blob: 8d94aaa0eaca009ecefe6c78ff04fff6e887a36e [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000020 return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000021}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000025 return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000026}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction. This expands to code that looks like this:
33// call $next_inst
34// popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000046def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000047 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000048 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000049 Requires<[NotLP64]>;
50def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51 "#ADJCALLSTACKUP",
52 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53 Requires<[NotLP64]>;
54}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000055def : Pat<(X86callseq_start timm:$amt1),
56 (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
57
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000058
59// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
60// a stack adjustment and the codegen must know that they may modify the stack
61// pointer before prolog-epilog rewriting occurs.
62// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
63// sub / add which can clobber EFLAGS.
64let Defs = [RSP, EFLAGS], Uses = [RSP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000065def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000067 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000068 Requires<[IsLP64]>;
69def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
70 "#ADJCALLSTACKUP",
71 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
72 Requires<[IsLP64]>;
73}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000074def : Pat<(X86callseq_start timm:$amt1),
75 (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000076
77
78// x86-64 va_start lowering magic.
79let usesCustomInserter = 1, Defs = [EFLAGS] in {
80def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
81 (outs),
82 (ins GR8:$al,
83 i64imm:$regsavefi, i64imm:$offset,
84 variable_ops),
85 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
86 [(X86vastart_save_xmm_regs GR8:$al,
87 imm:$regsavefi,
88 imm:$offset),
89 (implicit EFLAGS)]>;
90
91// The VAARG_64 pseudo-instruction takes the address of the va_list,
92// and places the address of the next argument into a register.
93let Defs = [EFLAGS] in
94def VAARG_64 : I<0, Pseudo,
95 (outs GR64:$dst),
96 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97 "#VAARG_64 $dst, $ap, $size, $mode, $align",
98 [(set GR64:$dst,
99 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
100 (implicit EFLAGS)]>;
101
102// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
103// targets. These calls are needed to probe the stack when allocating more than
104// 4k bytes in one go. Touching the stack at 4K increments is necessary to
105// ensure that the guard pages used by the OS virtual memory manager are
106// allocated in correct sequence.
107// The main point of having separate instruction are extra unmodelled effects
108// (compared to ordinary calls) like stack pointer change.
109
110let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
111 def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
112 "# dynamic stack allocation",
113 [(X86WinAlloca)]>;
114
115// When using segmented stacks these are lowered into instructions which first
116// check if the current stacklet has enough free memory. If it does, memory is
117// allocated by bumping the stack pointer. Otherwise memory is allocated from
118// the heap.
119
120let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
121def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
122 "# variable sized alloca for segmented stacks",
123 [(set GR32:$dst,
124 (X86SegAlloca GR32:$size))]>,
125 Requires<[NotLP64]>;
126
127let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
128def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
129 "# variable sized alloca for segmented stacks",
130 [(set GR64:$dst,
131 (X86SegAlloca GR64:$size))]>,
132 Requires<[In64BitMode]>;
133}
134
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000135//===----------------------------------------------------------------------===//
136// EH Pseudo Instructions
137//
138let SchedRW = [WriteSystem] in {
139let isTerminator = 1, isReturn = 1, isBarrier = 1,
140 hasCtrlDep = 1, isCodeGenOnly = 1 in {
141def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
142 "ret\t#eh_return, addr: $addr",
143 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
144
145}
146
147let isTerminator = 1, isReturn = 1, isBarrier = 1,
148 hasCtrlDep = 1, isCodeGenOnly = 1 in {
149def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
150 "ret\t#eh_return, addr: $addr",
151 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
152
153}
154
Reid Klecknerdf129512015-09-08 22:44:41 +0000155let isTerminator = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1, isReturn = 1 in {
Reid Kleckner5b8a46e2015-09-17 20:43:47 +0000156def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst),
157 "# CATCHRET",
158 [(catchret bb:$dst)]>;
159def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
Reid Kleckner0e288232015-08-27 23:27:47 +0000160}
161
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000162let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
163 usesCustomInserter = 1 in {
164 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
165 "#EH_SJLJ_SETJMP32",
166 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
167 Requires<[Not64BitMode]>;
168 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
169 "#EH_SJLJ_SETJMP64",
170 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
171 Requires<[In64BitMode]>;
172 let isTerminator = 1 in {
173 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
174 "#EH_SJLJ_LONGJMP32",
175 [(X86eh_sjlj_longjmp addr:$buf)]>,
176 Requires<[Not64BitMode]>;
177 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
178 "#EH_SJLJ_LONGJMP64",
179 [(X86eh_sjlj_longjmp addr:$buf)]>,
180 Requires<[In64BitMode]>;
181 }
182}
183} // SchedRW
184
185let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
186 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
187 "#EH_SjLj_Setup\t$dst", []>;
188}
189
190//===----------------------------------------------------------------------===//
191// Pseudo instructions used by unwind info.
192//
193let isPseudo = 1 in {
194 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
195 "#SEH_PushReg $reg", []>;
196 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
197 "#SEH_SaveReg $reg, $dst", []>;
198 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
199 "#SEH_SaveXMM $reg, $dst", []>;
200 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
201 "#SEH_StackAlloc $size", []>;
202 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
203 "#SEH_SetFrame $reg, $offset", []>;
204 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
205 "#SEH_PushFrame $mode", []>;
206 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
207 "#SEH_EndPrologue", []>;
208 def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
209 "#SEH_Epilogue", []>;
210}
211
212//===----------------------------------------------------------------------===//
213// Pseudo instructions used by segmented stacks.
214//
215
216// This is lowered into a RET instruction by MCInstLower. We need
217// this so that we don't have to have a MachineBasicBlock which ends
218// with a RET and also has successors.
219let isPseudo = 1 in {
220def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
221 "", []>;
222
223// This instruction is lowered to a RET followed by a MOV. The two
224// instructions are not generated on a higher level since then the
225// verifier sees a MachineBasicBlock ending with a non-terminator.
226def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
227 "", []>;
228}
229
230//===----------------------------------------------------------------------===//
231// Alias Instructions
232//===----------------------------------------------------------------------===//
233
234// Alias instruction mapping movr0 to xor.
235// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
236let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
237 isPseudo = 1 in
238def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
239 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
240
241// Other widths can also make use of the 32-bit xor, which may have a smaller
242// encoding and avoid partial register updates.
243def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
244def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
245def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
246 let AddedComplexity = 20;
247}
248
249// Materialize i64 constant where top 32-bits are zero. This could theoretically
250// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
251// that would make it more difficult to rematerialize.
252let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
253 isCodeGenOnly = 1, hasSideEffects = 0 in
254def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
255 "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
256
257// This 64-bit pseudo-move can be used for both a 64-bit constant that is
258// actually the zero-extension of a 32-bit constant, and for labels in the
259// x86-64 small code model.
260def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
261
262let AddedComplexity = 1 in
263def : Pat<(i64 mov64imm32:$src),
264 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
265
266// Use sbb to materialize carry bit.
267let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
268// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
269// However, Pat<> can't replicate the destination reg into the inputs of the
270// result.
271def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
272 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
273def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
274 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
275def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
276 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
277def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
278 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
279} // isCodeGenOnly
280
281
282def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
283 (SETB_C16r)>;
284def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
285 (SETB_C32r)>;
286def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
287 (SETB_C64r)>;
288
289def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
290 (SETB_C16r)>;
291def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
292 (SETB_C32r)>;
293def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
294 (SETB_C64r)>;
295
296// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
297// will be eliminated and that the sbb can be extended up to a wider type. When
298// this happens, it is great. However, if we are left with an 8-bit sbb and an
299// and, we might as well just match it as a setb.
300def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
301 (SETBr)>;
302
303// (add OP, SETB) -> (adc OP, 0)
304def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
305 (ADC8ri GR8:$op, 0)>;
306def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
307 (ADC32ri8 GR32:$op, 0)>;
308def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
309 (ADC64ri8 GR64:$op, 0)>;
310
311// (sub OP, SETB) -> (sbb OP, 0)
312def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
313 (SBB8ri GR8:$op, 0)>;
314def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
315 (SBB32ri8 GR32:$op, 0)>;
316def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
317 (SBB64ri8 GR64:$op, 0)>;
318
319// (sub OP, SETCC_CARRY) -> (adc OP, 0)
320def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
321 (ADC8ri GR8:$op, 0)>;
322def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
323 (ADC32ri8 GR32:$op, 0)>;
324def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
325 (ADC64ri8 GR64:$op, 0)>;
326
327//===----------------------------------------------------------------------===//
328// String Pseudo Instructions
329//
330let SchedRW = [WriteMicrocoded] in {
331let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
332def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
333 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
334 Requires<[Not64BitMode]>;
335def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
336 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
337 Requires<[Not64BitMode]>;
338def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
339 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
340 Requires<[Not64BitMode]>;
341}
342
343let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
344def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
345 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
346 Requires<[In64BitMode]>;
347def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
348 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
349 Requires<[In64BitMode]>;
350def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
351 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
352 Requires<[In64BitMode]>;
353def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
354 [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
355 Requires<[In64BitMode]>;
356}
357
358// FIXME: Should use "(X86rep_stos AL)" as the pattern.
359let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
360 let Uses = [AL,ECX,EDI] in
361 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
362 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
363 Requires<[Not64BitMode]>;
364 let Uses = [AX,ECX,EDI] in
365 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
366 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
367 Requires<[Not64BitMode]>;
368 let Uses = [EAX,ECX,EDI] in
369 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
370 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
371 Requires<[Not64BitMode]>;
372}
373
374let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
375 let Uses = [AL,RCX,RDI] in
376 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
377 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
378 Requires<[In64BitMode]>;
379 let Uses = [AX,RCX,RDI] in
380 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
381 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
382 Requires<[In64BitMode]>;
383 let Uses = [RAX,RCX,RDI] in
384 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
385 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
386 Requires<[In64BitMode]>;
387
388 let Uses = [RAX,RCX,RDI] in
389 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
390 [(X86rep_stos i64)], IIC_REP_STOS>, REP,
391 Requires<[In64BitMode]>;
392}
393} // SchedRW
394
395//===----------------------------------------------------------------------===//
396// Thread Local Storage Instructions
397//
398
399// ELF TLS Support
400// All calls clobber the non-callee saved registers. ESP is marked as
401// a use to prevent stack-pointer assignments that appear immediately
402// before calls from potentially appearing dead.
403let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
404 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
405 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
406 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
407 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
408 Uses = [ESP] in {
409def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
410 "# TLS_addr32",
411 [(X86tlsaddr tls32addr:$sym)]>,
412 Requires<[Not64BitMode]>;
413def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
414 "# TLS_base_addr32",
415 [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
416 Requires<[Not64BitMode]>;
417}
418
419// All calls clobber the non-callee saved registers. RSP is marked as
420// a use to prevent stack-pointer assignments that appear immediately
421// before calls from potentially appearing dead.
422let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
423 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
424 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
425 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
426 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
427 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
428 Uses = [RSP] in {
429def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
430 "# TLS_addr64",
431 [(X86tlsaddr tls64addr:$sym)]>,
432 Requires<[In64BitMode]>;
433def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
434 "# TLS_base_addr64",
435 [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
436 Requires<[In64BitMode]>;
437}
438
439// Darwin TLS Support
440// For i386, the address of the thunk is passed on the stack, on return the
441// address of the variable is in %eax. %ecx is trashed during the function
442// call. All other registers are preserved.
443let Defs = [EAX, ECX, EFLAGS],
444 Uses = [ESP],
445 usesCustomInserter = 1 in
446def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
447 "# TLSCall_32",
448 [(X86TLSCall addr:$sym)]>,
449 Requires<[Not64BitMode]>;
450
451// For x86_64, the address of the thunk is passed in %rdi, on return
452// the address of the variable is in %rax. All other registers are preserved.
453let Defs = [RAX, EFLAGS],
454 Uses = [RSP, RDI],
455 usesCustomInserter = 1 in
456def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
457 "# TLSCall_64",
458 [(X86TLSCall addr:$sym)]>,
459 Requires<[In64BitMode]>;
460
461
462//===----------------------------------------------------------------------===//
463// Conditional Move Pseudo Instructions
464
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000465// CMOV* - Used to implement the SELECT DAG operation. Expanded after
466// instruction selection into a branch sequence.
467multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
468 def CMOV#NAME : I<0, Pseudo,
469 (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
470 "#CMOV_"#NAME#" PSEUDO!",
471 [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
472 EFLAGS)))]>;
473}
474
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000475let usesCustomInserter = 1, Uses = [EFLAGS] in {
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000476 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
477 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
478 // however that requires promoting the operands, and can induce additional
479 // i8 register pressure.
480 defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000481
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000482 let Predicates = [NoCMov] in {
483 defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
484 defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
485 } // Predicates = [NoCMov]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000486
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000487 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
488 // SSE1/SSE2.
489 let Predicates = [FPStackf32] in
490 defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000491
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000492 let Predicates = [FPStackf64] in
493 defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
494
495 defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
496
497 defm _FR32 : CMOVrr_PSEUDO<FR32, f32>;
498 defm _FR64 : CMOVrr_PSEUDO<FR64, f64>;
499 defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>;
500 defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>;
501 defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>;
502 defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>;
503 defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>;
504 defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>;
505 defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>;
506 defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>;
507 defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
Elena Demikhovskyc1ac5d72015-05-12 09:36:52 +0000508 defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>;
509 defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>;
510 defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>;
511 defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000512} // usesCustomInserter = 1, Uses = [EFLAGS]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000513
514//===----------------------------------------------------------------------===//
515// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
516//===----------------------------------------------------------------------===//
517
518// FIXME: Use normal instructions and add lock prefix dynamically.
519
520// Memory barriers
521
522// TODO: Get this to fold the constant into the instruction.
523let isCodeGenOnly = 1, Defs = [EFLAGS] in
524def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
525 "or{l}\t{$zero, $dst|$dst, $zero}",
526 [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
527 Sched<[WriteALULd, WriteRMW]>;
528
529let hasSideEffects = 1 in
530def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
531 "#MEMBARRIER",
532 [(X86MemBarrier)]>, Sched<[WriteLoad]>;
533
534// RegOpc corresponds to the mr version of the instruction
535// ImmOpc corresponds to the mi version of the instruction
536// ImmOpc8 corresponds to the mi8 version of the instruction
537// ImmMod corresponds to the instruction format of the mi and mi8 versions
538multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
539 Format ImmMod, string mnemonic> {
540let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
541 SchedRW = [WriteALULd, WriteRMW] in {
542
543def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
544 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
545 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
546 !strconcat(mnemonic, "{b}\t",
547 "{$src2, $dst|$dst, $src2}"),
548 [], IIC_ALU_NONMEM>, LOCK;
549def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
550 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
551 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
552 !strconcat(mnemonic, "{w}\t",
553 "{$src2, $dst|$dst, $src2}"),
554 [], IIC_ALU_NONMEM>, OpSize16, LOCK;
555def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
556 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
557 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
558 !strconcat(mnemonic, "{l}\t",
559 "{$src2, $dst|$dst, $src2}"),
560 [], IIC_ALU_NONMEM>, OpSize32, LOCK;
561def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
562 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
563 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
564 !strconcat(mnemonic, "{q}\t",
565 "{$src2, $dst|$dst, $src2}"),
566 [], IIC_ALU_NONMEM>, LOCK;
567
568def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
569 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
570 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
571 !strconcat(mnemonic, "{b}\t",
572 "{$src2, $dst|$dst, $src2}"),
573 [], IIC_ALU_MEM>, LOCK;
574
575def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
576 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
577 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
578 !strconcat(mnemonic, "{w}\t",
579 "{$src2, $dst|$dst, $src2}"),
580 [], IIC_ALU_MEM>, OpSize16, LOCK;
581
582def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
583 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
584 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
585 !strconcat(mnemonic, "{l}\t",
586 "{$src2, $dst|$dst, $src2}"),
587 [], IIC_ALU_MEM>, OpSize32, LOCK;
588
589def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
590 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
591 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
592 !strconcat(mnemonic, "{q}\t",
593 "{$src2, $dst|$dst, $src2}"),
594 [], IIC_ALU_MEM>, LOCK;
595
596def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
597 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
598 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
599 !strconcat(mnemonic, "{w}\t",
600 "{$src2, $dst|$dst, $src2}"),
601 [], IIC_ALU_MEM>, OpSize16, LOCK;
602def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
603 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
604 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
605 !strconcat(mnemonic, "{l}\t",
606 "{$src2, $dst|$dst, $src2}"),
607 [], IIC_ALU_MEM>, OpSize32, LOCK;
608def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
609 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
610 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
611 !strconcat(mnemonic, "{q}\t",
612 "{$src2, $dst|$dst, $src2}"),
613 [], IIC_ALU_MEM>, LOCK;
614
615}
616
617}
618
619defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
620defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
621defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
622defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
623defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
624
625// Optimized codegen when the non-memory output is not used.
626multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
627 string mnemonic> {
628let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
629 SchedRW = [WriteALULd, WriteRMW] in {
630
631def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
632 !strconcat(mnemonic, "{b}\t$dst"),
633 [], IIC_UNARY_MEM>, LOCK;
634def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
635 !strconcat(mnemonic, "{w}\t$dst"),
636 [], IIC_UNARY_MEM>, OpSize16, LOCK;
637def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
638 !strconcat(mnemonic, "{l}\t$dst"),
639 [], IIC_UNARY_MEM>, OpSize32, LOCK;
640def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
641 !strconcat(mnemonic, "{q}\t$dst"),
642 [], IIC_UNARY_MEM>, LOCK;
643}
644}
645
646defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
647defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
648
649// Atomic compare and swap.
650multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
651 SDPatternOperator frag, X86MemOperand x86memop,
652 InstrItinClass itin> {
653let isCodeGenOnly = 1 in {
654 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
655 !strconcat(mnemonic, "\t$ptr"),
656 [(frag addr:$ptr)], itin>, TB, LOCK;
657}
658}
659
660multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
661 string mnemonic, SDPatternOperator frag,
662 InstrItinClass itin8, InstrItinClass itin> {
663let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
664 let Defs = [AL, EFLAGS], Uses = [AL] in
665 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
666 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
667 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
668 let Defs = [AX, EFLAGS], Uses = [AX] in
669 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
670 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
671 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
672 let Defs = [EAX, EFLAGS], Uses = [EAX] in
673 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
674 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
675 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
676 let Defs = [RAX, EFLAGS], Uses = [RAX] in
677 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
678 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
679 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
680}
681}
682
683let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
684 SchedRW = [WriteALULd, WriteRMW] in {
685defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
686 X86cas8, i64mem,
687 IIC_CMPX_LOCK_8B>;
688}
689
690let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
691 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
692defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
693 X86cas16, i128mem,
694 IIC_CMPX_LOCK_16B>, REX_W;
695}
696
697defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
698 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
699
700// Atomic exchange and add
701multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
702 string frag,
703 InstrItinClass itin8, InstrItinClass itin> {
704 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
705 SchedRW = [WriteALULd, WriteRMW] in {
706 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
707 (ins GR8:$val, i8mem:$ptr),
708 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
709 [(set GR8:$dst,
710 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
711 itin8>;
712 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
713 (ins GR16:$val, i16mem:$ptr),
714 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
715 [(set
716 GR16:$dst,
717 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
718 itin>, OpSize16;
719 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
720 (ins GR32:$val, i32mem:$ptr),
721 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
722 [(set
723 GR32:$dst,
724 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
725 itin>, OpSize32;
726 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
727 (ins GR64:$val, i64mem:$ptr),
728 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
729 [(set
730 GR64:$dst,
731 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
732 itin>;
733 }
734}
735
736defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
737 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
738 TB, LOCK;
739
740/* The following multiclass tries to make sure that in code like
741 * x.store (immediate op x.load(acquire), release)
JF Bastien86620832015-08-05 21:04:59 +0000742 * and
743 * x.store (register op x.load(acquire), release)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000744 * an operation directly on memory is generated instead of wasting a register.
745 * It is not automatic as atomic_store/load are only lowered to MOV instructions
746 * extremely late to prevent them from being accidentally reordered in the backend
747 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
748 */
JF Bastien0f8a99b2015-08-05 23:15:37 +0000749multiclass RELEASE_BINOP_MI<SDNode op> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000750 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000751 "#BINOP "#NAME#"8mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000752 [(atomic_store_8 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000753 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000754 def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
755 "#BINOP "#NAME#"8mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000756 [(atomic_store_8 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000757 (atomic_load_8 addr:$dst), GR8:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000758 // NAME#16 is not generated as 16-bit arithmetic instructions are considered
759 // costly and avoided as far as possible by this backend anyway
760 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000761 "#BINOP "#NAME#"32mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000762 [(atomic_store_32 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000763 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000764 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
765 "#BINOP "#NAME#"32mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000766 [(atomic_store_32 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000767 (atomic_load_32 addr:$dst), GR32:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000768 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000769 "#BINOP "#NAME#"64mi32 PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000770 [(atomic_store_64 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000771 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000772 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
773 "#BINOP "#NAME#"64mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000774 [(atomic_store_64 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000775 (atomic_load_64 addr:$dst), GR64:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000776}
JF Bastien0f8a99b2015-08-05 23:15:37 +0000777defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
778defm RELEASE_AND : RELEASE_BINOP_MI<and>;
779defm RELEASE_OR : RELEASE_BINOP_MI<or>;
780defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000781// Note: we don't deal with sub, because substractions of constants are
782// optimized into additions before this code can run
783
JF Bastien86620832015-08-05 21:04:59 +0000784// Same as above, but for floating-point.
785// FIXME: imm version.
786// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
787// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
788let usesCustomInserter = 1 in {
JF Bastien0f8a99b2015-08-05 23:15:37 +0000789multiclass RELEASE_FP_BINOP_MI<SDNode op> {
JF Bastien86620832015-08-05 21:04:59 +0000790 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
791 "#BINOP "#NAME#"32mr PSEUDO!",
792 [(atomic_store_32 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000793 (i32 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000794 (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
795 FR32:$src))))]>, Requires<[HasSSE1]>;
796 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
797 "#BINOP "#NAME#"64mr PSEUDO!",
798 [(atomic_store_64 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000799 (i64 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000800 (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
801 FR64:$src))))]>, Requires<[HasSSE2]>;
802}
JF Bastien0f8a99b2015-08-05 23:15:37 +0000803defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
JF Bastien86620832015-08-05 21:04:59 +0000804// FIXME: Add fsub, fmul, fdiv, ...
805}
806
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000807multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
808 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000809 "#UNOP "#NAME#"8m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000810 [(atomic_store_8 addr:$dst, dag8)]>;
811 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000812 "#UNOP "#NAME#"16m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000813 [(atomic_store_16 addr:$dst, dag16)]>;
814 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000815 "#UNOP "#NAME#"32m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000816 [(atomic_store_32 addr:$dst, dag32)]>;
817 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000818 "#UNOP "#NAME#"64m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000819 [(atomic_store_64 addr:$dst, dag64)]>;
820}
821
822defm RELEASE_INC : RELEASE_UNOP<
823 (add (atomic_load_8 addr:$dst), (i8 1)),
824 (add (atomic_load_16 addr:$dst), (i16 1)),
825 (add (atomic_load_32 addr:$dst), (i32 1)),
826 (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
827defm RELEASE_DEC : RELEASE_UNOP<
828 (add (atomic_load_8 addr:$dst), (i8 -1)),
829 (add (atomic_load_16 addr:$dst), (i16 -1)),
830 (add (atomic_load_32 addr:$dst), (i32 -1)),
831 (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
832/*
833TODO: These don't work because the type inference of TableGen fails.
834TODO: find a way to fix it.
835defm RELEASE_NEG : RELEASE_UNOP<
836 (ineg (atomic_load_8 addr:$dst)),
837 (ineg (atomic_load_16 addr:$dst)),
838 (ineg (atomic_load_32 addr:$dst)),
839 (ineg (atomic_load_64 addr:$dst))>;
840defm RELEASE_NOT : RELEASE_UNOP<
841 (not (atomic_load_8 addr:$dst)),
842 (not (atomic_load_16 addr:$dst)),
843 (not (atomic_load_32 addr:$dst)),
844 (not (atomic_load_64 addr:$dst))>;
845*/
846
847def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000848 "#RELEASE_MOV8mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000849 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
850def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000851 "#RELEASE_MOV16mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000852 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
853def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000854 "#RELEASE_MOV32mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000855 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
856def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000857 "#RELEASE_MOV64mi32 PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000858 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
859
860def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
JF Bastien86620832015-08-05 21:04:59 +0000861 "#RELEASE_MOV8mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000862 [(atomic_store_8 addr:$dst, GR8 :$src)]>;
863def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
JF Bastien86620832015-08-05 21:04:59 +0000864 "#RELEASE_MOV16mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000865 [(atomic_store_16 addr:$dst, GR16:$src)]>;
866def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
JF Bastien86620832015-08-05 21:04:59 +0000867 "#RELEASE_MOV32mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000868 [(atomic_store_32 addr:$dst, GR32:$src)]>;
869def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
JF Bastien86620832015-08-05 21:04:59 +0000870 "#RELEASE_MOV64mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000871 [(atomic_store_64 addr:$dst, GR64:$src)]>;
872
873def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
JF Bastien86620832015-08-05 21:04:59 +0000874 "#ACQUIRE_MOV8rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000875 [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
876def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000877 "#ACQUIRE_MOV16rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000878 [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
879def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000880 "#ACQUIRE_MOV32rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000881 [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
882def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000883 "#ACQUIRE_MOV64rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000884 [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000885
886//===----------------------------------------------------------------------===//
887// DAG Pattern Matching Rules
888//===----------------------------------------------------------------------===//
889
890// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
891def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
892def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
893def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
894def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
895def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000896def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000897def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
898
899def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
900 (ADD32ri GR32:$src1, tconstpool:$src2)>;
901def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
902 (ADD32ri GR32:$src1, tjumptable:$src2)>;
903def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
904 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
905def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
906 (ADD32ri GR32:$src1, texternalsym:$src2)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000907def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
908 (ADD32ri GR32:$src1, mcsym:$src2)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000909def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
910 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
911
912def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
913 (MOV32mi addr:$dst, tglobaladdr:$src)>;
914def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
915 (MOV32mi addr:$dst, texternalsym:$src)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000916def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
917 (MOV32mi addr:$dst, mcsym:$src)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000918def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
919 (MOV32mi addr:$dst, tblockaddress:$src)>;
920
921// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
922// code model mode, should use 'movabs'. FIXME: This is really a hack, the
923// 'movabs' predicate should handle this sort of thing.
924def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
925 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
926def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
927 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
928def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
929 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
930def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
931 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000932def : Pat<(i64 (X86Wrapper mcsym:$dst)),
933 (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000934def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
935 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
936
937// In kernel code model, we can get the address of a label
938// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
939// the MOV64ri32 should accept these.
940def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
941 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
942def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
943 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
944def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
945 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
946def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
947 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000948def : Pat<(i64 (X86Wrapper mcsym:$dst)),
949 (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000950def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
951 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
952
953// If we have small model and -static mode, it is safe to store global addresses
954// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
955// for MOV64mi32 should handle this sort of thing.
956def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
957 (MOV64mi32 addr:$dst, tconstpool:$src)>,
958 Requires<[NearData, IsStatic]>;
959def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
960 (MOV64mi32 addr:$dst, tjumptable:$src)>,
961 Requires<[NearData, IsStatic]>;
962def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
963 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
964 Requires<[NearData, IsStatic]>;
965def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
966 (MOV64mi32 addr:$dst, texternalsym:$src)>,
967 Requires<[NearData, IsStatic]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000968def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
969 (MOV64mi32 addr:$dst, mcsym:$src)>,
970 Requires<[NearData, IsStatic]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000971def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
972 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
973 Requires<[NearData, IsStatic]>;
974
Rafael Espindola36b718f2015-06-22 17:46:53 +0000975def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
976def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000977
978// Calls
979
980// tls has some funny stuff here...
981// This corresponds to movabs $foo@tpoff, %rax
982def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
983 (MOV64ri32 tglobaltlsaddr :$dst)>;
984// This corresponds to add $foo@tpoff, %rax
985def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
986 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
987
988
989// Direct PC relative function call for small code model. 32-bit displacement
990// sign extended to 64-bit.
991def : Pat<(X86call (i64 tglobaladdr:$dst)),
992 (CALL64pcrel32 tglobaladdr:$dst)>;
993def : Pat<(X86call (i64 texternalsym:$dst)),
994 (CALL64pcrel32 texternalsym:$dst)>;
995
996// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
997// can never use callee-saved registers. That is the purpose of the GR64_TC
998// register classes.
999//
1000// The only volatile register that is never used by the calling convention is
1001// %r11. This happens when calling a vararg function with 6 arguments.
1002//
1003// Match an X86tcret that uses less than 7 volatile registers.
1004def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1005 (X86tcret node:$ptr, node:$off), [{
1006 // X86tcret args: (*chain, ptr, imm, regs..., glue)
1007 unsigned NumRegs = 0;
1008 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1009 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1010 return false;
1011 return true;
1012}]>;
1013
1014def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1015 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1016 Requires<[Not64BitMode]>;
1017
1018// FIXME: This is disabled for 32-bit PIC mode because the global base
1019// register which is part of the address mode may be assigned a
1020// callee-saved register.
1021def : Pat<(X86tcret (load addr:$dst), imm:$off),
1022 (TCRETURNmi addr:$dst, imm:$off)>,
1023 Requires<[Not64BitMode, IsNotPIC]>;
1024
1025def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1026 (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1027 Requires<[NotLP64]>;
1028
1029def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1030 (TCRETURNdi texternalsym:$dst, imm:$off)>,
1031 Requires<[NotLP64]>;
1032
1033def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1034 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1035 Requires<[In64BitMode]>;
1036
1037// Don't fold loads into X86tcret requiring more than 6 regs.
1038// There wouldn't be enough scratch registers for base+index.
1039def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1040 (TCRETURNmi64 addr:$dst, imm:$off)>,
1041 Requires<[In64BitMode]>;
1042
1043def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1044 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1045 Requires<[IsLP64]>;
1046
1047def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1048 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1049 Requires<[IsLP64]>;
1050
1051// Normal calls, with various flavors of addresses.
1052def : Pat<(X86call (i32 tglobaladdr:$dst)),
1053 (CALLpcrel32 tglobaladdr:$dst)>;
1054def : Pat<(X86call (i32 texternalsym:$dst)),
1055 (CALLpcrel32 texternalsym:$dst)>;
1056def : Pat<(X86call (i32 imm:$dst)),
1057 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1058
1059// Comparisons.
1060
1061// TEST R,R is smaller than CMP R,0
1062def : Pat<(X86cmp GR8:$src1, 0),
1063 (TEST8rr GR8:$src1, GR8:$src1)>;
1064def : Pat<(X86cmp GR16:$src1, 0),
1065 (TEST16rr GR16:$src1, GR16:$src1)>;
1066def : Pat<(X86cmp GR32:$src1, 0),
1067 (TEST32rr GR32:$src1, GR32:$src1)>;
1068def : Pat<(X86cmp GR64:$src1, 0),
1069 (TEST64rr GR64:$src1, GR64:$src1)>;
1070
1071// Conditional moves with folded loads with operands swapped and conditions
1072// inverted.
1073multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1074 Instruction Inst64> {
1075 let Predicates = [HasCMov] in {
1076 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1077 (Inst16 GR16:$src2, addr:$src1)>;
1078 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1079 (Inst32 GR32:$src2, addr:$src1)>;
1080 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1081 (Inst64 GR64:$src2, addr:$src1)>;
1082 }
1083}
1084
1085defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1086defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1087defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1088defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1089defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1090defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1091defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1092defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1093defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1094defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1095defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1096defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1097defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1098defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1099defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1100defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1101
1102// zextload bool -> zextload byte
Elena Demikhovskyf61727d2015-05-20 14:32:03 +00001103def : Pat<(zextloadi8i1 addr:$src), (AND8ri (MOV8rm addr:$src), (i8 1))>;
Rafael Espindola494a3812015-07-17 00:57:52 +00001104def : Pat<(zextloadi16i1 addr:$src), (AND16ri8 (MOVZX16rm8 addr:$src), (i16 1))>;
1105def : Pat<(zextloadi32i1 addr:$src), (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1))>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001106def : Pat<(zextloadi64i1 addr:$src),
Elena Demikhovskyf61727d2015-05-20 14:32:03 +00001107 (SUBREG_TO_REG (i64 0),
Rafael Espindola494a3812015-07-17 00:57:52 +00001108 (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1)), sub_32bit)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001109
1110// extload bool -> extload byte
1111// When extloading from 16-bit and smaller memory locations into 64-bit
1112// registers, use zero-extending loads so that the entire 64-bit register is
1113// defined, avoiding partial-register updates.
1114
1115def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1116def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1117def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1118def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
1119def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
1120def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1121
1122// For other extloads, use subregs, since the high contents of the register are
1123// defined after an extload.
1124def : Pat<(extloadi64i1 addr:$src),
1125 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1126def : Pat<(extloadi64i8 addr:$src),
1127 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1128def : Pat<(extloadi64i16 addr:$src),
1129 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1130def : Pat<(extloadi64i32 addr:$src),
1131 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1132
1133// anyext. Define these to do an explicit zero-extend to
1134// avoid partial-register updates.
1135def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1136 (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1137def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
1138
1139// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1140def : Pat<(i32 (anyext GR16:$src)),
1141 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1142
1143def : Pat<(i64 (anyext GR8 :$src)),
1144 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
1145def : Pat<(i64 (anyext GR16:$src)),
1146 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1147def : Pat<(i64 (anyext GR32:$src)),
1148 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1149
1150
1151// Any instruction that defines a 32-bit result leaves the high half of the
1152// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1153// be copying from a truncate. And x86's cmov doesn't do anything if the
1154// condition is false. But any other 32-bit operation will zero-extend
1155// up to 64 bits.
1156def def32 : PatLeaf<(i32 GR32:$src), [{
1157 return N->getOpcode() != ISD::TRUNCATE &&
1158 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1159 N->getOpcode() != ISD::CopyFromReg &&
1160 N->getOpcode() != ISD::AssertSext &&
1161 N->getOpcode() != X86ISD::CMOV;
1162}]>;
1163
1164// In the case of a 32-bit def that is known to implicitly zero-extend,
1165// we can use a SUBREG_TO_REG.
1166def : Pat<(i64 (zext def32:$src)),
1167 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1168
1169//===----------------------------------------------------------------------===//
1170// Pattern match OR as ADD
1171//===----------------------------------------------------------------------===//
1172
1173// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1174// 3-addressified into an LEA instruction to avoid copies. However, we also
1175// want to finally emit these instructions as an or at the end of the code
1176// generator to make the generated code easier to read. To do this, we select
1177// into "disjoint bits" pseudo ops.
1178
1179// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1180def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1181 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1182 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1183
1184 APInt KnownZero0, KnownOne0;
1185 CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1186 APInt KnownZero1, KnownOne1;
1187 CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1188 return (~KnownZero0 & ~KnownZero1) == 0;
1189}]>;
1190
1191
1192// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1193// Try this before the selecting to OR.
1194let AddedComplexity = 5, SchedRW = [WriteALU] in {
1195
1196let isConvertibleToThreeAddress = 1,
1197 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1198let isCommutable = 1 in {
1199def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1200 "", // orw/addw REG, REG
1201 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1202def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1203 "", // orl/addl REG, REG
1204 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1205def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1206 "", // orq/addq REG, REG
1207 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1208} // isCommutable
1209
1210// NOTE: These are order specific, we want the ri8 forms to be listed
1211// first so that they are slightly preferred to the ri forms.
1212
1213def ADD16ri8_DB : I<0, Pseudo,
1214 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1215 "", // orw/addw REG, imm8
1216 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1217def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1218 "", // orw/addw REG, imm
1219 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1220
1221def ADD32ri8_DB : I<0, Pseudo,
1222 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1223 "", // orl/addl REG, imm8
1224 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1225def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1226 "", // orl/addl REG, imm
1227 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1228
1229
1230def ADD64ri8_DB : I<0, Pseudo,
1231 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1232 "", // orq/addq REG, imm8
1233 [(set GR64:$dst, (or_is_add GR64:$src1,
1234 i64immSExt8:$src2))]>;
1235def ADD64ri32_DB : I<0, Pseudo,
1236 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1237 "", // orq/addq REG, imm
1238 [(set GR64:$dst, (or_is_add GR64:$src1,
1239 i64immSExt32:$src2))]>;
1240}
1241} // AddedComplexity, SchedRW
1242
1243
1244//===----------------------------------------------------------------------===//
1245// Some peepholes
1246//===----------------------------------------------------------------------===//
1247
1248// Odd encoding trick: -128 fits into an 8-bit immediate field while
1249// +128 doesn't, so in this special case use a sub instead of an add.
1250def : Pat<(add GR16:$src1, 128),
1251 (SUB16ri8 GR16:$src1, -128)>;
1252def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1253 (SUB16mi8 addr:$dst, -128)>;
1254
1255def : Pat<(add GR32:$src1, 128),
1256 (SUB32ri8 GR32:$src1, -128)>;
1257def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1258 (SUB32mi8 addr:$dst, -128)>;
1259
1260def : Pat<(add GR64:$src1, 128),
1261 (SUB64ri8 GR64:$src1, -128)>;
1262def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1263 (SUB64mi8 addr:$dst, -128)>;
1264
1265// The same trick applies for 32-bit immediate fields in 64-bit
1266// instructions.
1267def : Pat<(add GR64:$src1, 0x0000000080000000),
1268 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1269def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1270 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1271
1272// To avoid needing to materialize an immediate in a register, use a 32-bit and
1273// with implicit zero-extension instead of a 64-bit and if the immediate has at
1274// least 32 bits of leading zeros. If in addition the last 32 bits can be
1275// represented with a sign extension of a 8 bit constant, use that.
Craig Topper3d441782015-04-04 02:31:43 +00001276// This can also reduce instruction size by eliminating the need for the REX
1277// prefix.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001278
Craig Topper7ea899a2015-04-04 04:22:12 +00001279// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1280let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001281def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1282 (SUBREG_TO_REG
1283 (i64 0),
1284 (AND32ri8
1285 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1286 (i32 (GetLo8XForm imm:$imm))),
1287 sub_32bit)>;
1288
1289def : Pat<(and GR64:$src, i64immZExt32:$imm),
1290 (SUBREG_TO_REG
1291 (i64 0),
1292 (AND32ri
1293 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1294 (i32 (GetLo32XForm imm:$imm))),
1295 sub_32bit)>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001296} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001297
1298
Craig Topper7ea899a2015-04-04 04:22:12 +00001299// AddedComplexity is needed due to the increased complexity on the
1300// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1301// the MOVZX patterns keeps thems together in DAGIsel tables.
1302let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001303// r & (2^16-1) ==> movz
1304def : Pat<(and GR32:$src1, 0xffff),
1305 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1306// r & (2^8-1) ==> movz
1307def : Pat<(and GR32:$src1, 0xff),
1308 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1309 GR32_ABCD)),
1310 sub_8bit))>,
1311 Requires<[Not64BitMode]>;
1312// r & (2^8-1) ==> movz
1313def : Pat<(and GR16:$src1, 0xff),
1314 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1315 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1316 sub_16bit)>,
1317 Requires<[Not64BitMode]>;
1318
1319// r & (2^32-1) ==> movz
1320def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1321 (SUBREG_TO_REG (i64 0),
1322 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1323 sub_32bit)>;
1324// r & (2^16-1) ==> movz
Craig Topper9012028732015-04-04 02:08:20 +00001325let AddedComplexity = 1 in // Give priority over i64immZExt32.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001326def : Pat<(and GR64:$src, 0xffff),
1327 (SUBREG_TO_REG (i64 0),
1328 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1329 sub_32bit)>;
1330// r & (2^8-1) ==> movz
1331def : Pat<(and GR64:$src, 0xff),
1332 (SUBREG_TO_REG (i64 0),
1333 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1334 sub_32bit)>;
1335// r & (2^8-1) ==> movz
1336def : Pat<(and GR32:$src1, 0xff),
1337 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1338 Requires<[In64BitMode]>;
1339// r & (2^8-1) ==> movz
1340def : Pat<(and GR16:$src1, 0xff),
1341 (EXTRACT_SUBREG (MOVZX32rr8 (i8
1342 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1343 Requires<[In64BitMode]>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001344} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001345
1346
1347// sext_inreg patterns
1348def : Pat<(sext_inreg GR32:$src, i16),
1349 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1350def : Pat<(sext_inreg GR32:$src, i8),
1351 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1352 GR32_ABCD)),
1353 sub_8bit))>,
1354 Requires<[Not64BitMode]>;
1355
1356def : Pat<(sext_inreg GR16:$src, i8),
1357 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1358 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1359 sub_16bit)>,
1360 Requires<[Not64BitMode]>;
1361
1362def : Pat<(sext_inreg GR64:$src, i32),
1363 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1364def : Pat<(sext_inreg GR64:$src, i16),
1365 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1366def : Pat<(sext_inreg GR64:$src, i8),
1367 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1368def : Pat<(sext_inreg GR32:$src, i8),
1369 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1370 Requires<[In64BitMode]>;
1371def : Pat<(sext_inreg GR16:$src, i8),
1372 (EXTRACT_SUBREG (MOVSX32rr8
1373 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1374 Requires<[In64BitMode]>;
1375
1376// sext, sext_load, zext, zext_load
1377def: Pat<(i16 (sext GR8:$src)),
1378 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1379def: Pat<(sextloadi16i8 addr:$src),
1380 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1381def: Pat<(i16 (zext GR8:$src)),
1382 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1383def: Pat<(zextloadi16i8 addr:$src),
1384 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1385
1386// trunc patterns
1387def : Pat<(i16 (trunc GR32:$src)),
1388 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1389def : Pat<(i8 (trunc GR32:$src)),
1390 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1391 sub_8bit)>,
1392 Requires<[Not64BitMode]>;
1393def : Pat<(i8 (trunc GR16:$src)),
1394 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1395 sub_8bit)>,
1396 Requires<[Not64BitMode]>;
1397def : Pat<(i32 (trunc GR64:$src)),
1398 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1399def : Pat<(i16 (trunc GR64:$src)),
1400 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1401def : Pat<(i8 (trunc GR64:$src)),
1402 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1403def : Pat<(i8 (trunc GR32:$src)),
1404 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1405 Requires<[In64BitMode]>;
1406def : Pat<(i8 (trunc GR16:$src)),
1407 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1408 Requires<[In64BitMode]>;
1409
1410// h-register tricks
1411def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1412 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1413 sub_8bit_hi)>,
1414 Requires<[Not64BitMode]>;
1415def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1416 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1417 sub_8bit_hi)>,
1418 Requires<[Not64BitMode]>;
1419def : Pat<(srl GR16:$src, (i8 8)),
1420 (EXTRACT_SUBREG
1421 (MOVZX32rr8
1422 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1423 sub_8bit_hi)),
1424 sub_16bit)>,
1425 Requires<[Not64BitMode]>;
1426def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1427 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1428 GR16_ABCD)),
1429 sub_8bit_hi))>,
1430 Requires<[Not64BitMode]>;
1431def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1432 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1433 GR16_ABCD)),
1434 sub_8bit_hi))>,
1435 Requires<[Not64BitMode]>;
1436def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1437 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1438 GR32_ABCD)),
1439 sub_8bit_hi))>,
1440 Requires<[Not64BitMode]>;
1441def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1442 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1443 GR32_ABCD)),
1444 sub_8bit_hi))>,
1445 Requires<[Not64BitMode]>;
1446
1447// h-register tricks.
1448// For now, be conservative on x86-64 and use an h-register extract only if the
1449// value is immediately zero-extended or stored, which are somewhat common
1450// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1451// from being allocated in the same instruction as the h register, as there's
1452// currently no way to describe this requirement to the register allocator.
1453
1454// h-register extract and zero-extend.
1455def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1456 (SUBREG_TO_REG
1457 (i64 0),
1458 (MOVZX32_NOREXrr8
1459 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1460 sub_8bit_hi)),
1461 sub_32bit)>;
1462def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1463 (MOVZX32_NOREXrr8
1464 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1465 sub_8bit_hi))>,
1466 Requires<[In64BitMode]>;
1467def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1468 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1469 GR32_ABCD)),
1470 sub_8bit_hi))>,
1471 Requires<[In64BitMode]>;
1472def : Pat<(srl GR16:$src, (i8 8)),
1473 (EXTRACT_SUBREG
1474 (MOVZX32_NOREXrr8
1475 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1476 sub_8bit_hi)),
1477 sub_16bit)>,
1478 Requires<[In64BitMode]>;
1479def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1480 (MOVZX32_NOREXrr8
1481 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1482 sub_8bit_hi))>,
1483 Requires<[In64BitMode]>;
1484def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1485 (MOVZX32_NOREXrr8
1486 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1487 sub_8bit_hi))>,
1488 Requires<[In64BitMode]>;
1489def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1490 (SUBREG_TO_REG
1491 (i64 0),
1492 (MOVZX32_NOREXrr8
1493 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1494 sub_8bit_hi)),
1495 sub_32bit)>;
1496def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1497 (SUBREG_TO_REG
1498 (i64 0),
1499 (MOVZX32_NOREXrr8
1500 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1501 sub_8bit_hi)),
1502 sub_32bit)>;
1503
1504// h-register extract and store.
1505def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1506 (MOV8mr_NOREX
1507 addr:$dst,
1508 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1509 sub_8bit_hi))>;
1510def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1511 (MOV8mr_NOREX
1512 addr:$dst,
1513 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1514 sub_8bit_hi))>,
1515 Requires<[In64BitMode]>;
1516def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1517 (MOV8mr_NOREX
1518 addr:$dst,
1519 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1520 sub_8bit_hi))>,
1521 Requires<[In64BitMode]>;
1522
1523
1524// (shl x, 1) ==> (add x, x)
1525// Note that if x is undef (immediate or otherwise), we could theoretically
1526// end up with the two uses of x getting different values, producing a result
1527// where the least significant bit is not 0. However, the probability of this
1528// happening is considered low enough that this is officially not a
1529// "real problem".
1530def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1531def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1532def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1533def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1534
1535// Helper imms that check if a mask doesn't change significant shift bits.
Benjamin Kramer5f6a9072015-02-12 15:35:40 +00001536def immShift32 : ImmLeaf<i8, [{
1537 return countTrailingOnes<uint64_t>(Imm) >= 5;
1538}]>;
1539def immShift64 : ImmLeaf<i8, [{
1540 return countTrailingOnes<uint64_t>(Imm) >= 6;
1541}]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001542
1543// Shift amount is implicitly masked.
1544multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1545 // (shift x (and y, 31)) ==> (shift x, y)
1546 def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1547 (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1548 def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1549 (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1550 def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1551 (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1552 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1553 (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1554 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1555 (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1556 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1557 (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1558
1559 // (shift x (and y, 63)) ==> (shift x, y)
1560 def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1561 (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1562 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1563 (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1564}
1565
1566defm : MaskedShiftAmountPats<shl, "SHL">;
1567defm : MaskedShiftAmountPats<srl, "SHR">;
1568defm : MaskedShiftAmountPats<sra, "SAR">;
1569defm : MaskedShiftAmountPats<rotl, "ROL">;
1570defm : MaskedShiftAmountPats<rotr, "ROR">;
1571
1572// (anyext (setcc_carry)) -> (setcc_carry)
1573def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1574 (SETB_C16r)>;
1575def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1576 (SETB_C32r)>;
1577def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1578 (SETB_C32r)>;
1579
1580
1581
1582
1583//===----------------------------------------------------------------------===//
1584// EFLAGS-defining Patterns
1585//===----------------------------------------------------------------------===//
1586
1587// add reg, reg
1588def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1589def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1590def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1591
1592// add reg, mem
1593def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1594 (ADD8rm GR8:$src1, addr:$src2)>;
1595def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1596 (ADD16rm GR16:$src1, addr:$src2)>;
1597def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1598 (ADD32rm GR32:$src1, addr:$src2)>;
1599
1600// add reg, imm
1601def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1602def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1603def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1604def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1605 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1606def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1607 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1608
1609// sub reg, reg
1610def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1611def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1612def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1613
1614// sub reg, mem
1615def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1616 (SUB8rm GR8:$src1, addr:$src2)>;
1617def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1618 (SUB16rm GR16:$src1, addr:$src2)>;
1619def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1620 (SUB32rm GR32:$src1, addr:$src2)>;
1621
1622// sub reg, imm
1623def : Pat<(sub GR8:$src1, imm:$src2),
1624 (SUB8ri GR8:$src1, imm:$src2)>;
1625def : Pat<(sub GR16:$src1, imm:$src2),
1626 (SUB16ri GR16:$src1, imm:$src2)>;
1627def : Pat<(sub GR32:$src1, imm:$src2),
1628 (SUB32ri GR32:$src1, imm:$src2)>;
1629def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1630 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1631def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1632 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1633
1634// sub 0, reg
1635def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
1636def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1637def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1638def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1639
1640// mul reg, reg
1641def : Pat<(mul GR16:$src1, GR16:$src2),
1642 (IMUL16rr GR16:$src1, GR16:$src2)>;
1643def : Pat<(mul GR32:$src1, GR32:$src2),
1644 (IMUL32rr GR32:$src1, GR32:$src2)>;
1645
1646// mul reg, mem
1647def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1648 (IMUL16rm GR16:$src1, addr:$src2)>;
1649def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1650 (IMUL32rm GR32:$src1, addr:$src2)>;
1651
1652// mul reg, imm
1653def : Pat<(mul GR16:$src1, imm:$src2),
1654 (IMUL16rri GR16:$src1, imm:$src2)>;
1655def : Pat<(mul GR32:$src1, imm:$src2),
1656 (IMUL32rri GR32:$src1, imm:$src2)>;
1657def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1658 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1659def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1660 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1661
1662// reg = mul mem, imm
1663def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1664 (IMUL16rmi addr:$src1, imm:$src2)>;
1665def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1666 (IMUL32rmi addr:$src1, imm:$src2)>;
1667def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1668 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1669def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1670 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1671
1672// Patterns for nodes that do not produce flags, for instructions that do.
1673
1674// addition
1675def : Pat<(add GR64:$src1, GR64:$src2),
1676 (ADD64rr GR64:$src1, GR64:$src2)>;
1677def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1678 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1679def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1680 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1681def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1682 (ADD64rm GR64:$src1, addr:$src2)>;
1683
1684// subtraction
1685def : Pat<(sub GR64:$src1, GR64:$src2),
1686 (SUB64rr GR64:$src1, GR64:$src2)>;
1687def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1688 (SUB64rm GR64:$src1, addr:$src2)>;
1689def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1690 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1691def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1692 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1693
1694// Multiply
1695def : Pat<(mul GR64:$src1, GR64:$src2),
1696 (IMUL64rr GR64:$src1, GR64:$src2)>;
1697def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1698 (IMUL64rm GR64:$src1, addr:$src2)>;
1699def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1700 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1701def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1702 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1703def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1704 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1705def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1706 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1707
1708// Increment/Decrement reg.
1709// Do not make INC/DEC if it is slow
1710let Predicates = [NotSlowIncDec] in {
1711 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
1712 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
1713 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
1714 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1715 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
1716 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1717 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1718 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1719}
1720
1721// or reg/reg.
1722def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1723def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1724def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1725def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1726
1727// or reg/mem
1728def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1729 (OR8rm GR8:$src1, addr:$src2)>;
1730def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1731 (OR16rm GR16:$src1, addr:$src2)>;
1732def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1733 (OR32rm GR32:$src1, addr:$src2)>;
1734def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1735 (OR64rm GR64:$src1, addr:$src2)>;
1736
1737// or reg/imm
1738def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1739def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1740def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1741def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1742 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1743def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1744 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1745def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1746 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1747def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1748 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1749
1750// xor reg/reg
1751def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1752def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1753def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1754def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1755
1756// xor reg/mem
1757def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1758 (XOR8rm GR8:$src1, addr:$src2)>;
1759def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1760 (XOR16rm GR16:$src1, addr:$src2)>;
1761def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1762 (XOR32rm GR32:$src1, addr:$src2)>;
1763def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1764 (XOR64rm GR64:$src1, addr:$src2)>;
1765
1766// xor reg/imm
1767def : Pat<(xor GR8:$src1, imm:$src2),
1768 (XOR8ri GR8:$src1, imm:$src2)>;
1769def : Pat<(xor GR16:$src1, imm:$src2),
1770 (XOR16ri GR16:$src1, imm:$src2)>;
1771def : Pat<(xor GR32:$src1, imm:$src2),
1772 (XOR32ri GR32:$src1, imm:$src2)>;
1773def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1774 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1775def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1776 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1777def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1778 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1779def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1780 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1781
1782// and reg/reg
1783def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1784def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1785def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1786def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1787
1788// and reg/mem
1789def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1790 (AND8rm GR8:$src1, addr:$src2)>;
1791def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1792 (AND16rm GR16:$src1, addr:$src2)>;
1793def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1794 (AND32rm GR32:$src1, addr:$src2)>;
1795def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1796 (AND64rm GR64:$src1, addr:$src2)>;
1797
1798// and reg/imm
1799def : Pat<(and GR8:$src1, imm:$src2),
1800 (AND8ri GR8:$src1, imm:$src2)>;
1801def : Pat<(and GR16:$src1, imm:$src2),
1802 (AND16ri GR16:$src1, imm:$src2)>;
1803def : Pat<(and GR32:$src1, imm:$src2),
1804 (AND32ri GR32:$src1, imm:$src2)>;
1805def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1806 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1807def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1808 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1809def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1810 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1811def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1812 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1813
1814// Bit scan instruction patterns to match explicit zero-undef behavior.
1815def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1816def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1817def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1818def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1819def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1820def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1821
1822// When HasMOVBE is enabled it is possible to get a non-legalized
1823// register-register 16 bit bswap. This maps it to a ROL instruction.
1824let Predicates = [HasMOVBE] in {
1825 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1826}