blob: ce7670cb20998f3611d6c282d25b08644a1d3e3b [file] [log] [blame]
Chris Lattner30fdc8d2010-06-08 16:52:24 +00001//===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Created by Greg Clayton on 3/23/07.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DNB.h"
15#include <signal.h>
16#include <stdio.h>
17#include <stdlib.h>
18#include <sys/resource.h>
19#include <sys/stat.h>
20#include <sys/types.h>
21#include <sys/wait.h>
22#include <unistd.h>
23#include <sys/sysctl.h>
24#include <map>
25#include <vector>
26
27#include "MacOSX/MachProcess.h"
28#include "MacOSX/MachTask.h"
29#include "CFString.h"
30#include "DNBLog.h"
31#include "DNBDataRef.h"
32#include "DNBThreadResumeActions.h"
33#include "DNBTimer.h"
34
35typedef std::tr1::shared_ptr<MachProcess> MachProcessSP;
36typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
37typedef ProcessMap::iterator ProcessMapIter;
38typedef ProcessMap::const_iterator ProcessMapConstIter;
39
40static size_t GetAllInfos (std::vector<struct kinfo_proc>& proc_infos);
41static size_t GetAllInfosMatchingName (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos);
42
43//----------------------------------------------------------------------
44// A Thread safe singleton to get a process map pointer.
45//
46// Returns a pointer to the existing process map, or a pointer to a
47// newly created process map if CAN_CREATE is non-zero.
48//----------------------------------------------------------------------
49static ProcessMap*
50GetProcessMap(bool can_create)
51{
52 static ProcessMap* g_process_map_ptr = NULL;
53
54 if (can_create && g_process_map_ptr == NULL)
55 {
56 static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
57 PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex);
58 if (g_process_map_ptr == NULL)
59 g_process_map_ptr = new ProcessMap;
60 }
61 return g_process_map_ptr;
62}
63
64//----------------------------------------------------------------------
65// Add PID to the shared process pointer map.
66//
67// Return non-zero value if we succeed in adding the process to the map.
68// The only time this should fail is if we run out of memory and can't
69// allocate a ProcessMap.
70//----------------------------------------------------------------------
71static nub_bool_t
72AddProcessToMap (nub_process_t pid, MachProcessSP& procSP)
73{
74 ProcessMap* process_map = GetProcessMap(true);
75 if (process_map)
76 {
77 process_map->insert(std::make_pair(pid, procSP));
78 return true;
79 }
80 return false;
81}
82
83//----------------------------------------------------------------------
84// Remove the shared pointer for PID from the process map.
85//
86// Returns the number of items removed from the process map.
87//----------------------------------------------------------------------
88static size_t
89RemoveProcessFromMap (nub_process_t pid)
90{
91 ProcessMap* process_map = GetProcessMap(false);
92 if (process_map)
93 {
94 return process_map->erase(pid);
95 }
96 return 0;
97}
98
99//----------------------------------------------------------------------
100// Get the shared pointer for PID from the existing process map.
101//
102// Returns true if we successfully find a shared pointer to a
103// MachProcess object.
104//----------------------------------------------------------------------
105static nub_bool_t
106GetProcessSP (nub_process_t pid, MachProcessSP& procSP)
107{
108 ProcessMap* process_map = GetProcessMap(false);
109 if (process_map != NULL)
110 {
111 ProcessMapIter pos = process_map->find(pid);
112 if (pos != process_map->end())
113 {
114 procSP = pos->second;
115 return true;
116 }
117 }
118 procSP.reset();
119 return false;
120}
121
122
123static void *
124waitpid_thread (void *arg)
125{
126 const pid_t pid = (pid_t)(intptr_t)arg;
127 int status;
128 while (1)
129 {
130 pid_t child_pid = waitpid(pid, &status, 0);
131 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno);
132
133 if (child_pid < 0)
134 {
135 if (errno == EINTR)
136 continue;
137 break;
138 }
139 else
140 {
141 if (WIFSTOPPED(status))
142 {
143 continue;
144 }
145 else// if (WIFEXITED(status) || WIFSIGNALED(status))
146 {
147 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, status);
148 DNBProcessSetExitStatus (child_pid, status);
149 return NULL;
150 }
151 }
152 }
153
154 // We should never exit as long as our child process is alive, so if we
155 // do something else went wrong and we should exit...
156 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid);
157 DNBProcessSetExitStatus (pid, -1);
158 return NULL;
159}
160
161static bool
162spawn_waitpid_thread (pid_t pid)
163{
164 pthread_t thread = THREAD_NULL;
165 ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
166 if (thread != THREAD_NULL)
167 {
168 ::pthread_detach (thread);
169 return true;
170 }
171 return false;
172}
173
174nub_process_t
175DNBProcessLaunch (const char *path,
176 char const *argv[],
177 const char *envp[],
178 const char *stdio_path,
179 nub_launch_flavor_t launch_flavor,
Greg Claytonf681b942010-08-31 18:35:14 +0000180 int disable_aslr,
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000181 char *err_str,
182 size_t err_len)
183{
Greg Claytonf681b942010-08-31 18:35:14 +0000184 DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %zu) called...", __FUNCTION__, path, argv, envp, launch_flavor, disable_aslr, err_str, err_len);
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000185
186 if (err_str && err_len > 0)
187 err_str[0] = '\0';
188 struct stat path_stat;
189 if (::stat(path, &path_stat) == -1)
190 {
191 char stat_error[256];
192 ::strerror_r (errno, stat_error, sizeof(stat_error));
193 snprintf(err_str, err_len, "%s (%s)", stat_error, path);
194 return INVALID_NUB_PROCESS;
195 }
196
197 MachProcessSP processSP (new MachProcess);
198 if (processSP.get())
199 {
200 DNBError launch_err;
Greg Claytonf681b942010-08-31 18:35:14 +0000201 pid_t pid = processSP->LaunchForDebug(path, argv, envp, stdio_path, launch_flavor, disable_aslr, launch_err);
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000202 if (err_str)
203 {
204 *err_str = '\0';
205 if (launch_err.Fail())
206 {
207 const char *launch_err_str = launch_err.AsString();
208 if (launch_err_str)
209 {
210 strncpy(err_str, launch_err_str, err_len-1);
211 err_str[err_len-1] = '\0'; // Make sure the error string is terminated
212 }
213 }
214 }
215
216 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
217
218 if (pid != INVALID_NUB_PROCESS)
219 {
220 // Spawn a thread to reap our child inferior process...
221 spawn_waitpid_thread (pid);
222
223 if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL)
224 {
225 // We failed to get the task for our process ID which is bad.
226 if (err_str && err_len > 0)
227 {
228 if (launch_err.AsString())
229 {
230 ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString());
231 }
232 else
233 {
234 ::snprintf (err_str, err_len, "failed to get the task for process %i", pid);
235 }
236 }
237 }
238 else
239 {
240 assert(AddProcessToMap(pid, processSP));
241 return pid;
242 }
243 }
244 }
245 return INVALID_NUB_PROCESS;
246}
247
248nub_process_t
249DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len)
250{
251 if (err_str && err_len > 0)
252 err_str[0] = '\0';
253 std::vector<struct kinfo_proc> matching_proc_infos;
254 size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos);
255 if (num_matching_proc_infos == 0)
256 {
257 DNBLogError ("error: no processes match '%s'\n", name);
258 return INVALID_NUB_PROCESS;
259 }
260 else if (num_matching_proc_infos > 1)
261 {
262 DNBLogError ("error: %u processes match '%s':\n", num_matching_proc_infos, name);
263 size_t i;
264 for (i=0; i<num_matching_proc_infos; ++i)
265 DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm);
266 return INVALID_NUB_PROCESS;
267 }
268 else
269 {
270 return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len);
271 }
272}
273
274nub_process_t
275DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len)
276{
277 if (err_str && err_len > 0)
278 err_str[0] = '\0';
279
280 pid_t pid;
281 MachProcessSP processSP(new MachProcess);
282 if (processSP.get())
283 {
284 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid);
285 pid = processSP->AttachForDebug (attach_pid, err_str, err_len);
286
287 if (pid != INVALID_NUB_PROCESS)
288 {
289 assert(AddProcessToMap(pid, processSP));
290 spawn_waitpid_thread(pid);
291 }
292 }
293
294 while (pid != INVALID_NUB_PROCESS)
295 {
296 // Wait for process to start up and hit entry point
297 DNBLogThreadedIf (LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged "
298 "| eEventProcessStoppedStateChanged, true, INFINITE)...",
299 __FUNCTION__, pid);
300 nub_event_t set_events = DNBProcessWaitForEvents (pid,
301 eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged,
302 true, timeout);
303 DNBLogThreadedIf (LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged "
304 "| eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x",
305 __FUNCTION__, pid, set_events);
306
307 if (set_events == 0)
308 {
309 if (err_str && err_len > 0)
310 snprintf(err_str, err_len, "operation timed out");
311 pid = INVALID_NUB_PROCESS;
312 }
313 else
314 {
315 if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged))
316 {
317 nub_state_t pid_state = DNBProcessGetState (pid);
318 DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s",
319 __FUNCTION__, pid, DNBStateAsString(pid_state));
320
321 switch (pid_state)
322 {
323 default:
324 case eStateInvalid:
325 case eStateUnloaded:
326 case eStateAttaching:
327 case eStateLaunching:
328 case eStateSuspended:
329 break; // Ignore
330
331 case eStateRunning:
332 case eStateStepping:
333 // Still waiting to stop at entry point...
334 break;
335
336 case eStateStopped:
337 case eStateCrashed:
338 return pid;
339 case eStateDetached:
340 case eStateExited:
341 if (err_str && err_len > 0)
342 snprintf(err_str, err_len, "process exited");
343 return INVALID_NUB_PROCESS;
344 }
345 }
346
347 DNBProcessResetEvents(pid, set_events);
348 }
349 }
350
351 return INVALID_NUB_PROCESS;
352}
353
354static size_t
355GetAllInfos(std::vector<struct kinfo_proc>& proc_infos)
356{
357 size_t size;
358 int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
359 u_int namelen = sizeof(name)/sizeof(int);
360 int err;
361
362 // Try to find out how many processes are around so we can
363 // size the buffer appropriately. sysctl's man page specifically suggests
364 // this approach, and says it returns a bit larger size than needed to
365 // handle any new processes created between then and now.
366
367 err = ::sysctl (name, namelen, NULL, &size, NULL, 0);
368
369 if ((err < 0) && (err != ENOMEM))
370 {
371 proc_infos.clear();
372 perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
373 return 0;
374 }
375
376
377 // Increase the size of the buffer by a few processes in case more have
378 // been spawned
379 proc_infos.resize (size / sizeof(struct kinfo_proc));
380 size = proc_infos.size() * sizeof(struct kinfo_proc); // Make sure we don't exceed our resize...
381 err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0);
382 if (err < 0)
383 {
384 proc_infos.clear();
385 return 0;
386 }
387
388 // Trim down our array to fit what we actually got back
389 proc_infos.resize(size / sizeof(struct kinfo_proc));
390 return proc_infos.size();
391}
392
393
394static size_t
395GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos)
396{
397
398 matching_proc_infos.clear();
399 if (full_process_name && full_process_name[0])
400 {
401 // We only get the process name, not the full path, from the proc_info. So just take the
402 // base name of the process name...
403 const char *process_name;
404 process_name = strrchr (full_process_name, '/');
405 if (process_name == NULL)
406 process_name = full_process_name;
407 else
408 process_name++;
409
410 std::vector<struct kinfo_proc> proc_infos;
411 const size_t num_proc_infos = GetAllInfos(proc_infos);
412 if (num_proc_infos > 0)
413 {
414 uint32_t i;
415 for (i=0; i<num_proc_infos; i++)
416 {
417 // Skip zombie processes and processes with unset status
418 if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB)
419 continue;
420
421 // Check for process by name. We only check the first MAXCOMLEN
422 // chars as that is all that kp_proc.p_comm holds.
423 if (::strncasecmp(proc_infos[i].kp_proc.p_comm, process_name, MAXCOMLEN) == 0)
424 {
425 // We found a matching process, add it to our list
426 matching_proc_infos.push_back(proc_infos[i]);
427 }
428 }
429 }
430 }
431 // return the newly added matches.
432 return matching_proc_infos.size();
433}
434
435nub_process_t
436DNBProcessAttachWait (const char *waitfor_process_name, nub_launch_flavor_t launch_flavor,
437 struct timespec *timeout_abstime, useconds_t waitfor_interval,
438 char *err_str, size_t err_len,
439 DNBShouldCancelCallback should_cancel_callback,
440 void *callback_data)
441{
442 DNBError prepare_error;
443 std::vector<struct kinfo_proc> exclude_proc_infos;
444 size_t num_exclude_proc_infos;
445
446 // If the PrepareForAttach returns a valid token, use MachProcess to check
447 // for the process, otherwise scan the process table.
448
449 const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error);
450
451 if (prepare_error.Fail())
452 {
453 DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString());
454 return INVALID_NUB_PROCESS;
455 }
456
457 if (attach_token == NULL)
458 num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos);
459
460 DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name);
461
462 // Loop and try to find the process by name
463 nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
464
465 while (waitfor_pid == INVALID_NUB_PROCESS)
466 {
467 if (attach_token != NULL)
468 {
469 nub_process_t pid;
470 pid = MachProcess::CheckForProcess(attach_token);
471 if (pid != INVALID_NUB_PROCESS)
472 {
473 waitfor_pid = pid;
474 break;
475 }
476 }
477 else
478 {
479
480 // Get the current process list, and check for matches that
481 // aren't in our original list. If anyone wants to attach
482 // to an existing process by name, they should do it with
483 // --attach=PROCNAME. Else we will wait for the first matching
484 // process that wasn't in our exclusion list.
485 std::vector<struct kinfo_proc> proc_infos;
486 const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos);
487 for (size_t i=0; i<num_proc_infos; i++)
488 {
489 nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
490 for (size_t j=0; j<num_exclude_proc_infos; j++)
491 {
492 if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid)
493 {
494 // This process was in our exclusion list, don't use it.
495 curr_pid = INVALID_NUB_PROCESS;
496 break;
497 }
498 }
499
500 // If we didn't find CURR_PID in our exclusion list, then use it.
501 if (curr_pid != INVALID_NUB_PROCESS)
502 {
503 // We found our process!
504 waitfor_pid = curr_pid;
505 break;
506 }
507 }
508 }
509
510 // If we haven't found our process yet, check for a timeout
511 // and then sleep for a bit until we poll again.
512 if (waitfor_pid == INVALID_NUB_PROCESS)
513 {
514 if (timeout_abstime != NULL)
515 {
516 // Check to see if we have a waitfor-duration option that
517 // has timed out?
518 if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime))
519 {
520 if (err_str && err_len > 0)
521 snprintf(err_str, err_len, "operation timed out");
522 DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name);
523 return INVALID_NUB_PROCESS;
524 }
525 }
526
527 // Call the should cancel callback as well...
528
529 if (should_cancel_callback != NULL
530 && should_cancel_callback (callback_data))
531 {
532 DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback.");
533 waitfor_pid = INVALID_NUB_PROCESS;
534 break;
535 }
536
537 ::usleep (waitfor_interval); // Sleep for WAITFOR_INTERVAL, then poll again
538 }
539 }
540
541 if (waitfor_pid != INVALID_NUB_PROCESS)
542 {
543 DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid);
544 waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len);
545 }
546
547 bool success = waitfor_pid != INVALID_NUB_PROCESS;
548 MachProcess::CleanupAfterAttach (attach_token, success, prepare_error);
549
550 return waitfor_pid;
551}
552
553nub_bool_t
554DNBProcessDetach (nub_process_t pid)
555{
556 MachProcessSP procSP;
557 if (GetProcessSP (pid, procSP))
558 {
559 return procSP->Detach();
560 }
561 return false;
562}
563
564nub_bool_t
565DNBProcessKill (nub_process_t pid)
566{
567 MachProcessSP procSP;
568 if (GetProcessSP (pid, procSP))
569 {
570 return procSP->Kill ();
571 }
572 return false;
573}
574
575nub_bool_t
576DNBProcessSignal (nub_process_t pid, int signal)
577{
578 MachProcessSP procSP;
579 if (GetProcessSP (pid, procSP))
580 {
581 return procSP->Signal (signal);
582 }
583 return false;
584}
585
586
587nub_bool_t
588DNBProcessIsAlive (nub_process_t pid)
589{
590 MachProcessSP procSP;
591 if (GetProcessSP (pid, procSP))
592 {
593 return MachTask::IsValid (procSP->Task().TaskPort());
594 }
595 return eStateInvalid;
596}
597
598//----------------------------------------------------------------------
599// Process and Thread state information
600//----------------------------------------------------------------------
601nub_state_t
602DNBProcessGetState (nub_process_t pid)
603{
604 MachProcessSP procSP;
605 if (GetProcessSP (pid, procSP))
606 {
607 return procSP->GetState();
608 }
609 return eStateInvalid;
610}
611
612//----------------------------------------------------------------------
613// Process and Thread state information
614//----------------------------------------------------------------------
615nub_bool_t
616DNBProcessGetExitStatus (nub_process_t pid, int* status)
617{
618 MachProcessSP procSP;
619 if (GetProcessSP (pid, procSP))
620 {
621 return procSP->GetExitStatus(status);
622 }
623 return false;
624}
625
626nub_bool_t
627DNBProcessSetExitStatus (nub_process_t pid, int status)
628{
629 MachProcessSP procSP;
630 if (GetProcessSP (pid, procSP))
631 {
632 procSP->SetExitStatus(status);
633 return true;
634 }
635 return false;
636}
637
638
639const char *
640DNBThreadGetName (nub_process_t pid, nub_thread_t tid)
641{
642 MachProcessSP procSP;
643 if (GetProcessSP (pid, procSP))
644 return procSP->ThreadGetName(tid);
645 return NULL;
646}
647
648
649nub_bool_t
650DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info)
651{
652 MachProcessSP procSP;
653 if (GetProcessSP (pid, procSP))
654 return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
655 return false;
656}
657
658nub_state_t
659DNBThreadGetState (nub_process_t pid, nub_thread_t tid)
660{
661 MachProcessSP procSP;
662 if (GetProcessSP (pid, procSP))
663 {
664 return procSP->ThreadGetState(tid);
665 }
666 return eStateInvalid;
667}
668
669const char *
670DNBStateAsString(nub_state_t state)
671{
672 switch (state)
673 {
674 case eStateUnloaded: return "Unloaded";
675 case eStateAttaching: return "Attaching";
676 case eStateLaunching: return "Launching";
677 case eStateStopped: return "Stopped";
678 case eStateRunning: return "Running";
679 case eStateStepping: return "Stepping";
680 case eStateCrashed: return "Crashed";
681 case eStateDetached: return "Detached";
682 case eStateExited: return "Exited";
683 case eStateSuspended: return "Suspended";
684 }
685 return "nub_state_t ???";
686}
687
688const char *
689DNBProcessGetExecutablePath (nub_process_t pid)
690{
691 MachProcessSP procSP;
692 if (GetProcessSP (pid, procSP))
693 {
694 return procSP->Path();
695 }
696 return NULL;
697}
698
699nub_size_t
700DNBProcessGetArgumentCount (nub_process_t pid)
701{
702 MachProcessSP procSP;
703 if (GetProcessSP (pid, procSP))
704 {
705 return procSP->ArgumentCount();
706 }
707 return 0;
708}
709
710const char *
711DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx)
712{
713 MachProcessSP procSP;
714 if (GetProcessSP (pid, procSP))
715 {
716 return procSP->ArgumentAtIndex (idx);
717 }
718 return NULL;
719}
720
721
722//----------------------------------------------------------------------
723// Execution control
724//----------------------------------------------------------------------
725nub_bool_t
726DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions)
727{
728 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
729 MachProcessSP procSP;
730 if (GetProcessSP (pid, procSP))
731 {
732 DNBThreadResumeActions thread_actions (actions, num_actions);
733
734 // Below we add a default thread plan just in case one wasn't
735 // provided so all threads always know what they were supposed to do
736 if (thread_actions.IsEmpty())
737 {
738 // No thread plans were given, so the default it to run all threads
739 thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
740 }
741 else
742 {
743 // Some thread plans were given which means anything that wasn't
744 // specified should remain stopped.
745 thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
746 }
747 return procSP->Resume (thread_actions);
748 }
749 return false;
750}
751
752nub_bool_t
753DNBProcessHalt (nub_process_t pid)
754{
755 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
756 MachProcessSP procSP;
757 if (GetProcessSP (pid, procSP))
758 return procSP->Signal (SIGSTOP);
759 return false;
760}
761//
762//nub_bool_t
763//DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
764//{
765// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step);
766// MachProcessSP procSP;
767// if (GetProcessSP (pid, procSP))
768// {
769// return procSP->Resume(tid, step, 0);
770// }
771// return false;
772//}
773//
774//nub_bool_t
775//DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal)
776//{
777// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
778// MachProcessSP procSP;
779// if (GetProcessSP (pid, procSP))
780// {
781// return procSP->Resume(tid, step, signal);
782// }
783// return false;
784//}
785
786nub_event_t
787DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout)
788{
789 nub_event_t result = 0;
790 MachProcessSP procSP;
791 if (GetProcessSP (pid, procSP))
792 {
793 if (wait_for_set)
794 result = procSP->Events().WaitForSetEvents(event_mask, timeout);
795 else
796 result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
797 }
798 return result;
799}
800
801void
802DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask)
803{
804 MachProcessSP procSP;
805 if (GetProcessSP (pid, procSP))
806 procSP->Events().ResetEvents(event_mask);
807}
808
809void
810DNBProcessInterruptEvents (nub_process_t pid)
811{
812 MachProcessSP procSP;
813 if (GetProcessSP (pid, procSP))
814 procSP->Events().SetEvents(eEventProcessAsyncInterrupt);
815}
816
817
818// Breakpoints
819nub_break_t
820DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware)
821{
822 MachProcessSP procSP;
823 if (GetProcessSP (pid, procSP))
824 {
825 return procSP->CreateBreakpoint(addr, size, hardware, THREAD_NULL);
826 }
827 return INVALID_NUB_BREAK_ID;
828}
829
830nub_bool_t
831DNBBreakpointClear (nub_process_t pid, nub_break_t breakID)
832{
833 if (NUB_BREAK_ID_IS_VALID(breakID))
834 {
835 MachProcessSP procSP;
836 if (GetProcessSP (pid, procSP))
837 {
838 return procSP->DisableBreakpoint(breakID, true);
839 }
840 }
841 return false; // Failed
842}
843
844nub_ssize_t
845DNBBreakpointGetHitCount (nub_process_t pid, nub_break_t breakID)
846{
847 if (NUB_BREAK_ID_IS_VALID(breakID))
848 {
849 MachProcessSP procSP;
850 if (GetProcessSP (pid, procSP))
851 {
852 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
853 if (bp)
854 return bp->GetHitCount();
855 }
856 }
857 return 0;
858}
859
860nub_ssize_t
861DNBBreakpointGetIgnoreCount (nub_process_t pid, nub_break_t breakID)
862{
863 if (NUB_BREAK_ID_IS_VALID(breakID))
864 {
865 MachProcessSP procSP;
866 if (GetProcessSP (pid, procSP))
867 {
868 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
869 if (bp)
870 return bp->GetIgnoreCount();
871 }
872 }
873 return 0;
874}
875
876nub_bool_t
877DNBBreakpointSetIgnoreCount (nub_process_t pid, nub_break_t breakID, nub_size_t ignore_count)
878{
879 if (NUB_BREAK_ID_IS_VALID(breakID))
880 {
881 MachProcessSP procSP;
882 if (GetProcessSP (pid, procSP))
883 {
884 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
885 if (bp)
886 {
887 bp->SetIgnoreCount(ignore_count);
888 return true;
889 }
890 }
891 }
892 return false;
893}
894
895// Set the callback function for a given breakpoint. The callback function will
896// get called as soon as the breakpoint is hit. The function will be called
897// with the process ID, thread ID, breakpoint ID and the baton, and can return
898//
899nub_bool_t
900DNBBreakpointSetCallback (nub_process_t pid, nub_break_t breakID, DNBCallbackBreakpointHit callback, void *baton)
901{
902 if (NUB_BREAK_ID_IS_VALID(breakID))
903 {
904 MachProcessSP procSP;
905 if (GetProcessSP (pid, procSP))
906 {
907 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
908 if (bp)
909 {
910 bp->SetCallback(callback, baton);
911 return true;
912 }
913 }
914 }
915 return false;
916}
917
918//----------------------------------------------------------------------
919// Dump the breakpoints stats for process PID for a breakpoint by ID.
920//----------------------------------------------------------------------
921void
922DNBBreakpointPrint (nub_process_t pid, nub_break_t breakID)
923{
924 MachProcessSP procSP;
925 if (GetProcessSP (pid, procSP))
926 procSP->DumpBreakpoint(breakID);
927}
928
929//----------------------------------------------------------------------
930// Watchpoints
931//----------------------------------------------------------------------
932nub_watch_t
933DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware)
934{
935 MachProcessSP procSP;
936 if (GetProcessSP (pid, procSP))
937 {
938 return procSP->CreateWatchpoint(addr, size, watch_flags, hardware, THREAD_NULL);
939 }
940 return INVALID_NUB_BREAK_ID;
941}
942
943nub_bool_t
944DNBWatchpointClear (nub_process_t pid, nub_watch_t watchID)
945{
946 if (NUB_BREAK_ID_IS_VALID(watchID))
947 {
948 MachProcessSP procSP;
949 if (GetProcessSP (pid, procSP))
950 {
951 return procSP->DisableWatchpoint(watchID, true);
952 }
953 }
954 return false; // Failed
955}
956
957nub_ssize_t
958DNBWatchpointGetHitCount (nub_process_t pid, nub_watch_t watchID)
959{
960 if (NUB_BREAK_ID_IS_VALID(watchID))
961 {
962 MachProcessSP procSP;
963 if (GetProcessSP (pid, procSP))
964 {
965 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
966 if (bp)
967 return bp->GetHitCount();
968 }
969 }
970 return 0;
971}
972
973nub_ssize_t
974DNBWatchpointGetIgnoreCount (nub_process_t pid, nub_watch_t watchID)
975{
976 if (NUB_BREAK_ID_IS_VALID(watchID))
977 {
978 MachProcessSP procSP;
979 if (GetProcessSP (pid, procSP))
980 {
981 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
982 if (bp)
983 return bp->GetIgnoreCount();
984 }
985 }
986 return 0;
987}
988
989nub_bool_t
990DNBWatchpointSetIgnoreCount (nub_process_t pid, nub_watch_t watchID, nub_size_t ignore_count)
991{
992 if (NUB_BREAK_ID_IS_VALID(watchID))
993 {
994 MachProcessSP procSP;
995 if (GetProcessSP (pid, procSP))
996 {
997 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
998 if (bp)
999 {
1000 bp->SetIgnoreCount(ignore_count);
1001 return true;
1002 }
1003 }
1004 }
1005 return false;
1006}
1007
1008// Set the callback function for a given watchpoint. The callback function will
1009// get called as soon as the watchpoint is hit. The function will be called
1010// with the process ID, thread ID, watchpoint ID and the baton, and can return
1011//
1012nub_bool_t
1013DNBWatchpointSetCallback (nub_process_t pid, nub_watch_t watchID, DNBCallbackBreakpointHit callback, void *baton)
1014{
1015 if (NUB_BREAK_ID_IS_VALID(watchID))
1016 {
1017 MachProcessSP procSP;
1018 if (GetProcessSP (pid, procSP))
1019 {
1020 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1021 if (bp)
1022 {
1023 bp->SetCallback(callback, baton);
1024 return true;
1025 }
1026 }
1027 }
1028 return false;
1029}
1030
1031//----------------------------------------------------------------------
1032// Dump the watchpoints stats for process PID for a watchpoint by ID.
1033//----------------------------------------------------------------------
1034void
1035DNBWatchpointPrint (nub_process_t pid, nub_watch_t watchID)
1036{
1037 MachProcessSP procSP;
1038 if (GetProcessSP (pid, procSP))
1039 procSP->DumpWatchpoint(watchID);
1040}
1041
1042//----------------------------------------------------------------------
1043// Read memory in the address space of process PID. This call will take
1044// care of setting and restoring permissions and breaking up the memory
1045// read into multiple chunks as required.
1046//
1047// RETURNS: number of bytes actually read
1048//----------------------------------------------------------------------
1049nub_size_t
1050DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf)
1051{
1052 MachProcessSP procSP;
1053 if (GetProcessSP (pid, procSP))
1054 return procSP->ReadMemory(addr, size, buf);
1055 return 0;
1056}
1057
1058//----------------------------------------------------------------------
1059// Write memory to the address space of process PID. This call will take
1060// care of setting and restoring permissions and breaking up the memory
1061// write into multiple chunks as required.
1062//
1063// RETURNS: number of bytes actually written
1064//----------------------------------------------------------------------
1065nub_size_t
1066DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf)
1067{
1068 MachProcessSP procSP;
1069 if (GetProcessSP (pid, procSP))
1070 return procSP->WriteMemory(addr, size, buf);
1071 return 0;
1072}
1073
1074nub_addr_t
1075DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions)
1076{
1077 MachProcessSP procSP;
1078 if (GetProcessSP (pid, procSP))
1079 return procSP->Task().AllocateMemory (size, permissions);
1080 return 0;
1081}
1082
1083nub_bool_t
1084DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr)
1085{
1086 MachProcessSP procSP;
1087 if (GetProcessSP (pid, procSP))
1088 return procSP->Task().DeallocateMemory (addr);
1089 return 0;
1090}
1091
1092
1093//----------------------------------------------------------------------
1094// Formatted output that uses memory and registers from process and
1095// thread in place of arguments.
1096//----------------------------------------------------------------------
1097nub_size_t
1098DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format)
1099{
1100 if (file == NULL)
1101 return 0;
1102 enum printf_flags
1103 {
1104 alternate_form = (1 << 0),
1105 zero_padding = (1 << 1),
1106 negative_field_width = (1 << 2),
1107 blank_space = (1 << 3),
1108 show_sign = (1 << 4),
1109 show_thousands_separator= (1 << 5),
1110 };
1111
1112 enum printf_length_modifiers
1113 {
1114 length_mod_h = (1 << 0),
1115 length_mod_hh = (1 << 1),
1116 length_mod_l = (1 << 2),
1117 length_mod_ll = (1 << 3),
1118 length_mod_L = (1 << 4),
1119 length_mod_j = (1 << 5),
1120 length_mod_t = (1 << 6),
1121 length_mod_z = (1 << 7),
1122 length_mod_q = (1 << 8),
1123 };
1124
1125 nub_addr_t addr = base_addr;
1126 char *end_format = (char*)format + strlen(format);
1127 char *end = NULL; // For strtoXXXX calls;
1128 std::basic_string<uint8_t> buf;
1129 nub_size_t total_bytes_read = 0;
1130 DNBDataRef data;
1131 const char *f;
1132 for (f = format; *f != '\0' && f < end_format; f++)
1133 {
1134 char ch = *f;
1135 switch (ch)
1136 {
1137 case '%':
1138 {
1139 f++; // Skip the '%' character
1140 int min_field_width = 0;
1141 int precision = 0;
1142 uint32_t flags = 0;
1143 uint32_t length_modifiers = 0;
1144 uint32_t byte_size = 0;
1145 uint32_t actual_byte_size = 0;
1146 bool is_string = false;
1147 bool is_register = false;
1148 DNBRegisterValue register_value;
1149 int64_t register_offset = 0;
1150 nub_addr_t register_addr = INVALID_NUB_ADDRESS;
1151
1152 // Create the format string to use for this conversion specification
1153 // so we can remove and mprintf specific flags and formatters.
1154 std::string fprintf_format("%");
1155
1156 // Decode any flags
1157 switch (*f)
1158 {
1159 case '#': fprintf_format += *f++; flags |= alternate_form; break;
1160 case '0': fprintf_format += *f++; flags |= zero_padding; break;
1161 case '-': fprintf_format += *f++; flags |= negative_field_width; break;
1162 case ' ': fprintf_format += *f++; flags |= blank_space; break;
1163 case '+': fprintf_format += *f++; flags |= show_sign; break;
1164 case ',': fprintf_format += *f++; flags |= show_thousands_separator;break;
1165 case '{':
1166 case '[':
1167 {
1168 // We have a register name specification that can take two forms:
1169 // ${regname} or ${regname+offset}
1170 // The action is to read the register value and add the signed offset
1171 // (if any) and use that as the value to format.
1172 // $[regname] or $[regname+offset]
1173 // The action is to read the register value and add the signed offset
1174 // (if any) and use the result as an address to dereference. The size
1175 // of what is dereferenced is specified by the actual byte size that
1176 // follows the minimum field width and precision (see comments below).
1177 switch (*f)
1178 {
1179 case '{':
1180 case '[':
1181 {
1182 char open_scope_ch = *f;
1183 f++;
1184 const char *reg_name = f;
1185 size_t reg_name_length = strcspn(f, "+-}]");
1186 if (reg_name_length > 0)
1187 {
1188 std::string register_name(reg_name, reg_name_length);
1189 f += reg_name_length;
1190 register_offset = strtoll(f, &end, 0);
1191 if (f < end)
1192 f = end;
1193 if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']'))
1194 {
1195 fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n");
1196 return total_bytes_read;
1197 }
1198 else
1199 {
1200 f++;
1201 if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), &register_value))
1202 {
1203 // Set the address to dereference using the register value plus the offset
1204 switch (register_value.info.size)
1205 {
1206 default:
1207 case 0:
1208 fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size);
1209 return total_bytes_read;
1210
1211 case 1: register_addr = register_value.value.uint8 + register_offset; break;
1212 case 2: register_addr = register_value.value.uint16 + register_offset; break;
1213 case 4: register_addr = register_value.value.uint32 + register_offset; break;
1214 case 8: register_addr = register_value.value.uint64 + register_offset; break;
1215 case 16:
1216 if (open_scope_ch == '[')
1217 {
1218 fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size);
1219 return total_bytes_read;
1220 }
1221 break;
1222 }
1223
1224 if (open_scope_ch == '{')
1225 {
1226 byte_size = register_value.info.size;
1227 is_register = true; // value is in a register
1228
1229 }
1230 else
1231 {
1232 addr = register_addr; // Use register value and offset as the address
1233 }
1234 }
1235 else
1236 {
1237 fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.4x\n", register_name.c_str(), pid, tid);
1238 return total_bytes_read;
1239 }
1240 }
1241 }
1242 }
1243 break;
1244
1245 default:
1246 fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n");
1247 return total_bytes_read;
1248 }
1249 }
1250 break;
1251 }
1252
1253 // Check for a minimum field width
1254 if (isdigit(*f))
1255 {
1256 min_field_width = strtoul(f, &end, 10);
1257 if (end > f)
1258 {
1259 fprintf_format.append(f, end - f);
1260 f = end;
1261 }
1262 }
1263
1264
1265 // Check for a precision
1266 if (*f == '.')
1267 {
1268 f++;
1269 if (isdigit(*f))
1270 {
1271 fprintf_format += '.';
1272 precision = strtoul(f, &end, 10);
1273 if (end > f)
1274 {
1275 fprintf_format.append(f, end - f);
1276 f = end;
1277 }
1278 }
1279 }
1280
1281
1282 // mprintf specific: read the optional actual byte size (abs)
1283 // after the standard minimum field width (mfw) and precision (prec).
1284 // Standard printf calls you can have "mfw.prec" or ".prec", but
1285 // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice
1286 // for strings that may be in a fixed size buffer, but may not use all bytes
1287 // in that buffer for printable characters.
1288 if (*f == '.')
1289 {
1290 f++;
1291 actual_byte_size = strtoul(f, &end, 10);
1292 if (end > f)
1293 {
1294 byte_size = actual_byte_size;
1295 f = end;
1296 }
1297 }
1298
1299 // Decode the length modifiers
1300 switch (*f)
1301 {
1302 case 'h': // h and hh length modifiers
1303 fprintf_format += *f++;
1304 length_modifiers |= length_mod_h;
1305 if (*f == 'h')
1306 {
1307 fprintf_format += *f++;
1308 length_modifiers |= length_mod_hh;
1309 }
1310 break;
1311
1312 case 'l': // l and ll length modifiers
1313 fprintf_format += *f++;
1314 length_modifiers |= length_mod_l;
1315 if (*f == 'h')
1316 {
1317 fprintf_format += *f++;
1318 length_modifiers |= length_mod_ll;
1319 }
1320 break;
1321
1322 case 'L': fprintf_format += *f++; length_modifiers |= length_mod_L; break;
1323 case 'j': fprintf_format += *f++; length_modifiers |= length_mod_j; break;
1324 case 't': fprintf_format += *f++; length_modifiers |= length_mod_t; break;
1325 case 'z': fprintf_format += *f++; length_modifiers |= length_mod_z; break;
1326 case 'q': fprintf_format += *f++; length_modifiers |= length_mod_q; break;
1327 }
1328
1329 // Decode the conversion specifier
1330 switch (*f)
1331 {
1332 case '_':
1333 // mprintf specific format items
1334 {
1335 ++f; // Skip the '_' character
1336 switch (*f)
1337 {
1338 case 'a': // Print the current address
1339 ++f;
1340 fprintf_format += "ll";
1341 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ax")
1342 fprintf (file, fprintf_format.c_str(), addr);
1343 break;
1344 case 'o': // offset from base address
1345 ++f;
1346 fprintf_format += "ll";
1347 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ox")
1348 fprintf(file, fprintf_format.c_str(), addr - base_addr);
1349 break;
1350 default:
1351 fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f);
1352 break;
1353 }
1354 continue;
1355 }
1356 break;
1357
1358 case 'D':
1359 case 'O':
1360 case 'U':
1361 fprintf_format += *f;
1362 if (byte_size == 0)
1363 byte_size = sizeof(long int);
1364 break;
1365
1366 case 'd':
1367 case 'i':
1368 case 'o':
1369 case 'u':
1370 case 'x':
1371 case 'X':
1372 fprintf_format += *f;
1373 if (byte_size == 0)
1374 {
1375 if (length_modifiers & length_mod_hh)
1376 byte_size = sizeof(char);
1377 else if (length_modifiers & length_mod_h)
1378 byte_size = sizeof(short);
1379 if (length_modifiers & length_mod_ll)
1380 byte_size = sizeof(long long);
1381 else if (length_modifiers & length_mod_l)
1382 byte_size = sizeof(long);
1383 else
1384 byte_size = sizeof(int);
1385 }
1386 break;
1387
1388 case 'a':
1389 case 'A':
1390 case 'f':
1391 case 'F':
1392 case 'e':
1393 case 'E':
1394 case 'g':
1395 case 'G':
1396 fprintf_format += *f;
1397 if (byte_size == 0)
1398 {
1399 if (length_modifiers & length_mod_L)
1400 byte_size = sizeof(long double);
1401 else
1402 byte_size = sizeof(double);
1403 }
1404 break;
1405
1406 case 'c':
1407 if ((length_modifiers & length_mod_l) == 0)
1408 {
1409 fprintf_format += *f;
1410 if (byte_size == 0)
1411 byte_size = sizeof(char);
1412 break;
1413 }
1414 // Fall through to 'C' modifier below...
1415
1416 case 'C':
1417 fprintf_format += *f;
1418 if (byte_size == 0)
1419 byte_size = sizeof(wchar_t);
1420 break;
1421
1422 case 's':
1423 fprintf_format += *f;
1424 if (is_register || byte_size == 0)
1425 is_string = 1;
1426 break;
1427
1428 case 'p':
1429 fprintf_format += *f;
1430 if (byte_size == 0)
1431 byte_size = sizeof(void*);
1432 break;
1433 }
1434
1435 if (is_string)
1436 {
1437 std::string mem_string;
1438 const size_t string_buf_len = 4;
1439 char string_buf[string_buf_len+1];
1440 char *string_buf_end = string_buf + string_buf_len;
1441 string_buf[string_buf_len] = '\0';
1442 nub_size_t bytes_read;
1443 nub_addr_t str_addr = is_register ? register_addr : addr;
1444 while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0)
1445 {
1446 // Did we get a NULL termination character yet?
1447 if (strchr(string_buf, '\0') == string_buf_end)
1448 {
1449 // no NULL terminator yet, append as a std::string
1450 mem_string.append(string_buf, string_buf_len);
1451 str_addr += string_buf_len;
1452 }
1453 else
1454 {
1455 // yep
1456 break;
1457 }
1458 }
1459 // Append as a C-string so we don't get the extra NULL
1460 // characters in the temp buffer (since it was resized)
1461 mem_string += string_buf;
1462 size_t mem_string_len = mem_string.size() + 1;
1463 fprintf(file, fprintf_format.c_str(), mem_string.c_str());
1464 if (mem_string_len > 0)
1465 {
1466 if (!is_register)
1467 {
1468 addr += mem_string_len;
1469 total_bytes_read += mem_string_len;
1470 }
1471 }
1472 else
1473 return total_bytes_read;
1474 }
1475 else
1476 if (byte_size > 0)
1477 {
1478 buf.resize(byte_size);
1479 nub_size_t bytes_read = 0;
1480 if (is_register)
1481 bytes_read = register_value.info.size;
1482 else
1483 bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]);
1484 if (bytes_read > 0)
1485 {
1486 if (!is_register)
1487 total_bytes_read += bytes_read;
1488
1489 if (bytes_read == byte_size)
1490 {
1491 switch (*f)
1492 {
1493 case 'd':
1494 case 'i':
1495 case 'o':
1496 case 'u':
1497 case 'X':
1498 case 'x':
1499 case 'a':
1500 case 'A':
1501 case 'f':
1502 case 'F':
1503 case 'e':
1504 case 'E':
1505 case 'g':
1506 case 'G':
1507 case 'p':
1508 case 'c':
1509 case 'C':
1510 {
1511 if (is_register)
1512 data.SetData(&register_value.value.v_uint8[0], register_value.info.size);
1513 else
1514 data.SetData(&buf[0], bytes_read);
1515 DNBDataRef::offset_t data_offset = 0;
1516 if (byte_size <= 4)
1517 {
1518 uint32_t u32 = data.GetMax32(&data_offset, byte_size);
1519 // Show the actual byte width when displaying hex
1520 fprintf(file, fprintf_format.c_str(), u32);
1521 }
1522 else if (byte_size <= 8)
1523 {
1524 uint64_t u64 = data.GetMax64(&data_offset, byte_size);
1525 // Show the actual byte width when displaying hex
1526 fprintf(file, fprintf_format.c_str(), u64);
1527 }
1528 else
1529 {
1530 fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size);
1531 }
1532 if (!is_register)
1533 addr += byte_size;
1534 }
1535 break;
1536
1537 case 's':
1538 fprintf(file, fprintf_format.c_str(), buf.c_str());
1539 addr += byte_size;
1540 break;
1541
1542 default:
1543 fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f);
1544 break;
1545 }
1546 }
1547 }
1548 }
1549 else
1550 return total_bytes_read;
1551 }
1552 break;
1553
1554 case '\\':
1555 {
1556 f++;
1557 switch (*f)
1558 {
1559 case 'e': ch = '\e'; break;
1560 case 'a': ch = '\a'; break;
1561 case 'b': ch = '\b'; break;
1562 case 'f': ch = '\f'; break;
1563 case 'n': ch = '\n'; break;
1564 case 'r': ch = '\r'; break;
1565 case 't': ch = '\t'; break;
1566 case 'v': ch = '\v'; break;
1567 case '\'': ch = '\''; break;
1568 case '\\': ch = '\\'; break;
1569 case '0':
1570 case '1':
1571 case '2':
1572 case '3':
1573 case '4':
1574 case '5':
1575 case '6':
1576 case '7':
1577 ch = strtoul(f, &end, 8);
1578 f = end;
1579 break;
1580 default:
1581 ch = *f;
1582 break;
1583 }
1584 fputc(ch, file);
1585 }
1586 break;
1587
1588 default:
1589 fputc(ch, file);
1590 break;
1591 }
1592 }
1593 return total_bytes_read;
1594}
1595
1596
1597//----------------------------------------------------------------------
1598// Get the number of threads for the specified process.
1599//----------------------------------------------------------------------
1600nub_size_t
1601DNBProcessGetNumThreads (nub_process_t pid)
1602{
1603 MachProcessSP procSP;
1604 if (GetProcessSP (pid, procSP))
1605 return procSP->GetNumThreads();
1606 return 0;
1607}
1608
1609//----------------------------------------------------------------------
1610// Get the thread ID of the current thread.
1611//----------------------------------------------------------------------
1612nub_thread_t
1613DNBProcessGetCurrentThread (nub_process_t pid)
1614{
1615 MachProcessSP procSP;
1616 if (GetProcessSP (pid, procSP))
1617 return procSP->GetCurrentThread();
1618 return 0;
1619}
1620
1621//----------------------------------------------------------------------
1622// Change the current thread.
1623//----------------------------------------------------------------------
1624nub_thread_t
1625DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid)
1626{
1627 MachProcessSP procSP;
1628 if (GetProcessSP (pid, procSP))
1629 return procSP->SetCurrentThread (tid);
1630 return INVALID_NUB_THREAD;
1631}
1632
1633
1634//----------------------------------------------------------------------
1635// Dump a string describing a thread's stop reason to the specified file
1636// handle
1637//----------------------------------------------------------------------
1638nub_bool_t
1639DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info)
1640{
1641 MachProcessSP procSP;
1642 if (GetProcessSP (pid, procSP))
1643 return procSP->GetThreadStoppedReason (tid, stop_info);
1644 return false;
1645}
1646
1647//----------------------------------------------------------------------
1648// Return string description for the specified thread.
1649//
1650// RETURNS: NULL if the thread isn't valid, else a NULL terminated C
1651// string from a static buffer that must be copied prior to subsequent
1652// calls.
1653//----------------------------------------------------------------------
1654const char *
1655DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid)
1656{
1657 MachProcessSP procSP;
1658 if (GetProcessSP (pid, procSP))
1659 return procSP->GetThreadInfo (tid);
1660 return NULL;
1661}
1662
1663//----------------------------------------------------------------------
1664// Get the thread ID given a thread index.
1665//----------------------------------------------------------------------
1666nub_thread_t
1667DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx)
1668{
1669 MachProcessSP procSP;
1670 if (GetProcessSP (pid, procSP))
1671 return procSP->GetThreadAtIndex (thread_idx);
1672 return INVALID_NUB_THREAD;
1673}
1674
1675nub_addr_t
1676DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid)
1677{
1678 MachProcessSP procSP;
1679 DNBError err;
1680 if (GetProcessSP (pid, procSP))
1681 return procSP->Task().GetDYLDAllImageInfosAddress (err);
1682 return INVALID_NUB_ADDRESS;
1683}
1684
1685
1686nub_bool_t
1687DNBProcessSharedLibrariesUpdated(nub_process_t pid)
1688{
1689 MachProcessSP procSP;
1690 if (GetProcessSP (pid, procSP))
1691 {
1692 procSP->SharedLibrariesUpdated ();
1693 return true;
1694 }
1695 return false;
1696}
1697
1698//----------------------------------------------------------------------
1699// Get the current shared library information for a process. Only return
1700// the shared libraries that have changed since the last shared library
1701// state changed event if only_changed is non-zero.
1702//----------------------------------------------------------------------
1703nub_size_t
1704DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos)
1705{
1706 MachProcessSP procSP;
1707 if (GetProcessSP (pid, procSP))
1708 return procSP->CopyImageInfos (image_infos, only_changed);
1709
1710 // If we have no process, then return NULL for the shared library info
1711 // and zero for shared library count
1712 *image_infos = NULL;
1713 return 0;
1714}
1715
1716//----------------------------------------------------------------------
1717// Get the register set information for a specific thread.
1718//----------------------------------------------------------------------
1719const DNBRegisterSetInfo *
1720DNBGetRegisterSetInfo (nub_size_t *num_reg_sets)
1721{
1722 return DNBArch::GetRegisterSetInfo (num_reg_sets);
1723}
1724
1725
1726//----------------------------------------------------------------------
1727// Read a register value by register set and register index.
1728//----------------------------------------------------------------------
1729nub_bool_t
1730DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value)
1731{
1732 MachProcessSP procSP;
1733 ::bzero (value, sizeof(DNBRegisterValue));
1734 if (GetProcessSP (pid, procSP))
1735 {
1736 if (tid != INVALID_NUB_THREAD)
1737 return procSP->GetRegisterValue (tid, set, reg, value);
1738 }
1739 return false;
1740}
1741
1742nub_bool_t
1743DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value)
1744{
1745 if (tid != INVALID_NUB_THREAD)
1746 {
1747 MachProcessSP procSP;
1748 if (GetProcessSP (pid, procSP))
1749 return procSP->SetRegisterValue (tid, set, reg, value);
1750 }
1751 return false;
1752}
1753
1754nub_size_t
1755DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len)
1756{
1757 MachProcessSP procSP;
1758 if (GetProcessSP (pid, procSP))
1759 {
1760 if (tid != INVALID_NUB_THREAD)
1761 return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len);
1762 }
1763 ::bzero (buf, buf_len);
1764 return 0;
1765
1766}
1767
1768nub_size_t
1769DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len)
1770{
1771 MachProcessSP procSP;
1772 if (GetProcessSP (pid, procSP))
1773 {
1774 if (tid != INVALID_NUB_THREAD)
1775 return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len);
1776 }
1777 return 0;
1778}
1779
1780//----------------------------------------------------------------------
1781// Read a register value by name.
1782//----------------------------------------------------------------------
1783nub_bool_t
1784DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value)
1785{
1786 MachProcessSP procSP;
1787 ::bzero (value, sizeof(DNBRegisterValue));
1788 if (GetProcessSP (pid, procSP))
1789 {
1790 const struct DNBRegisterSetInfo *set_info;
1791 nub_size_t num_reg_sets = 0;
1792 set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1793 if (set_info)
1794 {
1795 uint32_t set = reg_set;
1796 uint32_t reg;
1797 if (set == REGISTER_SET_ALL)
1798 {
1799 for (set = 1; set < num_reg_sets; ++set)
1800 {
1801 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1802 {
1803 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1804 return procSP->GetRegisterValue (tid, set, reg, value);
1805 }
1806 }
1807 }
1808 else
1809 {
1810 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1811 {
1812 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1813 return procSP->GetRegisterValue (tid, set, reg, value);
1814 }
1815 }
1816 }
1817 }
1818 return false;
1819}
1820
1821
1822//----------------------------------------------------------------------
1823// Read a register set and register number from the register name.
1824//----------------------------------------------------------------------
1825nub_bool_t
1826DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info)
1827{
1828 const struct DNBRegisterSetInfo *set_info;
1829 nub_size_t num_reg_sets = 0;
1830 set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1831 if (set_info)
1832 {
1833 uint32_t set, reg;
1834 for (set = 1; set < num_reg_sets; ++set)
1835 {
1836 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1837 {
1838 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1839 {
1840 *info = set_info[set].registers[reg];
1841 return true;
1842 }
1843 }
1844 }
1845
1846 for (set = 1; set < num_reg_sets; ++set)
1847 {
1848 uint32_t reg;
1849 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1850 {
1851 if (set_info[set].registers[reg].alt == NULL)
1852 continue;
1853
1854 if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0)
1855 {
1856 *info = set_info[set].registers[reg];
1857 return true;
1858 }
1859 }
1860 }
1861 }
1862
1863 ::bzero (info, sizeof(DNBRegisterInfo));
1864 return false;
1865}
1866
1867
1868//----------------------------------------------------------------------
1869// Set the name to address callback function that this nub can use
1870// for any name to address lookups that are needed.
1871//----------------------------------------------------------------------
1872nub_bool_t
1873DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton)
1874{
1875 MachProcessSP procSP;
1876 if (GetProcessSP (pid, procSP))
1877 {
1878 procSP->SetNameToAddressCallback (callback, baton);
1879 return true;
1880 }
1881 return false;
1882}
1883
1884
1885//----------------------------------------------------------------------
1886// Set the name to address callback function that this nub can use
1887// for any name to address lookups that are needed.
1888//----------------------------------------------------------------------
1889nub_bool_t
1890DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void *baton)
1891{
1892 MachProcessSP procSP;
1893 if (GetProcessSP (pid, procSP))
1894 {
1895 procSP->SetSharedLibraryInfoCallback (callback, baton);
1896 return true;
1897 }
1898 return false;
1899}
1900
1901nub_addr_t
1902DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib)
1903{
1904 MachProcessSP procSP;
1905 if (GetProcessSP (pid, procSP))
1906 {
1907 return procSP->LookupSymbol (name, shlib);
1908 }
1909 return INVALID_NUB_ADDRESS;
1910}
1911
1912
1913nub_size_t
1914DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size)
1915{
1916 MachProcessSP procSP;
1917 if (GetProcessSP (pid, procSP))
1918 return procSP->GetAvailableSTDOUT (buf, buf_size);
1919 return 0;
1920}
1921
1922nub_size_t
1923DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size)
1924{
1925 MachProcessSP procSP;
1926 if (GetProcessSP (pid, procSP))
1927 return procSP->GetAvailableSTDERR (buf, buf_size);
1928 return 0;
1929}
1930
1931nub_size_t
1932DNBProcessGetStopCount (nub_process_t pid)
1933{
1934 MachProcessSP procSP;
1935 if (GetProcessSP (pid, procSP))
1936 return procSP->StopCount();
1937 return 0;
1938}
1939
1940nub_bool_t
1941DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size)
1942{
1943 if (path == NULL || path[0] == '\0')
1944 return false;
1945
1946 char max_path[PATH_MAX];
1947 std::string result;
1948 CFString::GlobPath(path, result);
1949
1950 if (result.empty())
1951 result = path;
1952
1953 if (realpath(path, max_path))
1954 {
1955 // Found the path relatively...
1956 ::strncpy(resolved_path, max_path, resolved_path_size);
1957 return strlen(resolved_path) + 1 < resolved_path_size;
1958 }
1959 else
1960 {
1961 // Not a relative path, check the PATH environment variable if the
1962 const char *PATH = getenv("PATH");
1963 if (PATH)
1964 {
1965 const char *curr_path_start = PATH;
1966 const char *curr_path_end;
1967 while (curr_path_start && *curr_path_start)
1968 {
1969 curr_path_end = strchr(curr_path_start, ':');
1970 if (curr_path_end == NULL)
1971 {
1972 result.assign(curr_path_start);
1973 curr_path_start = NULL;
1974 }
1975 else if (curr_path_end > curr_path_start)
1976 {
1977 size_t len = curr_path_end - curr_path_start;
1978 result.assign(curr_path_start, len);
1979 curr_path_start += len + 1;
1980 }
1981 else
1982 break;
1983
1984 result += '/';
1985 result += path;
1986 struct stat s;
1987 if (stat(result.c_str(), &s) == 0)
1988 {
1989 ::strncpy(resolved_path, result.c_str(), resolved_path_size);
1990 return result.size() + 1 < resolved_path_size;
1991 }
1992 }
1993 }
1994 }
1995 return false;
1996}
1997