blob: b4d3e625ae04b6178345b264faa8ee7abb527a61 [file] [log] [blame]
Chris Lattner0a8191e2010-01-05 07:50:36 +00001//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitAnd, visitOr, and visitXor functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Intrinsics.h"
16#include "llvm/Analysis/InstructionSimplify.h"
Pete Cooperebf98c12011-12-17 01:20:32 +000017#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
Anders Carlssonda80afe2011-03-01 15:05:01 +000018#include "llvm/Support/ConstantRange.h"
Chris Lattner0a8191e2010-01-05 07:50:36 +000019#include "llvm/Support/PatternMatch.h"
20using namespace llvm;
21using namespace PatternMatch;
22
23
24/// AddOne - Add one to a ConstantInt.
25static Constant *AddOne(Constant *C) {
26 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
27}
28/// SubOne - Subtract one from a ConstantInt.
29static Constant *SubOne(ConstantInt *C) {
30 return ConstantInt::get(C->getContext(), C->getValue()-1);
31}
32
33/// isFreeToInvert - Return true if the specified value is free to invert (apply
34/// ~ to). This happens in cases where the ~ can be eliminated.
35static inline bool isFreeToInvert(Value *V) {
36 // ~(~(X)) -> X.
37 if (BinaryOperator::isNot(V))
38 return true;
39
40 // Constants can be considered to be not'ed values.
41 if (isa<ConstantInt>(V))
42 return true;
43
44 // Compares can be inverted if they have a single use.
45 if (CmpInst *CI = dyn_cast<CmpInst>(V))
46 return CI->hasOneUse();
47
48 return false;
49}
50
51static inline Value *dyn_castNotVal(Value *V) {
52 // If this is not(not(x)) don't return that this is a not: we want the two
53 // not's to be folded first.
54 if (BinaryOperator::isNot(V)) {
55 Value *Operand = BinaryOperator::getNotArgument(V);
56 if (!isFreeToInvert(Operand))
57 return Operand;
58 }
59
60 // Constants can be considered to be not'ed values...
61 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
62 return ConstantInt::get(C->getType(), ~C->getValue());
63 return 0;
64}
65
Chris Lattner0a8191e2010-01-05 07:50:36 +000066/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
67/// predicate into a three bit mask. It also returns whether it is an ordered
68/// predicate by reference.
69static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
70 isOrdered = false;
71 switch (CC) {
72 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
73 case FCmpInst::FCMP_UNO: return 0; // 000
74 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
75 case FCmpInst::FCMP_UGT: return 1; // 001
76 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
77 case FCmpInst::FCMP_UEQ: return 2; // 010
78 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
79 case FCmpInst::FCMP_UGE: return 3; // 011
80 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
81 case FCmpInst::FCMP_ULT: return 4; // 100
82 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
83 case FCmpInst::FCMP_UNE: return 5; // 101
84 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
85 case FCmpInst::FCMP_ULE: return 6; // 110
86 // True -> 7
87 default:
88 // Not expecting FCMP_FALSE and FCMP_TRUE;
89 llvm_unreachable("Unexpected FCmp predicate!");
90 return 0;
91 }
92}
93
94/// getICmpValue - This is the complement of getICmpCode, which turns an
95/// opcode and two operands into either a constant true or false, or a brand
96/// new ICmp instruction. The sign is passed in to determine which kind
97/// of predicate to use in the new icmp instruction.
Pete Cooperebf98c12011-12-17 01:20:32 +000098Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
99 InstCombiner::BuilderTy *Builder) {
100 ICmpInst::Predicate NewPred;
101 if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
102 return NewConstant;
103 return Builder->CreateICmp(NewPred, LHS, RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000104}
105
106/// getFCmpValue - This is the complement of getFCmpCode, which turns an
107/// opcode and two operands into either a FCmp instruction. isordered is passed
108/// in to determine which kind of predicate to use in the new fcmp instruction.
109static Value *getFCmpValue(bool isordered, unsigned code,
Chris Lattner067459c2010-03-05 08:46:26 +0000110 Value *LHS, Value *RHS,
111 InstCombiner::BuilderTy *Builder) {
Chris Lattner343d2e42010-03-05 07:47:57 +0000112 CmpInst::Predicate Pred;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000113 switch (code) {
Chris Lattner343d2e42010-03-05 07:47:57 +0000114 default: assert(0 && "Illegal FCmp code!");
115 case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
116 case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
117 case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
118 case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
119 case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
120 case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
121 case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
Owen Andersona8342002011-01-21 19:39:42 +0000122 case 7:
123 if (!isordered) return ConstantInt::getTrue(LHS->getContext());
124 Pred = FCmpInst::FCMP_ORD; break;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000125 }
Chris Lattner067459c2010-03-05 08:46:26 +0000126 return Builder->CreateFCmp(Pred, LHS, RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000127}
128
Chris Lattner0a8191e2010-01-05 07:50:36 +0000129// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
130// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
131// guaranteed to be a binary operator.
132Instruction *InstCombiner::OptAndOp(Instruction *Op,
133 ConstantInt *OpRHS,
134 ConstantInt *AndRHS,
135 BinaryOperator &TheAnd) {
136 Value *X = Op->getOperand(0);
137 Constant *Together = 0;
138 if (!Op->isShift())
139 Together = ConstantExpr::getAnd(AndRHS, OpRHS);
140
141 switch (Op->getOpcode()) {
142 case Instruction::Xor:
143 if (Op->hasOneUse()) {
144 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
145 Value *And = Builder->CreateAnd(X, AndRHS);
146 And->takeName(Op);
147 return BinaryOperator::CreateXor(And, Together);
148 }
149 break;
150 case Instruction::Or:
Owen Andersonc237a842010-09-13 17:59:27 +0000151 if (Op->hasOneUse()){
152 if (Together != OpRHS) {
153 // (X | C1) & C2 --> (X | (C1&C2)) & C2
154 Value *Or = Builder->CreateOr(X, Together);
155 Or->takeName(Op);
156 return BinaryOperator::CreateAnd(Or, AndRHS);
157 }
158
159 ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
160 if (TogetherCI && !TogetherCI->isZero()){
161 // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
162 // NOTE: This reduces the number of bits set in the & mask, which
163 // can expose opportunities for store narrowing.
164 Together = ConstantExpr::getXor(AndRHS, Together);
165 Value *And = Builder->CreateAnd(X, Together);
166 And->takeName(Op);
167 return BinaryOperator::CreateOr(And, OpRHS);
168 }
Chris Lattner0a8191e2010-01-05 07:50:36 +0000169 }
Owen Andersonc237a842010-09-13 17:59:27 +0000170
Chris Lattner0a8191e2010-01-05 07:50:36 +0000171 break;
172 case Instruction::Add:
173 if (Op->hasOneUse()) {
174 // Adding a one to a single bit bit-field should be turned into an XOR
175 // of the bit. First thing to check is to see if this AND is with a
176 // single bit constant.
177 const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
178
179 // If there is only one bit set.
180 if (AndRHSV.isPowerOf2()) {
181 // Ok, at this point, we know that we are masking the result of the
182 // ADD down to exactly one bit. If the constant we are adding has
183 // no bits set below this bit, then we can eliminate the ADD.
184 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
185
186 // Check to see if any bits below the one bit set in AndRHSV are set.
187 if ((AddRHS & (AndRHSV-1)) == 0) {
188 // If not, the only thing that can effect the output of the AND is
189 // the bit specified by AndRHSV. If that bit is set, the effect of
190 // the XOR is to toggle the bit. If it is clear, then the ADD has
191 // no effect.
192 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
193 TheAnd.setOperand(0, X);
194 return &TheAnd;
195 } else {
196 // Pull the XOR out of the AND.
197 Value *NewAnd = Builder->CreateAnd(X, AndRHS);
198 NewAnd->takeName(Op);
199 return BinaryOperator::CreateXor(NewAnd, AndRHS);
200 }
201 }
202 }
203 }
204 break;
205
206 case Instruction::Shl: {
207 // We know that the AND will not produce any of the bits shifted in, so if
208 // the anded constant includes them, clear them now!
209 //
210 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
211 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
212 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
213 ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
214 AndRHS->getValue() & ShlMask);
215
Chris Lattner9f0ac0d2011-02-15 01:56:08 +0000216 if (CI->getValue() == ShlMask)
217 // Masking out bits that the shift already masks.
Chris Lattner0a8191e2010-01-05 07:50:36 +0000218 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
Chris Lattner9f0ac0d2011-02-15 01:56:08 +0000219
220 if (CI != AndRHS) { // Reducing bits set in and.
Chris Lattner0a8191e2010-01-05 07:50:36 +0000221 TheAnd.setOperand(1, CI);
222 return &TheAnd;
223 }
224 break;
225 }
226 case Instruction::LShr: {
227 // We know that the AND will not produce any of the bits shifted in, so if
228 // the anded constant includes them, clear them now! This only applies to
229 // unsigned shifts, because a signed shr may bring in set bits!
230 //
231 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
232 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
233 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
234 ConstantInt *CI = ConstantInt::get(Op->getContext(),
235 AndRHS->getValue() & ShrMask);
236
Chris Lattner9f0ac0d2011-02-15 01:56:08 +0000237 if (CI->getValue() == ShrMask)
238 // Masking out bits that the shift already masks.
Chris Lattner0a8191e2010-01-05 07:50:36 +0000239 return ReplaceInstUsesWith(TheAnd, Op);
Chris Lattner9f0ac0d2011-02-15 01:56:08 +0000240
241 if (CI != AndRHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000242 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
243 return &TheAnd;
244 }
245 break;
246 }
247 case Instruction::AShr:
248 // Signed shr.
249 // See if this is shifting in some sign extension, then masking it out
250 // with an and.
251 if (Op->hasOneUse()) {
252 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
253 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
254 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
255 Constant *C = ConstantInt::get(Op->getContext(),
256 AndRHS->getValue() & ShrMask);
257 if (C == AndRHS) { // Masking out bits shifted in.
258 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
259 // Make the argument unsigned.
260 Value *ShVal = Op->getOperand(0);
261 ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
262 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
263 }
264 }
265 break;
266 }
267 return 0;
268}
269
270
271/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
Chris Lattner0ab5e2c2011-04-15 05:18:47 +0000272/// true, otherwise (V < Lo || V >= Hi). In practice, we emit the more efficient
Chris Lattner0a8191e2010-01-05 07:50:36 +0000273/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
274/// whether to treat the V, Lo and HI as signed or not. IB is the location to
275/// insert new instructions.
Chris Lattner067459c2010-03-05 08:46:26 +0000276Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
277 bool isSigned, bool Inside) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000278 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
279 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
280 "Lo is not <= Hi in range emission code!");
281
282 if (Inside) {
283 if (Lo == Hi) // Trivially false.
Chris Lattner067459c2010-03-05 08:46:26 +0000284 return ConstantInt::getFalse(V->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +0000285
286 // V >= Min && V < Hi --> V < Hi
287 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
288 ICmpInst::Predicate pred = (isSigned ?
289 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
Chris Lattner067459c2010-03-05 08:46:26 +0000290 return Builder->CreateICmp(pred, V, Hi);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000291 }
292
293 // Emit V-Lo <u Hi-Lo
294 Constant *NegLo = ConstantExpr::getNeg(Lo);
295 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
296 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
Chris Lattner067459c2010-03-05 08:46:26 +0000297 return Builder->CreateICmpULT(Add, UpperBound);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000298 }
299
300 if (Lo == Hi) // Trivially true.
Chris Lattner067459c2010-03-05 08:46:26 +0000301 return ConstantInt::getTrue(V->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +0000302
303 // V < Min || V >= Hi -> V > Hi-1
304 Hi = SubOne(cast<ConstantInt>(Hi));
305 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
306 ICmpInst::Predicate pred = (isSigned ?
307 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
Chris Lattner067459c2010-03-05 08:46:26 +0000308 return Builder->CreateICmp(pred, V, Hi);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000309 }
310
311 // Emit V-Lo >u Hi-1-Lo
312 // Note that Hi has already had one subtracted from it, above.
313 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
314 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
315 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
Chris Lattner067459c2010-03-05 08:46:26 +0000316 return Builder->CreateICmpUGT(Add, LowerBound);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000317}
318
319// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
320// any number of 0s on either side. The 1s are allowed to wrap from LSB to
321// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
322// not, since all 1s are not contiguous.
323static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
324 const APInt& V = Val->getValue();
325 uint32_t BitWidth = Val->getType()->getBitWidth();
326 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
327
328 // look for the first zero bit after the run of ones
329 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
330 // look for the first non-zero bit
331 ME = V.getActiveBits();
332 return true;
333}
334
335/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
336/// where isSub determines whether the operator is a sub. If we can fold one of
337/// the following xforms:
338///
339/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
340/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
341/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
342///
343/// return (A +/- B).
344///
345Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
346 ConstantInt *Mask, bool isSub,
347 Instruction &I) {
348 Instruction *LHSI = dyn_cast<Instruction>(LHS);
349 if (!LHSI || LHSI->getNumOperands() != 2 ||
350 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
351
352 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
353
354 switch (LHSI->getOpcode()) {
355 default: return 0;
356 case Instruction::And:
357 if (ConstantExpr::getAnd(N, Mask) == Mask) {
358 // If the AndRHS is a power of two minus one (0+1+), this is simple.
359 if ((Mask->getValue().countLeadingZeros() +
360 Mask->getValue().countPopulation()) ==
361 Mask->getValue().getBitWidth())
362 break;
363
364 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
365 // part, we don't need any explicit masks to take them out of A. If that
366 // is all N is, ignore it.
367 uint32_t MB = 0, ME = 0;
368 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
369 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
370 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
371 if (MaskedValueIsZero(RHS, Mask))
372 break;
373 }
374 }
375 return 0;
376 case Instruction::Or:
377 case Instruction::Xor:
378 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
379 if ((Mask->getValue().countLeadingZeros() +
380 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
381 && ConstantExpr::getAnd(N, Mask)->isNullValue())
382 break;
383 return 0;
384 }
385
386 if (isSub)
387 return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
388 return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
389}
390
Owen Anderson3fe002d2010-09-08 22:16:17 +0000391/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
392/// One of A and B is considered the mask, the other the value. This is
393/// described as the "AMask" or "BMask" part of the enum. If the enum
394/// contains only "Mask", then both A and B can be considered masks.
395/// If A is the mask, then it was proven, that (A & C) == C. This
396/// is trivial if C == A, or C == 0. If both A and C are constants, this
397/// proof is also easy.
398/// For the following explanations we assume that A is the mask.
399/// The part "AllOnes" declares, that the comparison is true only
400/// if (A & B) == A, or all bits of A are set in B.
401/// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
402/// The part "AllZeroes" declares, that the comparison is true only
403/// if (A & B) == 0, or all bits of A are cleared in B.
404/// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
405/// The part "Mixed" declares, that (A & B) == C and C might or might not
406/// contain any number of one bits and zero bits.
407/// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
408/// The Part "Not" means, that in above descriptions "==" should be replaced
409/// by "!=".
410/// Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
411/// If the mask A contains a single bit, then the following is equivalent:
412/// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
413/// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
414enum MaskedICmpType {
415 FoldMskICmp_AMask_AllOnes = 1,
416 FoldMskICmp_AMask_NotAllOnes = 2,
417 FoldMskICmp_BMask_AllOnes = 4,
418 FoldMskICmp_BMask_NotAllOnes = 8,
419 FoldMskICmp_Mask_AllZeroes = 16,
420 FoldMskICmp_Mask_NotAllZeroes = 32,
421 FoldMskICmp_AMask_Mixed = 64,
422 FoldMskICmp_AMask_NotMixed = 128,
423 FoldMskICmp_BMask_Mixed = 256,
424 FoldMskICmp_BMask_NotMixed = 512
425};
426
427/// return the set of pattern classes (from MaskedICmpType)
428/// that (icmp SCC (A & B), C) satisfies
429static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
430 ICmpInst::Predicate SCC)
431{
432 ConstantInt *ACst = dyn_cast<ConstantInt>(A);
433 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
434 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
435 bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
436 bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
437 ACst->getValue().isPowerOf2());
438 bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
439 BCst->getValue().isPowerOf2());
440 unsigned result = 0;
441 if (CCst != 0 && CCst->isZero()) {
442 // if C is zero, then both A and B qualify as mask
443 result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
444 FoldMskICmp_Mask_AllZeroes |
445 FoldMskICmp_AMask_Mixed |
446 FoldMskICmp_BMask_Mixed)
447 : (FoldMskICmp_Mask_NotAllZeroes |
448 FoldMskICmp_Mask_NotAllZeroes |
449 FoldMskICmp_AMask_NotMixed |
450 FoldMskICmp_BMask_NotMixed));
451 if (icmp_abit)
452 result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
453 FoldMskICmp_AMask_NotMixed)
454 : (FoldMskICmp_AMask_AllOnes |
455 FoldMskICmp_AMask_Mixed));
456 if (icmp_bbit)
457 result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
458 FoldMskICmp_BMask_NotMixed)
459 : (FoldMskICmp_BMask_AllOnes |
460 FoldMskICmp_BMask_Mixed));
461 return result;
462 }
463 if (A == C) {
464 result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
465 FoldMskICmp_AMask_Mixed)
466 : (FoldMskICmp_AMask_NotAllOnes |
467 FoldMskICmp_AMask_NotMixed));
468 if (icmp_abit)
469 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
470 FoldMskICmp_AMask_NotMixed)
471 : (FoldMskICmp_Mask_AllZeroes |
472 FoldMskICmp_AMask_Mixed));
473 }
474 else if (ACst != 0 && CCst != 0 &&
475 ConstantExpr::getAnd(ACst, CCst) == CCst) {
476 result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
477 : FoldMskICmp_AMask_NotMixed);
478 }
479 if (B == C)
480 {
481 result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
482 FoldMskICmp_BMask_Mixed)
483 : (FoldMskICmp_BMask_NotAllOnes |
484 FoldMskICmp_BMask_NotMixed));
485 if (icmp_bbit)
486 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
487 FoldMskICmp_BMask_NotMixed)
488 : (FoldMskICmp_Mask_AllZeroes |
489 FoldMskICmp_BMask_Mixed));
490 }
491 else if (BCst != 0 && CCst != 0 &&
492 ConstantExpr::getAnd(BCst, CCst) == CCst) {
493 result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
494 : FoldMskICmp_BMask_NotMixed);
495 }
496 return result;
497}
498
499/// foldLogOpOfMaskedICmpsHelper:
500/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
501/// return the set of pattern classes (from MaskedICmpType)
502/// that both LHS and RHS satisfy
503static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
504 Value*& B, Value*& C,
505 Value*& D, Value*& E,
506 ICmpInst *LHS, ICmpInst *RHS) {
507 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
508 if (LHSCC != ICmpInst::ICMP_EQ && LHSCC != ICmpInst::ICMP_NE) return 0;
509 if (RHSCC != ICmpInst::ICMP_EQ && RHSCC != ICmpInst::ICMP_NE) return 0;
510 if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
511 // vectors are not (yet?) supported
512 if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
513
514 // Here comes the tricky part:
515 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
516 // and L11 & L12 == L21 & L22. The same goes for RHS.
517 // Now we must find those components L** and R**, that are equal, so
518 // that we can extract the parameters A, B, C, D, and E for the canonical
519 // above.
520 Value *L1 = LHS->getOperand(0);
521 Value *L2 = LHS->getOperand(1);
522 Value *L11,*L12,*L21,*L22;
523 if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
524 if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
525 L21 = L22 = 0;
526 }
527 else {
528 if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
529 return 0;
530 std::swap(L1, L2);
531 L21 = L22 = 0;
532 }
533
534 Value *R1 = RHS->getOperand(0);
535 Value *R2 = RHS->getOperand(1);
536 Value *R11,*R12;
537 bool ok = false;
538 if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
539 if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
540 A = R11; D = R12; E = R2; ok = true;
541 }
542 else
543 if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
544 A = R12; D = R11; E = R2; ok = true;
545 }
546 }
547 if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
548 if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
549 A = R11; D = R12; E = R1; ok = true;
550 }
551 else
552 if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
553 A = R12; D = R11; E = R1; ok = true;
554 }
555 else
556 return 0;
557 }
558 if (!ok)
559 return 0;
560
561 if (L11 == A) {
562 B = L12; C = L2;
563 }
564 else if (L12 == A) {
565 B = L11; C = L2;
566 }
567 else if (L21 == A) {
568 B = L22; C = L1;
569 }
570 else if (L22 == A) {
571 B = L21; C = L1;
572 }
573
574 unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
575 unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
576 return left_type & right_type;
577}
578/// foldLogOpOfMaskedICmps:
579/// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
580/// into a single (icmp(A & X) ==/!= Y)
581static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
582 ICmpInst::Predicate NEWCC,
583 llvm::InstCombiner::BuilderTy* Builder) {
584 Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
585 unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS);
586 if (mask == 0) return 0;
587
588 if (NEWCC == ICmpInst::ICMP_NE)
589 mask >>= 1; // treat "Not"-states as normal states
590
591 if (mask & FoldMskICmp_Mask_AllZeroes) {
592 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
593 // -> (icmp eq (A & (B|D)), 0)
594 Value* newOr = Builder->CreateOr(B, D);
595 Value* newAnd = Builder->CreateAnd(A, newOr);
596 // we can't use C as zero, because we might actually handle
597 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
598 // with B and D, having a single bit set
599 Value* zero = Constant::getNullValue(A->getType());
600 return Builder->CreateICmp(NEWCC, newAnd, zero);
601 }
602 else if (mask & FoldMskICmp_BMask_AllOnes) {
603 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
604 // -> (icmp eq (A & (B|D)), (B|D))
605 Value* newOr = Builder->CreateOr(B, D);
606 Value* newAnd = Builder->CreateAnd(A, newOr);
607 return Builder->CreateICmp(NEWCC, newAnd, newOr);
608 }
609 else if (mask & FoldMskICmp_AMask_AllOnes) {
610 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
611 // -> (icmp eq (A & (B&D)), A)
612 Value* newAnd1 = Builder->CreateAnd(B, D);
613 Value* newAnd = Builder->CreateAnd(A, newAnd1);
614 return Builder->CreateICmp(NEWCC, newAnd, A);
615 }
616 else if (mask & FoldMskICmp_BMask_Mixed) {
617 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
618 // We already know that B & C == C && D & E == E.
619 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
620 // C and E, which are shared by both the mask B and the mask D, don't
621 // contradict, then we can transform to
622 // -> (icmp eq (A & (B|D)), (C|E))
623 // Currently, we only handle the case of B, C, D, and E being constant.
624 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
625 if (BCst == 0) return 0;
626 ConstantInt *DCst = dyn_cast<ConstantInt>(D);
627 if (DCst == 0) return 0;
628 // we can't simply use C and E, because we might actually handle
629 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
630 // with B and D, having a single bit set
631
632 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
633 if (CCst == 0) return 0;
634 if (LHS->getPredicate() != NEWCC)
635 CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
636 ConstantInt *ECst = dyn_cast<ConstantInt>(E);
637 if (ECst == 0) return 0;
638 if (RHS->getPredicate() != NEWCC)
639 ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
640 ConstantInt* MCst = dyn_cast<ConstantInt>(
641 ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
642 ConstantExpr::getXor(CCst, ECst)) );
643 // if there is a conflict we should actually return a false for the
644 // whole construct
645 if (!MCst->isZero())
646 return 0;
Chris Lattnerdcef03f2011-02-10 05:17:27 +0000647 Value *newOr1 = Builder->CreateOr(B, D);
648 Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
649 Value *newAnd = Builder->CreateAnd(A, newOr1);
Owen Anderson3fe002d2010-09-08 22:16:17 +0000650 return Builder->CreateICmp(NEWCC, newAnd, newOr2);
651 }
652 return 0;
653}
654
Chris Lattner0a8191e2010-01-05 07:50:36 +0000655/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
Chris Lattner067459c2010-03-05 08:46:26 +0000656Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000657 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
658
659 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
660 if (PredicatesFoldable(LHSCC, RHSCC)) {
661 if (LHS->getOperand(0) == RHS->getOperand(1) &&
662 LHS->getOperand(1) == RHS->getOperand(0))
663 LHS->swapOperands();
664 if (LHS->getOperand(0) == RHS->getOperand(0) &&
665 LHS->getOperand(1) == RHS->getOperand(1)) {
666 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
667 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
668 bool isSigned = LHS->isSigned() || RHS->isSigned();
Pete Cooperebf98c12011-12-17 01:20:32 +0000669 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000670 }
671 }
Owen Anderson3fe002d2010-09-08 22:16:17 +0000672
Chris Lattnerdcef03f2011-02-10 05:17:27 +0000673 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
674 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
675 return V;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000676
677 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
678 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
679 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
680 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
681 if (LHSCst == 0 || RHSCst == 0) return 0;
682
683 if (LHSCst == RHSCst && LHSCC == RHSCC) {
684 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
685 // where C is a power of 2
686 if (LHSCC == ICmpInst::ICMP_ULT &&
687 LHSCst->getValue().isPowerOf2()) {
688 Value *NewOr = Builder->CreateOr(Val, Val2);
Chris Lattner067459c2010-03-05 08:46:26 +0000689 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000690 }
691
692 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
693 if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
694 Value *NewOr = Builder->CreateOr(Val, Val2);
Chris Lattner067459c2010-03-05 08:46:26 +0000695 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000696 }
Benjamin Kramer272f2b02011-03-29 22:06:41 +0000697
698 // (icmp slt A, 0) & (icmp slt B, 0) --> (icmp slt (A&B), 0)
699 if (LHSCC == ICmpInst::ICMP_SLT && LHSCst->isZero()) {
700 Value *NewAnd = Builder->CreateAnd(Val, Val2);
701 return Builder->CreateICmp(LHSCC, NewAnd, LHSCst);
702 }
703
704 // (icmp sgt A, -1) & (icmp sgt B, -1) --> (icmp sgt (A|B), -1)
705 if (LHSCC == ICmpInst::ICMP_SGT && LHSCst->isAllOnesValue()) {
706 Value *NewOr = Builder->CreateOr(Val, Val2);
707 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
708 }
Chris Lattner0a8191e2010-01-05 07:50:36 +0000709 }
Benjamin Kramer4145c0d2011-04-28 16:58:40 +0000710
Benjamin Kramer101720f2011-04-28 20:09:57 +0000711 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
Benjamin Kramer4145c0d2011-04-28 16:58:40 +0000712 // where CMAX is the all ones value for the truncated type,
Benjamin Kramercf9d1ad2011-04-28 21:38:51 +0000713 // iff the lower bits of C2 and CA are zero.
Benjamin Kramer4145c0d2011-04-28 16:58:40 +0000714 if (LHSCC == RHSCC && ICmpInst::isEquality(LHSCC) &&
715 LHS->hasOneUse() && RHS->hasOneUse()) {
716 Value *V;
717 ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
718
719 // (trunc x) == C1 & (and x, CA) == C2
720 if (match(Val2, m_Trunc(m_Value(V))) &&
721 match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
722 SmallCst = RHSCst;
723 BigCst = LHSCst;
724 }
725 // (and x, CA) == C2 & (trunc x) == C1
726 else if (match(Val, m_Trunc(m_Value(V))) &&
727 match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
728 SmallCst = LHSCst;
729 BigCst = RHSCst;
730 }
731
732 if (SmallCst && BigCst) {
733 unsigned BigBitSize = BigCst->getType()->getBitWidth();
734 unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
735
736 // Check that the low bits are zero.
737 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
Benjamin Kramercf9d1ad2011-04-28 21:38:51 +0000738 if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
Benjamin Kramer4145c0d2011-04-28 16:58:40 +0000739 Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
740 APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
741 Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
742 return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
743 }
744 }
745 }
Benjamin Kramerda37e152012-01-08 18:32:24 +0000746
747 // (X & C) == 0 & X > -1 -> (X & (C | SignBit)) == 0
Benjamin Kramer6609f742012-01-08 21:12:51 +0000748 if ((LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero() &&
749 RHSCC == ICmpInst::ICMP_SGT && RHSCst->isAllOnesValue()) ||
750 (RHSCC == ICmpInst::ICMP_EQ && RHSCst->isZero() &&
751 LHSCC == ICmpInst::ICMP_SGT && LHSCst->isAllOnesValue())) {
752 ICmpInst *I = LHSCC == ICmpInst::ICMP_EQ ? LHS : RHS;
753 Value *X; ConstantInt *C;
754 if (I->hasOneUse() &&
755 match(I->getOperand(0), m_OneUse(m_And(m_Value(X), m_ConstantInt(C))))){
756 APInt New = C->getValue() | APInt::getSignBit(C->getBitWidth());
757 return Builder->CreateICmpEQ(Builder->CreateAnd(X, Builder->getInt(New)),
758 I->getOperand(1));
Benjamin Kramerda37e152012-01-08 18:32:24 +0000759 }
760 }
Chris Lattner0a8191e2010-01-05 07:50:36 +0000761
762 // From here on, we only handle:
763 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
764 if (Val != Val2) return 0;
765
766 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
767 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
768 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
769 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
770 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
771 return 0;
Anders Carlssonda80afe2011-03-01 15:05:01 +0000772
773 // Make a constant range that's the intersection of the two icmp ranges.
774 // If the intersection is empty, we know that the result is false.
775 ConstantRange LHSRange =
776 ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
777 ConstantRange RHSRange =
778 ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
779
780 if (LHSRange.intersectWith(RHSRange).isEmptySet())
781 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
782
Chris Lattner0a8191e2010-01-05 07:50:36 +0000783 // We can't fold (ugt x, C) & (sgt x, C2).
784 if (!PredicatesFoldable(LHSCC, RHSCC))
785 return 0;
786
787 // Ensure that the larger constant is on the RHS.
788 bool ShouldSwap;
789 if (CmpInst::isSigned(LHSCC) ||
790 (ICmpInst::isEquality(LHSCC) &&
791 CmpInst::isSigned(RHSCC)))
792 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
793 else
794 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
795
796 if (ShouldSwap) {
797 std::swap(LHS, RHS);
798 std::swap(LHSCst, RHSCst);
799 std::swap(LHSCC, RHSCC);
800 }
801
Dan Gohman4a618822010-02-10 16:03:48 +0000802 // At this point, we know we have two icmp instructions
Chris Lattner0a8191e2010-01-05 07:50:36 +0000803 // comparing a value against two constants and and'ing the result
804 // together. Because of the above check, we know that we only have
805 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
806 // (from the icmp folding check above), that the two constants
807 // are not equal and that the larger constant is on the RHS
808 assert(LHSCst != RHSCst && "Compares not folded above?");
809
810 switch (LHSCC) {
811 default: llvm_unreachable("Unknown integer condition code!");
812 case ICmpInst::ICMP_EQ:
813 switch (RHSCC) {
814 default: llvm_unreachable("Unknown integer condition code!");
Chris Lattner0a8191e2010-01-05 07:50:36 +0000815 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
816 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
817 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
Chris Lattner067459c2010-03-05 08:46:26 +0000818 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000819 }
820 case ICmpInst::ICMP_NE:
821 switch (RHSCC) {
822 default: llvm_unreachable("Unknown integer condition code!");
823 case ICmpInst::ICMP_ULT:
824 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
Chris Lattner067459c2010-03-05 08:46:26 +0000825 return Builder->CreateICmpULT(Val, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000826 break; // (X != 13 & X u< 15) -> no change
827 case ICmpInst::ICMP_SLT:
828 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
Chris Lattner067459c2010-03-05 08:46:26 +0000829 return Builder->CreateICmpSLT(Val, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000830 break; // (X != 13 & X s< 15) -> no change
831 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
832 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
833 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
Chris Lattner067459c2010-03-05 08:46:26 +0000834 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000835 case ICmpInst::ICMP_NE:
836 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
837 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
838 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
Chris Lattner067459c2010-03-05 08:46:26 +0000839 return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
Chris Lattner0a8191e2010-01-05 07:50:36 +0000840 }
841 break; // (X != 13 & X != 15) -> no change
842 }
843 break;
844 case ICmpInst::ICMP_ULT:
845 switch (RHSCC) {
846 default: llvm_unreachable("Unknown integer condition code!");
847 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
848 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
Chris Lattner067459c2010-03-05 08:46:26 +0000849 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000850 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
851 break;
852 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
853 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
Chris Lattner067459c2010-03-05 08:46:26 +0000854 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000855 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
856 break;
857 }
858 break;
859 case ICmpInst::ICMP_SLT:
860 switch (RHSCC) {
861 default: llvm_unreachable("Unknown integer condition code!");
Chris Lattner0a8191e2010-01-05 07:50:36 +0000862 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
863 break;
864 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
865 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
Chris Lattner067459c2010-03-05 08:46:26 +0000866 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000867 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
868 break;
869 }
870 break;
871 case ICmpInst::ICMP_UGT:
872 switch (RHSCC) {
873 default: llvm_unreachable("Unknown integer condition code!");
874 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
875 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
Chris Lattner067459c2010-03-05 08:46:26 +0000876 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000877 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
878 break;
879 case ICmpInst::ICMP_NE:
880 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
Chris Lattner067459c2010-03-05 08:46:26 +0000881 return Builder->CreateICmp(LHSCC, Val, RHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000882 break; // (X u> 13 & X != 15) -> no change
883 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner067459c2010-03-05 08:46:26 +0000884 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000885 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
886 break;
887 }
888 break;
889 case ICmpInst::ICMP_SGT:
890 switch (RHSCC) {
891 default: llvm_unreachable("Unknown integer condition code!");
892 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
893 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
Chris Lattner067459c2010-03-05 08:46:26 +0000894 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000895 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
896 break;
897 case ICmpInst::ICMP_NE:
898 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
Chris Lattner067459c2010-03-05 08:46:26 +0000899 return Builder->CreateICmp(LHSCC, Val, RHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000900 break; // (X s> 13 & X != 15) -> no change
901 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner067459c2010-03-05 08:46:26 +0000902 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000903 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
904 break;
905 }
906 break;
907 }
908
909 return 0;
910}
911
Chris Lattner067459c2010-03-05 08:46:26 +0000912/// FoldAndOfFCmps - Optimize (fcmp)&(fcmp). NOTE: Unlike the rest of
913/// instcombine, this returns a Value which should already be inserted into the
914/// function.
915Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000916 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
917 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
918 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
919 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
920 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
921 // If either of the constants are nans, then the whole thing returns
922 // false.
923 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner067459c2010-03-05 08:46:26 +0000924 return ConstantInt::getFalse(LHS->getContext());
925 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +0000926 }
927
928 // Handle vector zeros. This occurs because the canonical form of
929 // "fcmp ord x,x" is "fcmp ord x, 0".
930 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
931 isa<ConstantAggregateZero>(RHS->getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +0000932 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +0000933 return 0;
934 }
935
936 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
937 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
938 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
939
940
941 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
942 // Swap RHS operands to match LHS.
943 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
944 std::swap(Op1LHS, Op1RHS);
945 }
946
947 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
948 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
949 if (Op0CC == Op1CC)
Chris Lattner067459c2010-03-05 08:46:26 +0000950 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000951 if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
Chris Lattner067459c2010-03-05 08:46:26 +0000952 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000953 if (Op0CC == FCmpInst::FCMP_TRUE)
Chris Lattner067459c2010-03-05 08:46:26 +0000954 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000955 if (Op1CC == FCmpInst::FCMP_TRUE)
Chris Lattner067459c2010-03-05 08:46:26 +0000956 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000957
958 bool Op0Ordered;
959 bool Op1Ordered;
960 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
961 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
962 if (Op1Pred == 0) {
963 std::swap(LHS, RHS);
964 std::swap(Op0Pred, Op1Pred);
965 std::swap(Op0Ordered, Op1Ordered);
966 }
967 if (Op0Pred == 0) {
968 // uno && ueq -> uno && (uno || eq) -> ueq
969 // ord && olt -> ord && (ord && lt) -> olt
970 if (Op0Ordered == Op1Ordered)
Chris Lattner067459c2010-03-05 08:46:26 +0000971 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000972
973 // uno && oeq -> uno && (ord && eq) -> false
974 // uno && ord -> false
975 if (!Op0Ordered)
Chris Lattner067459c2010-03-05 08:46:26 +0000976 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000977 // ord && ueq -> ord && (uno || eq) -> oeq
Chris Lattner067459c2010-03-05 08:46:26 +0000978 return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000979 }
980 }
981
982 return 0;
983}
984
985
986Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Duncan Sands641baf12010-11-13 15:10:37 +0000987 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000988 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
989
990 if (Value *V = SimplifyAndInst(Op0, Op1, TD))
991 return ReplaceInstUsesWith(I, V);
992
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000993 // (A|B)&(A|C) -> A|(B&C) etc
994 if (Value *V = SimplifyUsingDistributiveLaws(I))
995 return ReplaceInstUsesWith(I, V);
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000996
Chris Lattner0a8191e2010-01-05 07:50:36 +0000997 // See if we can simplify any instructions used by the instruction whose sole
998 // purpose is to compute bits we don't care about.
999 if (SimplifyDemandedInstructionBits(I))
1000 return &I;
1001
1002 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1003 const APInt &AndRHSMask = AndRHS->getValue();
Chris Lattner0a8191e2010-01-05 07:50:36 +00001004
1005 // Optimize a variety of ((val OP C1) & C2) combinations...
1006 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1007 Value *Op0LHS = Op0I->getOperand(0);
1008 Value *Op0RHS = Op0I->getOperand(1);
1009 switch (Op0I->getOpcode()) {
1010 default: break;
1011 case Instruction::Xor:
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001012 case Instruction::Or: {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001013 // If the mask is only needed on one incoming arm, push it up.
1014 if (!Op0I->hasOneUse()) break;
1015
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001016 APInt NotAndRHS(~AndRHSMask);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001017 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
1018 // Not masking anything out for the LHS, move to RHS.
1019 Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
1020 Op0RHS->getName()+".masked");
1021 return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1022 }
1023 if (!isa<Constant>(Op0RHS) &&
1024 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
1025 // Not masking anything out for the RHS, move to LHS.
1026 Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1027 Op0LHS->getName()+".masked");
1028 return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1029 }
1030
1031 break;
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001032 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001033 case Instruction::Add:
1034 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1035 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1036 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1037 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1038 return BinaryOperator::CreateAnd(V, AndRHS);
1039 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1040 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
1041 break;
1042
1043 case Instruction::Sub:
1044 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1045 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1046 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1047 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1048 return BinaryOperator::CreateAnd(V, AndRHS);
1049
1050 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1051 // has 1's for all bits that the subtraction with A might affect.
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001052 if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001053 uint32_t BitWidth = AndRHSMask.getBitWidth();
1054 uint32_t Zeros = AndRHSMask.countLeadingZeros();
1055 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1056
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001057 if (MaskedValueIsZero(Op0LHS, Mask)) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001058 Value *NewNeg = Builder->CreateNeg(Op0RHS);
1059 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1060 }
1061 }
1062 break;
1063
1064 case Instruction::Shl:
1065 case Instruction::LShr:
1066 // (1 << x) & 1 --> zext(x == 0)
1067 // (1 >> x) & 1 --> zext(x == 0)
1068 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1069 Value *NewICmp =
1070 Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1071 return new ZExtInst(NewICmp, I.getType());
1072 }
1073 break;
1074 }
Chris Lattner9f0ac0d2011-02-15 01:56:08 +00001075
Chris Lattner0a8191e2010-01-05 07:50:36 +00001076 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1077 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1078 return Res;
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001079 }
1080
1081 // If this is an integer truncation, and if the source is an 'and' with
1082 // immediate, transform it. This frequently occurs for bitfield accesses.
1083 {
1084 Value *X = 0; ConstantInt *YC = 0;
1085 if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1086 // Change: and (trunc (and X, YC) to T), C2
1087 // into : and (trunc X to T), trunc(YC) & C2
1088 // This will fold the two constants together, which may allow
1089 // other simplifications.
1090 Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
1091 Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1092 C3 = ConstantExpr::getAnd(C3, AndRHS);
1093 return BinaryOperator::CreateAnd(NewCast, C3);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001094 }
1095 }
1096
1097 // Try to fold constant and into select arguments.
1098 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1099 if (Instruction *R = FoldOpIntoSelect(I, SI))
1100 return R;
1101 if (isa<PHINode>(Op0))
1102 if (Instruction *NV = FoldOpIntoPhi(I))
1103 return NV;
1104 }
1105
1106
1107 // (~A & ~B) == (~(A | B)) - De Morgan's Law
1108 if (Value *Op0NotVal = dyn_castNotVal(Op0))
1109 if (Value *Op1NotVal = dyn_castNotVal(Op1))
1110 if (Op0->hasOneUse() && Op1->hasOneUse()) {
1111 Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
1112 I.getName()+".demorgan");
1113 return BinaryOperator::CreateNot(Or);
1114 }
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001115
Chris Lattner0a8191e2010-01-05 07:50:36 +00001116 {
1117 Value *A = 0, *B = 0, *C = 0, *D = 0;
1118 // (A|B) & ~(A&B) -> A^B
1119 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1120 match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1121 ((A == C && B == D) || (A == D && B == C)))
1122 return BinaryOperator::CreateXor(A, B);
1123
1124 // ~(A&B) & (A|B) -> A^B
1125 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1126 match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1127 ((A == C && B == D) || (A == D && B == C)))
1128 return BinaryOperator::CreateXor(A, B);
1129
Eli Friedman61d7c8a2011-09-19 21:58:15 +00001130 // A&(A^B) => A & ~B
1131 {
1132 Value *tmpOp0 = Op0;
1133 Value *tmpOp1 = Op1;
1134 if (Op0->hasOneUse() &&
1135 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
1136 if (A == Op1 || B == Op1 ) {
1137 tmpOp1 = Op0;
1138 tmpOp0 = Op1;
1139 // Simplify below
1140 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001141 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001142
Eli Friedman61d7c8a2011-09-19 21:58:15 +00001143 if (tmpOp1->hasOneUse() &&
1144 match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
1145 if (B == tmpOp0) {
1146 std::swap(A, B);
1147 }
1148 // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
1149 // A is originally -1 (or a vector of -1 and undefs), then we enter
1150 // an endless loop. By checking that A is non-constant we ensure that
1151 // we will never get to the loop.
1152 if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
Benjamin Kramer547b6c52011-09-27 20:39:19 +00001153 return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
Chris Lattner0a8191e2010-01-05 07:50:36 +00001154 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001155 }
1156
1157 // (A&((~A)|B)) -> A&B
1158 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1159 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1160 return BinaryOperator::CreateAnd(A, Op1);
1161 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1162 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1163 return BinaryOperator::CreateAnd(A, Op0);
1164 }
1165
1166 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
1167 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
Chris Lattner067459c2010-03-05 08:46:26 +00001168 if (Value *Res = FoldAndOfICmps(LHS, RHS))
1169 return ReplaceInstUsesWith(I, Res);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001170
1171 // If and'ing two fcmp, try combine them into one.
1172 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1173 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +00001174 if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1175 return ReplaceInstUsesWith(I, Res);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001176
1177
Chris Lattner0a8191e2010-01-05 07:50:36 +00001178 // fold (and (cast A), (cast B)) -> (cast (and A, B))
1179 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001180 if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
Chris Lattner229907c2011-07-18 04:54:35 +00001181 Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner4e8137d2010-02-11 06:26:33 +00001182 if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
1183 SrcTy == Op1C->getOperand(0)->getType() &&
Duncan Sands9dff9be2010-02-15 16:12:20 +00001184 SrcTy->isIntOrIntVectorTy()) {
Chris Lattner4e8137d2010-02-11 06:26:33 +00001185 Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
1186
1187 // Only do this if the casts both really cause code to be generated.
1188 if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1189 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1190 Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001191 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1192 }
Chris Lattner4e8137d2010-02-11 06:26:33 +00001193
1194 // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1195 // cast is otherwise not optimizable. This happens for vector sexts.
1196 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1197 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
Chris Lattner067459c2010-03-05 08:46:26 +00001198 if (Value *Res = FoldAndOfICmps(LHS, RHS))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001199 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner4e8137d2010-02-11 06:26:33 +00001200
1201 // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1202 // cast is otherwise not optimizable. This happens for vector sexts.
1203 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1204 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
Chris Lattner067459c2010-03-05 08:46:26 +00001205 if (Value *Res = FoldAndOfFCmps(LHS, RHS))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001206 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001207 }
Chris Lattner4e8137d2010-02-11 06:26:33 +00001208 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001209
1210 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
1211 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1212 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1213 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1214 SI0->getOperand(1) == SI1->getOperand(1) &&
1215 (SI0->hasOneUse() || SI1->hasOneUse())) {
1216 Value *NewOp =
1217 Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
1218 SI0->getName());
1219 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1220 SI1->getOperand(1));
1221 }
1222 }
1223
Chris Lattner0a8191e2010-01-05 07:50:36 +00001224 return Changed ? &I : 0;
1225}
1226
1227/// CollectBSwapParts - Analyze the specified subexpression and see if it is
1228/// capable of providing pieces of a bswap. The subexpression provides pieces
1229/// of a bswap if it is proven that each of the non-zero bytes in the output of
1230/// the expression came from the corresponding "byte swapped" byte in some other
1231/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
1232/// we know that the expression deposits the low byte of %X into the high byte
1233/// of the bswap result and that all other bytes are zero. This expression is
1234/// accepted, the high byte of ByteValues is set to X to indicate a correct
1235/// match.
1236///
1237/// This function returns true if the match was unsuccessful and false if so.
1238/// On entry to the function the "OverallLeftShift" is a signed integer value
1239/// indicating the number of bytes that the subexpression is later shifted. For
1240/// example, if the expression is later right shifted by 16 bits, the
1241/// OverallLeftShift value would be -2 on entry. This is used to specify which
1242/// byte of ByteValues is actually being set.
1243///
1244/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
1245/// byte is masked to zero by a user. For example, in (X & 255), X will be
1246/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
1247/// this function to working on up to 32-byte (256 bit) values. ByteMask is
1248/// always in the local (OverallLeftShift) coordinate space.
1249///
1250static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
1251 SmallVector<Value*, 8> &ByteValues) {
1252 if (Instruction *I = dyn_cast<Instruction>(V)) {
1253 // If this is an or instruction, it may be an inner node of the bswap.
1254 if (I->getOpcode() == Instruction::Or) {
1255 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1256 ByteValues) ||
1257 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
1258 ByteValues);
1259 }
1260
1261 // If this is a logical shift by a constant multiple of 8, recurse with
1262 // OverallLeftShift and ByteMask adjusted.
1263 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1264 unsigned ShAmt =
1265 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1266 // Ensure the shift amount is defined and of a byte value.
1267 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
1268 return true;
1269
1270 unsigned ByteShift = ShAmt >> 3;
1271 if (I->getOpcode() == Instruction::Shl) {
1272 // X << 2 -> collect(X, +2)
1273 OverallLeftShift += ByteShift;
1274 ByteMask >>= ByteShift;
1275 } else {
1276 // X >>u 2 -> collect(X, -2)
1277 OverallLeftShift -= ByteShift;
1278 ByteMask <<= ByteShift;
1279 ByteMask &= (~0U >> (32-ByteValues.size()));
1280 }
1281
1282 if (OverallLeftShift >= (int)ByteValues.size()) return true;
1283 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
1284
1285 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1286 ByteValues);
1287 }
1288
1289 // If this is a logical 'and' with a mask that clears bytes, clear the
1290 // corresponding bytes in ByteMask.
1291 if (I->getOpcode() == Instruction::And &&
1292 isa<ConstantInt>(I->getOperand(1))) {
1293 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
1294 unsigned NumBytes = ByteValues.size();
1295 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
1296 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1297
1298 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
1299 // If this byte is masked out by a later operation, we don't care what
1300 // the and mask is.
1301 if ((ByteMask & (1 << i)) == 0)
1302 continue;
1303
1304 // If the AndMask is all zeros for this byte, clear the bit.
1305 APInt MaskB = AndMask & Byte;
1306 if (MaskB == 0) {
1307 ByteMask &= ~(1U << i);
1308 continue;
1309 }
1310
1311 // If the AndMask is not all ones for this byte, it's not a bytezap.
1312 if (MaskB != Byte)
1313 return true;
1314
1315 // Otherwise, this byte is kept.
1316 }
1317
1318 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1319 ByteValues);
1320 }
1321 }
1322
1323 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
1324 // the input value to the bswap. Some observations: 1) if more than one byte
1325 // is demanded from this input, then it could not be successfully assembled
1326 // into a byteswap. At least one of the two bytes would not be aligned with
1327 // their ultimate destination.
1328 if (!isPowerOf2_32(ByteMask)) return true;
1329 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
1330
1331 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
1332 // is demanded, it needs to go into byte 0 of the result. This means that the
1333 // byte needs to be shifted until it lands in the right byte bucket. The
1334 // shift amount depends on the position: if the byte is coming from the high
1335 // part of the value (e.g. byte 3) then it must be shifted right. If from the
1336 // low part, it must be shifted left.
1337 unsigned DestByteNo = InputByteNo + OverallLeftShift;
1338 if (InputByteNo < ByteValues.size()/2) {
1339 if (ByteValues.size()-1-DestByteNo != InputByteNo)
1340 return true;
1341 } else {
1342 if (ByteValues.size()-1-DestByteNo != InputByteNo)
1343 return true;
1344 }
1345
1346 // If the destination byte value is already defined, the values are or'd
1347 // together, which isn't a bswap (unless it's an or of the same bits).
1348 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
1349 return true;
1350 ByteValues[DestByteNo] = V;
1351 return false;
1352}
1353
1354/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
1355/// If so, insert the new bswap intrinsic and return it.
1356Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
Jay Foadb804a2b2011-07-12 14:06:48 +00001357 IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001358 if (!ITy || ITy->getBitWidth() % 16 ||
1359 // ByteMask only allows up to 32-byte values.
1360 ITy->getBitWidth() > 32*8)
1361 return 0; // Can only bswap pairs of bytes. Can't do vectors.
1362
1363 /// ByteValues - For each byte of the result, we keep track of which value
1364 /// defines each byte.
1365 SmallVector<Value*, 8> ByteValues;
1366 ByteValues.resize(ITy->getBitWidth()/8);
1367
1368 // Try to find all the pieces corresponding to the bswap.
1369 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
1370 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
1371 return 0;
1372
1373 // Check to see if all of the bytes come from the same value.
1374 Value *V = ByteValues[0];
1375 if (V == 0) return 0; // Didn't find a byte? Must be zero.
1376
1377 // Check to make sure that all of the bytes come from the same value.
1378 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
1379 if (ByteValues[i] != V)
1380 return 0;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001381 Module *M = I.getParent()->getParent()->getParent();
Benjamin Kramere6e19332011-07-14 17:45:39 +00001382 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001383 return CallInst::Create(F, V);
1384}
1385
1386/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
1387/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
1388/// we can simplify this expression to "cond ? C : D or B".
1389static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
1390 Value *C, Value *D) {
1391 // If A is not a select of -1/0, this cannot match.
1392 Value *Cond = 0;
Chris Lattner9b6a1782010-02-09 01:12:41 +00001393 if (!match(A, m_SExt(m_Value(Cond))) ||
Duncan Sands9dff9be2010-02-15 16:12:20 +00001394 !Cond->getType()->isIntegerTy(1))
Chris Lattner0a8191e2010-01-05 07:50:36 +00001395 return 0;
1396
1397 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001398 if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
Chris Lattner0a8191e2010-01-05 07:50:36 +00001399 return SelectInst::Create(Cond, C, B);
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001400 if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
Chris Lattner64ffd112010-02-05 19:53:02 +00001401 return SelectInst::Create(Cond, C, B);
1402
Chris Lattner0a8191e2010-01-05 07:50:36 +00001403 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001404 if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
Chris Lattner64ffd112010-02-05 19:53:02 +00001405 return SelectInst::Create(Cond, C, D);
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001406 if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
Chris Lattner0a8191e2010-01-05 07:50:36 +00001407 return SelectInst::Create(Cond, C, D);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001408 return 0;
1409}
1410
Chris Lattner067459c2010-03-05 08:46:26 +00001411/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
1412Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001413 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1414
1415 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1416 if (PredicatesFoldable(LHSCC, RHSCC)) {
1417 if (LHS->getOperand(0) == RHS->getOperand(1) &&
1418 LHS->getOperand(1) == RHS->getOperand(0))
1419 LHS->swapOperands();
1420 if (LHS->getOperand(0) == RHS->getOperand(0) &&
1421 LHS->getOperand(1) == RHS->getOperand(1)) {
1422 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1423 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1424 bool isSigned = LHS->isSigned() || RHS->isSigned();
Pete Cooperebf98c12011-12-17 01:20:32 +00001425 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001426 }
1427 }
Benjamin Kramer2bca3a62010-12-20 16:21:59 +00001428
1429 // handle (roughly):
1430 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1431 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
1432 return V;
Owen Anderson3fe002d2010-09-08 22:16:17 +00001433
Chris Lattner0a8191e2010-01-05 07:50:36 +00001434 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1435 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1436 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1437 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1438 if (LHSCst == 0 || RHSCst == 0) return 0;
1439
Owen Anderson8f306a72010-08-02 09:32:13 +00001440 if (LHSCst == RHSCst && LHSCC == RHSCC) {
1441 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1442 if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1443 Value *NewOr = Builder->CreateOr(Val, Val2);
1444 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1445 }
Benjamin Kramer272f2b02011-03-29 22:06:41 +00001446
1447 // (icmp slt A, 0) | (icmp slt B, 0) --> (icmp slt (A|B), 0)
1448 if (LHSCC == ICmpInst::ICMP_SLT && LHSCst->isZero()) {
1449 Value *NewOr = Builder->CreateOr(Val, Val2);
1450 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1451 }
1452
1453 // (icmp sgt A, -1) | (icmp sgt B, -1) --> (icmp sgt (A&B), -1)
1454 if (LHSCC == ICmpInst::ICMP_SGT && LHSCst->isAllOnesValue()) {
1455 Value *NewAnd = Builder->CreateAnd(Val, Val2);
1456 return Builder->CreateICmp(LHSCC, NewAnd, LHSCst);
1457 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001458 }
Benjamin Kramer68531ba2010-12-20 16:18:51 +00001459
Benjamin Kramer6609f742012-01-08 21:12:51 +00001460 // (X & C) != 0 | X < 0 -> (X & (C | SignBit)) != 0
1461 if ((LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero() &&
1462 RHSCC == ICmpInst::ICMP_SLT && RHSCst->isZero()) ||
1463 (RHSCC == ICmpInst::ICMP_NE && RHSCst->isZero() &&
1464 LHSCC == ICmpInst::ICMP_SLT && LHSCst->isZero())) {
1465 ICmpInst *I = LHSCC == ICmpInst::ICMP_NE ? LHS : RHS;
1466 Value *X; ConstantInt *C;
1467 if (I->hasOneUse() &&
1468 match(I->getOperand(0), m_OneUse(m_And(m_Value(X), m_ConstantInt(C))))){
1469 APInt New = C->getValue() | APInt::getSignBit(C->getBitWidth());
1470 return Builder->CreateICmpNE(Builder->CreateAnd(X, Builder->getInt(New)),
1471 I->getOperand(1));
Benjamin Kramerda37e152012-01-08 18:32:24 +00001472 }
1473 }
1474
Benjamin Kramerf7957d02010-12-20 20:00:31 +00001475 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
Benjamin Kramer68531ba2010-12-20 16:18:51 +00001476 // iff C2 + CA == C1.
Benjamin Kramerf7957d02010-12-20 20:00:31 +00001477 if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
Benjamin Kramer68531ba2010-12-20 16:18:51 +00001478 ConstantInt *AddCst;
1479 if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
1480 if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
Benjamin Kramerf7957d02010-12-20 20:00:31 +00001481 return Builder->CreateICmpULE(Val, LHSCst);
Benjamin Kramer68531ba2010-12-20 16:18:51 +00001482 }
1483
Chris Lattner0a8191e2010-01-05 07:50:36 +00001484 // From here on, we only handle:
1485 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1486 if (Val != Val2) return 0;
1487
1488 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1489 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1490 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1491 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1492 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1493 return 0;
1494
1495 // We can't fold (ugt x, C) | (sgt x, C2).
1496 if (!PredicatesFoldable(LHSCC, RHSCC))
1497 return 0;
1498
1499 // Ensure that the larger constant is on the RHS.
1500 bool ShouldSwap;
1501 if (CmpInst::isSigned(LHSCC) ||
1502 (ICmpInst::isEquality(LHSCC) &&
1503 CmpInst::isSigned(RHSCC)))
1504 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1505 else
1506 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1507
1508 if (ShouldSwap) {
1509 std::swap(LHS, RHS);
1510 std::swap(LHSCst, RHSCst);
1511 std::swap(LHSCC, RHSCC);
1512 }
1513
Dan Gohman4a618822010-02-10 16:03:48 +00001514 // At this point, we know we have two icmp instructions
Chris Lattner0a8191e2010-01-05 07:50:36 +00001515 // comparing a value against two constants and or'ing the result
1516 // together. Because of the above check, we know that we only have
1517 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1518 // icmp folding check above), that the two constants are not
1519 // equal.
1520 assert(LHSCst != RHSCst && "Compares not folded above?");
1521
1522 switch (LHSCC) {
1523 default: llvm_unreachable("Unknown integer condition code!");
1524 case ICmpInst::ICMP_EQ:
1525 switch (RHSCC) {
1526 default: llvm_unreachable("Unknown integer condition code!");
1527 case ICmpInst::ICMP_EQ:
1528 if (LHSCst == SubOne(RHSCst)) {
1529 // (X == 13 | X == 14) -> X-13 <u 2
1530 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1531 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1532 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
Chris Lattner067459c2010-03-05 08:46:26 +00001533 return Builder->CreateICmpULT(Add, AddCST);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001534 }
1535 break; // (X == 13 | X == 15) -> no change
1536 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
1537 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
1538 break;
1539 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
1540 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
1541 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
Chris Lattner067459c2010-03-05 08:46:26 +00001542 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001543 }
1544 break;
1545 case ICmpInst::ICMP_NE:
1546 switch (RHSCC) {
1547 default: llvm_unreachable("Unknown integer condition code!");
1548 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
1549 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
1550 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
Chris Lattner067459c2010-03-05 08:46:26 +00001551 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001552 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
1553 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
1554 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
Chris Lattner067459c2010-03-05 08:46:26 +00001555 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001556 }
1557 break;
1558 case ICmpInst::ICMP_ULT:
1559 switch (RHSCC) {
1560 default: llvm_unreachable("Unknown integer condition code!");
1561 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
1562 break;
1563 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
1564 // If RHSCst is [us]MAXINT, it is always false. Not handling
1565 // this can cause overflow.
1566 if (RHSCst->isMaxValue(false))
Chris Lattner067459c2010-03-05 08:46:26 +00001567 return LHS;
1568 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001569 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
1570 break;
1571 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
1572 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
Chris Lattner067459c2010-03-05 08:46:26 +00001573 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001574 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
1575 break;
1576 }
1577 break;
1578 case ICmpInst::ICMP_SLT:
1579 switch (RHSCC) {
1580 default: llvm_unreachable("Unknown integer condition code!");
1581 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
1582 break;
1583 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
1584 // If RHSCst is [us]MAXINT, it is always false. Not handling
1585 // this can cause overflow.
1586 if (RHSCst->isMaxValue(true))
Chris Lattner067459c2010-03-05 08:46:26 +00001587 return LHS;
1588 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001589 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
1590 break;
1591 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
1592 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
Chris Lattner067459c2010-03-05 08:46:26 +00001593 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001594 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
1595 break;
1596 }
1597 break;
1598 case ICmpInst::ICMP_UGT:
1599 switch (RHSCC) {
1600 default: llvm_unreachable("Unknown integer condition code!");
1601 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
1602 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
Chris Lattner067459c2010-03-05 08:46:26 +00001603 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001604 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
1605 break;
1606 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
1607 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
Chris Lattner067459c2010-03-05 08:46:26 +00001608 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001609 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
1610 break;
1611 }
1612 break;
1613 case ICmpInst::ICMP_SGT:
1614 switch (RHSCC) {
1615 default: llvm_unreachable("Unknown integer condition code!");
1616 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
1617 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
Chris Lattner067459c2010-03-05 08:46:26 +00001618 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001619 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
1620 break;
1621 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
1622 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
Chris Lattner067459c2010-03-05 08:46:26 +00001623 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001624 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
1625 break;
1626 }
1627 break;
1628 }
1629 return 0;
1630}
1631
Chris Lattner067459c2010-03-05 08:46:26 +00001632/// FoldOrOfFCmps - Optimize (fcmp)|(fcmp). NOTE: Unlike the rest of
1633/// instcombine, this returns a Value which should already be inserted into the
1634/// function.
1635Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001636 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
1637 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
1638 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
1639 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1640 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1641 // If either of the constants are nans, then the whole thing returns
1642 // true.
1643 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner067459c2010-03-05 08:46:26 +00001644 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001645
1646 // Otherwise, no need to compare the two constants, compare the
1647 // rest.
Chris Lattner067459c2010-03-05 08:46:26 +00001648 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +00001649 }
1650
1651 // Handle vector zeros. This occurs because the canonical form of
1652 // "fcmp uno x,x" is "fcmp uno x, 0".
1653 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1654 isa<ConstantAggregateZero>(RHS->getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +00001655 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +00001656
1657 return 0;
1658 }
1659
1660 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1661 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1662 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1663
1664 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1665 // Swap RHS operands to match LHS.
1666 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1667 std::swap(Op1LHS, Op1RHS);
1668 }
1669 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1670 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
1671 if (Op0CC == Op1CC)
Chris Lattner067459c2010-03-05 08:46:26 +00001672 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001673 if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
Chris Lattner067459c2010-03-05 08:46:26 +00001674 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001675 if (Op0CC == FCmpInst::FCMP_FALSE)
Chris Lattner067459c2010-03-05 08:46:26 +00001676 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001677 if (Op1CC == FCmpInst::FCMP_FALSE)
Chris Lattner067459c2010-03-05 08:46:26 +00001678 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001679 bool Op0Ordered;
1680 bool Op1Ordered;
1681 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1682 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1683 if (Op0Ordered == Op1Ordered) {
1684 // If both are ordered or unordered, return a new fcmp with
1685 // or'ed predicates.
Chris Lattner067459c2010-03-05 08:46:26 +00001686 return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001687 }
1688 }
1689 return 0;
1690}
1691
1692/// FoldOrWithConstants - This helper function folds:
1693///
1694/// ((A | B) & C1) | (B & C2)
1695///
1696/// into:
1697///
1698/// (A & C1) | B
1699///
1700/// when the XOR of the two constants is "all ones" (-1).
1701Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
1702 Value *A, Value *B, Value *C) {
1703 ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
1704 if (!CI1) return 0;
1705
1706 Value *V1 = 0;
1707 ConstantInt *CI2 = 0;
1708 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
1709
1710 APInt Xor = CI1->getValue() ^ CI2->getValue();
1711 if (!Xor.isAllOnesValue()) return 0;
1712
1713 if (V1 == A || V1 == B) {
1714 Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
1715 return BinaryOperator::CreateOr(NewOp, V1);
1716 }
1717
1718 return 0;
1719}
1720
1721Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Duncan Sands641baf12010-11-13 15:10:37 +00001722 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001723 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1724
1725 if (Value *V = SimplifyOrInst(Op0, Op1, TD))
1726 return ReplaceInstUsesWith(I, V);
Bill Wendlingaf13d822010-03-03 00:35:56 +00001727
Duncan Sandsfbb9ac32010-12-22 13:36:08 +00001728 // (A&B)|(A&C) -> A&(B|C) etc
1729 if (Value *V = SimplifyUsingDistributiveLaws(I))
1730 return ReplaceInstUsesWith(I, V);
Duncan Sandsadc7771f2010-11-23 14:23:47 +00001731
Chris Lattner0a8191e2010-01-05 07:50:36 +00001732 // See if we can simplify any instructions used by the instruction whose sole
1733 // purpose is to compute bits we don't care about.
1734 if (SimplifyDemandedInstructionBits(I))
1735 return &I;
1736
1737 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
1738 ConstantInt *C1 = 0; Value *X = 0;
1739 // (X & C1) | C2 --> (X | C2) & (C1|C2)
Bill Wendlingaf13d822010-03-03 00:35:56 +00001740 // iff (C1 & C2) == 0.
Chris Lattner0a8191e2010-01-05 07:50:36 +00001741 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
Bill Wendlingaf13d822010-03-03 00:35:56 +00001742 (RHS->getValue() & C1->getValue()) != 0 &&
Chris Lattner0a8191e2010-01-05 07:50:36 +00001743 Op0->hasOneUse()) {
1744 Value *Or = Builder->CreateOr(X, RHS);
1745 Or->takeName(Op0);
1746 return BinaryOperator::CreateAnd(Or,
1747 ConstantInt::get(I.getContext(),
1748 RHS->getValue() | C1->getValue()));
1749 }
1750
1751 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
1752 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
1753 Op0->hasOneUse()) {
1754 Value *Or = Builder->CreateOr(X, RHS);
1755 Or->takeName(Op0);
1756 return BinaryOperator::CreateXor(Or,
1757 ConstantInt::get(I.getContext(),
1758 C1->getValue() & ~RHS->getValue()));
1759 }
1760
1761 // Try to fold constant and into select arguments.
1762 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1763 if (Instruction *R = FoldOpIntoSelect(I, SI))
1764 return R;
Bill Wendlingaf13d822010-03-03 00:35:56 +00001765
Chris Lattner0a8191e2010-01-05 07:50:36 +00001766 if (isa<PHINode>(Op0))
1767 if (Instruction *NV = FoldOpIntoPhi(I))
1768 return NV;
1769 }
1770
1771 Value *A = 0, *B = 0;
1772 ConstantInt *C1 = 0, *C2 = 0;
1773
1774 // (A | B) | C and A | (B | C) -> bswap if possible.
1775 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
1776 if (match(Op0, m_Or(m_Value(), m_Value())) ||
1777 match(Op1, m_Or(m_Value(), m_Value())) ||
Chris Lattnerb9400912011-02-09 17:00:45 +00001778 (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1779 match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001780 if (Instruction *BSwap = MatchBSwap(I))
1781 return BSwap;
1782 }
1783
1784 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
1785 if (Op0->hasOneUse() &&
1786 match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1787 MaskedValueIsZero(Op1, C1->getValue())) {
1788 Value *NOr = Builder->CreateOr(A, Op1);
1789 NOr->takeName(Op0);
1790 return BinaryOperator::CreateXor(NOr, C1);
1791 }
1792
1793 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
1794 if (Op1->hasOneUse() &&
1795 match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1796 MaskedValueIsZero(Op0, C1->getValue())) {
1797 Value *NOr = Builder->CreateOr(A, Op0);
1798 NOr->takeName(Op0);
1799 return BinaryOperator::CreateXor(NOr, C1);
1800 }
1801
1802 // (A & C)|(B & D)
1803 Value *C = 0, *D = 0;
1804 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1805 match(Op1, m_And(m_Value(B), m_Value(D)))) {
Duncan Sandsadc7771f2010-11-23 14:23:47 +00001806 Value *V1 = 0, *V2 = 0;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001807 C1 = dyn_cast<ConstantInt>(C);
1808 C2 = dyn_cast<ConstantInt>(D);
1809 if (C1 && C2) { // (A & C1)|(B & C2)
1810 // If we have: ((V + N) & C1) | (V & C2)
1811 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1812 // replace with V+N.
1813 if (C1->getValue() == ~C2->getValue()) {
1814 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
1815 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1816 // Add commutes, try both ways.
1817 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
1818 return ReplaceInstUsesWith(I, A);
1819 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
1820 return ReplaceInstUsesWith(I, A);
1821 }
1822 // Or commutes, try both ways.
1823 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
1824 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1825 // Add commutes, try both ways.
1826 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
1827 return ReplaceInstUsesWith(I, B);
1828 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
1829 return ReplaceInstUsesWith(I, B);
1830 }
1831 }
1832
Chris Lattner0a8191e2010-01-05 07:50:36 +00001833 if ((C1->getValue() & C2->getValue()) == 0) {
Chris Lattner95188692010-01-11 06:55:24 +00001834 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
1835 // iff (C1&C2) == 0 and (N&~C1) == 0
Chris Lattner0a8191e2010-01-05 07:50:36 +00001836 if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
1837 ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) || // (V|N)
1838 (V2 == B && MaskedValueIsZero(V1, ~C1->getValue())))) // (N|V)
1839 return BinaryOperator::CreateAnd(A,
1840 ConstantInt::get(A->getContext(),
1841 C1->getValue()|C2->getValue()));
1842 // Or commutes, try both ways.
1843 if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
1844 ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) || // (V|N)
1845 (V2 == A && MaskedValueIsZero(V1, ~C2->getValue())))) // (N|V)
1846 return BinaryOperator::CreateAnd(B,
1847 ConstantInt::get(B->getContext(),
1848 C1->getValue()|C2->getValue()));
Chris Lattner95188692010-01-11 06:55:24 +00001849
1850 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
1851 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
1852 ConstantInt *C3 = 0, *C4 = 0;
1853 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
1854 (C3->getValue() & ~C1->getValue()) == 0 &&
1855 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
1856 (C4->getValue() & ~C2->getValue()) == 0) {
1857 V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
1858 return BinaryOperator::CreateAnd(V2,
1859 ConstantInt::get(B->getContext(),
1860 C1->getValue()|C2->getValue()));
1861 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001862 }
1863 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001864
Chris Lattner8e2c4712010-02-02 02:43:51 +00001865 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants.
1866 // Don't do this for vector select idioms, the code generator doesn't handle
1867 // them well yet.
Duncan Sands19d0b472010-02-16 11:11:14 +00001868 if (!I.getType()->isVectorTy()) {
Chris Lattner8e2c4712010-02-02 02:43:51 +00001869 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
1870 return Match;
1871 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
1872 return Match;
1873 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
1874 return Match;
1875 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
1876 return Match;
1877 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001878
1879 // ((A&~B)|(~A&B)) -> A^B
1880 if ((match(C, m_Not(m_Specific(D))) &&
1881 match(B, m_Not(m_Specific(A)))))
1882 return BinaryOperator::CreateXor(A, D);
1883 // ((~B&A)|(~A&B)) -> A^B
1884 if ((match(A, m_Not(m_Specific(D))) &&
1885 match(B, m_Not(m_Specific(C)))))
1886 return BinaryOperator::CreateXor(C, D);
1887 // ((A&~B)|(B&~A)) -> A^B
1888 if ((match(C, m_Not(m_Specific(B))) &&
1889 match(D, m_Not(m_Specific(A)))))
1890 return BinaryOperator::CreateXor(A, B);
1891 // ((~B&A)|(B&~A)) -> A^B
1892 if ((match(A, m_Not(m_Specific(B))) &&
1893 match(D, m_Not(m_Specific(C)))))
1894 return BinaryOperator::CreateXor(C, B);
Benjamin Kramer11743242010-07-12 13:34:22 +00001895
1896 // ((A|B)&1)|(B&-2) -> (A&1) | B
1897 if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
1898 match(A, m_Or(m_Specific(B), m_Value(V1)))) {
1899 Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
1900 if (Ret) return Ret;
1901 }
1902 // (B&-2)|((A|B)&1) -> (A&1) | B
1903 if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
1904 match(B, m_Or(m_Value(V1), m_Specific(A)))) {
1905 Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
1906 if (Ret) return Ret;
1907 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001908 }
1909
1910 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
1911 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1912 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1913 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1914 SI0->getOperand(1) == SI1->getOperand(1) &&
1915 (SI0->hasOneUse() || SI1->hasOneUse())) {
1916 Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
1917 SI0->getName());
1918 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1919 SI1->getOperand(1));
1920 }
1921 }
1922
Chris Lattner0a8191e2010-01-05 07:50:36 +00001923 // (~A | ~B) == (~(A & B)) - De Morgan's Law
1924 if (Value *Op0NotVal = dyn_castNotVal(Op0))
1925 if (Value *Op1NotVal = dyn_castNotVal(Op1))
1926 if (Op0->hasOneUse() && Op1->hasOneUse()) {
1927 Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
1928 I.getName()+".demorgan");
1929 return BinaryOperator::CreateNot(And);
1930 }
1931
Benjamin Kramerd5d7f372011-02-20 13:23:43 +00001932 // Canonicalize xor to the RHS.
1933 if (match(Op0, m_Xor(m_Value(), m_Value())))
1934 std::swap(Op0, Op1);
1935
1936 // A | ( A ^ B) -> A | B
1937 // A | (~A ^ B) -> A | ~B
1938 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
1939 if (Op0 == A || Op0 == B)
1940 return BinaryOperator::CreateOr(A, B);
1941
1942 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
1943 Value *Not = Builder->CreateNot(B, B->getName()+".not");
1944 return BinaryOperator::CreateOr(Not, Op0);
1945 }
1946 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
1947 Value *Not = Builder->CreateNot(A, A->getName()+".not");
1948 return BinaryOperator::CreateOr(Not, Op0);
1949 }
1950 }
1951
1952 // A | ~(A | B) -> A | ~B
1953 // A | ~(A ^ B) -> A | ~B
Benjamin Kramerd5d7f372011-02-20 13:23:43 +00001954 if (match(Op1, m_Not(m_Value(A))))
1955 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
Benjamin Kramer5b7a4e02011-02-20 15:20:01 +00001956 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
1957 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
1958 B->getOpcode() == Instruction::Xor)) {
1959 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
1960 B->getOperand(0);
1961 Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
1962 return BinaryOperator::CreateOr(Not, Op0);
1963 }
Benjamin Kramerd5d7f372011-02-20 13:23:43 +00001964
Chris Lattner0a8191e2010-01-05 07:50:36 +00001965 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
1966 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
Chris Lattner067459c2010-03-05 08:46:26 +00001967 if (Value *Res = FoldOrOfICmps(LHS, RHS))
1968 return ReplaceInstUsesWith(I, Res);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001969
Chris Lattner4e8137d2010-02-11 06:26:33 +00001970 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
1971 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1972 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +00001973 if (Value *Res = FoldOrOfFCmps(LHS, RHS))
1974 return ReplaceInstUsesWith(I, Res);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001975
Chris Lattner0a8191e2010-01-05 07:50:36 +00001976 // fold (or (cast A), (cast B)) -> (cast (or A, B))
1977 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Chris Lattner311aa632011-01-15 05:40:29 +00001978 CastInst *Op1C = dyn_cast<CastInst>(Op1);
1979 if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Chris Lattner229907c2011-07-18 04:54:35 +00001980 Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner311aa632011-01-15 05:40:29 +00001981 if (SrcTy == Op1C->getOperand(0)->getType() &&
1982 SrcTy->isIntOrIntVectorTy()) {
1983 Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001984
Chris Lattner311aa632011-01-15 05:40:29 +00001985 if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
1986 // Only do this if the casts both really cause code to be
1987 // generated.
1988 ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1989 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1990 Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
1991 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001992 }
Chris Lattner311aa632011-01-15 05:40:29 +00001993
1994 // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
1995 // cast is otherwise not optimizable. This happens for vector sexts.
1996 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1997 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
1998 if (Value *Res = FoldOrOfICmps(LHS, RHS))
1999 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2000
2001 // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
2002 // cast is otherwise not optimizable. This happens for vector sexts.
2003 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
2004 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
2005 if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2006 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00002007 }
Chris Lattner311aa632011-01-15 05:40:29 +00002008 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00002009 }
Eli Friedman23956262011-04-14 22:41:27 +00002010
2011 // or(sext(A), B) -> A ? -1 : B where A is an i1
2012 // or(A, sext(B)) -> B ? -1 : A where B is an i1
2013 if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2014 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2015 if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2016 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2017
Owen Andersonc237a842010-09-13 17:59:27 +00002018 // Note: If we've gotten to the point of visiting the outer OR, then the
2019 // inner one couldn't be simplified. If it was a constant, then it won't
2020 // be simplified by a later pass either, so we try swapping the inner/outer
2021 // ORs in the hopes that we'll be able to simplify it this way.
2022 // (X|C) | V --> (X|V) | C
2023 if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2024 match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2025 Value *Inner = Builder->CreateOr(A, Op1);
2026 Inner->takeName(Op0);
2027 return BinaryOperator::CreateOr(Inner, C1);
2028 }
2029
Chris Lattner0a8191e2010-01-05 07:50:36 +00002030 return Changed ? &I : 0;
2031}
2032
2033Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Duncan Sands641baf12010-11-13 15:10:37 +00002034 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattner0a8191e2010-01-05 07:50:36 +00002035 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2036
Duncan Sandsc89ac072010-11-17 18:52:15 +00002037 if (Value *V = SimplifyXorInst(Op0, Op1, TD))
2038 return ReplaceInstUsesWith(I, V);
Chris Lattner0a8191e2010-01-05 07:50:36 +00002039
Duncan Sandsfbb9ac32010-12-22 13:36:08 +00002040 // (A&B)^(A&C) -> A&(B^C) etc
2041 if (Value *V = SimplifyUsingDistributiveLaws(I))
2042 return ReplaceInstUsesWith(I, V);
Duncan Sandsadc7771f2010-11-23 14:23:47 +00002043
Chris Lattner0a8191e2010-01-05 07:50:36 +00002044 // See if we can simplify any instructions used by the instruction whose sole
2045 // purpose is to compute bits we don't care about.
2046 if (SimplifyDemandedInstructionBits(I))
2047 return &I;
Chris Lattner0a8191e2010-01-05 07:50:36 +00002048
2049 // Is this a ~ operation?
2050 if (Value *NotOp = dyn_castNotVal(&I)) {
2051 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
2052 if (Op0I->getOpcode() == Instruction::And ||
2053 Op0I->getOpcode() == Instruction::Or) {
2054 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
2055 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
2056 if (dyn_castNotVal(Op0I->getOperand(1)))
2057 Op0I->swapOperands();
2058 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2059 Value *NotY =
2060 Builder->CreateNot(Op0I->getOperand(1),
2061 Op0I->getOperand(1)->getName()+".not");
2062 if (Op0I->getOpcode() == Instruction::And)
2063 return BinaryOperator::CreateOr(Op0NotVal, NotY);
2064 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
2065 }
2066
2067 // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
2068 // ~(X | Y) === (~X & ~Y) - De Morgan's Law
2069 if (isFreeToInvert(Op0I->getOperand(0)) &&
2070 isFreeToInvert(Op0I->getOperand(1))) {
2071 Value *NotX =
2072 Builder->CreateNot(Op0I->getOperand(0), "notlhs");
2073 Value *NotY =
2074 Builder->CreateNot(Op0I->getOperand(1), "notrhs");
2075 if (Op0I->getOpcode() == Instruction::And)
2076 return BinaryOperator::CreateOr(NotX, NotY);
2077 return BinaryOperator::CreateAnd(NotX, NotY);
2078 }
Chris Lattner18f49ce2010-01-19 18:16:19 +00002079
2080 } else if (Op0I->getOpcode() == Instruction::AShr) {
2081 // ~(~X >>s Y) --> (X >>s Y)
2082 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2083 return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002084 }
2085 }
2086 }
2087
2088
2089 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Dan Gohman0a8175d2010-04-09 14:53:59 +00002090 if (RHS->isOne() && Op0->hasOneUse())
Chris Lattner0a8191e2010-01-05 07:50:36 +00002091 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
Dan Gohman0a8175d2010-04-09 14:53:59 +00002092 if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2093 return CmpInst::Create(CI->getOpcode(),
2094 CI->getInversePredicate(),
2095 CI->getOperand(0), CI->getOperand(1));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002096
2097 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2098 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2099 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2100 if (CI->hasOneUse() && Op0C->hasOneUse()) {
2101 Instruction::CastOps Opcode = Op0C->getOpcode();
2102 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2103 (RHS == ConstantExpr::getCast(Opcode,
2104 ConstantInt::getTrue(I.getContext()),
2105 Op0C->getDestTy()))) {
2106 CI->setPredicate(CI->getInversePredicate());
2107 return CastInst::Create(Opcode, CI, Op0C->getType());
2108 }
2109 }
2110 }
2111 }
2112
2113 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2114 // ~(c-X) == X-c-1 == X+(-c-1)
2115 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2116 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2117 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2118 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2119 ConstantInt::get(I.getType(), 1));
2120 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2121 }
2122
2123 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2124 if (Op0I->getOpcode() == Instruction::Add) {
2125 // ~(X-c) --> (-c-1)-X
2126 if (RHS->isAllOnesValue()) {
2127 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2128 return BinaryOperator::CreateSub(
2129 ConstantExpr::getSub(NegOp0CI,
2130 ConstantInt::get(I.getType(), 1)),
2131 Op0I->getOperand(0));
2132 } else if (RHS->getValue().isSignBit()) {
2133 // (X + C) ^ signbit -> (X + C + signbit)
2134 Constant *C = ConstantInt::get(I.getContext(),
2135 RHS->getValue() + Op0CI->getValue());
2136 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2137
2138 }
2139 } else if (Op0I->getOpcode() == Instruction::Or) {
2140 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2141 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
2142 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2143 // Anything in both C1 and C2 is known to be zero, remove it from
2144 // NewRHS.
2145 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2146 NewRHS = ConstantExpr::getAnd(NewRHS,
2147 ConstantExpr::getNot(CommonBits));
2148 Worklist.Add(Op0I);
2149 I.setOperand(0, Op0I->getOperand(0));
2150 I.setOperand(1, NewRHS);
2151 return &I;
2152 }
2153 }
2154 }
2155 }
2156
2157 // Try to fold constant and into select arguments.
2158 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2159 if (Instruction *R = FoldOpIntoSelect(I, SI))
2160 return R;
2161 if (isa<PHINode>(Op0))
2162 if (Instruction *NV = FoldOpIntoPhi(I))
2163 return NV;
2164 }
2165
Chris Lattner0a8191e2010-01-05 07:50:36 +00002166 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2167 if (Op1I) {
2168 Value *A, *B;
2169 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2170 if (A == Op0) { // B^(B|A) == (A|B)^B
2171 Op1I->swapOperands();
2172 I.swapOperands();
2173 std::swap(Op0, Op1);
2174 } else if (B == Op0) { // B^(A|B) == (A|B)^B
2175 I.swapOperands(); // Simplified below.
2176 std::swap(Op0, Op1);
2177 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00002178 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2179 Op1I->hasOneUse()){
2180 if (A == Op0) { // A^(A&B) -> A^(B&A)
2181 Op1I->swapOperands();
2182 std::swap(A, B);
2183 }
2184 if (B == Op0) { // A^(B&A) -> (B&A)^A
2185 I.swapOperands(); // Simplified below.
2186 std::swap(Op0, Op1);
2187 }
2188 }
2189 }
2190
2191 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2192 if (Op0I) {
2193 Value *A, *B;
2194 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2195 Op0I->hasOneUse()) {
2196 if (A == Op1) // (B|A)^B == (A|B)^B
2197 std::swap(A, B);
2198 if (B == Op1) // (A|B)^B == A & ~B
Benjamin Kramer547b6c52011-09-27 20:39:19 +00002199 return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002200 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2201 Op0I->hasOneUse()){
2202 if (A == Op1) // (A&B)^A -> (B&A)^A
2203 std::swap(A, B);
2204 if (B == Op1 && // (B&A)^A == ~B & A
2205 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
Benjamin Kramer547b6c52011-09-27 20:39:19 +00002206 return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
Chris Lattner0a8191e2010-01-05 07:50:36 +00002207 }
2208 }
2209 }
2210
2211 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
2212 if (Op0I && Op1I && Op0I->isShift() &&
2213 Op0I->getOpcode() == Op1I->getOpcode() &&
2214 Op0I->getOperand(1) == Op1I->getOperand(1) &&
2215 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
2216 Value *NewOp =
2217 Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
2218 Op0I->getName());
2219 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
2220 Op1I->getOperand(1));
2221 }
2222
2223 if (Op0I && Op1I) {
2224 Value *A, *B, *C, *D;
2225 // (A & B)^(A | B) -> A ^ B
2226 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2227 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2228 if ((A == C && B == D) || (A == D && B == C))
2229 return BinaryOperator::CreateXor(A, B);
2230 }
2231 // (A | B)^(A & B) -> A ^ B
2232 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2233 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2234 if ((A == C && B == D) || (A == D && B == C))
2235 return BinaryOperator::CreateXor(A, B);
2236 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00002237 }
Duncan Sandsadc7771f2010-11-23 14:23:47 +00002238
Chris Lattner0a8191e2010-01-05 07:50:36 +00002239 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2240 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2241 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2242 if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2243 if (LHS->getOperand(0) == RHS->getOperand(1) &&
2244 LHS->getOperand(1) == RHS->getOperand(0))
2245 LHS->swapOperands();
2246 if (LHS->getOperand(0) == RHS->getOperand(0) &&
2247 LHS->getOperand(1) == RHS->getOperand(1)) {
2248 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2249 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2250 bool isSigned = LHS->isSigned() || RHS->isSigned();
Chris Lattner067459c2010-03-05 08:46:26 +00002251 return ReplaceInstUsesWith(I,
Pete Cooperebf98c12011-12-17 01:20:32 +00002252 getNewICmpValue(isSigned, Code, Op0, Op1,
2253 Builder));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002254 }
2255 }
2256
2257 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2258 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2259 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
2260 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
Chris Lattner229907c2011-07-18 04:54:35 +00002261 Type *SrcTy = Op0C->getOperand(0)->getType();
Duncan Sands9dff9be2010-02-15 16:12:20 +00002262 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
Chris Lattner0a8191e2010-01-05 07:50:36 +00002263 // Only do this if the casts both really cause code to be generated.
Chris Lattner4e8137d2010-02-11 06:26:33 +00002264 ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
2265 I.getType()) &&
2266 ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
2267 I.getType())) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00002268 Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
2269 Op1C->getOperand(0), I.getName());
2270 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2271 }
2272 }
2273 }
2274
2275 return Changed ? &I : 0;
2276}