blob: 1c1e04a69925deebc3e2fc97050a72581b5e9fed [file] [log] [blame]
Davide Italiano7e274e02016-12-22 16:03:48 +00001//===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements the new LLVM's Global Value Numbering pass.
11/// GVN partitions values computed by a function into congruence classes.
12/// Values ending up in the same congruence class are guaranteed to be the same
13/// for every execution of the program. In that respect, congruency is a
14/// compile-time approximation of equivalence of values at runtime.
15/// The algorithm implemented here uses a sparse formulation and it's based
16/// on the ideas described in the paper:
17/// "A Sparse Algorithm for Predicated Global Value Numbering" from
18/// Karthik Gargi.
19///
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Scalar/NewGVN.h"
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/DenseSet.h"
26#include "llvm/ADT/DepthFirstIterator.h"
27#include "llvm/ADT/Hashing.h"
28#include "llvm/ADT/MapVector.h"
29#include "llvm/ADT/PostOrderIterator.h"
Daniel Berlind7c12ee2016-12-25 22:23:49 +000030#include "llvm/ADT/STLExtras.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000031#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/SparseBitVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/TinyPtrVector.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Analysis/AssumptionCache.h"
38#include "llvm/Analysis/CFG.h"
39#include "llvm/Analysis/CFGPrinter.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/GlobalsModRef.h"
42#include "llvm/Analysis/InstructionSimplify.h"
43#include "llvm/Analysis/Loads.h"
44#include "llvm/Analysis/MemoryBuiltins.h"
45#include "llvm/Analysis/MemoryDependenceAnalysis.h"
46#include "llvm/Analysis/MemoryLocation.h"
47#include "llvm/Analysis/PHITransAddr.h"
48#include "llvm/Analysis/TargetLibraryInfo.h"
49#include "llvm/Analysis/ValueTracking.h"
50#include "llvm/IR/DataLayout.h"
51#include "llvm/IR/Dominators.h"
52#include "llvm/IR/GlobalVariable.h"
53#include "llvm/IR/IRBuilder.h"
54#include "llvm/IR/IntrinsicInst.h"
55#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
57#include "llvm/IR/PatternMatch.h"
58#include "llvm/IR/PredIteratorCache.h"
59#include "llvm/IR/Type.h"
60#include "llvm/Support/Allocator.h"
61#include "llvm/Support/CommandLine.h"
62#include "llvm/Support/Debug.h"
63#include "llvm/Transforms/Scalar.h"
64#include "llvm/Transforms/Scalar/GVNExpression.h"
65#include "llvm/Transforms/Utils/BasicBlockUtils.h"
66#include "llvm/Transforms/Utils/Local.h"
67#include "llvm/Transforms/Utils/MemorySSA.h"
68#include "llvm/Transforms/Utils/SSAUpdater.h"
69#include <unordered_map>
70#include <utility>
71#include <vector>
72using namespace llvm;
73using namespace PatternMatch;
74using namespace llvm::GVNExpression;
75
76#define DEBUG_TYPE "newgvn"
77
78STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
79STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
80STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
81STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
Daniel Berlin04443432017-01-07 03:23:47 +000082STATISTIC(NumGVNMaxIterations,
83 "Maximum Number of iterations it took to converge GVN");
Davide Italiano7e274e02016-12-22 16:03:48 +000084
85//===----------------------------------------------------------------------===//
86// GVN Pass
87//===----------------------------------------------------------------------===//
88
89// Anchor methods.
90namespace llvm {
91namespace GVNExpression {
Daniel Berlin85f91b02016-12-26 20:06:58 +000092Expression::~Expression() = default;
93BasicExpression::~BasicExpression() = default;
94CallExpression::~CallExpression() = default;
95LoadExpression::~LoadExpression() = default;
96StoreExpression::~StoreExpression() = default;
97AggregateValueExpression::~AggregateValueExpression() = default;
98PHIExpression::~PHIExpression() = default;
Davide Italiano7e274e02016-12-22 16:03:48 +000099}
100}
101
102// Congruence classes represent the set of expressions/instructions
103// that are all the same *during some scope in the function*.
104// That is, because of the way we perform equality propagation, and
105// because of memory value numbering, it is not correct to assume
106// you can willy-nilly replace any member with any other at any
107// point in the function.
108//
109// For any Value in the Member set, it is valid to replace any dominated member
110// with that Value.
111//
112// Every congruence class has a leader, and the leader is used to
113// symbolize instructions in a canonical way (IE every operand of an
114// instruction that is a member of the same congruence class will
115// always be replaced with leader during symbolization).
116// To simplify symbolization, we keep the leader as a constant if class can be
117// proved to be a constant value.
118// Otherwise, the leader is a randomly chosen member of the value set, it does
119// not matter which one is chosen.
120// Each congruence class also has a defining expression,
121// though the expression may be null. If it exists, it can be used for forward
122// propagation and reassociation of values.
123//
124struct CongruenceClass {
Piotr Padlewskie4047b82016-12-28 19:29:26 +0000125 using MemberSet = SmallPtrSet<Value *, 4>;
Davide Italiano7e274e02016-12-22 16:03:48 +0000126 unsigned ID;
127 // Representative leader.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000128 Value *RepLeader = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000129 // Defining Expression.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000130 const Expression *DefiningExpr = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000131 // Actual members of this class.
132 MemberSet Members;
133
134 // True if this class has no members left. This is mainly used for assertion
135 // purposes, and for skipping empty classes.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000136 bool Dead = false;
Davide Italiano7e274e02016-12-22 16:03:48 +0000137
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000138 // Number of stores in this congruence class.
139 // This is used so we can detect store equivalence changes properly.
140 unsigned StoreCount = 0;
141
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000142 explicit CongruenceClass(unsigned ID) : ID(ID) {}
Davide Italiano7e274e02016-12-22 16:03:48 +0000143 CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000144 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
Davide Italiano7e274e02016-12-22 16:03:48 +0000145};
146
147namespace llvm {
Daniel Berlin85f91b02016-12-26 20:06:58 +0000148template <> struct DenseMapInfo<const Expression *> {
149 static const Expression *getEmptyKey() {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000150 auto Val = static_cast<uintptr_t>(-1);
Daniel Berlin85f91b02016-12-26 20:06:58 +0000151 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
152 return reinterpret_cast<const Expression *>(Val);
153 }
154 static const Expression *getTombstoneKey() {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000155 auto Val = static_cast<uintptr_t>(~1U);
Daniel Berlin85f91b02016-12-26 20:06:58 +0000156 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
157 return reinterpret_cast<const Expression *>(Val);
158 }
159 static unsigned getHashValue(const Expression *V) {
160 return static_cast<unsigned>(V->getHashValue());
161 }
162 static bool isEqual(const Expression *LHS, const Expression *RHS) {
163 if (LHS == RHS)
164 return true;
165 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
166 LHS == getEmptyKey() || RHS == getEmptyKey())
167 return false;
168 return *LHS == *RHS;
169 }
170};
Davide Italiano7e274e02016-12-22 16:03:48 +0000171} // end namespace llvm
172
173class NewGVN : public FunctionPass {
174 DominatorTree *DT;
175 const DataLayout *DL;
176 const TargetLibraryInfo *TLI;
177 AssumptionCache *AC;
178 AliasAnalysis *AA;
179 MemorySSA *MSSA;
180 MemorySSAWalker *MSSAWalker;
181 BumpPtrAllocator ExpressionAllocator;
182 ArrayRecycler<Value *> ArgRecycler;
183
184 // Congruence class info.
185 CongruenceClass *InitialClass;
186 std::vector<CongruenceClass *> CongruenceClasses;
187 unsigned NextCongruenceNum;
188
189 // Value Mappings.
190 DenseMap<Value *, CongruenceClass *> ValueToClass;
191 DenseMap<Value *, const Expression *> ValueToExpression;
192
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000193 // A table storing which memorydefs/phis represent a memory state provably
194 // equivalent to another memory state.
195 // We could use the congruence class machinery, but the MemoryAccess's are
196 // abstract memory states, so they can only ever be equivalent to each other,
197 // and not to constants, etc.
Daniel Berlin7ad1ea02016-12-29 00:49:32 +0000198 DenseMap<const MemoryAccess *, MemoryAccess *> MemoryAccessEquiv;
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000199
Davide Italiano7e274e02016-12-22 16:03:48 +0000200 // Expression to class mapping.
Piotr Padlewskie4047b82016-12-28 19:29:26 +0000201 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
Davide Italiano7e274e02016-12-22 16:03:48 +0000202 ExpressionClassMap ExpressionToClass;
203
204 // Which values have changed as a result of leader changes.
Daniel Berlin3a1bd022017-01-11 20:22:05 +0000205 SmallPtrSet<Value *, 8> LeaderChanges;
Davide Italiano7e274e02016-12-22 16:03:48 +0000206
207 // Reachability info.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000208 using BlockEdge = BasicBlockEdge;
Davide Italiano7e274e02016-12-22 16:03:48 +0000209 DenseSet<BlockEdge> ReachableEdges;
210 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
211
212 // This is a bitvector because, on larger functions, we may have
213 // thousands of touched instructions at once (entire blocks,
214 // instructions with hundreds of uses, etc). Even with optimization
215 // for when we mark whole blocks as touched, when this was a
216 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
217 // the time in GVN just managing this list. The bitvector, on the
218 // other hand, efficiently supports test/set/clear of both
219 // individual and ranges, as well as "find next element" This
220 // enables us to use it as a worklist with essentially 0 cost.
221 BitVector TouchedInstructions;
222
223 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
224 DenseMap<const DomTreeNode *, std::pair<unsigned, unsigned>>
225 DominatedInstRange;
226
227#ifndef NDEBUG
228 // Debugging for how many times each block and instruction got processed.
229 DenseMap<const Value *, unsigned> ProcessedCount;
230#endif
231
232 // DFS info.
233 DenseMap<const BasicBlock *, std::pair<int, int>> DFSDomMap;
234 DenseMap<const Value *, unsigned> InstrDFS;
Daniel Berlin1f31fe522016-12-27 09:20:36 +0000235 SmallVector<Value *, 32> DFSToInstr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000236
237 // Deletion info.
238 SmallPtrSet<Instruction *, 8> InstructionsToErase;
239
240public:
241 static char ID; // Pass identification, replacement for typeid.
242 NewGVN() : FunctionPass(ID) {
243 initializeNewGVNPass(*PassRegistry::getPassRegistry());
244 }
245
246 bool runOnFunction(Function &F) override;
247 bool runGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
Daniel Berlin85f91b02016-12-26 20:06:58 +0000248 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA);
Davide Italiano7e274e02016-12-22 16:03:48 +0000249
250private:
251 // This transformation requires dominator postdominator info.
252 void getAnalysisUsage(AnalysisUsage &AU) const override {
253 AU.addRequired<AssumptionCacheTracker>();
254 AU.addRequired<DominatorTreeWrapperPass>();
255 AU.addRequired<TargetLibraryInfoWrapperPass>();
256 AU.addRequired<MemorySSAWrapperPass>();
257 AU.addRequired<AAResultsWrapperPass>();
258
259 AU.addPreserved<DominatorTreeWrapperPass>();
260 AU.addPreserved<GlobalsAAWrapperPass>();
261 }
262
263 // Expression handling.
264 const Expression *createExpression(Instruction *, const BasicBlock *);
265 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
266 const BasicBlock *);
267 PHIExpression *createPHIExpression(Instruction *);
268 const VariableExpression *createVariableExpression(Value *);
269 const ConstantExpression *createConstantExpression(Constant *);
270 const Expression *createVariableOrConstant(Value *V, const BasicBlock *B);
Daniel Berlin02c6b172017-01-02 18:00:53 +0000271 const UnknownExpression *createUnknownExpression(Instruction *);
Davide Italiano7e274e02016-12-22 16:03:48 +0000272 const StoreExpression *createStoreExpression(StoreInst *, MemoryAccess *,
273 const BasicBlock *);
274 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
275 MemoryAccess *, const BasicBlock *);
276
277 const CallExpression *createCallExpression(CallInst *, MemoryAccess *,
278 const BasicBlock *);
279 const AggregateValueExpression *
280 createAggregateValueExpression(Instruction *, const BasicBlock *);
281 bool setBasicExpressionInfo(Instruction *, BasicExpression *,
282 const BasicBlock *);
283
284 // Congruence class handling.
285 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000286 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
Piotr Padlewski6c37d292016-12-28 23:24:02 +0000287 CongruenceClasses.emplace_back(result);
Davide Italiano7e274e02016-12-22 16:03:48 +0000288 return result;
289 }
290
291 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
Davide Italiano0e714802016-12-28 14:00:11 +0000292 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
Davide Italiano7e274e02016-12-22 16:03:48 +0000293 CClass->Members.insert(Member);
294 ValueToClass[Member] = CClass;
295 return CClass;
296 }
297 void initializeCongruenceClasses(Function &F);
298
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000299 // Value number an Instruction or MemoryPhi.
300 void valueNumberMemoryPhi(MemoryPhi *);
301 void valueNumberInstruction(Instruction *);
302
Davide Italiano7e274e02016-12-22 16:03:48 +0000303 // Symbolic evaluation.
304 const Expression *checkSimplificationResults(Expression *, Instruction *,
305 Value *);
306 const Expression *performSymbolicEvaluation(Value *, const BasicBlock *);
307 const Expression *performSymbolicLoadEvaluation(Instruction *,
308 const BasicBlock *);
309 const Expression *performSymbolicStoreEvaluation(Instruction *,
310 const BasicBlock *);
311 const Expression *performSymbolicCallEvaluation(Instruction *,
312 const BasicBlock *);
313 const Expression *performSymbolicPHIEvaluation(Instruction *,
314 const BasicBlock *);
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000315 bool setMemoryAccessEquivTo(MemoryAccess *From, MemoryAccess *To);
Davide Italiano7e274e02016-12-22 16:03:48 +0000316 const Expression *performSymbolicAggrValueEvaluation(Instruction *,
317 const BasicBlock *);
318
319 // Congruence finding.
320 // Templated to allow them to work both on BB's and BB-edges.
321 template <class T>
322 Value *lookupOperandLeader(Value *, const User *, const T &) const;
323 void performCongruenceFinding(Value *, const Expression *);
Daniel Berlin3a1bd022017-01-11 20:22:05 +0000324 void moveValueToNewCongruenceClass(Value *, CongruenceClass *,
325 CongruenceClass *);
Davide Italiano7e274e02016-12-22 16:03:48 +0000326 // Reachability handling.
327 void updateReachableEdge(BasicBlock *, BasicBlock *);
328 void processOutgoingEdges(TerminatorInst *, BasicBlock *);
Daniel Berlin8a6a8612016-12-24 00:04:07 +0000329 bool isOnlyReachableViaThisEdge(const BasicBlockEdge &) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000330 Value *findConditionEquivalence(Value *, BasicBlock *) const;
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000331 MemoryAccess *lookupMemoryAccessEquiv(MemoryAccess *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000332
333 // Elimination.
334 struct ValueDFS;
335 void convertDenseToDFSOrdered(CongruenceClass::MemberSet &,
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +0000336 SmallVectorImpl<ValueDFS> &);
Davide Italiano7e274e02016-12-22 16:03:48 +0000337
338 bool eliminateInstructions(Function &);
339 void replaceInstruction(Instruction *, Value *);
340 void markInstructionForDeletion(Instruction *);
341 void deleteInstructionsInBlock(BasicBlock *);
342
343 // New instruction creation.
344 void handleNewInstruction(Instruction *){};
Daniel Berlin32f8d562017-01-07 16:55:14 +0000345
346 // Various instruction touch utilities
Davide Italiano7e274e02016-12-22 16:03:48 +0000347 void markUsersTouched(Value *);
348 void markMemoryUsersTouched(MemoryAccess *);
Daniel Berlin32f8d562017-01-07 16:55:14 +0000349 void markLeaderChangeTouched(CongruenceClass *CC);
Davide Italiano7e274e02016-12-22 16:03:48 +0000350
351 // Utilities.
352 void cleanupTables();
353 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
354 void updateProcessedCount(Value *V);
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000355 void verifyMemoryCongruency() const;
356 bool singleReachablePHIPath(const MemoryAccess *, const MemoryAccess *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000357};
358
359char NewGVN::ID = 0;
360
361// createGVNPass - The public interface to this file.
362FunctionPass *llvm::createNewGVNPass() { return new NewGVN(); }
363
Davide Italianob1114092016-12-28 13:37:17 +0000364template <typename T>
365static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
366 if ((!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) ||
Daniel Berlin7ad1ea02016-12-29 00:49:32 +0000367 !LHS.BasicExpression::equals(RHS)) {
Davide Italiano7e274e02016-12-22 16:03:48 +0000368 return false;
Daniel Berlin7ad1ea02016-12-29 00:49:32 +0000369 } else if (const auto *L = dyn_cast<LoadExpression>(&RHS)) {
Davide Italianob1114092016-12-28 13:37:17 +0000370 if (LHS.getDefiningAccess() != L->getDefiningAccess())
Davide Italiano7e274e02016-12-22 16:03:48 +0000371 return false;
Daniel Berlin7ad1ea02016-12-29 00:49:32 +0000372 } else if (const auto *S = dyn_cast<StoreExpression>(&RHS)) {
Davide Italianob1114092016-12-28 13:37:17 +0000373 if (LHS.getDefiningAccess() != S->getDefiningAccess())
Davide Italiano7e274e02016-12-22 16:03:48 +0000374 return false;
Daniel Berlin7ad1ea02016-12-29 00:49:32 +0000375 }
Davide Italiano7e274e02016-12-22 16:03:48 +0000376 return true;
377}
378
Davide Italianob1114092016-12-28 13:37:17 +0000379bool LoadExpression::equals(const Expression &Other) const {
380 return equalsLoadStoreHelper(*this, Other);
381}
Davide Italiano7e274e02016-12-22 16:03:48 +0000382
Davide Italianob1114092016-12-28 13:37:17 +0000383bool StoreExpression::equals(const Expression &Other) const {
384 return equalsLoadStoreHelper(*this, Other);
Davide Italiano7e274e02016-12-22 16:03:48 +0000385}
386
387#ifndef NDEBUG
388static std::string getBlockName(const BasicBlock *B) {
Davide Italiano0e714802016-12-28 14:00:11 +0000389 return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
Davide Italiano7e274e02016-12-22 16:03:48 +0000390}
391#endif
392
393INITIALIZE_PASS_BEGIN(NewGVN, "newgvn", "Global Value Numbering", false, false)
394INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
395INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
396INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
397INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
398INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
399INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
400INITIALIZE_PASS_END(NewGVN, "newgvn", "Global Value Numbering", false, false)
401
402PHIExpression *NewGVN::createPHIExpression(Instruction *I) {
Daniel Berlind92e7f92017-01-07 00:01:42 +0000403 BasicBlock *PHIBlock = I->getParent();
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000404 auto *PN = cast<PHINode>(I);
Daniel Berlind92e7f92017-01-07 00:01:42 +0000405 auto *E =
406 new (ExpressionAllocator) PHIExpression(PN->getNumOperands(), PHIBlock);
Davide Italiano7e274e02016-12-22 16:03:48 +0000407
408 E->allocateOperands(ArgRecycler, ExpressionAllocator);
409 E->setType(I->getType());
410 E->setOpcode(I->getOpcode());
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000411
412 auto ReachablePhiArg = [&](const Use &U) {
413 return ReachableBlocks.count(PN->getIncomingBlock(U));
414 };
415
416 // Filter out unreachable operands
417 auto Filtered = make_filter_range(PN->operands(), ReachablePhiArg);
418
419 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
420 [&](const Use &U) -> Value * {
Daniel Berlind92e7f92017-01-07 00:01:42 +0000421 // Don't try to transform self-defined phis.
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000422 if (U == PN)
423 return PN;
Daniel Berlind92e7f92017-01-07 00:01:42 +0000424 const BasicBlockEdge BBE(PN->getIncomingBlock(U), PHIBlock);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000425 return lookupOperandLeader(U, I, BBE);
426 });
Davide Italiano7e274e02016-12-22 16:03:48 +0000427 return E;
428}
429
430// Set basic expression info (Arguments, type, opcode) for Expression
431// E from Instruction I in block B.
432bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E,
433 const BasicBlock *B) {
434 bool AllConstant = true;
435 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
436 E->setType(GEP->getSourceElementType());
437 else
438 E->setType(I->getType());
439 E->setOpcode(I->getOpcode());
440 E->allocateOperands(ArgRecycler, ExpressionAllocator);
441
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000442 // Transform the operand array into an operand leader array, and keep track of
443 // whether all members are constant.
444 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
Davide Italiano7e274e02016-12-22 16:03:48 +0000445 auto Operand = lookupOperandLeader(O, I, B);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000446 AllConstant &= isa<Constant>(Operand);
447 return Operand;
448 });
449
Davide Italiano7e274e02016-12-22 16:03:48 +0000450 return AllConstant;
451}
452
453const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
454 Value *Arg1, Value *Arg2,
455 const BasicBlock *B) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000456 auto *E = new (ExpressionAllocator) BasicExpression(2);
Davide Italiano7e274e02016-12-22 16:03:48 +0000457
458 E->setType(T);
459 E->setOpcode(Opcode);
460 E->allocateOperands(ArgRecycler, ExpressionAllocator);
461 if (Instruction::isCommutative(Opcode)) {
462 // Ensure that commutative instructions that only differ by a permutation
463 // of their operands get the same value number by sorting the operand value
464 // numbers. Since all commutative instructions have two operands it is more
465 // efficient to sort by hand rather than using, say, std::sort.
466 if (Arg1 > Arg2)
467 std::swap(Arg1, Arg2);
468 }
Daniel Berlin65f5f0d2016-12-25 22:10:37 +0000469 E->op_push_back(lookupOperandLeader(Arg1, nullptr, B));
470 E->op_push_back(lookupOperandLeader(Arg2, nullptr, B));
Davide Italiano7e274e02016-12-22 16:03:48 +0000471
472 Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), *DL, TLI,
473 DT, AC);
474 if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V))
475 return SimplifiedE;
476 return E;
477}
478
479// Take a Value returned by simplification of Expression E/Instruction
480// I, and see if it resulted in a simpler expression. If so, return
481// that expression.
482// TODO: Once finished, this should not take an Instruction, we only
483// use it for printing.
484const Expression *NewGVN::checkSimplificationResults(Expression *E,
485 Instruction *I, Value *V) {
486 if (!V)
487 return nullptr;
488 if (auto *C = dyn_cast<Constant>(V)) {
489 if (I)
490 DEBUG(dbgs() << "Simplified " << *I << " to "
491 << " constant " << *C << "\n");
492 NumGVNOpsSimplified++;
493 assert(isa<BasicExpression>(E) &&
494 "We should always have had a basic expression here");
495
496 cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
497 ExpressionAllocator.Deallocate(E);
498 return createConstantExpression(C);
499 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
500 if (I)
501 DEBUG(dbgs() << "Simplified " << *I << " to "
502 << " variable " << *V << "\n");
503 cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
504 ExpressionAllocator.Deallocate(E);
505 return createVariableExpression(V);
506 }
507
508 CongruenceClass *CC = ValueToClass.lookup(V);
509 if (CC && CC->DefiningExpr) {
510 if (I)
511 DEBUG(dbgs() << "Simplified " << *I << " to "
512 << " expression " << *V << "\n");
513 NumGVNOpsSimplified++;
514 assert(isa<BasicExpression>(E) &&
515 "We should always have had a basic expression here");
516 cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
517 ExpressionAllocator.Deallocate(E);
518 return CC->DefiningExpr;
519 }
520 return nullptr;
521}
522
523const Expression *NewGVN::createExpression(Instruction *I,
524 const BasicBlock *B) {
525
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000526 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
Davide Italiano7e274e02016-12-22 16:03:48 +0000527
528 bool AllConstant = setBasicExpressionInfo(I, E, B);
529
530 if (I->isCommutative()) {
531 // Ensure that commutative instructions that only differ by a permutation
532 // of their operands get the same value number by sorting the operand value
533 // numbers. Since all commutative instructions have two operands it is more
534 // efficient to sort by hand rather than using, say, std::sort.
535 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
536 if (E->getOperand(0) > E->getOperand(1))
537 E->swapOperands(0, 1);
538 }
539
540 // Perform simplificaiton
541 // TODO: Right now we only check to see if we get a constant result.
542 // We may get a less than constant, but still better, result for
543 // some operations.
544 // IE
545 // add 0, x -> x
546 // and x, x -> x
547 // We should handle this by simply rewriting the expression.
548 if (auto *CI = dyn_cast<CmpInst>(I)) {
549 // Sort the operand value numbers so x<y and y>x get the same value
550 // number.
551 CmpInst::Predicate Predicate = CI->getPredicate();
552 if (E->getOperand(0) > E->getOperand(1)) {
553 E->swapOperands(0, 1);
554 Predicate = CmpInst::getSwappedPredicate(Predicate);
555 }
556 E->setOpcode((CI->getOpcode() << 8) | Predicate);
557 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
558 // TODO: Since we noop bitcasts, we may need to check types before
559 // simplifying, so that we don't end up simplifying based on a wrong
560 // type assumption. We should clean this up so we can use constants of the
561 // wrong type
562
563 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
564 "Wrong types on cmp instruction");
565 if ((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
566 E->getOperand(1)->getType() == I->getOperand(1)->getType())) {
567 Value *V = SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1),
568 *DL, TLI, DT, AC);
569 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
570 return SimplifiedE;
571 }
572 } else if (isa<SelectInst>(I)) {
573 if (isa<Constant>(E->getOperand(0)) ||
574 (E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
575 E->getOperand(2)->getType() == I->getOperand(2)->getType())) {
576 Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
577 E->getOperand(2), *DL, TLI, DT, AC);
578 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
579 return SimplifiedE;
580 }
581 } else if (I->isBinaryOp()) {
582 Value *V = SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1),
583 *DL, TLI, DT, AC);
584 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
585 return SimplifiedE;
586 } else if (auto *BI = dyn_cast<BitCastInst>(I)) {
587 Value *V = SimplifyInstruction(BI, *DL, TLI, DT, AC);
588 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
589 return SimplifiedE;
590 } else if (isa<GetElementPtrInst>(I)) {
591 Value *V = SimplifyGEPInst(E->getType(),
Daniel Berlin65f5f0d2016-12-25 22:10:37 +0000592 ArrayRef<Value *>(E->op_begin(), E->op_end()),
Davide Italiano7e274e02016-12-22 16:03:48 +0000593 *DL, TLI, DT, AC);
594 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
595 return SimplifiedE;
596 } else if (AllConstant) {
597 // We don't bother trying to simplify unless all of the operands
598 // were constant.
599 // TODO: There are a lot of Simplify*'s we could call here, if we
600 // wanted to. The original motivating case for this code was a
601 // zext i1 false to i8, which we don't have an interface to
602 // simplify (IE there is no SimplifyZExt).
603
604 SmallVector<Constant *, 8> C;
605 for (Value *Arg : E->operands())
Piotr Padlewski6c37d292016-12-28 23:24:02 +0000606 C.emplace_back(cast<Constant>(Arg));
Davide Italiano7e274e02016-12-22 16:03:48 +0000607
608 if (Value *V = ConstantFoldInstOperands(I, C, *DL, TLI))
609 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
610 return SimplifiedE;
611 }
612 return E;
613}
614
615const AggregateValueExpression *
616NewGVN::createAggregateValueExpression(Instruction *I, const BasicBlock *B) {
617 if (auto *II = dyn_cast<InsertValueInst>(I)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000618 auto *E = new (ExpressionAllocator)
Davide Italiano7e274e02016-12-22 16:03:48 +0000619 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
620 setBasicExpressionInfo(I, E, B);
621 E->allocateIntOperands(ExpressionAllocator);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000622 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
Davide Italiano7e274e02016-12-22 16:03:48 +0000623 return E;
Davide Italiano7e274e02016-12-22 16:03:48 +0000624 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000625 auto *E = new (ExpressionAllocator)
Davide Italiano7e274e02016-12-22 16:03:48 +0000626 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
627 setBasicExpressionInfo(EI, E, B);
628 E->allocateIntOperands(ExpressionAllocator);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000629 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
Davide Italiano7e274e02016-12-22 16:03:48 +0000630 return E;
631 }
632 llvm_unreachable("Unhandled type of aggregate value operation");
633}
634
Daniel Berlin85f91b02016-12-26 20:06:58 +0000635const VariableExpression *NewGVN::createVariableExpression(Value *V) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000636 auto *E = new (ExpressionAllocator) VariableExpression(V);
Davide Italiano7e274e02016-12-22 16:03:48 +0000637 E->setOpcode(V->getValueID());
638 return E;
639}
640
641const Expression *NewGVN::createVariableOrConstant(Value *V,
642 const BasicBlock *B) {
643 auto Leader = lookupOperandLeader(V, nullptr, B);
644 if (auto *C = dyn_cast<Constant>(Leader))
645 return createConstantExpression(C);
646 return createVariableExpression(Leader);
647}
648
Daniel Berlin85f91b02016-12-26 20:06:58 +0000649const ConstantExpression *NewGVN::createConstantExpression(Constant *C) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000650 auto *E = new (ExpressionAllocator) ConstantExpression(C);
Davide Italiano7e274e02016-12-22 16:03:48 +0000651 E->setOpcode(C->getValueID());
652 return E;
653}
654
Daniel Berlin02c6b172017-01-02 18:00:53 +0000655const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) {
656 auto *E = new (ExpressionAllocator) UnknownExpression(I);
657 E->setOpcode(I->getOpcode());
658 return E;
659}
660
Davide Italiano7e274e02016-12-22 16:03:48 +0000661const CallExpression *NewGVN::createCallExpression(CallInst *CI,
662 MemoryAccess *HV,
663 const BasicBlock *B) {
664 // FIXME: Add operand bundles for calls.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000665 auto *E =
Davide Italiano7e274e02016-12-22 16:03:48 +0000666 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, HV);
667 setBasicExpressionInfo(CI, E, B);
668 return E;
669}
670
671// See if we have a congruence class and leader for this operand, and if so,
672// return it. Otherwise, return the operand itself.
673template <class T>
Daniel Berlin85f91b02016-12-26 20:06:58 +0000674Value *NewGVN::lookupOperandLeader(Value *V, const User *U, const T &B) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000675 CongruenceClass *CC = ValueToClass.lookup(V);
676 if (CC && (CC != InitialClass))
677 return CC->RepLeader;
678 return V;
679}
680
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000681MemoryAccess *NewGVN::lookupMemoryAccessEquiv(MemoryAccess *MA) const {
682 MemoryAccess *Result = MemoryAccessEquiv.lookup(MA);
683 return Result ? Result : MA;
684}
685
Davide Italiano7e274e02016-12-22 16:03:48 +0000686LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
687 LoadInst *LI, MemoryAccess *DA,
688 const BasicBlock *B) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000689 auto *E = new (ExpressionAllocator) LoadExpression(1, LI, DA);
Davide Italiano7e274e02016-12-22 16:03:48 +0000690 E->allocateOperands(ArgRecycler, ExpressionAllocator);
691 E->setType(LoadType);
692
693 // Give store and loads same opcode so they value number together.
694 E->setOpcode(0);
Davide Italianoa312ca82016-12-26 16:19:34 +0000695 E->op_push_back(lookupOperandLeader(PointerOp, LI, B));
Davide Italiano7e274e02016-12-22 16:03:48 +0000696 if (LI)
697 E->setAlignment(LI->getAlignment());
698
699 // TODO: Value number heap versions. We may be able to discover
700 // things alias analysis can't on it's own (IE that a store and a
701 // load have the same value, and thus, it isn't clobbering the load).
702 return E;
703}
704
705const StoreExpression *NewGVN::createStoreExpression(StoreInst *SI,
706 MemoryAccess *DA,
707 const BasicBlock *B) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000708 auto *E =
Davide Italiano7e274e02016-12-22 16:03:48 +0000709 new (ExpressionAllocator) StoreExpression(SI->getNumOperands(), SI, DA);
710 E->allocateOperands(ArgRecycler, ExpressionAllocator);
711 E->setType(SI->getValueOperand()->getType());
712
713 // Give store and loads same opcode so they value number together.
714 E->setOpcode(0);
Daniel Berlin65f5f0d2016-12-25 22:10:37 +0000715 E->op_push_back(lookupOperandLeader(SI->getPointerOperand(), SI, B));
Davide Italiano7e274e02016-12-22 16:03:48 +0000716
717 // TODO: Value number heap versions. We may be able to discover
718 // things alias analysis can't on it's own (IE that a store and a
719 // load have the same value, and thus, it isn't clobbering the load).
720 return E;
721}
722
Daniel Berlinb755aea2017-01-09 05:34:29 +0000723// Utility function to check whether the congruence class has a member other
724// than the given instruction.
725bool hasMemberOtherThanUs(const CongruenceClass *CC, Instruction *I) {
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000726 // Either it has more than one store, in which case it must contain something
727 // other than us (because it's indexed by value), or if it only has one store
Daniel Berlinb755aea2017-01-09 05:34:29 +0000728 // right now, that member should not be us.
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000729 return CC->StoreCount > 1 || CC->Members.count(I) == 0;
Daniel Berlinb755aea2017-01-09 05:34:29 +0000730}
731
Davide Italiano7e274e02016-12-22 16:03:48 +0000732const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I,
733 const BasicBlock *B) {
Daniel Berlin589cecc2017-01-02 18:00:46 +0000734 // Unlike loads, we never try to eliminate stores, so we do not check if they
735 // are simple and avoid value numbering them.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000736 auto *SI = cast<StoreInst>(I);
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000737 MemoryAccess *StoreAccess = MSSA->getMemoryAccess(SI);
Daniel Berlinde43ef92017-01-02 19:49:17 +0000738 // See if we are defined by a previous store expression, it already has a
739 // value, and it's the same value as our current store. FIXME: Right now, we
740 // only do this for simple stores, we should expand to cover memcpys, etc.
Daniel Berlin589cecc2017-01-02 18:00:46 +0000741 if (SI->isSimple()) {
Daniel Berlinde43ef92017-01-02 19:49:17 +0000742 // Get the expression, if any, for the RHS of the MemoryDef.
743 MemoryAccess *StoreRHS = lookupMemoryAccessEquiv(
744 cast<MemoryDef>(StoreAccess)->getDefiningAccess());
745 const Expression *OldStore = createStoreExpression(SI, StoreRHS, B);
Daniel Berlin589cecc2017-01-02 18:00:46 +0000746 CongruenceClass *CC = ExpressionToClass.lookup(OldStore);
Daniel Berlinb755aea2017-01-09 05:34:29 +0000747 // Basically, check if the congruence class the store is in is defined by a
748 // store that isn't us, and has the same value. MemorySSA takes care of
749 // ensuring the store has the same memory state as us already.
Daniel Berlin589cecc2017-01-02 18:00:46 +0000750 if (CC && CC->DefiningExpr && isa<StoreExpression>(CC->DefiningExpr) &&
Daniel Berlinb755aea2017-01-09 05:34:29 +0000751 CC->RepLeader == lookupOperandLeader(SI->getValueOperand(), SI, B) &&
752 hasMemberOtherThanUs(CC, I))
Daniel Berlin589cecc2017-01-02 18:00:46 +0000753 return createStoreExpression(SI, StoreRHS, B);
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000754 }
Daniel Berlin589cecc2017-01-02 18:00:46 +0000755
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000756 return createStoreExpression(SI, StoreAccess, B);
Davide Italiano7e274e02016-12-22 16:03:48 +0000757}
758
759const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I,
760 const BasicBlock *B) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000761 auto *LI = cast<LoadInst>(I);
Davide Italiano7e274e02016-12-22 16:03:48 +0000762
763 // We can eliminate in favor of non-simple loads, but we won't be able to
Daniel Berlin589cecc2017-01-02 18:00:46 +0000764 // eliminate the loads themselves.
Davide Italiano7e274e02016-12-22 16:03:48 +0000765 if (!LI->isSimple())
766 return nullptr;
767
Daniel Berlin85f91b02016-12-26 20:06:58 +0000768 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand(), I, B);
Davide Italiano7e274e02016-12-22 16:03:48 +0000769 // Load of undef is undef.
770 if (isa<UndefValue>(LoadAddressLeader))
771 return createConstantExpression(UndefValue::get(LI->getType()));
772
773 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(I);
774
775 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
776 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
777 Instruction *DefiningInst = MD->getMemoryInst();
778 // If the defining instruction is not reachable, replace with undef.
779 if (!ReachableBlocks.count(DefiningInst->getParent()))
780 return createConstantExpression(UndefValue::get(LI->getType()));
781 }
782 }
783
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000784 const Expression *E =
785 createLoadExpression(LI->getType(), LI->getPointerOperand(), LI,
786 lookupMemoryAccessEquiv(DefiningAccess), B);
Davide Italiano7e274e02016-12-22 16:03:48 +0000787 return E;
788}
789
790// Evaluate read only and pure calls, and create an expression result.
791const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I,
792 const BasicBlock *B) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000793 auto *CI = cast<CallInst>(I);
Davide Italiano7e274e02016-12-22 16:03:48 +0000794 if (AA->doesNotAccessMemory(CI))
795 return createCallExpression(CI, nullptr, B);
Davide Italianob2225492016-12-27 18:15:39 +0000796 if (AA->onlyReadsMemory(CI)) {
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000797 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
Daniel Berlin85f91b02016-12-26 20:06:58 +0000798 return createCallExpression(CI, lookupMemoryAccessEquiv(DefiningAccess), B);
Davide Italianob2225492016-12-27 18:15:39 +0000799 }
800 return nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000801}
802
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000803// Update the memory access equivalence table to say that From is equal to To,
804// and return true if this is different from what already existed in the table.
805bool NewGVN::setMemoryAccessEquivTo(MemoryAccess *From, MemoryAccess *To) {
Davide Italiano84126162017-01-02 18:41:34 +0000806 DEBUG(dbgs() << "Setting " << *From << " equivalent to ");
807 if (!To)
808 DEBUG(dbgs() << "itself");
809 else
810 DEBUG(dbgs() << *To);
811 DEBUG(dbgs() << "\n");
Daniel Berlin589cecc2017-01-02 18:00:46 +0000812 auto LookupResult = MemoryAccessEquiv.find(From);
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000813 bool Changed = false;
814 // If it's already in the table, see if the value changed.
Daniel Berlin589cecc2017-01-02 18:00:46 +0000815 if (LookupResult != MemoryAccessEquiv.end()) {
816 if (To && LookupResult->second != To) {
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000817 // It wasn't equivalent before, and now it is.
Daniel Berlin589cecc2017-01-02 18:00:46 +0000818 LookupResult->second = To;
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000819 Changed = true;
820 } else if (!To) {
821 // It used to be equivalent to something, and now it's not.
Daniel Berlin589cecc2017-01-02 18:00:46 +0000822 MemoryAccessEquiv.erase(LookupResult);
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000823 Changed = true;
824 }
Daniel Berlin589cecc2017-01-02 18:00:46 +0000825 } else {
826 assert(!To &&
827 "Memory equivalence should never change from nothing to something");
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000828 }
Daniel Berlin589cecc2017-01-02 18:00:46 +0000829
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000830 return Changed;
831}
Davide Italiano7e274e02016-12-22 16:03:48 +0000832// Evaluate PHI nodes symbolically, and create an expression result.
833const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I,
834 const BasicBlock *B) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000835 auto *E = cast<PHIExpression>(createPHIExpression(I));
Daniel Berlind92e7f92017-01-07 00:01:42 +0000836 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
837
838 // See if all arguaments are the same.
839 // We track if any were undef because they need special handling.
840 bool HasUndef = false;
841 auto Filtered = make_filter_range(E->operands(), [&](const Value *Arg) {
842 if (Arg == I)
843 return false;
844 if (isa<UndefValue>(Arg)) {
845 HasUndef = true;
846 return false;
847 }
848 return true;
849 });
850 // If we are left with no operands, it's undef
851 if (Filtered.begin() == Filtered.end()) {
Davide Italiano7e274e02016-12-22 16:03:48 +0000852 DEBUG(dbgs() << "Simplified PHI node " << *I << " to undef"
853 << "\n");
854 E->deallocateOperands(ArgRecycler);
855 ExpressionAllocator.Deallocate(E);
856 return createConstantExpression(UndefValue::get(I->getType()));
857 }
Daniel Berlind92e7f92017-01-07 00:01:42 +0000858 Value *AllSameValue = *(Filtered.begin());
859 ++Filtered.begin();
860 // Can't use std::equal here, sadly, because filter.begin moves.
861 if (llvm::all_of(Filtered, [AllSameValue](const Value *V) {
862 return V == AllSameValue;
863 })) {
864 // In LLVM's non-standard representation of phi nodes, it's possible to have
865 // phi nodes with cycles (IE dependent on other phis that are .... dependent
866 // on the original phi node), especially in weird CFG's where some arguments
867 // are unreachable, or uninitialized along certain paths. This can cause
868 // infinite loops during evaluation. We work around this by not trying to
869 // really evaluate them independently, but instead using a variable
870 // expression to say if one is equivalent to the other.
871 // We also special case undef, so that if we have an undef, we can't use the
872 // common value unless it dominates the phi block.
873 if (HasUndef) {
874 // Only have to check for instructions
Davide Italiano1b97fc32017-01-07 02:05:50 +0000875 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
Daniel Berlind92e7f92017-01-07 00:01:42 +0000876 if (!DT->dominates(AllSameInst, I))
877 return E;
Davide Italiano7e274e02016-12-22 16:03:48 +0000878 }
879
Davide Italiano7e274e02016-12-22 16:03:48 +0000880 NumGVNPhisAllSame++;
881 DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
882 << "\n");
883 E->deallocateOperands(ArgRecycler);
884 ExpressionAllocator.Deallocate(E);
885 if (auto *C = dyn_cast<Constant>(AllSameValue))
886 return createConstantExpression(C);
887 return createVariableExpression(AllSameValue);
888 }
889 return E;
890}
891
892const Expression *
893NewGVN::performSymbolicAggrValueEvaluation(Instruction *I,
894 const BasicBlock *B) {
895 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
896 auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
897 if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
898 unsigned Opcode = 0;
899 // EI might be an extract from one of our recognised intrinsics. If it
900 // is we'll synthesize a semantically equivalent expression instead on
901 // an extract value expression.
902 switch (II->getIntrinsicID()) {
903 case Intrinsic::sadd_with_overflow:
904 case Intrinsic::uadd_with_overflow:
905 Opcode = Instruction::Add;
906 break;
907 case Intrinsic::ssub_with_overflow:
908 case Intrinsic::usub_with_overflow:
909 Opcode = Instruction::Sub;
910 break;
911 case Intrinsic::smul_with_overflow:
912 case Intrinsic::umul_with_overflow:
913 Opcode = Instruction::Mul;
914 break;
915 default:
916 break;
917 }
918
919 if (Opcode != 0) {
920 // Intrinsic recognized. Grab its args to finish building the
921 // expression.
922 assert(II->getNumArgOperands() == 2 &&
923 "Expect two args for recognised intrinsics.");
924 return createBinaryExpression(Opcode, EI->getType(),
925 II->getArgOperand(0),
926 II->getArgOperand(1), B);
927 }
928 }
929 }
930
931 return createAggregateValueExpression(I, B);
932}
933
934// Substitute and symbolize the value before value numbering.
935const Expression *NewGVN::performSymbolicEvaluation(Value *V,
936 const BasicBlock *B) {
Davide Italiano0e714802016-12-28 14:00:11 +0000937 const Expression *E = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000938 if (auto *C = dyn_cast<Constant>(V))
939 E = createConstantExpression(C);
940 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
941 E = createVariableExpression(V);
942 } else {
943 // TODO: memory intrinsics.
944 // TODO: Some day, we should do the forward propagation and reassociation
945 // parts of the algorithm.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000946 auto *I = cast<Instruction>(V);
Davide Italiano7e274e02016-12-22 16:03:48 +0000947 switch (I->getOpcode()) {
948 case Instruction::ExtractValue:
949 case Instruction::InsertValue:
950 E = performSymbolicAggrValueEvaluation(I, B);
951 break;
952 case Instruction::PHI:
953 E = performSymbolicPHIEvaluation(I, B);
954 break;
955 case Instruction::Call:
956 E = performSymbolicCallEvaluation(I, B);
957 break;
958 case Instruction::Store:
959 E = performSymbolicStoreEvaluation(I, B);
960 break;
961 case Instruction::Load:
962 E = performSymbolicLoadEvaluation(I, B);
963 break;
964 case Instruction::BitCast: {
965 E = createExpression(I, B);
966 } break;
967
968 case Instruction::Add:
969 case Instruction::FAdd:
970 case Instruction::Sub:
971 case Instruction::FSub:
972 case Instruction::Mul:
973 case Instruction::FMul:
974 case Instruction::UDiv:
975 case Instruction::SDiv:
976 case Instruction::FDiv:
977 case Instruction::URem:
978 case Instruction::SRem:
979 case Instruction::FRem:
980 case Instruction::Shl:
981 case Instruction::LShr:
982 case Instruction::AShr:
983 case Instruction::And:
984 case Instruction::Or:
985 case Instruction::Xor:
986 case Instruction::ICmp:
987 case Instruction::FCmp:
988 case Instruction::Trunc:
989 case Instruction::ZExt:
990 case Instruction::SExt:
991 case Instruction::FPToUI:
992 case Instruction::FPToSI:
993 case Instruction::UIToFP:
994 case Instruction::SIToFP:
995 case Instruction::FPTrunc:
996 case Instruction::FPExt:
997 case Instruction::PtrToInt:
998 case Instruction::IntToPtr:
999 case Instruction::Select:
1000 case Instruction::ExtractElement:
1001 case Instruction::InsertElement:
1002 case Instruction::ShuffleVector:
1003 case Instruction::GetElementPtr:
1004 E = createExpression(I, B);
1005 break;
1006 default:
1007 return nullptr;
1008 }
1009 }
Davide Italiano7e274e02016-12-22 16:03:48 +00001010 return E;
1011}
1012
1013// There is an edge from 'Src' to 'Dst'. Return true if every path from
1014// the entry block to 'Dst' passes via this edge. In particular 'Dst'
1015// must not be reachable via another edge from 'Src'.
Daniel Berlin8a6a8612016-12-24 00:04:07 +00001016bool NewGVN::isOnlyReachableViaThisEdge(const BasicBlockEdge &E) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00001017
1018 // While in theory it is interesting to consider the case in which Dst has
1019 // more than one predecessor, because Dst might be part of a loop which is
1020 // only reachable from Src, in practice it is pointless since at the time
1021 // GVN runs all such loops have preheaders, which means that Dst will have
1022 // been changed to have only one predecessor, namely Src.
1023 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
1024 const BasicBlock *Src = E.getStart();
1025 assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
1026 (void)Src;
1027 return Pred != nullptr;
1028}
1029
1030void NewGVN::markUsersTouched(Value *V) {
1031 // Now mark the users as touched.
Daniel Berline0bd37e2016-12-29 22:15:12 +00001032 for (auto *User : V->users()) {
1033 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
Davide Italiano7e274e02016-12-22 16:03:48 +00001034 TouchedInstructions.set(InstrDFS[User]);
1035 }
1036}
1037
1038void NewGVN::markMemoryUsersTouched(MemoryAccess *MA) {
1039 for (auto U : MA->users()) {
1040 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U))
1041 TouchedInstructions.set(InstrDFS[MUD->getMemoryInst()]);
1042 else
Daniel Berline0bd37e2016-12-29 22:15:12 +00001043 TouchedInstructions.set(InstrDFS[U]);
Davide Italiano7e274e02016-12-22 16:03:48 +00001044 }
1045}
1046
Daniel Berlin32f8d562017-01-07 16:55:14 +00001047// Touch the instructions that need to be updated after a congruence class has a
1048// leader change, and mark changed values.
1049void NewGVN::markLeaderChangeTouched(CongruenceClass *CC) {
1050 for (auto M : CC->Members) {
1051 if (auto *I = dyn_cast<Instruction>(M))
1052 TouchedInstructions.set(InstrDFS[I]);
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001053 LeaderChanges.insert(M);
1054 }
1055}
1056
1057// Move a value, currently in OldClass, to be part of NewClass
1058// Update OldClass for the move (including changing leaders, etc)
1059void NewGVN::moveValueToNewCongruenceClass(Value *V, CongruenceClass *OldClass,
1060 CongruenceClass *NewClass) {
1061 DEBUG(dbgs() << "New congruence class for " << V << " is " << NewClass->ID
1062 << "\n");
1063 OldClass->Members.erase(V);
1064 NewClass->Members.insert(V);
1065 if (isa<StoreInst>(V)) {
1066 --OldClass->StoreCount;
1067 assert(OldClass->StoreCount >= 0);
1068 ++NewClass->StoreCount;
1069 assert(NewClass->StoreCount >= 0);
1070 }
1071
1072 ValueToClass[V] = NewClass;
1073 // See if we destroyed the class or need to swap leaders.
1074 if (OldClass->Members.empty() && OldClass != InitialClass) {
1075 if (OldClass->DefiningExpr) {
1076 OldClass->Dead = true;
1077 DEBUG(dbgs() << "Erasing expression " << OldClass->DefiningExpr
1078 << " from table\n");
1079 ExpressionToClass.erase(OldClass->DefiningExpr);
1080 }
1081 } else if (OldClass->RepLeader == V) {
1082 // When the leader changes, the value numbering of
1083 // everything may change due to symbolization changes, so we need to
1084 // reprocess.
1085 OldClass->RepLeader = *(OldClass->Members.begin());
1086 markLeaderChangeTouched(OldClass);
Daniel Berlin32f8d562017-01-07 16:55:14 +00001087 }
1088}
1089
Davide Italiano7e274e02016-12-22 16:03:48 +00001090// Perform congruence finding on a given value numbering expression.
1091void NewGVN::performCongruenceFinding(Value *V, const Expression *E) {
Davide Italiano7e274e02016-12-22 16:03:48 +00001092 ValueToExpression[V] = E;
1093 // This is guaranteed to return something, since it will at least find
1094 // INITIAL.
Daniel Berlin32f8d562017-01-07 16:55:14 +00001095
Davide Italiano7e274e02016-12-22 16:03:48 +00001096 CongruenceClass *VClass = ValueToClass[V];
1097 assert(VClass && "Should have found a vclass");
1098 // Dead classes should have been eliminated from the mapping.
1099 assert(!VClass->Dead && "Found a dead class");
1100
1101 CongruenceClass *EClass;
Daniel Berlin02c6b172017-01-02 18:00:53 +00001102 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
Davide Italiano7e274e02016-12-22 16:03:48 +00001103 EClass = ValueToClass[VE->getVariableValue()];
1104 } else {
1105 auto lookupResult = ExpressionToClass.insert({E, nullptr});
1106
1107 // If it's not in the value table, create a new congruence class.
1108 if (lookupResult.second) {
Davide Italiano0e714802016-12-28 14:00:11 +00001109 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
Davide Italiano7e274e02016-12-22 16:03:48 +00001110 auto place = lookupResult.first;
1111 place->second = NewClass;
1112
1113 // Constants and variables should always be made the leader.
Daniel Berlin32f8d562017-01-07 16:55:14 +00001114 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
Davide Italiano7e274e02016-12-22 16:03:48 +00001115 NewClass->RepLeader = CE->getConstantValue();
Daniel Berlin32f8d562017-01-07 16:55:14 +00001116 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
1117 StoreInst *SI = SE->getStoreInst();
1118 NewClass->RepLeader =
1119 lookupOperandLeader(SI->getValueOperand(), SI, SI->getParent());
1120 } else {
Davide Italiano7e274e02016-12-22 16:03:48 +00001121 NewClass->RepLeader = V;
Daniel Berlin32f8d562017-01-07 16:55:14 +00001122 }
1123 assert(!isa<VariableExpression>(E) &&
1124 "VariableExpression should have been handled already");
Davide Italiano7e274e02016-12-22 16:03:48 +00001125
1126 EClass = NewClass;
1127 DEBUG(dbgs() << "Created new congruence class for " << *V
1128 << " using expression " << *E << " at " << NewClass->ID
Daniel Berlin589cecc2017-01-02 18:00:46 +00001129 << " and leader " << *(NewClass->RepLeader) << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00001130 DEBUG(dbgs() << "Hash value was " << E->getHashValue() << "\n");
1131 } else {
1132 EClass = lookupResult.first->second;
Daniel Berlin589cecc2017-01-02 18:00:46 +00001133 if (isa<ConstantExpression>(E))
1134 assert(isa<Constant>(EClass->RepLeader) &&
1135 "Any class with a constant expression should have a "
1136 "constant leader");
1137
Davide Italiano7e274e02016-12-22 16:03:48 +00001138 assert(EClass && "Somehow don't have an eclass");
1139
1140 assert(!EClass->Dead && "We accidentally looked up a dead class");
1141 }
1142 }
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001143 bool ClassChanged = VClass != EClass;
1144 bool LeaderChanged = LeaderChanges.erase(V);
1145 if (ClassChanged || LeaderChanged) {
Davide Italiano7e274e02016-12-22 16:03:48 +00001146 DEBUG(dbgs() << "Found class " << EClass->ID << " for expression " << E
1147 << "\n");
1148
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001149 if (ClassChanged)
Davide Italiano7e274e02016-12-22 16:03:48 +00001150
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001151 moveValueToNewCongruenceClass(V, VClass, EClass);
Daniel Berlin589cecc2017-01-02 18:00:46 +00001152
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00001153
Davide Italiano7e274e02016-12-22 16:03:48 +00001154 markUsersTouched(V);
Daniel Berlin589cecc2017-01-02 18:00:46 +00001155 if (auto *I = dyn_cast<Instruction>(V)) {
1156 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
1157 // If this is a MemoryDef, we need to update the equivalence table. If
Daniel Berlin25f05b02017-01-02 18:22:38 +00001158 // we determined the expression is congruent to a different memory
1159 // state, use that different memory state. If we determined it didn't,
Daniel Berlinde43ef92017-01-02 19:49:17 +00001160 // we update that as well. Right now, we only support store
Daniel Berlin25f05b02017-01-02 18:22:38 +00001161 // expressions.
Daniel Berlinde43ef92017-01-02 19:49:17 +00001162 if (!isa<MemoryUse>(MA) && isa<StoreExpression>(E) &&
1163 EClass->Members.size() != 1) {
1164 auto *DefAccess = cast<StoreExpression>(E)->getDefiningAccess();
1165 setMemoryAccessEquivTo(MA, DefAccess != MA ? DefAccess : nullptr);
1166 } else {
1167 setMemoryAccessEquivTo(MA, nullptr);
Daniel Berlin589cecc2017-01-02 18:00:46 +00001168 }
Davide Italiano7e274e02016-12-22 16:03:48 +00001169 markMemoryUsersTouched(MA);
Daniel Berlin589cecc2017-01-02 18:00:46 +00001170 }
1171 }
Daniel Berlin32f8d562017-01-07 16:55:14 +00001172 } else if (StoreInst *SI = dyn_cast<StoreInst>(V)) {
1173 // There is, sadly, one complicating thing for stores. Stores do not
1174 // produce values, only consume them. However, in order to make loads and
1175 // stores value number the same, we ignore the value operand of the store.
1176 // But the value operand will still be the leader of our class, and thus, it
1177 // may change. Because the store is a use, the store will get reprocessed,
1178 // but nothing will change about it, and so nothing above will catch it
1179 // (since the class will not change). In order to make sure everything ends
1180 // up okay, we need to recheck the leader of the class. Since stores of
1181 // different values value number differently due to different memorydefs, we
1182 // are guaranteed the leader is always the same between stores in the same
1183 // class.
1184 DEBUG(dbgs() << "Checking store leader\n");
1185 auto ProperLeader =
1186 lookupOperandLeader(SI->getValueOperand(), SI, SI->getParent());
1187 if (EClass->RepLeader != ProperLeader) {
1188 DEBUG(dbgs() << "Store leader changed, fixing\n");
1189 EClass->RepLeader = ProperLeader;
1190 markLeaderChangeTouched(EClass);
1191 markMemoryUsersTouched(MSSA->getMemoryAccess(SI));
1192 }
Davide Italiano7e274e02016-12-22 16:03:48 +00001193 }
1194}
1195
1196// Process the fact that Edge (from, to) is reachable, including marking
1197// any newly reachable blocks and instructions for processing.
1198void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
1199 // Check if the Edge was reachable before.
1200 if (ReachableEdges.insert({From, To}).second) {
1201 // If this block wasn't reachable before, all instructions are touched.
1202 if (ReachableBlocks.insert(To).second) {
1203 DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n");
1204 const auto &InstRange = BlockInstRange.lookup(To);
1205 TouchedInstructions.set(InstRange.first, InstRange.second);
1206 } else {
1207 DEBUG(dbgs() << "Block " << getBlockName(To)
1208 << " was reachable, but new edge {" << getBlockName(From)
1209 << "," << getBlockName(To) << "} to it found\n");
1210
1211 // We've made an edge reachable to an existing block, which may
1212 // impact predicates. Otherwise, only mark the phi nodes as touched, as
1213 // they are the only thing that depend on new edges. Anything using their
1214 // values will get propagated to if necessary.
Daniel Berlin589cecc2017-01-02 18:00:46 +00001215 if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(To))
1216 TouchedInstructions.set(InstrDFS[MemPhi]);
1217
Davide Italiano7e274e02016-12-22 16:03:48 +00001218 auto BI = To->begin();
1219 while (isa<PHINode>(BI)) {
1220 TouchedInstructions.set(InstrDFS[&*BI]);
1221 ++BI;
1222 }
1223 }
1224 }
1225}
1226
1227// Given a predicate condition (from a switch, cmp, or whatever) and a block,
1228// see if we know some constant value for it already.
1229Value *NewGVN::findConditionEquivalence(Value *Cond, BasicBlock *B) const {
1230 auto Result = lookupOperandLeader(Cond, nullptr, B);
1231 if (isa<Constant>(Result))
1232 return Result;
1233 return nullptr;
1234}
1235
1236// Process the outgoing edges of a block for reachability.
1237void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
1238 // Evaluate reachability of terminator instruction.
1239 BranchInst *BR;
1240 if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
1241 Value *Cond = BR->getCondition();
1242 Value *CondEvaluated = findConditionEquivalence(Cond, B);
1243 if (!CondEvaluated) {
1244 if (auto *I = dyn_cast<Instruction>(Cond)) {
1245 const Expression *E = createExpression(I, B);
1246 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
1247 CondEvaluated = CE->getConstantValue();
1248 }
1249 } else if (isa<ConstantInt>(Cond)) {
1250 CondEvaluated = Cond;
1251 }
1252 }
1253 ConstantInt *CI;
1254 BasicBlock *TrueSucc = BR->getSuccessor(0);
1255 BasicBlock *FalseSucc = BR->getSuccessor(1);
1256 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
1257 if (CI->isOne()) {
1258 DEBUG(dbgs() << "Condition for Terminator " << *TI
1259 << " evaluated to true\n");
1260 updateReachableEdge(B, TrueSucc);
1261 } else if (CI->isZero()) {
1262 DEBUG(dbgs() << "Condition for Terminator " << *TI
1263 << " evaluated to false\n");
1264 updateReachableEdge(B, FalseSucc);
1265 }
1266 } else {
1267 updateReachableEdge(B, TrueSucc);
1268 updateReachableEdge(B, FalseSucc);
1269 }
1270 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
1271 // For switches, propagate the case values into the case
1272 // destinations.
1273
1274 // Remember how many outgoing edges there are to every successor.
1275 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
1276
Davide Italiano7e274e02016-12-22 16:03:48 +00001277 Value *SwitchCond = SI->getCondition();
1278 Value *CondEvaluated = findConditionEquivalence(SwitchCond, B);
1279 // See if we were able to turn this switch statement into a constant.
1280 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001281 auto *CondVal = cast<ConstantInt>(CondEvaluated);
Davide Italiano7e274e02016-12-22 16:03:48 +00001282 // We should be able to get case value for this.
1283 auto CaseVal = SI->findCaseValue(CondVal);
1284 if (CaseVal.getCaseSuccessor() == SI->getDefaultDest()) {
1285 // We proved the value is outside of the range of the case.
1286 // We can't do anything other than mark the default dest as reachable,
1287 // and go home.
1288 updateReachableEdge(B, SI->getDefaultDest());
1289 return;
1290 }
1291 // Now get where it goes and mark it reachable.
1292 BasicBlock *TargetBlock = CaseVal.getCaseSuccessor();
1293 updateReachableEdge(B, TargetBlock);
Davide Italiano7e274e02016-12-22 16:03:48 +00001294 } else {
1295 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
1296 BasicBlock *TargetBlock = SI->getSuccessor(i);
1297 ++SwitchEdges[TargetBlock];
1298 updateReachableEdge(B, TargetBlock);
1299 }
1300 }
1301 } else {
1302 // Otherwise this is either unconditional, or a type we have no
1303 // idea about. Just mark successors as reachable.
1304 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1305 BasicBlock *TargetBlock = TI->getSuccessor(i);
1306 updateReachableEdge(B, TargetBlock);
1307 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00001308
1309 // This also may be a memory defining terminator, in which case, set it
1310 // equivalent to nothing.
1311 if (MemoryAccess *MA = MSSA->getMemoryAccess(TI))
1312 setMemoryAccessEquivTo(MA, nullptr);
Davide Italiano7e274e02016-12-22 16:03:48 +00001313 }
1314}
1315
Daniel Berlin85f91b02016-12-26 20:06:58 +00001316// The algorithm initially places the values of the routine in the INITIAL
1317// congruence
Davide Italiano7e274e02016-12-22 16:03:48 +00001318// class. The leader of INITIAL is the undetermined value `TOP`.
1319// When the algorithm has finished, values still in INITIAL are unreachable.
1320void NewGVN::initializeCongruenceClasses(Function &F) {
1321 // FIXME now i can't remember why this is 2
1322 NextCongruenceNum = 2;
1323 // Initialize all other instructions to be in INITIAL class.
1324 CongruenceClass::MemberSet InitialValues;
Davide Italiano0e714802016-12-28 14:00:11 +00001325 InitialClass = createCongruenceClass(nullptr, nullptr);
Daniel Berlin589cecc2017-01-02 18:00:46 +00001326 for (auto &B : F) {
1327 if (auto *MP = MSSA->getMemoryAccess(&B))
1328 MemoryAccessEquiv.insert({MP, MSSA->getLiveOnEntryDef()});
1329
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00001330 for (auto &I : B) {
1331 InitialValues.insert(&I);
1332 ValueToClass[&I] = InitialClass;
Daniel Berlin589cecc2017-01-02 18:00:46 +00001333 // All memory accesses are equivalent to live on entry to start. They must
1334 // be initialized to something so that initial changes are noticed. For
1335 // the maximal answer, we initialize them all to be the same as
1336 // liveOnEntry. Note that to save time, we only initialize the
1337 // MemoryDef's for stores and all MemoryPhis to be equal. Right now, no
1338 // other expression can generate a memory equivalence. If we start
1339 // handling memcpy/etc, we can expand this.
1340 if (isa<StoreInst>(&I))
1341 MemoryAccessEquiv.insert(
1342 {MSSA->getMemoryAccess(&I), MSSA->getLiveOnEntryDef()});
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00001343 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00001344 }
Davide Italiano7e274e02016-12-22 16:03:48 +00001345 InitialClass->Members.swap(InitialValues);
1346
1347 // Initialize arguments to be in their own unique congruence classes
1348 for (auto &FA : F.args())
1349 createSingletonCongruenceClass(&FA);
1350}
1351
1352void NewGVN::cleanupTables() {
1353 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
1354 DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->ID << " has "
1355 << CongruenceClasses[i]->Members.size() << " members\n");
1356 // Make sure we delete the congruence class (probably worth switching to
1357 // a unique_ptr at some point.
1358 delete CongruenceClasses[i];
Davide Italiano0e714802016-12-28 14:00:11 +00001359 CongruenceClasses[i] = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00001360 }
1361
1362 ValueToClass.clear();
1363 ArgRecycler.clear(ExpressionAllocator);
1364 ExpressionAllocator.Reset();
1365 CongruenceClasses.clear();
1366 ExpressionToClass.clear();
1367 ValueToExpression.clear();
1368 ReachableBlocks.clear();
1369 ReachableEdges.clear();
1370#ifndef NDEBUG
1371 ProcessedCount.clear();
1372#endif
1373 DFSDomMap.clear();
1374 InstrDFS.clear();
1375 InstructionsToErase.clear();
1376
1377 DFSToInstr.clear();
1378 BlockInstRange.clear();
1379 TouchedInstructions.clear();
1380 DominatedInstRange.clear();
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001381 MemoryAccessEquiv.clear();
Davide Italiano7e274e02016-12-22 16:03:48 +00001382}
1383
1384std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
1385 unsigned Start) {
1386 unsigned End = Start;
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001387 if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(B)) {
1388 InstrDFS[MemPhi] = End++;
Piotr Padlewski6c37d292016-12-28 23:24:02 +00001389 DFSToInstr.emplace_back(MemPhi);
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001390 }
1391
Davide Italiano7e274e02016-12-22 16:03:48 +00001392 for (auto &I : *B) {
1393 InstrDFS[&I] = End++;
Piotr Padlewski6c37d292016-12-28 23:24:02 +00001394 DFSToInstr.emplace_back(&I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001395 }
1396
1397 // All of the range functions taken half-open ranges (open on the end side).
1398 // So we do not subtract one from count, because at this point it is one
1399 // greater than the last instruction.
1400 return std::make_pair(Start, End);
1401}
1402
1403void NewGVN::updateProcessedCount(Value *V) {
1404#ifndef NDEBUG
1405 if (ProcessedCount.count(V) == 0) {
1406 ProcessedCount.insert({V, 1});
1407 } else {
1408 ProcessedCount[V] += 1;
1409 assert(ProcessedCount[V] < 100 &&
Davide Italiano75e39f92016-12-30 15:01:17 +00001410 "Seem to have processed the same Value a lot");
Davide Italiano7e274e02016-12-22 16:03:48 +00001411 }
1412#endif
1413}
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001414// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
1415void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
1416 // If all the arguments are the same, the MemoryPhi has the same value as the
1417 // argument.
1418 // Filter out unreachable blocks from our operands.
1419 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
1420 return ReachableBlocks.count(MP->getIncomingBlock(U));
1421 });
1422
1423 assert(Filtered.begin() != Filtered.end() &&
1424 "We should not be processing a MemoryPhi in a completely "
1425 "unreachable block");
1426
1427 // Transform the remaining operands into operand leaders.
1428 // FIXME: mapped_iterator should have a range version.
1429 auto LookupFunc = [&](const Use &U) {
1430 return lookupMemoryAccessEquiv(cast<MemoryAccess>(U));
1431 };
1432 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
1433 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
1434
1435 // and now check if all the elements are equal.
1436 // Sadly, we can't use std::equals since these are random access iterators.
1437 MemoryAccess *AllSameValue = *MappedBegin;
1438 ++MappedBegin;
1439 bool AllEqual = std::all_of(
1440 MappedBegin, MappedEnd,
1441 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
1442
1443 if (AllEqual)
1444 DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n");
1445 else
1446 DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
1447
1448 if (setMemoryAccessEquivTo(MP, AllEqual ? AllSameValue : nullptr))
1449 markMemoryUsersTouched(MP);
1450}
1451
1452// Value number a single instruction, symbolically evaluating, performing
1453// congruence finding, and updating mappings.
1454void NewGVN::valueNumberInstruction(Instruction *I) {
1455 DEBUG(dbgs() << "Processing instruction " << *I << "\n");
Daniel Berlind59e8012016-12-26 18:44:36 +00001456 if (isInstructionTriviallyDead(I, TLI)) {
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001457 DEBUG(dbgs() << "Skipping unused instruction\n");
Daniel Berlind59e8012016-12-26 18:44:36 +00001458 markInstructionForDeletion(I);
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001459 return;
1460 }
1461 if (!I->isTerminator()) {
Daniel Berlin02c6b172017-01-02 18:00:53 +00001462 const auto *Symbolized = performSymbolicEvaluation(I, I->getParent());
1463 // If we couldn't come up with a symbolic expression, use the unknown
1464 // expression
1465 if (Symbolized == nullptr)
1466 Symbolized = createUnknownExpression(I);
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001467 performCongruenceFinding(I, Symbolized);
1468 } else {
Daniel Berlin02c6b172017-01-02 18:00:53 +00001469 // Handle terminators that return values. All of them produce values we
1470 // don't currently understand.
Daniel Berlin25f05b02017-01-02 18:22:38 +00001471 if (!I->getType()->isVoidTy()) {
Daniel Berlin02c6b172017-01-02 18:00:53 +00001472 auto *Symbolized = createUnknownExpression(I);
1473 performCongruenceFinding(I, Symbolized);
1474 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001475 processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
1476 }
1477}
Davide Italiano7e274e02016-12-22 16:03:48 +00001478
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00001479// Check if there is a path, using single or equal argument phi nodes, from
1480// First to Second.
1481bool NewGVN::singleReachablePHIPath(const MemoryAccess *First,
1482 const MemoryAccess *Second) const {
1483 if (First == Second)
1484 return true;
1485
1486 if (auto *FirstDef = dyn_cast<MemoryUseOrDef>(First)) {
1487 auto *DefAccess = FirstDef->getDefiningAccess();
1488 return singleReachablePHIPath(DefAccess, Second);
1489 } else {
1490 auto *MP = cast<MemoryPhi>(First);
1491 auto ReachableOperandPred = [&](const Use &U) {
1492 return ReachableBlocks.count(MP->getIncomingBlock(U));
1493 };
1494 auto FilteredPhiArgs =
1495 make_filter_range(MP->operands(), ReachableOperandPred);
1496 SmallVector<const Value *, 32> OperandList;
1497 std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
1498 std::back_inserter(OperandList));
1499 bool Okay = OperandList.size() == 1;
1500 if (!Okay)
1501 Okay = std::equal(OperandList.begin(), OperandList.end(),
1502 OperandList.begin());
1503 if (Okay)
1504 return singleReachablePHIPath(cast<MemoryAccess>(OperandList[0]), Second);
1505 return false;
1506 }
1507}
1508
Daniel Berlin589cecc2017-01-02 18:00:46 +00001509// Verify the that the memory equivalence table makes sense relative to the
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00001510// congruence classes. Note that this checking is not perfect, and is currently
1511// subject to very rare false negatives. It is only useful for testing/debugging.
1512void NewGVN::verifyMemoryCongruency() const {
Daniel Berlin589cecc2017-01-02 18:00:46 +00001513 // Anything equivalent in the memory access table should be in the same
1514 // congruence class.
1515
1516 // Filter out the unreachable and trivially dead entries, because they may
1517 // never have been updated if the instructions were not processed.
1518 auto ReachableAccessPred =
1519 [&](const std::pair<const MemoryAccess *, MemoryAccess *> Pair) {
1520 bool Result = ReachableBlocks.count(Pair.first->getBlock());
1521 if (!Result)
1522 return false;
1523 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
1524 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
1525 return true;
1526 };
1527
1528 auto Filtered = make_filter_range(MemoryAccessEquiv, ReachableAccessPred);
1529 for (auto KV : Filtered) {
1530 assert(KV.first != KV.second &&
1531 "We added a useless equivalence to the memory equivalence table");
1532 // Unreachable instructions may not have changed because we never process
1533 // them.
1534 if (!ReachableBlocks.count(KV.first->getBlock()))
1535 continue;
1536 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
1537 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second);
Davide Italiano67ada752017-01-02 19:03:16 +00001538 if (FirstMUD && SecondMUD)
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00001539 assert(singleReachablePHIPath(FirstMUD, SecondMUD) ||
1540 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
1541 ValueToClass.lookup(SecondMUD->getMemoryInst()) &&
1542 "The instructions for these memory operations should have "
1543 "been in "
1544 "the same congruence class or reachable through a single "
1545 "argument phi");
Daniel Berlin589cecc2017-01-02 18:00:46 +00001546 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
1547
1548 // We can only sanely verify that MemoryDefs in the operand list all have
1549 // the same class.
1550 auto ReachableOperandPred = [&](const Use &U) {
1551 return ReachableBlocks.count(FirstMP->getIncomingBlock(U)) &&
1552 isa<MemoryDef>(U);
1553
1554 };
1555 // All arguments should in the same class, ignoring unreachable arguments
1556 auto FilteredPhiArgs =
1557 make_filter_range(FirstMP->operands(), ReachableOperandPred);
1558 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
1559 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
1560 std::back_inserter(PhiOpClasses), [&](const Use &U) {
1561 const MemoryDef *MD = cast<MemoryDef>(U);
1562 return ValueToClass.lookup(MD->getMemoryInst());
1563 });
1564 assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),
1565 PhiOpClasses.begin()) &&
1566 "All MemoryPhi arguments should be in the same class");
1567 }
1568 }
1569}
1570
Daniel Berlin85f91b02016-12-26 20:06:58 +00001571// This is the main transformation entry point.
Davide Italiano7e274e02016-12-22 16:03:48 +00001572bool NewGVN::runGVN(Function &F, DominatorTree *_DT, AssumptionCache *_AC,
Daniel Berlin85f91b02016-12-26 20:06:58 +00001573 TargetLibraryInfo *_TLI, AliasAnalysis *_AA,
1574 MemorySSA *_MSSA) {
Davide Italiano7e274e02016-12-22 16:03:48 +00001575 bool Changed = false;
1576 DT = _DT;
1577 AC = _AC;
1578 TLI = _TLI;
1579 AA = _AA;
1580 MSSA = _MSSA;
1581 DL = &F.getParent()->getDataLayout();
1582 MSSAWalker = MSSA->getWalker();
1583
1584 // Count number of instructions for sizing of hash tables, and come
1585 // up with a global dfs numbering for instructions.
Daniel Berline0bd37e2016-12-29 22:15:12 +00001586 unsigned ICount = 1;
1587 // Add an empty instruction to account for the fact that we start at 1
1588 DFSToInstr.emplace_back(nullptr);
Davide Italiano7e274e02016-12-22 16:03:48 +00001589 // Note: We want RPO traversal of the blocks, which is not quite the same as
1590 // dominator tree order, particularly with regard whether backedges get
1591 // visited first or second, given a block with multiple successors.
1592 // If we visit in the wrong order, we will end up performing N times as many
1593 // iterations.
Daniel Berlin6658cc92016-12-29 01:12:36 +00001594 // The dominator tree does guarantee that, for a given dom tree node, it's
1595 // parent must occur before it in the RPO ordering. Thus, we only need to sort
1596 // the siblings.
1597 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
Davide Italiano7e274e02016-12-22 16:03:48 +00001598 ReversePostOrderTraversal<Function *> RPOT(&F);
Daniel Berlin6658cc92016-12-29 01:12:36 +00001599 unsigned Counter = 0;
Davide Italiano7e274e02016-12-22 16:03:48 +00001600 for (auto &B : RPOT) {
Daniel Berlin6658cc92016-12-29 01:12:36 +00001601 auto *Node = DT->getNode(B);
1602 assert(Node && "RPO and Dominator tree should have same reachability");
1603 RPOOrdering[Node] = ++Counter;
1604 }
1605 // Sort dominator tree children arrays into RPO.
1606 for (auto &B : RPOT) {
1607 auto *Node = DT->getNode(B);
1608 if (Node->getChildren().size() > 1)
1609 std::sort(Node->begin(), Node->end(),
1610 [&RPOOrdering](const DomTreeNode *A, const DomTreeNode *B) {
1611 return RPOOrdering[A] < RPOOrdering[B];
1612 });
1613 }
1614
1615 // Now a standard depth first ordering of the domtree is equivalent to RPO.
1616 auto DFI = df_begin(DT->getRootNode());
1617 for (auto DFE = df_end(DT->getRootNode()); DFI != DFE; ++DFI) {
1618 BasicBlock *B = DFI->getBlock();
Davide Italiano7e274e02016-12-22 16:03:48 +00001619 const auto &BlockRange = assignDFSNumbers(B, ICount);
1620 BlockInstRange.insert({B, BlockRange});
1621 ICount += BlockRange.second - BlockRange.first;
1622 }
1623
1624 // Handle forward unreachable blocks and figure out which blocks
1625 // have single preds.
1626 for (auto &B : F) {
1627 // Assign numbers to unreachable blocks.
Daniel Berlin6658cc92016-12-29 01:12:36 +00001628 if (!DFI.nodeVisited(DT->getNode(&B))) {
Davide Italiano7e274e02016-12-22 16:03:48 +00001629 const auto &BlockRange = assignDFSNumbers(&B, ICount);
1630 BlockInstRange.insert({&B, BlockRange});
1631 ICount += BlockRange.second - BlockRange.first;
1632 }
1633 }
1634
Daniel Berline0bd37e2016-12-29 22:15:12 +00001635 TouchedInstructions.resize(ICount);
Davide Italiano7e274e02016-12-22 16:03:48 +00001636 DominatedInstRange.reserve(F.size());
1637 // Ensure we don't end up resizing the expressionToClass map, as
1638 // that can be quite expensive. At most, we have one expression per
1639 // instruction.
Daniel Berline0bd37e2016-12-29 22:15:12 +00001640 ExpressionToClass.reserve(ICount);
Davide Italiano7e274e02016-12-22 16:03:48 +00001641
1642 // Initialize the touched instructions to include the entry block.
1643 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
1644 TouchedInstructions.set(InstRange.first, InstRange.second);
1645 ReachableBlocks.insert(&F.getEntryBlock());
1646
1647 initializeCongruenceClasses(F);
1648
Daniel Berlin6cc5e442017-01-04 21:01:02 +00001649 unsigned int Iterations = 0;
Davide Italiano7e274e02016-12-22 16:03:48 +00001650 // We start out in the entry block.
1651 BasicBlock *LastBlock = &F.getEntryBlock();
1652 while (TouchedInstructions.any()) {
Daniel Berlin6cc5e442017-01-04 21:01:02 +00001653 ++Iterations;
Davide Italiano7e274e02016-12-22 16:03:48 +00001654 // Walk through all the instructions in all the blocks in RPO.
1655 for (int InstrNum = TouchedInstructions.find_first(); InstrNum != -1;
1656 InstrNum = TouchedInstructions.find_next(InstrNum)) {
Daniel Berline0bd37e2016-12-29 22:15:12 +00001657 assert(InstrNum != 0 && "Bit 0 should never be set, something touched an "
1658 "instruction not in the lookup table");
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001659 Value *V = DFSToInstr[InstrNum];
1660 BasicBlock *CurrBlock = nullptr;
1661
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001662 if (auto *I = dyn_cast<Instruction>(V))
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001663 CurrBlock = I->getParent();
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001664 else if (auto *MP = dyn_cast<MemoryPhi>(V))
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001665 CurrBlock = MP->getBlock();
1666 else
1667 llvm_unreachable("DFSToInstr gave us an unknown type of instruction");
Davide Italiano7e274e02016-12-22 16:03:48 +00001668
1669 // If we hit a new block, do reachability processing.
1670 if (CurrBlock != LastBlock) {
1671 LastBlock = CurrBlock;
1672 bool BlockReachable = ReachableBlocks.count(CurrBlock);
1673 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
1674
1675 // If it's not reachable, erase any touched instructions and move on.
1676 if (!BlockReachable) {
1677 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
1678 DEBUG(dbgs() << "Skipping instructions in block "
1679 << getBlockName(CurrBlock)
1680 << " because it is unreachable\n");
1681 continue;
1682 }
1683 updateProcessedCount(CurrBlock);
1684 }
Davide Italiano7e274e02016-12-22 16:03:48 +00001685
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001686 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001687 DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
1688 valueNumberMemoryPhi(MP);
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001689 } else if (auto *I = dyn_cast<Instruction>(V)) {
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001690 valueNumberInstruction(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001691 } else {
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001692 llvm_unreachable("Should have been a MemoryPhi or Instruction");
Davide Italiano7e274e02016-12-22 16:03:48 +00001693 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001694 updateProcessedCount(V);
Davide Italiano7e274e02016-12-22 16:03:48 +00001695 // Reset after processing (because we may mark ourselves as touched when
1696 // we propagate equalities).
1697 TouchedInstructions.reset(InstrNum);
1698 }
1699 }
Daniel Berlin6cc5e442017-01-04 21:01:02 +00001700 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
Daniel Berlin589cecc2017-01-02 18:00:46 +00001701#ifndef NDEBUG
1702 verifyMemoryCongruency();
1703#endif
Davide Italiano7e274e02016-12-22 16:03:48 +00001704 Changed |= eliminateInstructions(F);
1705
1706 // Delete all instructions marked for deletion.
1707 for (Instruction *ToErase : InstructionsToErase) {
1708 if (!ToErase->use_empty())
1709 ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
1710
1711 ToErase->eraseFromParent();
1712 }
1713
1714 // Delete all unreachable blocks.
Daniel Berlin85f91b02016-12-26 20:06:58 +00001715 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
1716 return !ReachableBlocks.count(&BB);
1717 };
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00001718
1719 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
1720 DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
Daniel Berlin85f91b02016-12-26 20:06:58 +00001721 << " is unreachable\n");
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00001722 deleteInstructionsInBlock(&BB);
1723 Changed = true;
Davide Italiano7e274e02016-12-22 16:03:48 +00001724 }
1725
1726 cleanupTables();
1727 return Changed;
1728}
1729
1730bool NewGVN::runOnFunction(Function &F) {
1731 if (skipFunction(F))
1732 return false;
1733 return runGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
1734 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
1735 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1736 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
1737 &getAnalysis<MemorySSAWrapperPass>().getMSSA());
1738}
1739
Daniel Berlin85f91b02016-12-26 20:06:58 +00001740PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
Davide Italiano7e274e02016-12-22 16:03:48 +00001741 NewGVN Impl;
1742
1743 // Apparently the order in which we get these results matter for
1744 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
1745 // the same order here, just in case.
1746 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1747 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1748 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1749 auto &AA = AM.getResult<AAManager>(F);
1750 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
1751 bool Changed = Impl.runGVN(F, &DT, &AC, &TLI, &AA, &MSSA);
1752 if (!Changed)
1753 return PreservedAnalyses::all();
1754 PreservedAnalyses PA;
1755 PA.preserve<DominatorTreeAnalysis>();
1756 PA.preserve<GlobalsAA>();
1757 return PA;
1758}
1759
1760// Return true if V is a value that will always be available (IE can
1761// be placed anywhere) in the function. We don't do globals here
1762// because they are often worse to put in place.
1763// TODO: Separate cost from availability
1764static bool alwaysAvailable(Value *V) {
1765 return isa<Constant>(V) || isa<Argument>(V);
1766}
1767
1768// Get the basic block from an instruction/value.
1769static BasicBlock *getBlockForValue(Value *V) {
1770 if (auto *I = dyn_cast<Instruction>(V))
1771 return I->getParent();
1772 return nullptr;
1773}
1774
1775struct NewGVN::ValueDFS {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001776 int DFSIn = 0;
1777 int DFSOut = 0;
1778 int LocalNum = 0;
Davide Italiano7e274e02016-12-22 16:03:48 +00001779 // Only one of these will be set.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001780 Value *Val = nullptr;
1781 Use *U = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00001782
1783 bool operator<(const ValueDFS &Other) const {
1784 // It's not enough that any given field be less than - we have sets
1785 // of fields that need to be evaluated together to give a proper ordering.
1786 // For example, if you have;
1787 // DFS (1, 3)
1788 // Val 0
1789 // DFS (1, 2)
1790 // Val 50
1791 // We want the second to be less than the first, but if we just go field
1792 // by field, we will get to Val 0 < Val 50 and say the first is less than
1793 // the second. We only want it to be less than if the DFS orders are equal.
1794 //
1795 // Each LLVM instruction only produces one value, and thus the lowest-level
1796 // differentiator that really matters for the stack (and what we use as as a
1797 // replacement) is the local dfs number.
Daniel Berlin85f91b02016-12-26 20:06:58 +00001798 // Everything else in the structure is instruction level, and only affects
1799 // the order in which we will replace operands of a given instruction.
Davide Italiano7e274e02016-12-22 16:03:48 +00001800 //
1801 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
1802 // the order of replacement of uses does not matter.
1803 // IE given,
1804 // a = 5
1805 // b = a + a
Daniel Berlin85f91b02016-12-26 20:06:58 +00001806 // When you hit b, you will have two valuedfs with the same dfsin, out, and
1807 // localnum.
Davide Italiano7e274e02016-12-22 16:03:48 +00001808 // The .val will be the same as well.
1809 // The .u's will be different.
Daniel Berlin85f91b02016-12-26 20:06:58 +00001810 // You will replace both, and it does not matter what order you replace them
1811 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
1812 // operand 2).
1813 // Similarly for the case of same dfsin, dfsout, localnum, but different
1814 // .val's
Davide Italiano7e274e02016-12-22 16:03:48 +00001815 // a = 5
1816 // b = 6
1817 // c = a + b
Daniel Berlin85f91b02016-12-26 20:06:58 +00001818 // in c, we will a valuedfs for a, and one for b,with everything the same
1819 // but .val and .u.
Davide Italiano7e274e02016-12-22 16:03:48 +00001820 // It does not matter what order we replace these operands in.
1821 // You will always end up with the same IR, and this is guaranteed.
1822 return std::tie(DFSIn, DFSOut, LocalNum, Val, U) <
1823 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Val,
1824 Other.U);
1825 }
1826};
1827
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00001828void NewGVN::convertDenseToDFSOrdered(
1829 CongruenceClass::MemberSet &Dense,
1830 SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
Davide Italiano7e274e02016-12-22 16:03:48 +00001831 for (auto D : Dense) {
1832 // First add the value.
1833 BasicBlock *BB = getBlockForValue(D);
1834 // Constants are handled prior to ever calling this function, so
1835 // we should only be left with instructions as members.
Chandler Carruthee086762016-12-23 01:38:06 +00001836 assert(BB && "Should have figured out a basic block for value");
Davide Italiano7e274e02016-12-22 16:03:48 +00001837 ValueDFS VD;
1838
1839 std::pair<int, int> DFSPair = DFSDomMap[BB];
1840 assert(DFSPair.first != -1 && DFSPair.second != -1 && "Invalid DFS Pair");
1841 VD.DFSIn = DFSPair.first;
1842 VD.DFSOut = DFSPair.second;
1843 VD.Val = D;
1844 // If it's an instruction, use the real local dfs number.
1845 if (auto *I = dyn_cast<Instruction>(D))
1846 VD.LocalNum = InstrDFS[I];
1847 else
1848 llvm_unreachable("Should have been an instruction");
1849
Piotr Padlewski6c37d292016-12-28 23:24:02 +00001850 DFSOrderedSet.emplace_back(VD);
Davide Italiano7e274e02016-12-22 16:03:48 +00001851
1852 // Now add the users.
1853 for (auto &U : D->uses()) {
1854 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
1855 ValueDFS VD;
1856 // Put the phi node uses in the incoming block.
1857 BasicBlock *IBlock;
1858 if (auto *P = dyn_cast<PHINode>(I)) {
1859 IBlock = P->getIncomingBlock(U);
1860 // Make phi node users appear last in the incoming block
1861 // they are from.
1862 VD.LocalNum = InstrDFS.size() + 1;
1863 } else {
1864 IBlock = I->getParent();
1865 VD.LocalNum = InstrDFS[I];
1866 }
1867 std::pair<int, int> DFSPair = DFSDomMap[IBlock];
1868 VD.DFSIn = DFSPair.first;
1869 VD.DFSOut = DFSPair.second;
1870 VD.U = &U;
Piotr Padlewski6c37d292016-12-28 23:24:02 +00001871 DFSOrderedSet.emplace_back(VD);
Davide Italiano7e274e02016-12-22 16:03:48 +00001872 }
1873 }
1874 }
1875}
1876
1877static void patchReplacementInstruction(Instruction *I, Value *Repl) {
1878 // Patch the replacement so that it is not more restrictive than the value
1879 // being replaced.
1880 auto *Op = dyn_cast<BinaryOperator>(I);
1881 auto *ReplOp = dyn_cast<BinaryOperator>(Repl);
1882
1883 if (Op && ReplOp)
1884 ReplOp->andIRFlags(Op);
1885
1886 if (auto *ReplInst = dyn_cast<Instruction>(Repl)) {
1887 // FIXME: If both the original and replacement value are part of the
1888 // same control-flow region (meaning that the execution of one
1889 // guarentees the executation of the other), then we can combine the
1890 // noalias scopes here and do better than the general conservative
1891 // answer used in combineMetadata().
1892
1893 // In general, GVN unifies expressions over different control-flow
1894 // regions, and so we need a conservative combination of the noalias
1895 // scopes.
1896 unsigned KnownIDs[] = {
1897 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1898 LLVMContext::MD_noalias, LLVMContext::MD_range,
1899 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
1900 LLVMContext::MD_invariant_group};
1901 combineMetadata(ReplInst, I, KnownIDs);
1902 }
1903}
1904
1905static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1906 patchReplacementInstruction(I, Repl);
1907 I->replaceAllUsesWith(Repl);
1908}
1909
1910void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
1911 DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
1912 ++NumGVNBlocksDeleted;
1913
1914 // Check to see if there are non-terminating instructions to delete.
1915 if (isa<TerminatorInst>(BB->begin()))
1916 return;
1917
1918 // Delete the instructions backwards, as it has a reduced likelihood of having
1919 // to update as many def-use and use-def chains. Start after the terminator.
1920 auto StartPoint = BB->rbegin();
1921 ++StartPoint;
1922 // Note that we explicitly recalculate BB->rend() on each iteration,
1923 // as it may change when we remove the first instruction.
1924 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
1925 Instruction &Inst = *I++;
1926 if (!Inst.use_empty())
1927 Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
1928 if (isa<LandingPadInst>(Inst))
1929 continue;
1930
1931 Inst.eraseFromParent();
1932 ++NumGVNInstrDeleted;
1933 }
1934}
1935
1936void NewGVN::markInstructionForDeletion(Instruction *I) {
1937 DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
1938 InstructionsToErase.insert(I);
1939}
1940
1941void NewGVN::replaceInstruction(Instruction *I, Value *V) {
1942
1943 DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
1944 patchAndReplaceAllUsesWith(I, V);
1945 // We save the actual erasing to avoid invalidating memory
1946 // dependencies until we are done with everything.
1947 markInstructionForDeletion(I);
1948}
1949
1950namespace {
1951
1952// This is a stack that contains both the value and dfs info of where
1953// that value is valid.
1954class ValueDFSStack {
1955public:
1956 Value *back() const { return ValueStack.back(); }
1957 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
1958
1959 void push_back(Value *V, int DFSIn, int DFSOut) {
Piotr Padlewski6c37d292016-12-28 23:24:02 +00001960 ValueStack.emplace_back(V);
Davide Italiano7e274e02016-12-22 16:03:48 +00001961 DFSStack.emplace_back(DFSIn, DFSOut);
1962 }
1963 bool empty() const { return DFSStack.empty(); }
1964 bool isInScope(int DFSIn, int DFSOut) const {
1965 if (empty())
1966 return false;
1967 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
1968 }
1969
1970 void popUntilDFSScope(int DFSIn, int DFSOut) {
1971
1972 // These two should always be in sync at this point.
1973 assert(ValueStack.size() == DFSStack.size() &&
1974 "Mismatch between ValueStack and DFSStack");
1975 while (
1976 !DFSStack.empty() &&
1977 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
1978 DFSStack.pop_back();
1979 ValueStack.pop_back();
1980 }
1981 }
1982
1983private:
1984 SmallVector<Value *, 8> ValueStack;
1985 SmallVector<std::pair<int, int>, 8> DFSStack;
1986};
1987}
Daniel Berlin04443432017-01-07 03:23:47 +00001988
Davide Italiano7e274e02016-12-22 16:03:48 +00001989bool NewGVN::eliminateInstructions(Function &F) {
1990 // This is a non-standard eliminator. The normal way to eliminate is
1991 // to walk the dominator tree in order, keeping track of available
1992 // values, and eliminating them. However, this is mildly
1993 // pointless. It requires doing lookups on every instruction,
1994 // regardless of whether we will ever eliminate it. For
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00001995 // instructions part of most singleton congruence classes, we know we
1996 // will never eliminate them.
Davide Italiano7e274e02016-12-22 16:03:48 +00001997
1998 // Instead, this eliminator looks at the congruence classes directly, sorts
1999 // them into a DFS ordering of the dominator tree, and then we just
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002000 // perform elimination straight on the sets by walking the congruence
Davide Italiano7e274e02016-12-22 16:03:48 +00002001 // class member uses in order, and eliminate the ones dominated by the
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002002 // last member. This is worst case O(E log E) where E = number of
2003 // instructions in a single congruence class. In theory, this is all
2004 // instructions. In practice, it is much faster, as most instructions are
2005 // either in singleton congruence classes or can't possibly be eliminated
2006 // anyway (if there are no overlapping DFS ranges in class).
Davide Italiano7e274e02016-12-22 16:03:48 +00002007 // When we find something not dominated, it becomes the new leader
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002008 // for elimination purposes.
2009 // TODO: If we wanted to be faster, We could remove any members with no
2010 // overlapping ranges while sorting, as we will never eliminate anything
2011 // with those members, as they don't dominate anything else in our set.
2012
Davide Italiano7e274e02016-12-22 16:03:48 +00002013 bool AnythingReplaced = false;
2014
2015 // Since we are going to walk the domtree anyway, and we can't guarantee the
2016 // DFS numbers are updated, we compute some ourselves.
2017 DT->updateDFSNumbers();
2018
2019 for (auto &B : F) {
2020 if (!ReachableBlocks.count(&B)) {
2021 for (const auto S : successors(&B)) {
2022 for (auto II = S->begin(); isa<PHINode>(II); ++II) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00002023 auto &Phi = cast<PHINode>(*II);
Davide Italiano7e274e02016-12-22 16:03:48 +00002024 DEBUG(dbgs() << "Replacing incoming value of " << *II << " for block "
2025 << getBlockName(&B)
2026 << " with undef due to it being unreachable\n");
2027 for (auto &Operand : Phi.incoming_values())
2028 if (Phi.getIncomingBlock(Operand) == &B)
2029 Operand.set(UndefValue::get(Phi.getType()));
2030 }
2031 }
2032 }
2033 DomTreeNode *Node = DT->getNode(&B);
2034 if (Node)
2035 DFSDomMap[&B] = {Node->getDFSNumIn(), Node->getDFSNumOut()};
2036 }
2037
2038 for (CongruenceClass *CC : CongruenceClasses) {
2039 // FIXME: We should eventually be able to replace everything still
2040 // in the initial class with undef, as they should be unreachable.
2041 // Right now, initial still contains some things we skip value
2042 // numbering of (UNREACHABLE's, for example).
2043 if (CC == InitialClass || CC->Dead)
2044 continue;
2045 assert(CC->RepLeader && "We should have had a leader");
2046
2047 // If this is a leader that is always available, and it's a
2048 // constant or has no equivalences, just replace everything with
2049 // it. We then update the congruence class with whatever members
2050 // are left.
2051 if (alwaysAvailable(CC->RepLeader)) {
2052 SmallPtrSet<Value *, 4> MembersLeft;
2053 for (auto M : CC->Members) {
2054
2055 Value *Member = M;
2056
2057 // Void things have no uses we can replace.
2058 if (Member == CC->RepLeader || Member->getType()->isVoidTy()) {
2059 MembersLeft.insert(Member);
2060 continue;
2061 }
2062
2063 DEBUG(dbgs() << "Found replacement " << *(CC->RepLeader) << " for "
2064 << *Member << "\n");
2065 // Due to equality propagation, these may not always be
2066 // instructions, they may be real values. We don't really
2067 // care about trying to replace the non-instructions.
2068 if (auto *I = dyn_cast<Instruction>(Member)) {
2069 assert(CC->RepLeader != I &&
2070 "About to accidentally remove our leader");
2071 replaceInstruction(I, CC->RepLeader);
2072 AnythingReplaced = true;
2073
2074 continue;
2075 } else {
2076 MembersLeft.insert(I);
2077 }
2078 }
2079 CC->Members.swap(MembersLeft);
2080
2081 } else {
2082 DEBUG(dbgs() << "Eliminating in congruence class " << CC->ID << "\n");
2083 // If this is a singleton, we can skip it.
2084 if (CC->Members.size() != 1) {
2085
2086 // This is a stack because equality replacement/etc may place
2087 // constants in the middle of the member list, and we want to use
2088 // those constant values in preference to the current leader, over
2089 // the scope of those constants.
2090 ValueDFSStack EliminationStack;
2091
2092 // Convert the members to DFS ordered sets and then merge them.
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00002093 SmallVector<ValueDFS, 8> DFSOrderedSet;
Davide Italiano7e274e02016-12-22 16:03:48 +00002094 convertDenseToDFSOrdered(CC->Members, DFSOrderedSet);
2095
2096 // Sort the whole thing.
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00002097 std::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
Davide Italiano7e274e02016-12-22 16:03:48 +00002098
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00002099 for (auto &VD : DFSOrderedSet) {
2100 int MemberDFSIn = VD.DFSIn;
2101 int MemberDFSOut = VD.DFSOut;
2102 Value *Member = VD.Val;
2103 Use *MemberUse = VD.U;
Davide Italiano7e274e02016-12-22 16:03:48 +00002104
Daniel Berlind92e7f92017-01-07 00:01:42 +00002105 if (Member) {
2106 // We ignore void things because we can't get a value from them.
2107 // FIXME: We could actually use this to kill dead stores that are
2108 // dominated by equivalent earlier stores.
2109 if (Member->getType()->isVoidTy())
2110 continue;
2111 }
Davide Italiano7e274e02016-12-22 16:03:48 +00002112
2113 if (EliminationStack.empty()) {
2114 DEBUG(dbgs() << "Elimination Stack is empty\n");
2115 } else {
2116 DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
2117 << EliminationStack.dfs_back().first << ","
2118 << EliminationStack.dfs_back().second << ")\n");
2119 }
Davide Italiano7e274e02016-12-22 16:03:48 +00002120
2121 DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
2122 << MemberDFSOut << ")\n");
2123 // First, we see if we are out of scope or empty. If so,
2124 // and there equivalences, we try to replace the top of
2125 // stack with equivalences (if it's on the stack, it must
2126 // not have been eliminated yet).
2127 // Then we synchronize to our current scope, by
2128 // popping until we are back within a DFS scope that
2129 // dominates the current member.
2130 // Then, what happens depends on a few factors
2131 // If the stack is now empty, we need to push
2132 // If we have a constant or a local equivalence we want to
2133 // start using, we also push.
2134 // Otherwise, we walk along, processing members who are
2135 // dominated by this scope, and eliminate them.
2136 bool ShouldPush =
2137 Member && (EliminationStack.empty() || isa<Constant>(Member));
2138 bool OutOfScope =
2139 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
2140
2141 if (OutOfScope || ShouldPush) {
2142 // Sync to our current scope.
2143 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
2144 ShouldPush |= Member && EliminationStack.empty();
2145 if (ShouldPush) {
2146 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
2147 }
2148 }
2149
2150 // If we get to this point, and the stack is empty we must have a use
2151 // with nothing we can use to eliminate it, just skip it.
2152 if (EliminationStack.empty())
2153 continue;
2154
2155 // Skip the Value's, we only want to eliminate on their uses.
2156 if (Member)
2157 continue;
2158 Value *Result = EliminationStack.back();
2159
Daniel Berlind92e7f92017-01-07 00:01:42 +00002160 // Don't replace our existing users with ourselves.
2161 if (MemberUse->get() == Result)
Davide Italiano7e274e02016-12-22 16:03:48 +00002162 continue;
2163
2164 DEBUG(dbgs() << "Found replacement " << *Result << " for "
2165 << *MemberUse->get() << " in " << *(MemberUse->getUser())
2166 << "\n");
2167
2168 // If we replaced something in an instruction, handle the patching of
2169 // metadata.
Daniel Berlin85f91b02016-12-26 20:06:58 +00002170 if (auto *ReplacedInst = dyn_cast<Instruction>(MemberUse->get()))
Davide Italiano7e274e02016-12-22 16:03:48 +00002171 patchReplacementInstruction(ReplacedInst, Result);
2172
2173 assert(isa<Instruction>(MemberUse->getUser()));
2174 MemberUse->set(Result);
2175 AnythingReplaced = true;
2176 }
2177 }
2178 }
2179
2180 // Cleanup the congruence class.
2181 SmallPtrSet<Value *, 4> MembersLeft;
Daniel Berlin25f05b02017-01-02 18:22:38 +00002182 for (Value *Member : CC->Members) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002183 if (Member->getType()->isVoidTy()) {
2184 MembersLeft.insert(Member);
2185 continue;
2186 }
2187
2188 if (auto *MemberInst = dyn_cast<Instruction>(Member)) {
2189 if (isInstructionTriviallyDead(MemberInst)) {
2190 // TODO: Don't mark loads of undefs.
2191 markInstructionForDeletion(MemberInst);
2192 continue;
2193 }
2194 }
2195 MembersLeft.insert(Member);
2196 }
2197 CC->Members.swap(MembersLeft);
2198 }
2199
2200 return AnythingReplaced;
2201}