // .ExitSelector is a basic block that decides, on exit from the loop,
553 // whether to branch to the "true" exit or to `PseudoExit'.
554 //
555 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
556 // for each PHINode in the loop header on taking the pseudo exit.
557 //
558 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
559 // preheader because it is made to branch to the loop header only
560 // conditionally.
561 //
562 RewrittenRangeInfo
563 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
564 Value *ExitLoopAt,
565 BasicBlock *ContinuationBlock) const;
566
567 // The loop denoted by `LS' has `OldPreheader' as its preheader. This
568 // function creates a new preheader for `LS' and returns it.
569 //
Sanjoy Dase75ed922015-02-26 08:19:31 +0000570 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
571 const char *Tag) const;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000572
573 // `ContinuationBlockAndPreheader' was the continuation block for some call to
574 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
575 // This function rewrites the PHI nodes in `LS.Header' to start with the
576 // correct value.
577 void rewriteIncomingValuesForPHIs(
Sanjoy Dase75ed922015-02-26 08:19:31 +0000578 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000579 const LoopConstrainer::RewrittenRangeInfo &RRI) const;
580
581 // Even though we do not preserve any passes at this time, we at least need to
582 // keep the parent loop structure consistent. The `LPPassManager' seems to
583 // verify this after running a loop pass. This function adds the list of
Benjamin Kramer39f76ac2015-02-06 14:43:49 +0000584 // blocks denoted by BBs to this loops parent loop if required.
585 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000586
587 // Some global state.
588 Function &F;
589 LLVMContext &Ctx;
590 ScalarEvolution &SE;
591
592 // Information about the original loop we started out with.
593 Loop &OriginalLoop;
594 LoopInfo &OriginalLoopInfo;
595 const SCEV *LatchTakenCount;
596 BasicBlock *OriginalPreheader;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000597
598 // The preheader of the main loop. This may or may not be different from
599 // `OriginalPreheader'.
600 BasicBlock *MainLoopPreheader;
601
602 // The range we need to run the main loop in.
603 InductiveRangeCheck::Range Range;
604
605 // The structure of the main loop (see comment at the beginning of this class
606 // for a definition)
607 LoopStructure MainLoopStructure;
608
609public:
Sanjoy Dase75ed922015-02-26 08:19:31 +0000610 LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
611 ScalarEvolution &SE, InductiveRangeCheck::Range R)
612 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
613 SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
614 OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
615 MainLoopStructure(LS) {}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000616
617 // Entry point for the algorithm. Returns true on success.
618 bool run();
619};
620
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000621}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000622
623void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
624 BasicBlock *ReplaceBy) {
625 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
626 if (PN->getIncomingBlock(i) == Block)
627 PN->setIncomingBlock(i, ReplaceBy);
628}
629
Sanjoy Dase75ed922015-02-26 08:19:31 +0000630static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
631 APInt SMax =
632 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
633 return SE.getSignedRange(S).contains(SMax) &&
634 SE.getUnsignedRange(S).contains(SMax);
635}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000636
Sanjoy Dase75ed922015-02-26 08:19:31 +0000637static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
638 APInt SMin =
639 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
640 return SE.getSignedRange(S).contains(SMin) &&
641 SE.getUnsignedRange(S).contains(SMin);
642}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000643
Sanjoy Dase75ed922015-02-26 08:19:31 +0000644Optional<LoopStructure>
Sanjoy Dase91665d2015-02-26 08:56:04 +0000645LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
646 Loop &L, const char *&FailureReason) {
Sanjoy Dase75ed922015-02-26 08:19:31 +0000647 assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
648
649 BasicBlock *Latch = L.getLoopLatch();
650 if (!L.isLoopExiting(Latch)) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000651 FailureReason = "no loop latch";
Sanjoy Dase75ed922015-02-26 08:19:31 +0000652 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000653 }
654
Sanjoy Dase75ed922015-02-26 08:19:31 +0000655 BasicBlock *Header = L.getHeader();
656 BasicBlock *Preheader = L.getLoopPreheader();
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000657 if (!Preheader) {
658 FailureReason = "no preheader";
Sanjoy Dase75ed922015-02-26 08:19:31 +0000659 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000660 }
661
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000662 BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000663 if (!LatchBr || LatchBr->isUnconditional()) {
664 FailureReason = "latch terminator not conditional branch";
Sanjoy Dase75ed922015-02-26 08:19:31 +0000665 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000666 }
667
Sanjoy Dase75ed922015-02-26 08:19:31 +0000668 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000669
Sanjoy Dase91665d2015-02-26 08:56:04 +0000670 BranchProbability ExitProbability =
671 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
672
673 if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
674 FailureReason = "short running loop, not profitable";
675 return None;
676 }
677
Sanjoy Dase75ed922015-02-26 08:19:31 +0000678 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
679 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
680 FailureReason = "latch terminator branch not conditional on integral icmp";
681 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000682 }
683
Sanjoy Dase75ed922015-02-26 08:19:31 +0000684 const SCEV *LatchCount = SE.getExitCount(&L, Latch);
685 if (isa<SCEVCouldNotCompute>(LatchCount)) {
686 FailureReason = "could not compute latch count";
687 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000688 }
689
Sanjoy Dase75ed922015-02-26 08:19:31 +0000690 ICmpInst::Predicate Pred = ICI->getPredicate();
691 Value *LeftValue = ICI->getOperand(0);
692 const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
693 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
694
695 Value *RightValue = ICI->getOperand(1);
696 const SCEV *RightSCEV = SE.getSCEV(RightValue);
697
698 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
699 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
700 if (isa<SCEVAddRecExpr>(RightSCEV)) {
701 std::swap(LeftSCEV, RightSCEV);
702 std::swap(LeftValue, RightValue);
703 Pred = ICmpInst::getSwappedPredicate(Pred);
704 } else {
705 FailureReason = "no add recurrences in the icmp";
706 return None;
707 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000708 }
709
Sanjoy Das45dc94a2015-03-24 19:29:22 +0000710 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
711 if (AR->getNoWrapFlags(SCEV::FlagNSW))
712 return true;
Sanjoy Dase75ed922015-02-26 08:19:31 +0000713
714 IntegerType *Ty = cast<IntegerType>(AR->getType());
715 IntegerType *WideTy =
716 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
717
Sanjoy Das45dc94a2015-03-24 19:29:22 +0000718 const SCEVAddRecExpr *ExtendAfterOp =
719 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
720 if (ExtendAfterOp) {
721 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
722 const SCEV *ExtendedStep =
723 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
724
725 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
726 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
727
728 if (NoSignedWrap)
729 return true;
730 }
731
732 // We may have proved this when computing the sign extension above.
733 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
734 };
735
736 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
737 if (!AR->isAffine())
738 return false;
739
Sanjoy Dase75ed922015-02-26 08:19:31 +0000740 // Currently we only work with induction variables that have been proved to
741 // not wrap. This restriction can potentially be lifted in the future.
742
Sanjoy Das45dc94a2015-03-24 19:29:22 +0000743 if (!HasNoSignedWrap(AR))
Sanjoy Dase75ed922015-02-26 08:19:31 +0000744 return false;
745
746 if (const SCEVConstant *StepExpr =
747 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
748 ConstantInt *StepCI = StepExpr->getValue();
749 if (StepCI->isOne() || StepCI->isMinusOne()) {
750 IsIncreasing = StepCI->isOne();
751 return true;
752 }
753 }
754
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000755 return false;
Sanjoy Dase75ed922015-02-26 08:19:31 +0000756 };
757
758 // `ICI` is interpreted as taking the backedge if the *next* value of the
759 // induction variable satisfies some constraint.
760
761 const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
762 bool IsIncreasing = false;
763 if (!IsInductionVar(IndVarNext, IsIncreasing)) {
764 FailureReason = "LHS in icmp not induction variable";
765 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000766 }
767
Sanjoy Dase75ed922015-02-26 08:19:31 +0000768 ConstantInt *One = ConstantInt::get(IndVarTy, 1);
769 // TODO: generalize the predicates here to also match their unsigned variants.
770 if (IsIncreasing) {
771 bool FoundExpectedPred =
772 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
773 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
774
775 if (!FoundExpectedPred) {
776 FailureReason = "expected icmp slt semantically, found something else";
777 return None;
778 }
779
780 if (LatchBrExitIdx == 0) {
781 if (CanBeSMax(SE, RightSCEV)) {
782 // TODO: this restriction is easily removable -- we just have to
783 // remember that the icmp was an slt and not an sle.
784 FailureReason = "limit may overflow when coercing sle to slt";
785 return None;
786 }
787
788 IRBuilder<> B(&*Preheader->rbegin());
789 RightValue = B.CreateAdd(RightValue, One);
790 }
791
792 } else {
793 bool FoundExpectedPred =
794 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
795 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
796
797 if (!FoundExpectedPred) {
798 FailureReason = "expected icmp sgt semantically, found something else";
799 return None;
800 }
801
802 if (LatchBrExitIdx == 0) {
803 if (CanBeSMin(SE, RightSCEV)) {
804 // TODO: this restriction is easily removable -- we just have to
805 // remember that the icmp was an sgt and not an sge.
806 FailureReason = "limit may overflow when coercing sge to sgt";
807 return None;
808 }
809
810 IRBuilder<> B(&*Preheader->rbegin());
811 RightValue = B.CreateSub(RightValue, One);
812 }
813 }
814
815 const SCEV *StartNext = IndVarNext->getStart();
816 const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
817 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
818
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000819 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
820
Sanjoy Dase75ed922015-02-26 08:19:31 +0000821 assert(SE.getLoopDisposition(LatchCount, &L) ==
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000822 ScalarEvolution::LoopInvariant &&
823 "loop variant exit count doesn't make sense!");
824
Sanjoy Dase75ed922015-02-26 08:19:31 +0000825 assert(!L.contains(LatchExit) && "expected an exit block!");
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000826 const DataLayout &DL = Preheader->getModule()->getDataLayout();
827 Value *IndVarStartV =
828 SCEVExpander(SE, DL, "irce")
829 .expandCodeFor(IndVarStart, IndVarTy, &*Preheader->rbegin());
Sanjoy Dase75ed922015-02-26 08:19:31 +0000830 IndVarStartV->setName("indvar.start");
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000831
Sanjoy Dase75ed922015-02-26 08:19:31 +0000832 LoopStructure Result;
833
834 Result.Tag = "main";
835 Result.Header = Header;
836 Result.Latch = Latch;
837 Result.LatchBr = LatchBr;
838 Result.LatchExit = LatchExit;
839 Result.LatchBrExitIdx = LatchBrExitIdx;
840 Result.IndVarStart = IndVarStartV;
841 Result.IndVarNext = LeftValue;
842 Result.IndVarIncreasing = IsIncreasing;
843 Result.LoopExitAt = RightValue;
844
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000845 FailureReason = nullptr;
846
Sanjoy Dase75ed922015-02-26 08:19:31 +0000847 return Result;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000848}
849
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000850Optional<LoopConstrainer::SubRanges>
Sanjoy Dase75ed922015-02-26 08:19:31 +0000851LoopConstrainer::calculateSubRanges() const {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000852 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
853
Sanjoy Das351db052015-01-22 09:32:02 +0000854 if (Range.getType() != Ty)
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000855 return None;
856
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000857 LoopConstrainer::SubRanges Result;
858
859 // I think we can be more aggressive here and make this nuw / nsw if the
860 // addition that feeds into the icmp for the latch's terminating branch is nuw
861 // / nsw. In any case, a wrapping 2's complement addition is safe.
862 ConstantInt *One = ConstantInt::get(Ty, 1);
Sanjoy Dase75ed922015-02-26 08:19:31 +0000863 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
864 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000865
Sanjoy Dase75ed922015-02-26 08:19:31 +0000866 bool Increasing = MainLoopStructure.IndVarIncreasing;
Sanjoy Das7a0b7f52015-03-17 00:42:16 +0000867
Sanjoy Dase75ed922015-02-26 08:19:31 +0000868 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
869 // range of values the induction variable takes.
Sanjoy Das7a0b7f52015-03-17 00:42:16 +0000870
871 const SCEV *Smallest = nullptr, *Greatest = nullptr;
872
873 if (Increasing) {
874 Smallest = Start;
875 Greatest = End;
876 } else {
877 // These two computations may sign-overflow. Here is why that is okay:
878 //
879 // We know that the induction variable does not sign-overflow on any
880 // iteration except the last one, and it starts at `Start` and ends at
881 // `End`, decrementing by one every time.
882 //
883 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
884 // induction variable is decreasing we know that that the smallest value
885 // the loop body is actually executed with is `INT_SMIN` == `Smallest`.
886 //
887 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
888 // that case, `Clamp` will always return `Smallest` and
889 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
890 // will be an empty range. Returning an empty range is always safe.
891 //
892
893 Smallest = SE.getAddExpr(End, SE.getSCEV(One));
894 Greatest = SE.getAddExpr(Start, SE.getSCEV(One));
895 }
Sanjoy Dase75ed922015-02-26 08:19:31 +0000896
897 auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
898 return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
899 };
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000900
901 // In some cases we can prove that we don't need a pre or post loop
902
903 bool ProvablyNoPreloop =
Sanjoy Dase75ed922015-02-26 08:19:31 +0000904 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
905 if (!ProvablyNoPreloop)
906 Result.LowLimit = Clamp(Range.getBegin());
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000907
908 bool ProvablyNoPostLoop =
Sanjoy Dase75ed922015-02-26 08:19:31 +0000909 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
910 if (!ProvablyNoPostLoop)
911 Result.HighLimit = Clamp(Range.getEnd());
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000912
913 return Result;
914}
915
916void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
917 const char *Tag) const {
918 for (BasicBlock *BB : OriginalLoop.getBlocks()) {
919 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
920 Result.Blocks.push_back(Clone);
921 Result.Map[BB] = Clone;
922 }
923
924 auto GetClonedValue = [&Result](Value *V) {
925 assert(V && "null values not in domain!");
926 auto It = Result.Map.find(V);
927 if (It == Result.Map.end())
928 return V;
929 return static_cast<Value *>(It->second);
930 };
931
932 Result.Structure = MainLoopStructure.map(GetClonedValue);
933 Result.Structure.Tag = Tag;
934
935 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
936 BasicBlock *ClonedBB = Result.Blocks[i];
937 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
938
939 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
940
941 for (Instruction &I : *ClonedBB)
942 RemapInstruction(&I, Result.Map,
943 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
944
945 // Exit blocks will now have one more predecessor and their PHI nodes need
946 // to be edited to reflect that. No phi nodes need to be introduced because
947 // the loop is in LCSSA.
948
949 for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
950 SBBI != SBBE; ++SBBI) {
951
952 if (OriginalLoop.contains(*SBBI))
953 continue; // not an exit block
954
955 for (Instruction &I : **SBBI) {
956 if (!isa<PHINode>(&I))
957 break;
958
959 PHINode *PN = cast<PHINode>(&I);
960 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
961 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
962 }
963 }
964 }
965}
966
967LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
Sanjoy Dase75ed922015-02-26 08:19:31 +0000968 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000969 BasicBlock *ContinuationBlock) const {
970
971 // We start with a loop with a single latch:
972 //
973 // +--------------------+
974 // | |
975 // | preheader |
976 // | |
977 // +--------+-----------+
978 // | ----------------\
979 // | / |
980 // +--------v----v------+ |
981 // | | |
982 // | header | |
983 // | | |
984 // +--------------------+ |
985 // |
986 // ..... |
987 // |
988 // +--------------------+ |
989 // | | |
990 // | latch >----------/
991 // | |
992 // +-------v------------+
993 // |
994 // |
995 // | +--------------------+
996 // | | |
997 // +---> original exit |
998 // | |
999 // +--------------------+
1000 //
1001 // We change the control flow to look like
1002 //
1003 //
1004 // +--------------------+
1005 // | |
1006 // | preheader >-------------------------+
1007 // | | |
1008 // +--------v-----------+ |
1009 // | /-------------+ |
1010 // | / | |
1011 // +--------v--v--------+ | |
1012 // | | | |
1013 // | header | | +--------+ |
1014 // | | | | | |
1015 // +--------------------+ | | +-----v-----v-----------+
1016 // | | | |
1017 // | | | .pseudo.exit |
1018 // | | | |
1019 // | | +-----------v-----------+
1020 // | | |
1021 // ..... | | |
1022 // | | +--------v-------------+
1023 // +--------------------+ | | | |
1024 // | | | | | ContinuationBlock |
1025 // | latch >------+ | | |
1026 // | | | +----------------------+
1027 // +---------v----------+ |
1028 // | |
1029 // | |
1030 // | +---------------^-----+
1031 // | | |
1032 // +-----> .exit.selector |
1033 // | |
1034 // +----------v----------+
1035 // |
1036 // +--------------------+ |
1037 // | | |
1038 // | original exit <----+
1039 // | |
1040 // +--------------------+
1041 //
1042
1043 RewrittenRangeInfo RRI;
1044
1045 auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
1046 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1047 &F, BBInsertLocation);
1048 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1049 BBInsertLocation);
1050
1051 BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
Sanjoy Dase75ed922015-02-26 08:19:31 +00001052 bool Increasing = LS.IndVarIncreasing;
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001053
1054 IRBuilder<> B(PreheaderJump);
1055
1056 // EnterLoopCond - is it okay to start executing this `LS'?
Sanjoy Dase75ed922015-02-26 08:19:31 +00001057 Value *EnterLoopCond = Increasing
1058 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
1059 : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
1060
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001061 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1062 PreheaderJump->eraseFromParent();
1063
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001064 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
Sanjoy Dase75ed922015-02-26 08:19:31 +00001065 B.SetInsertPoint(LS.LatchBr);
1066 Value *TakeBackedgeLoopCond =
1067 Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
1068 : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
1069 Value *CondForBranch = LS.LatchBrExitIdx == 1
1070 ? TakeBackedgeLoopCond
1071 : B.CreateNot(TakeBackedgeLoopCond);
1072
1073 LS.LatchBr->setCondition(CondForBranch);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001074
1075 B.SetInsertPoint(RRI.ExitSelector);
1076
1077 // IterationsLeft - are there any more iterations left, given the original
1078 // upper bound on the induction variable? If not, we branch to the "real"
1079 // exit.
Sanjoy Dase75ed922015-02-26 08:19:31 +00001080 Value *IterationsLeft = Increasing
1081 ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
1082 : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001083 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1084
1085 BranchInst *BranchToContinuation =
1086 BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1087
1088 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1089 // each of the PHI nodes in the loop header. This feeds into the initial
1090 // value of the same PHI nodes if/when we continue execution.
1091 for (Instruction &I : *LS.Header) {
1092 if (!isa<PHINode>(&I))
1093 break;
1094
1095 PHINode *PN = cast<PHINode>(&I);
1096
1097 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
1098 BranchToContinuation);
1099
1100 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
1101 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
1102 RRI.ExitSelector);
1103 RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1104 }
1105
Sanjoy Dase75ed922015-02-26 08:19:31 +00001106 RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
1107 BranchToContinuation);
1108 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
1109 RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
1110
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001111 // The latch exit now has a branch from `RRI.ExitSelector' instead of
1112 // `LS.Latch'. The PHI nodes need to be updated to reflect that.
1113 for (Instruction &I : *LS.LatchExit) {
1114 if (PHINode *PN = dyn_cast<PHINode>(&I))
1115 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
1116 else
1117 break;
1118 }
1119
1120 return RRI;
1121}
1122
1123void LoopConstrainer::rewriteIncomingValuesForPHIs(
Sanjoy Dase75ed922015-02-26 08:19:31 +00001124 LoopStructure &LS, BasicBlock *ContinuationBlock,
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001125 const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1126
1127 unsigned PHIIndex = 0;
1128 for (Instruction &I : *LS.Header) {
1129 if (!isa<PHINode>(&I))
1130 break;
1131
1132 PHINode *PN = cast<PHINode>(&I);
1133
1134 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1135 if (PN->getIncomingBlock(i) == ContinuationBlock)
1136 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1137 }
1138
Sanjoy Dase75ed922015-02-26 08:19:31 +00001139 LS.IndVarStart = RRI.IndVarEnd;
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001140}
1141
Sanjoy Dase75ed922015-02-26 08:19:31 +00001142BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1143 BasicBlock *OldPreheader,
1144 const char *Tag) const {
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001145
1146 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1147 BranchInst::Create(LS.Header, Preheader);
1148
1149 for (Instruction &I : *LS.Header) {
1150 if (!isa<PHINode>(&I))
1151 break;
1152
1153 PHINode *PN = cast<PHINode>(&I);
1154 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1155 replacePHIBlock(PN, OldPreheader, Preheader);
1156 }
1157
1158 return Preheader;
1159}
1160
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001161void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001162 Loop *ParentLoop = OriginalLoop.getParentLoop();
1163 if (!ParentLoop)
1164 return;
1165
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001166 for (BasicBlock *BB : BBs)
1167 ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001168}
1169
1170bool LoopConstrainer::run() {
1171 BasicBlock *Preheader = nullptr;
Sanjoy Dase75ed922015-02-26 08:19:31 +00001172 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1173 Preheader = OriginalLoop.getLoopPreheader();
1174 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1175 "preconditions!");
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001176
1177 OriginalPreheader = Preheader;
1178 MainLoopPreheader = Preheader;
1179
Sanjoy Dase75ed922015-02-26 08:19:31 +00001180 Optional<SubRanges> MaybeSR = calculateSubRanges();
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001181 if (!MaybeSR.hasValue()) {
1182 DEBUG(dbgs() << "irce: could not compute subranges\n");
1183 return false;
1184 }
Sanjoy Dase75ed922015-02-26 08:19:31 +00001185
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001186 SubRanges SR = MaybeSR.getValue();
Sanjoy Dase75ed922015-02-26 08:19:31 +00001187 bool Increasing = MainLoopStructure.IndVarIncreasing;
1188 IntegerType *IVTy =
1189 cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
1190
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001191 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
Sanjoy Dase75ed922015-02-26 08:19:31 +00001192 Instruction *InsertPt = OriginalPreheader->getTerminator();
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001193
1194 // It would have been better to make `PreLoop' and `PostLoop'
1195 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1196 // constructor.
1197 ClonedLoop PreLoop, PostLoop;
Sanjoy Dase75ed922015-02-26 08:19:31 +00001198 bool NeedsPreLoop =
1199 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1200 bool NeedsPostLoop =
1201 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1202
1203 Value *ExitPreLoopAt = nullptr;
1204 Value *ExitMainLoopAt = nullptr;
1205 const SCEVConstant *MinusOneS =
1206 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1207
1208 if (NeedsPreLoop) {
1209 const SCEV *ExitPreLoopAtSCEV = nullptr;
1210
1211 if (Increasing)
1212 ExitPreLoopAtSCEV = *SR.LowLimit;
1213 else {
1214 if (CanBeSMin(SE, *SR.HighLimit)) {
1215 DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1216 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit)
1217 << "\n");
1218 return false;
1219 }
1220 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1221 }
1222
1223 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1224 ExitPreLoopAt->setName("exit.preloop.at");
1225 }
1226
1227 if (NeedsPostLoop) {
1228 const SCEV *ExitMainLoopAtSCEV = nullptr;
1229
1230 if (Increasing)
1231 ExitMainLoopAtSCEV = *SR.HighLimit;
1232 else {
1233 if (CanBeSMin(SE, *SR.LowLimit)) {
1234 DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1235 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit)
1236 << "\n");
1237 return false;
1238 }
1239 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1240 }
1241
1242 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1243 ExitMainLoopAt->setName("exit.mainloop.at");
1244 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001245
1246 // We clone these ahead of time so that we don't have to deal with changing
1247 // and temporarily invalid IR as we transform the loops.
1248 if (NeedsPreLoop)
1249 cloneLoop(PreLoop, "preloop");
1250 if (NeedsPostLoop)
1251 cloneLoop(PostLoop, "postloop");
1252
1253 RewrittenRangeInfo PreLoopRRI;
1254
1255 if (NeedsPreLoop) {
1256 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1257 PreLoop.Structure.Header);
1258
1259 MainLoopPreheader =
1260 createPreheader(MainLoopStructure, Preheader, "mainloop");
Sanjoy Dase75ed922015-02-26 08:19:31 +00001261 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1262 ExitPreLoopAt, MainLoopPreheader);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001263 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1264 PreLoopRRI);
1265 }
1266
1267 BasicBlock *PostLoopPreheader = nullptr;
1268 RewrittenRangeInfo PostLoopRRI;
1269
1270 if (NeedsPostLoop) {
1271 PostLoopPreheader =
1272 createPreheader(PostLoop.Structure, Preheader, "postloop");
1273 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
Sanjoy Dase75ed922015-02-26 08:19:31 +00001274 ExitMainLoopAt, PostLoopPreheader);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001275 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1276 PostLoopRRI);
1277 }
1278
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001279 BasicBlock *NewMainLoopPreheader =
1280 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1281 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
1282 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
1283 PostLoopRRI.ExitSelector, NewMainLoopPreheader};
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001284
1285 // Some of the above may be nullptr, filter them out before passing to
1286 // addToParentLoopIfNeeded.
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001287 auto NewBlocksEnd =
1288 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001289
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001290 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1291 addToParentLoopIfNeeded(PreLoop.Blocks);
1292 addToParentLoopIfNeeded(PostLoop.Blocks);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001293
1294 return true;
1295}
1296
Sanjoy Das95c476d2015-02-21 22:20:22 +00001297/// Computes and returns a range of values for the induction variable (IndVar)
1298/// in which the range check can be safely elided. If it cannot compute such a
1299/// range, returns None.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001300Optional<InductiveRangeCheck::Range>
1301InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
Sanjoy Das95c476d2015-02-21 22:20:22 +00001302 const SCEVAddRecExpr *IndVar,
1303 IRBuilder<> &) const {
1304 // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1305 // variable, that may or may not exist as a real llvm::Value in the loop) and
1306 // this inductive range check is a range check on the "C + D * I" ("C" is
1307 // getOffset() and "D" is getScale()). We rewrite the value being range
1308 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1309 // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
1310 // can be generalized as needed.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001311 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001312 // The actual inequalities we solve are of the form
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001313 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001314 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
1315 //
1316 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions
1317 // and subtractions are twos-complement wrapping and comparisons are signed.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001318 //
1319 // Proof:
1320 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001321 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1322 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows
1323 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have
1324 // overflown.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001325 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001326 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t.
1327 // Hence 0 <= (IndVar + M) < L
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001328
Sanjoy Das95c476d2015-02-21 22:20:22 +00001329 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1330 // 127, IndVar = 126 and L = -2 in an i8 world.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001331
Sanjoy Das95c476d2015-02-21 22:20:22 +00001332 if (!IndVar->isAffine())
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001333 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001334
Sanjoy Das95c476d2015-02-21 22:20:22 +00001335 const SCEV *A = IndVar->getStart();
1336 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1337 if (!B)
1338 return None;
1339
1340 const SCEV *C = getOffset();
1341 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1342 if (D != B)
1343 return None;
1344
1345 ConstantInt *ConstD = D->getValue();
1346 if (!(ConstD->isMinusOne() || ConstD->isOne()))
1347 return None;
1348
1349 const SCEV *M = SE.getMinusSCEV(C, A);
1350
1351 const SCEV *Begin = SE.getNegativeSCEV(M);
Sanjoy Dase2cde6f2015-03-17 00:42:13 +00001352 const SCEV *UpperLimit = nullptr;
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001353
Sanjoy Dase2cde6f2015-03-17 00:42:13 +00001354 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
1355 // We can potentially do much better here.
1356 if (Value *V = getLength()) {
1357 UpperLimit = SE.getSCEV(V);
1358 } else {
1359 assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
1360 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
1361 UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1362 }
1363
1364 const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
Sanjoy Das351db052015-01-22 09:32:02 +00001365 return InductiveRangeCheck::Range(Begin, End);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001366}
1367
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001368static Optional<InductiveRangeCheck::Range>
Sanjoy Das7fc60da2015-02-21 22:07:32 +00001369IntersectRange(ScalarEvolution &SE,
1370 const Optional<InductiveRangeCheck::Range> &R1,
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001371 const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
1372 if (!R1.hasValue())
1373 return R2;
1374 auto &R1Value = R1.getValue();
1375
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001376 // TODO: we could widen the smaller range and have this work; but for now we
1377 // bail out to keep things simple.
Sanjoy Das351db052015-01-22 09:32:02 +00001378 if (R1Value.getType() != R2.getType())
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001379 return None;
1380
Sanjoy Das7fc60da2015-02-21 22:07:32 +00001381 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1382 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1383
1384 return InductiveRangeCheck::Range(NewBegin, NewEnd);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001385}
1386
1387bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
1388 if (L->getBlocks().size() >= LoopSizeCutoff) {
1389 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1390 return false;
1391 }
1392
1393 BasicBlock *Preheader = L->getLoopPreheader();
1394 if (!Preheader) {
1395 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1396 return false;
1397 }
1398
1399 LLVMContext &Context = Preheader->getContext();
1400 InductiveRangeCheck::AllocatorTy IRCAlloc;
1401 SmallVector<InductiveRangeCheck *, 16> RangeChecks;
1402 ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
Sanjoy Dasdcf26512015-01-27 21:38:12 +00001403 BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001404
1405 for (auto BBI : L->getBlocks())
1406 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1407 if (InductiveRangeCheck *IRC =
Sanjoy Dasdcf26512015-01-27 21:38:12 +00001408 InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI))
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001409 RangeChecks.push_back(IRC);
1410
1411 if (RangeChecks.empty())
1412 return false;
1413
Sanjoy Das9c1bfae2015-03-17 01:40:22 +00001414 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1415 OS << "irce: looking at loop "; L->print(OS);
1416 OS << "irce: loop has " << RangeChecks.size()
1417 << " inductive range checks: \n";
1418 for (InductiveRangeCheck *IRC : RangeChecks)
1419 IRC->print(OS);
1420 };
1421
1422 DEBUG(PrintRecognizedRangeChecks(dbgs()));
1423
1424 if (PrintRangeChecks)
1425 PrintRecognizedRangeChecks(errs());
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001426
Sanjoy Dase75ed922015-02-26 08:19:31 +00001427 const char *FailureReason = nullptr;
1428 Optional<LoopStructure> MaybeLoopStructure =
Sanjoy Dase91665d2015-02-26 08:56:04 +00001429 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
Sanjoy Dase75ed922015-02-26 08:19:31 +00001430 if (!MaybeLoopStructure.hasValue()) {
1431 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
1432 << "\n";);
1433 return false;
1434 }
1435 LoopStructure LS = MaybeLoopStructure.getValue();
1436 bool Increasing = LS.IndVarIncreasing;
1437 const SCEV *MinusOne =
1438 SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
1439 const SCEVAddRecExpr *IndVar =
1440 cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
1441
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001442 Optional<InductiveRangeCheck::Range> SafeIterRange;
1443 Instruction *ExprInsertPt = Preheader->getTerminator();
1444
1445 SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate;
1446
1447 IRBuilder<> B(ExprInsertPt);
1448 for (InductiveRangeCheck *IRC : RangeChecks) {
Sanjoy Das95c476d2015-02-21 22:20:22 +00001449 auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001450 if (Result.hasValue()) {
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001451 auto MaybeSafeIterRange =
Sanjoy Das7fc60da2015-02-21 22:07:32 +00001452 IntersectRange(SE, SafeIterRange, Result.getValue(), B);
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001453 if (MaybeSafeIterRange.hasValue()) {
1454 RangeChecksToEliminate.push_back(IRC);
1455 SafeIterRange = MaybeSafeIterRange.getValue();
1456 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001457 }
1458 }
1459
1460 if (!SafeIterRange.hasValue())
1461 return false;
1462
Sanjoy Dase75ed922015-02-26 08:19:31 +00001463 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
1464 SE, SafeIterRange.getValue());
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001465 bool Changed = LC.run();
1466
1467 if (Changed) {
1468 auto PrintConstrainedLoopInfo = [L]() {
1469 dbgs() << "irce: in function ";
1470 dbgs() << L->getHeader()->getParent()->getName() << ": ";
1471 dbgs() << "constrained ";
1472 L->print(dbgs());
1473 };
1474
1475 DEBUG(PrintConstrainedLoopInfo());
1476
1477 if (PrintChangedLoops)
1478 PrintConstrainedLoopInfo();
1479
1480 // Optimize away the now-redundant range checks.
1481
1482 for (InductiveRangeCheck *IRC : RangeChecksToEliminate) {
1483 ConstantInt *FoldedRangeCheck = IRC->getPassingDirection()
1484 ? ConstantInt::getTrue(Context)
1485 : ConstantInt::getFalse(Context);
1486 IRC->getBranch()->setCondition(FoldedRangeCheck);
1487 }
1488 }
1489
1490 return Changed;
1491}
1492
1493Pass *llvm::createInductiveRangeCheckEliminationPass() {
1494 return new InductiveRangeCheckElimination;
1495}