blob: 7b3be916f31633693caec34cbeb9c00f32177176 [file] [log] [blame]
Zhou Shengdac63782007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengdac63782007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencera41e93b2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengdac63782007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
Mehdi Amini47b292d2016-04-16 07:51:28 +000016#include "llvm/ADT/ArrayRef.h"
Ted Kremenek5c75d542008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000018#include "llvm/ADT/Hashing.h"
Chris Lattner17f71652008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000020#include "llvm/ADT/StringRef.h"
Reid Spencera5e0d202007-02-24 03:58:46 +000021#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000022#include "llvm/Support/ErrorHandling.h"
Zhou Shengdac63782007-02-06 03:00:16 +000023#include "llvm/Support/MathExtras.h"
Chris Lattner0c19df42008-08-23 22:23:09 +000024#include "llvm/Support/raw_ostream.h"
Vassil Vassilev2ec8b152016-09-14 08:55:18 +000025#include <climits>
Chris Lattner17f71652008-08-17 07:19:36 +000026#include <cmath>
Zhou Shengdac63782007-02-06 03:00:16 +000027#include <cstdlib>
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include <cstring>
Zhou Shengdac63782007-02-06 03:00:16 +000029using namespace llvm;
30
Chandler Carruth64648262014-04-22 03:07:47 +000031#define DEBUG_TYPE "apint"
32
Reid Spencera41e93b2007-02-25 19:32:03 +000033/// A utility function for allocating memory, checking for allocation failures,
34/// and ensuring the contents are zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000035inline static uint64_t* getClearedMemory(unsigned numWords) {
Reid Spencera856b6e2007-02-18 18:38:44 +000036 uint64_t * result = new uint64_t[numWords];
37 assert(result && "APInt memory allocation fails!");
38 memset(result, 0, numWords * sizeof(uint64_t));
39 return result;
Zhou Sheng94b623a2007-02-06 06:04:53 +000040}
41
Eric Christopher820256b2009-08-21 04:06:45 +000042/// A utility function for allocating memory and checking for allocation
Reid Spencera41e93b2007-02-25 19:32:03 +000043/// failure. The content is not zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000044inline static uint64_t* getMemory(unsigned numWords) {
Reid Spencera856b6e2007-02-18 18:38:44 +000045 uint64_t * result = new uint64_t[numWords];
46 assert(result && "APInt memory allocation fails!");
47 return result;
48}
49
Erick Tryzelaardadb15712009-08-21 03:15:28 +000050/// A utility function that converts a character to a digit.
51inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000052 unsigned r;
53
Douglas Gregor663c0682011-09-14 15:54:46 +000054 if (radix == 16 || radix == 36) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000055 r = cdigit - '0';
56 if (r <= 9)
57 return r;
58
59 r = cdigit - 'A';
Douglas Gregorc98ac852011-09-20 18:33:29 +000060 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000061 return r + 10;
62
63 r = cdigit - 'a';
Douglas Gregorc98ac852011-09-20 18:33:29 +000064 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000065 return r + 10;
Douglas Gregore4e20f42011-09-20 18:11:52 +000066
67 radix = 10;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000068 }
69
Erick Tryzelaar60964092009-08-21 06:48:37 +000070 r = cdigit - '0';
71 if (r < radix)
72 return r;
73
74 return -1U;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000075}
76
77
Pawel Bylica68304012016-06-27 08:31:48 +000078void APInt::initSlowCase(uint64_t val, bool isSigned) {
Chris Lattner1ac3e252008-08-20 17:02:31 +000079 pVal = getClearedMemory(getNumWords());
80 pVal[0] = val;
Eric Christopher820256b2009-08-21 04:06:45 +000081 if (isSigned && int64_t(val) < 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +000082 for (unsigned i = 1; i < getNumWords(); ++i)
83 pVal[i] = -1ULL;
Zhou Shengdac63782007-02-06 03:00:16 +000084}
85
Chris Lattnerd57b7602008-10-11 22:07:19 +000086void APInt::initSlowCase(const APInt& that) {
87 pVal = getMemory(getNumWords());
88 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
89}
90
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000091void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +000092 assert(BitWidth && "Bitwidth too small");
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000093 assert(bigVal.data() && "Null pointer detected!");
Zhou Shengdac63782007-02-06 03:00:16 +000094 if (isSingleWord())
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000095 VAL = bigVal[0];
Zhou Shengdac63782007-02-06 03:00:16 +000096 else {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000097 // Get memory, cleared to 0
98 pVal = getClearedMemory(getNumWords());
99 // Calculate the number of words to copy
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000100 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000101 // Copy the words from bigVal to pVal
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000102 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000103 }
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000104 // Make sure unused high bits are cleared
105 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000106}
107
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000108APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
109 : BitWidth(numBits), VAL(0) {
110 initFromArray(bigVal);
111}
112
113APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
114 : BitWidth(numBits), VAL(0) {
115 initFromArray(makeArrayRef(bigVal, numWords));
116}
117
Benjamin Kramer92d89982010-07-14 22:38:02 +0000118APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
Reid Spencer1ba83352007-02-21 03:55:44 +0000119 : BitWidth(numbits), VAL(0) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000120 assert(BitWidth && "Bitwidth too small");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000121 fromString(numbits, Str, radix);
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000122}
123
Chris Lattner1ac3e252008-08-20 17:02:31 +0000124APInt& APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer7c16cd22007-02-26 23:38:21 +0000125 // Don't do anything for X = X
126 if (this == &RHS)
127 return *this;
128
Reid Spencer7c16cd22007-02-26 23:38:21 +0000129 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner1ac3e252008-08-20 17:02:31 +0000130 // assume same bit-width single-word case is already handled
131 assert(!isSingleWord());
132 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Reid Spencer7c16cd22007-02-26 23:38:21 +0000133 return *this;
134 }
135
Chris Lattner1ac3e252008-08-20 17:02:31 +0000136 if (isSingleWord()) {
137 // assume case where both are single words is already handled
138 assert(!RHS.isSingleWord());
139 VAL = 0;
140 pVal = getMemory(RHS.getNumWords());
141 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Eric Christopher820256b2009-08-21 04:06:45 +0000142 } else if (getNumWords() == RHS.getNumWords())
Reid Spencer7c16cd22007-02-26 23:38:21 +0000143 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
144 else if (RHS.isSingleWord()) {
145 delete [] pVal;
Reid Spencera856b6e2007-02-18 18:38:44 +0000146 VAL = RHS.VAL;
Reid Spencer7c16cd22007-02-26 23:38:21 +0000147 } else {
148 delete [] pVal;
149 pVal = getMemory(RHS.getNumWords());
150 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
151 }
152 BitWidth = RHS.BitWidth;
153 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000154}
155
Zhou Shengdac63782007-02-06 03:00:16 +0000156APInt& APInt::operator=(uint64_t RHS) {
Eric Christopher820256b2009-08-21 04:06:45 +0000157 if (isSingleWord())
Reid Spencer1d072122007-02-16 22:36:51 +0000158 VAL = RHS;
Zhou Shengdac63782007-02-06 03:00:16 +0000159 else {
160 pVal[0] = RHS;
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000161 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000162 }
Reid Spencer7c16cd22007-02-26 23:38:21 +0000163 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000164}
165
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000166/// This method 'profiles' an APInt for use with FoldingSet.
Ted Kremenek5c75d542008-01-19 04:23:33 +0000167void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek901540f2008-02-19 20:50:41 +0000168 ID.AddInteger(BitWidth);
Eric Christopher820256b2009-08-21 04:06:45 +0000169
Ted Kremenek5c75d542008-01-19 04:23:33 +0000170 if (isSingleWord()) {
171 ID.AddInteger(VAL);
172 return;
173 }
174
Chris Lattner77527f52009-01-21 18:09:24 +0000175 unsigned NumWords = getNumWords();
Ted Kremenek5c75d542008-01-19 04:23:33 +0000176 for (unsigned i = 0; i < NumWords; ++i)
177 ID.AddInteger(pVal[i]);
178}
179
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000180/// This function adds a single "digit" integer, y, to the multiple
Reid Spencera856b6e2007-02-18 18:38:44 +0000181/// "digit" integer array, x[]. x[] is modified to reflect the addition and
182/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer100502d2007-02-17 03:16:00 +0000183/// @returns the carry of the addition.
Chris Lattner77527f52009-01-21 18:09:24 +0000184static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
185 for (unsigned i = 0; i < len; ++i) {
Reid Spenceree0a6852007-02-18 06:39:42 +0000186 dest[i] = y + x[i];
187 if (dest[i] < y)
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000188 y = 1; // Carry one to next digit.
Reid Spenceree0a6852007-02-18 06:39:42 +0000189 else {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000190 y = 0; // No need to carry so exit early
Reid Spenceree0a6852007-02-18 06:39:42 +0000191 break;
192 }
Reid Spencer100502d2007-02-17 03:16:00 +0000193 }
Reid Spenceree0a6852007-02-18 06:39:42 +0000194 return y;
Reid Spencer100502d2007-02-17 03:16:00 +0000195}
196
Zhou Shengdac63782007-02-06 03:00:16 +0000197/// @brief Prefix increment operator. Increments the APInt by one.
198APInt& APInt::operator++() {
Eric Christopher820256b2009-08-21 04:06:45 +0000199 if (isSingleWord())
Reid Spencer1d072122007-02-16 22:36:51 +0000200 ++VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000201 else
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000202 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencera41e93b2007-02-25 19:32:03 +0000203 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000204}
205
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000206/// This function subtracts a single "digit" (64-bit word), y, from
Eric Christopher820256b2009-08-21 04:06:45 +0000207/// the multi-digit integer array, x[], propagating the borrowed 1 value until
Joerg Sonnenbergerd7baada2017-01-05 17:59:22 +0000208/// no further borrowing is needed or it runs out of "digits" in x. The result
Reid Spencera856b6e2007-02-18 18:38:44 +0000209/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
210/// In other words, if y > x then this function returns 1, otherwise 0.
Reid Spencera41e93b2007-02-25 19:32:03 +0000211/// @returns the borrow out of the subtraction
Chris Lattner77527f52009-01-21 18:09:24 +0000212static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
213 for (unsigned i = 0; i < len; ++i) {
Reid Spencer100502d2007-02-17 03:16:00 +0000214 uint64_t X = x[i];
Reid Spenceree0a6852007-02-18 06:39:42 +0000215 x[i] -= y;
Eric Christopher820256b2009-08-21 04:06:45 +0000216 if (y > X)
Reid Spencera856b6e2007-02-18 18:38:44 +0000217 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer100502d2007-02-17 03:16:00 +0000218 else {
Reid Spencera856b6e2007-02-18 18:38:44 +0000219 y = 0; // No need to borrow
220 break; // Remaining digits are unchanged so exit early
Reid Spencer100502d2007-02-17 03:16:00 +0000221 }
222 }
Reid Spencera41e93b2007-02-25 19:32:03 +0000223 return bool(y);
Reid Spencer100502d2007-02-17 03:16:00 +0000224}
225
Zhou Shengdac63782007-02-06 03:00:16 +0000226/// @brief Prefix decrement operator. Decrements the APInt by one.
227APInt& APInt::operator--() {
Eric Christopher820256b2009-08-21 04:06:45 +0000228 if (isSingleWord())
Reid Spencera856b6e2007-02-18 18:38:44 +0000229 --VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000230 else
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000231 sub_1(pVal, getNumWords(), 1);
Reid Spencera41e93b2007-02-25 19:32:03 +0000232 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000233}
234
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000235/// This function adds the integer array x to the integer array Y and
Eric Christopher820256b2009-08-21 04:06:45 +0000236/// places the result in dest.
Reid Spencera41e93b2007-02-25 19:32:03 +0000237/// @returns the carry out from the addition
238/// @brief General addition of 64-bit integer arrays
Eric Christopher820256b2009-08-21 04:06:45 +0000239static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner77527f52009-01-21 18:09:24 +0000240 unsigned len) {
Reid Spencera5e0d202007-02-24 03:58:46 +0000241 bool carry = false;
Chris Lattner77527f52009-01-21 18:09:24 +0000242 for (unsigned i = 0; i< len; ++i) {
Reid Spencercb292e42007-02-23 01:57:13 +0000243 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000244 dest[i] = x[i] + y[i] + carry;
Reid Spencerdb2abec2007-02-21 05:44:56 +0000245 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer100502d2007-02-17 03:16:00 +0000246 }
247 return carry;
248}
249
Reid Spencera41e93b2007-02-25 19:32:03 +0000250/// Adds the RHS APint to this APInt.
251/// @returns this, after addition of RHS.
Eric Christopher820256b2009-08-21 04:06:45 +0000252/// @brief Addition assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000253APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000254 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000255 if (isSingleWord())
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000256 VAL += RHS.VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000257 else {
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000258 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000259 }
Reid Spencera41e93b2007-02-25 19:32:03 +0000260 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000261}
262
Pete Cooperfea21392016-07-22 20:55:46 +0000263APInt& APInt::operator+=(uint64_t RHS) {
264 if (isSingleWord())
265 VAL += RHS;
266 else
267 add_1(pVal, pVal, getNumWords(), RHS);
268 return clearUnusedBits();
269}
270
Eric Christopher820256b2009-08-21 04:06:45 +0000271/// Subtracts the integer array y from the integer array x
Reid Spencera41e93b2007-02-25 19:32:03 +0000272/// @returns returns the borrow out.
273/// @brief Generalized subtraction of 64-bit integer arrays.
Eric Christopher820256b2009-08-21 04:06:45 +0000274static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner77527f52009-01-21 18:09:24 +0000275 unsigned len) {
Reid Spencer1ba83352007-02-21 03:55:44 +0000276 bool borrow = false;
Chris Lattner77527f52009-01-21 18:09:24 +0000277 for (unsigned i = 0; i < len; ++i) {
Reid Spencer1ba83352007-02-21 03:55:44 +0000278 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
279 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
280 dest[i] = x_tmp - y[i];
Reid Spencer100502d2007-02-17 03:16:00 +0000281 }
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000282 return borrow;
Reid Spencer100502d2007-02-17 03:16:00 +0000283}
284
Reid Spencera41e93b2007-02-25 19:32:03 +0000285/// Subtracts the RHS APInt from this APInt
286/// @returns this, after subtraction
Eric Christopher820256b2009-08-21 04:06:45 +0000287/// @brief Subtraction assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000288APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000289 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000290 if (isSingleWord())
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000291 VAL -= RHS.VAL;
292 else
293 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000294 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000295}
296
Pete Cooperfea21392016-07-22 20:55:46 +0000297APInt& APInt::operator-=(uint64_t RHS) {
298 if (isSingleWord())
299 VAL -= RHS;
300 else
301 sub_1(pVal, getNumWords(), RHS);
302 return clearUnusedBits();
303}
304
Dan Gohman4a618822010-02-10 16:03:48 +0000305/// Multiplies an integer array, x, by a uint64_t integer and places the result
Eric Christopher820256b2009-08-21 04:06:45 +0000306/// into dest.
Reid Spencera41e93b2007-02-25 19:32:03 +0000307/// @returns the carry out of the multiplication.
308/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattner77527f52009-01-21 18:09:24 +0000309static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000310 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
Reid Spencer100502d2007-02-17 03:16:00 +0000311 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
Reid Spencera41e93b2007-02-25 19:32:03 +0000312 uint64_t carry = 0;
313
314 // For each digit of x.
Chris Lattner77527f52009-01-21 18:09:24 +0000315 for (unsigned i = 0; i < len; ++i) {
Reid Spencera41e93b2007-02-25 19:32:03 +0000316 // Split x into high and low words
317 uint64_t lx = x[i] & 0xffffffffULL;
318 uint64_t hx = x[i] >> 32;
319 // hasCarry - A flag to indicate if there is a carry to the next digit.
Reid Spencer100502d2007-02-17 03:16:00 +0000320 // hasCarry == 0, no carry
321 // hasCarry == 1, has carry
322 // hasCarry == 2, no carry and the calculation result == 0.
323 uint8_t hasCarry = 0;
324 dest[i] = carry + lx * ly;
325 // Determine if the add above introduces carry.
326 hasCarry = (dest[i] < carry) ? 1 : 0;
327 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
Eric Christopher820256b2009-08-21 04:06:45 +0000328 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
Reid Spencer100502d2007-02-17 03:16:00 +0000329 // (2^32 - 1) + 2^32 = 2^64.
330 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
331
332 carry += (lx * hy) & 0xffffffffULL;
333 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
Eric Christopher820256b2009-08-21 04:06:45 +0000334 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
Reid Spencer100502d2007-02-17 03:16:00 +0000335 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
336 }
Reid Spencer100502d2007-02-17 03:16:00 +0000337 return carry;
338}
339
Eric Christopher820256b2009-08-21 04:06:45 +0000340/// Multiplies integer array x by integer array y and stores the result into
Reid Spencera41e93b2007-02-25 19:32:03 +0000341/// the integer array dest. Note that dest's size must be >= xlen + ylen.
342/// @brief Generalized multiplicate of integer arrays.
Chris Lattner77527f52009-01-21 18:09:24 +0000343static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
344 unsigned ylen) {
Reid Spencer100502d2007-02-17 03:16:00 +0000345 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattner77527f52009-01-21 18:09:24 +0000346 for (unsigned i = 1; i < ylen; ++i) {
Reid Spencer100502d2007-02-17 03:16:00 +0000347 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencer58a6a432007-02-21 08:21:52 +0000348 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattner77527f52009-01-21 18:09:24 +0000349 for (unsigned j = 0; j < xlen; ++j) {
Reid Spencer100502d2007-02-17 03:16:00 +0000350 lx = x[j] & 0xffffffffULL;
351 hx = x[j] >> 32;
352 // hasCarry - A flag to indicate if has carry.
353 // hasCarry == 0, no carry
354 // hasCarry == 1, has carry
355 // hasCarry == 2, no carry and the calculation result == 0.
356 uint8_t hasCarry = 0;
357 uint64_t resul = carry + lx * ly;
358 hasCarry = (resul < carry) ? 1 : 0;
359 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
360 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
361
362 carry += (lx * hy) & 0xffffffffULL;
363 resul = (carry << 32) | (resul & 0xffffffffULL);
364 dest[i+j] += resul;
365 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
Eric Christopher820256b2009-08-21 04:06:45 +0000366 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
Reid Spencer100502d2007-02-17 03:16:00 +0000367 ((lx * hy) >> 32) + hx * hy;
368 }
369 dest[i+xlen] = carry;
370 }
371}
372
Zhou Shengdac63782007-02-06 03:00:16 +0000373APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000374 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer58a6a432007-02-21 08:21:52 +0000375 if (isSingleWord()) {
Reid Spencer4bb430c2007-02-20 20:42:10 +0000376 VAL *= RHS.VAL;
Reid Spencer58a6a432007-02-21 08:21:52 +0000377 clearUnusedBits();
378 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000379 }
Reid Spencer58a6a432007-02-21 08:21:52 +0000380
381 // Get some bit facts about LHS and check for zero
Chris Lattner77527f52009-01-21 18:09:24 +0000382 unsigned lhsBits = getActiveBits();
383 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Eric Christopher820256b2009-08-21 04:06:45 +0000384 if (!lhsWords)
Reid Spencer58a6a432007-02-21 08:21:52 +0000385 // 0 * X ===> 0
386 return *this;
387
388 // Get some bit facts about RHS and check for zero
Chris Lattner77527f52009-01-21 18:09:24 +0000389 unsigned rhsBits = RHS.getActiveBits();
390 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Reid Spencer58a6a432007-02-21 08:21:52 +0000391 if (!rhsWords) {
392 // X * 0 ===> 0
Jay Foad25a5e4c2010-12-01 08:53:58 +0000393 clearAllBits();
Reid Spencer58a6a432007-02-21 08:21:52 +0000394 return *this;
395 }
396
397 // Allocate space for the result
Chris Lattner77527f52009-01-21 18:09:24 +0000398 unsigned destWords = rhsWords + lhsWords;
Reid Spencer58a6a432007-02-21 08:21:52 +0000399 uint64_t *dest = getMemory(destWords);
400
401 // Perform the long multiply
402 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
403
404 // Copy result back into *this
Jay Foad25a5e4c2010-12-01 08:53:58 +0000405 clearAllBits();
Chris Lattner77527f52009-01-21 18:09:24 +0000406 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Reid Spencer58a6a432007-02-21 08:21:52 +0000407 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
Eli Friedman19546412011-10-07 23:40:49 +0000408 clearUnusedBits();
Reid Spencer58a6a432007-02-21 08:21:52 +0000409
410 // delete dest array and return
411 delete[] dest;
Zhou Shengdac63782007-02-06 03:00:16 +0000412 return *this;
413}
414
Zhou Shengdac63782007-02-06 03:00:16 +0000415APInt& APInt::operator&=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000416 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengdac63782007-02-06 03:00:16 +0000417 if (isSingleWord()) {
Reid Spencera856b6e2007-02-18 18:38:44 +0000418 VAL &= RHS.VAL;
419 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000420 }
Chris Lattner77527f52009-01-21 18:09:24 +0000421 unsigned numWords = getNumWords();
422 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera856b6e2007-02-18 18:38:44 +0000423 pVal[i] &= RHS.pVal[i];
Zhou Shengdac63782007-02-06 03:00:16 +0000424 return *this;
425}
426
Amaury Sechetfb1756b2017-02-03 22:54:41 +0000427APInt &APInt::operator&=(uint64_t RHS) {
428 if (isSingleWord()) {
429 VAL &= RHS;
430 return *this;
431 }
432 pVal[0] &= RHS;
433 unsigned numWords = getNumWords();
434 for (unsigned i = 1; i < numWords; ++i)
435 pVal[i] = 0;
436 return *this;
437}
438
Zhou Shengdac63782007-02-06 03:00:16 +0000439APInt& APInt::operator|=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000440 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengdac63782007-02-06 03:00:16 +0000441 if (isSingleWord()) {
Reid Spencera856b6e2007-02-18 18:38:44 +0000442 VAL |= RHS.VAL;
443 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000444 }
Chris Lattner77527f52009-01-21 18:09:24 +0000445 unsigned numWords = getNumWords();
446 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera856b6e2007-02-18 18:38:44 +0000447 pVal[i] |= RHS.pVal[i];
Zhou Shengdac63782007-02-06 03:00:16 +0000448 return *this;
449}
450
Zhou Shengdac63782007-02-06 03:00:16 +0000451APInt& APInt::operator^=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000452 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengdac63782007-02-06 03:00:16 +0000453 if (isSingleWord()) {
Reid Spenceree0a6852007-02-18 06:39:42 +0000454 VAL ^= RHS.VAL;
455 return *this;
Eric Christopher820256b2009-08-21 04:06:45 +0000456 }
Chris Lattner77527f52009-01-21 18:09:24 +0000457 unsigned numWords = getNumWords();
458 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera856b6e2007-02-18 18:38:44 +0000459 pVal[i] ^= RHS.pVal[i];
Craig Topper9028f052017-01-24 02:10:15 +0000460 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000461}
462
Chris Lattner1ac3e252008-08-20 17:02:31 +0000463APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000464 unsigned numWords = getNumWords();
Reid Spencera41e93b2007-02-25 19:32:03 +0000465 uint64_t* val = getMemory(numWords);
Chris Lattner77527f52009-01-21 18:09:24 +0000466 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera41e93b2007-02-25 19:32:03 +0000467 val[i] = pVal[i] & RHS.pVal[i];
468 return APInt(val, getBitWidth());
Zhou Shengdac63782007-02-06 03:00:16 +0000469}
470
Chris Lattner1ac3e252008-08-20 17:02:31 +0000471APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000472 unsigned numWords = getNumWords();
Reid Spencera41e93b2007-02-25 19:32:03 +0000473 uint64_t *val = getMemory(numWords);
Chris Lattner77527f52009-01-21 18:09:24 +0000474 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera41e93b2007-02-25 19:32:03 +0000475 val[i] = pVal[i] | RHS.pVal[i];
476 return APInt(val, getBitWidth());
Zhou Shengdac63782007-02-06 03:00:16 +0000477}
478
Chris Lattner1ac3e252008-08-20 17:02:31 +0000479APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000480 unsigned numWords = getNumWords();
Reid Spencera41e93b2007-02-25 19:32:03 +0000481 uint64_t *val = getMemory(numWords);
Chris Lattner77527f52009-01-21 18:09:24 +0000482 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera41e93b2007-02-25 19:32:03 +0000483 val[i] = pVal[i] ^ RHS.pVal[i];
484
Craig Topper9028f052017-01-24 02:10:15 +0000485 return APInt(val, getBitWidth());
Zhou Shengdac63782007-02-06 03:00:16 +0000486}
487
Zhou Shengdac63782007-02-06 03:00:16 +0000488APInt APInt::operator*(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +0000489 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencera41e93b2007-02-25 19:32:03 +0000490 if (isSingleWord())
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000491 return APInt(BitWidth, VAL * RHS.VAL);
Reid Spencer4bb430c2007-02-20 20:42:10 +0000492 APInt Result(*this);
493 Result *= RHS;
Eli Friedman19546412011-10-07 23:40:49 +0000494 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000495}
496
Chris Lattner1ac3e252008-08-20 17:02:31 +0000497bool APInt::EqualSlowCase(const APInt& RHS) const {
Matthias Braun5117fcd2016-02-15 20:06:19 +0000498 return std::equal(pVal, pVal + getNumWords(), RHS.pVal);
Zhou Shengdac63782007-02-06 03:00:16 +0000499}
500
Chris Lattner1ac3e252008-08-20 17:02:31 +0000501bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000502 unsigned n = getActiveBits();
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000503 if (n <= APINT_BITS_PER_WORD)
504 return pVal[0] == Val;
505 else
506 return false;
Zhou Shengdac63782007-02-06 03:00:16 +0000507}
508
Reid Spencer1d072122007-02-16 22:36:51 +0000509bool APInt::ult(const APInt& RHS) const {
510 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
511 if (isSingleWord())
512 return VAL < RHS.VAL;
Reid Spencera41e93b2007-02-25 19:32:03 +0000513
514 // Get active bit length of both operands
Chris Lattner77527f52009-01-21 18:09:24 +0000515 unsigned n1 = getActiveBits();
516 unsigned n2 = RHS.getActiveBits();
Reid Spencera41e93b2007-02-25 19:32:03 +0000517
518 // If magnitude of LHS is less than RHS, return true.
519 if (n1 < n2)
520 return true;
521
522 // If magnitude of RHS is greather than LHS, return false.
523 if (n2 < n1)
524 return false;
525
526 // If they bot fit in a word, just compare the low order word
527 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
528 return pVal[0] < RHS.pVal[0];
529
530 // Otherwise, compare all words
Chris Lattner77527f52009-01-21 18:09:24 +0000531 unsigned topWord = whichWord(std::max(n1,n2)-1);
Reid Spencer54abdcf2007-02-27 18:23:40 +0000532 for (int i = topWord; i >= 0; --i) {
Eric Christopher820256b2009-08-21 04:06:45 +0000533 if (pVal[i] > RHS.pVal[i])
Reid Spencer1d072122007-02-16 22:36:51 +0000534 return false;
Eric Christopher820256b2009-08-21 04:06:45 +0000535 if (pVal[i] < RHS.pVal[i])
Reid Spencera41e93b2007-02-25 19:32:03 +0000536 return true;
Zhou Shengdac63782007-02-06 03:00:16 +0000537 }
538 return false;
539}
540
Reid Spencer1d072122007-02-16 22:36:51 +0000541bool APInt::slt(const APInt& RHS) const {
542 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000543 if (isSingleWord()) {
David Majnemer5f1c0172016-06-24 20:51:47 +0000544 int64_t lhsSext = SignExtend64(VAL, BitWidth);
545 int64_t rhsSext = SignExtend64(RHS.VAL, BitWidth);
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000546 return lhsSext < rhsSext;
Reid Spencer1d072122007-02-16 22:36:51 +0000547 }
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000548
Reid Spencer54abdcf2007-02-27 18:23:40 +0000549 bool lhsNeg = isNegative();
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000550 bool rhsNeg = RHS.isNegative();
Reid Spencera41e93b2007-02-25 19:32:03 +0000551
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000552 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
553 if (lhsNeg != rhsNeg)
554 return lhsNeg;
555
556 // Otherwise we can just use an unsigned comparision, because even negative
557 // numbers compare correctly this way if both have the same signed-ness.
558 return ult(RHS);
Zhou Shengdac63782007-02-06 03:00:16 +0000559}
560
Jay Foad25a5e4c2010-12-01 08:53:58 +0000561void APInt::setBit(unsigned bitPosition) {
Eric Christopher820256b2009-08-21 04:06:45 +0000562 if (isSingleWord())
Reid Spencera41e93b2007-02-25 19:32:03 +0000563 VAL |= maskBit(bitPosition);
Eric Christopher820256b2009-08-21 04:06:45 +0000564 else
Reid Spencera41e93b2007-02-25 19:32:03 +0000565 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000566}
567
Zhou Shengdac63782007-02-06 03:00:16 +0000568/// Set the given bit to 0 whose position is given as "bitPosition".
569/// @brief Set a given bit to 0.
Jay Foad25a5e4c2010-12-01 08:53:58 +0000570void APInt::clearBit(unsigned bitPosition) {
Eric Christopher820256b2009-08-21 04:06:45 +0000571 if (isSingleWord())
Reid Spencera856b6e2007-02-18 18:38:44 +0000572 VAL &= ~maskBit(bitPosition);
Eric Christopher820256b2009-08-21 04:06:45 +0000573 else
Reid Spencera856b6e2007-02-18 18:38:44 +0000574 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000575}
576
Zhou Shengdac63782007-02-06 03:00:16 +0000577/// @brief Toggle every bit to its opposite value.
Zhou Shengdac63782007-02-06 03:00:16 +0000578
Eric Christopher820256b2009-08-21 04:06:45 +0000579/// Toggle a given bit to its opposite value whose position is given
Zhou Shengdac63782007-02-06 03:00:16 +0000580/// as "bitPosition".
581/// @brief Toggles a given bit to its opposite value.
Jay Foad25a5e4c2010-12-01 08:53:58 +0000582void APInt::flipBit(unsigned bitPosition) {
Reid Spencer1d072122007-02-16 22:36:51 +0000583 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Jay Foad25a5e4c2010-12-01 08:53:58 +0000584 if ((*this)[bitPosition]) clearBit(bitPosition);
585 else setBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000586}
587
Benjamin Kramer92d89982010-07-14 22:38:02 +0000588unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000589 assert(!str.empty() && "Invalid string length");
Douglas Gregor663c0682011-09-14 15:54:46 +0000590 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
591 radix == 36) &&
592 "Radix should be 2, 8, 10, 16, or 36!");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000593
594 size_t slen = str.size();
Reid Spencer9329e7b2007-04-13 19:19:07 +0000595
Eric Christopher43a1dec2009-08-21 04:10:31 +0000596 // Each computation below needs to know if it's negative.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000597 StringRef::iterator p = str.begin();
Eric Christopher43a1dec2009-08-21 04:10:31 +0000598 unsigned isNegative = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000599 if (*p == '-' || *p == '+') {
600 p++;
Reid Spencer9329e7b2007-04-13 19:19:07 +0000601 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +0000602 assert(slen && "String is only a sign, needs a value.");
Reid Spencer9329e7b2007-04-13 19:19:07 +0000603 }
Eric Christopher43a1dec2009-08-21 04:10:31 +0000604
Reid Spencer9329e7b2007-04-13 19:19:07 +0000605 // For radixes of power-of-two values, the bits required is accurately and
606 // easily computed
607 if (radix == 2)
608 return slen + isNegative;
609 if (radix == 8)
610 return slen * 3 + isNegative;
611 if (radix == 16)
612 return slen * 4 + isNegative;
613
Douglas Gregor663c0682011-09-14 15:54:46 +0000614 // FIXME: base 36
615
Reid Spencer9329e7b2007-04-13 19:19:07 +0000616 // This is grossly inefficient but accurate. We could probably do something
617 // with a computation of roughly slen*64/20 and then adjust by the value of
618 // the first few digits. But, I'm not sure how accurate that could be.
619
620 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000621 // be too large. This avoids the assertion in the constructor. This
622 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
623 // bits in that case.
Douglas Gregor663c0682011-09-14 15:54:46 +0000624 unsigned sufficient
625 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
626 : (slen == 1 ? 7 : slen * 16/3);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000627
628 // Convert to the actual binary value.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000629 APInt tmp(sufficient, StringRef(p, slen), radix);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000630
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000631 // Compute how many bits are required. If the log is infinite, assume we need
632 // just bit.
633 unsigned log = tmp.logBase2();
634 if (log == (unsigned)-1) {
635 return isNegative + 1;
636 } else {
637 return isNegative + log + 1;
638 }
Reid Spencer9329e7b2007-04-13 19:19:07 +0000639}
640
Chandler Carruth71bd7d12012-03-04 12:02:57 +0000641hash_code llvm::hash_value(const APInt &Arg) {
642 if (Arg.isSingleWord())
643 return hash_combine(Arg.VAL);
Reid Spencerb2bc9852007-02-26 21:02:27 +0000644
Chandler Carruth71bd7d12012-03-04 12:02:57 +0000645 return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords());
Reid Spencerb2bc9852007-02-26 21:02:27 +0000646}
647
Benjamin Kramerb4b51502015-03-25 16:49:59 +0000648bool APInt::isSplat(unsigned SplatSizeInBits) const {
649 assert(getBitWidth() % SplatSizeInBits == 0 &&
650 "SplatSizeInBits must divide width!");
651 // We can check that all parts of an integer are equal by making use of a
652 // little trick: rotate and check if it's still the same value.
653 return *this == rotl(SplatSizeInBits);
654}
655
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000656/// This function returns the high "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000657APInt APInt::getHiBits(unsigned numBits) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000658 return APIntOps::lshr(*this, BitWidth - numBits);
Zhou Shengdac63782007-02-06 03:00:16 +0000659}
660
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000661/// This function returns the low "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000662APInt APInt::getLoBits(unsigned numBits) const {
Eric Christopher820256b2009-08-21 04:06:45 +0000663 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
Reid Spencer1d072122007-02-16 22:36:51 +0000664 BitWidth - numBits);
Zhou Shengdac63782007-02-06 03:00:16 +0000665}
666
Chris Lattner77527f52009-01-21 18:09:24 +0000667unsigned APInt::countLeadingZerosSlowCase() const {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000668 unsigned Count = 0;
669 for (int i = getNumWords()-1; i >= 0; --i) {
670 integerPart V = pVal[i];
671 if (V == 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +0000672 Count += APINT_BITS_PER_WORD;
673 else {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000674 Count += llvm::countLeadingZeros(V);
Chris Lattner1ac3e252008-08-20 17:02:31 +0000675 break;
Reid Spencer74cf82e2007-02-21 00:29:48 +0000676 }
Zhou Shengdac63782007-02-06 03:00:16 +0000677 }
Matthias Brauna6be4e82016-02-15 20:06:22 +0000678 // Adjust for unused bits in the most significant word (they are zero).
679 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
680 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
John McCalldf951bd2010-02-03 03:42:44 +0000681 return Count;
Zhou Shengdac63782007-02-06 03:00:16 +0000682}
683
Chris Lattner77527f52009-01-21 18:09:24 +0000684unsigned APInt::countLeadingOnes() const {
Reid Spencer31acef52007-02-27 21:59:26 +0000685 if (isSingleWord())
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000686 return llvm::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth));
Reid Spencer31acef52007-02-27 21:59:26 +0000687
Chris Lattner77527f52009-01-21 18:09:24 +0000688 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwinec39eb82009-01-27 18:06:03 +0000689 unsigned shift;
690 if (!highWordBits) {
691 highWordBits = APINT_BITS_PER_WORD;
692 shift = 0;
693 } else {
694 shift = APINT_BITS_PER_WORD - highWordBits;
695 }
Reid Spencer31acef52007-02-27 21:59:26 +0000696 int i = getNumWords() - 1;
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000697 unsigned Count = llvm::countLeadingOnes(pVal[i] << shift);
Reid Spencer31acef52007-02-27 21:59:26 +0000698 if (Count == highWordBits) {
699 for (i--; i >= 0; --i) {
700 if (pVal[i] == -1ULL)
701 Count += APINT_BITS_PER_WORD;
702 else {
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000703 Count += llvm::countLeadingOnes(pVal[i]);
Reid Spencer31acef52007-02-27 21:59:26 +0000704 break;
705 }
706 }
707 }
708 return Count;
709}
710
Chris Lattner77527f52009-01-21 18:09:24 +0000711unsigned APInt::countTrailingZeros() const {
Zhou Shengdac63782007-02-06 03:00:16 +0000712 if (isSingleWord())
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000713 return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth);
Chris Lattner77527f52009-01-21 18:09:24 +0000714 unsigned Count = 0;
715 unsigned i = 0;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000716 for (; i < getNumWords() && pVal[i] == 0; ++i)
717 Count += APINT_BITS_PER_WORD;
718 if (i < getNumWords())
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000719 Count += llvm::countTrailingZeros(pVal[i]);
Chris Lattnerc2c4c742007-11-23 22:36:25 +0000720 return std::min(Count, BitWidth);
Zhou Shengdac63782007-02-06 03:00:16 +0000721}
722
Chris Lattner77527f52009-01-21 18:09:24 +0000723unsigned APInt::countTrailingOnesSlowCase() const {
724 unsigned Count = 0;
725 unsigned i = 0;
Dan Gohmanc354ebd2008-02-14 22:38:45 +0000726 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000727 Count += APINT_BITS_PER_WORD;
728 if (i < getNumWords())
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000729 Count += llvm::countTrailingOnes(pVal[i]);
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000730 return std::min(Count, BitWidth);
731}
732
Chris Lattner77527f52009-01-21 18:09:24 +0000733unsigned APInt::countPopulationSlowCase() const {
734 unsigned Count = 0;
735 for (unsigned i = 0; i < getNumWords(); ++i)
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000736 Count += llvm::countPopulation(pVal[i]);
Zhou Shengdac63782007-02-06 03:00:16 +0000737 return Count;
738}
739
Richard Smith4f9a8082011-11-23 21:33:37 +0000740/// Perform a logical right-shift from Src to Dst, which must be equal or
741/// non-overlapping, of Words words, by Shift, which must be less than 64.
742static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words,
743 unsigned Shift) {
744 uint64_t Carry = 0;
745 for (int I = Words - 1; I >= 0; --I) {
746 uint64_t Tmp = Src[I];
747 Dst[I] = (Tmp >> Shift) | Carry;
748 Carry = Tmp << (64 - Shift);
749 }
750}
751
Reid Spencer1d072122007-02-16 22:36:51 +0000752APInt APInt::byteSwap() const {
753 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
754 if (BitWidth == 16)
Jeff Cohene06855e2007-03-20 20:42:36 +0000755 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000756 if (BitWidth == 32)
Chris Lattner77527f52009-01-21 18:09:24 +0000757 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000758 if (BitWidth == 48) {
Chris Lattner77527f52009-01-21 18:09:24 +0000759 unsigned Tmp1 = unsigned(VAL >> 16);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000760 Tmp1 = ByteSwap_32(Tmp1);
Jeff Cohene06855e2007-03-20 20:42:36 +0000761 uint16_t Tmp2 = uint16_t(VAL);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000762 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohene06855e2007-03-20 20:42:36 +0000763 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000764 }
Richard Smith4f9a8082011-11-23 21:33:37 +0000765 if (BitWidth == 64)
766 return APInt(BitWidth, ByteSwap_64(VAL));
767
768 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
769 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
770 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]);
771 if (Result.BitWidth != BitWidth) {
772 lshrNear(Result.pVal, Result.pVal, getNumWords(),
773 Result.BitWidth - BitWidth);
774 Result.BitWidth = BitWidth;
775 }
776 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000777}
778
Matt Arsenault155dda92016-03-21 15:00:35 +0000779APInt APInt::reverseBits() const {
780 switch (BitWidth) {
781 case 64:
782 return APInt(BitWidth, llvm::reverseBits<uint64_t>(VAL));
783 case 32:
784 return APInt(BitWidth, llvm::reverseBits<uint32_t>(VAL));
785 case 16:
786 return APInt(BitWidth, llvm::reverseBits<uint16_t>(VAL));
787 case 8:
788 return APInt(BitWidth, llvm::reverseBits<uint8_t>(VAL));
789 default:
790 break;
791 }
792
793 APInt Val(*this);
794 APInt Reversed(*this);
795 int S = BitWidth - 1;
796
797 const APInt One(BitWidth, 1);
798
799 for ((Val = Val.lshr(1)); Val != 0; (Val = Val.lshr(1))) {
800 Reversed <<= 1;
801 Reversed |= (Val & One);
802 --S;
803 }
804
805 Reversed <<= S;
806 return Reversed;
807}
808
Eric Christopher820256b2009-08-21 04:06:45 +0000809APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000810 const APInt& API2) {
Zhou Shengdac63782007-02-06 03:00:16 +0000811 APInt A = API1, B = API2;
812 while (!!B) {
813 APInt T = B;
Reid Spencer1d072122007-02-16 22:36:51 +0000814 B = APIntOps::urem(A, B);
Zhou Shengdac63782007-02-06 03:00:16 +0000815 A = T;
816 }
817 return A;
818}
Chris Lattner28cbd1d2007-02-06 05:38:37 +0000819
Chris Lattner77527f52009-01-21 18:09:24 +0000820APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd707d632007-02-12 20:02:55 +0000821 union {
822 double D;
823 uint64_t I;
824 } T;
825 T.D = Double;
Reid Spencer974551a2007-02-27 01:28:10 +0000826
827 // Get the sign bit from the highest order bit
Zhou Shengd707d632007-02-12 20:02:55 +0000828 bool isNeg = T.I >> 63;
Reid Spencer974551a2007-02-27 01:28:10 +0000829
830 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd707d632007-02-12 20:02:55 +0000831 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer974551a2007-02-27 01:28:10 +0000832
833 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd707d632007-02-12 20:02:55 +0000834 if (exp < 0)
Reid Spencer66d0d572007-02-28 01:30:08 +0000835 return APInt(width, 0u);
Reid Spencer974551a2007-02-27 01:28:10 +0000836
837 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
838 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
839
840 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd707d632007-02-12 20:02:55 +0000841 if (exp < 52)
Eric Christopher820256b2009-08-21 04:06:45 +0000842 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Reid Spencer54abdcf2007-02-27 18:23:40 +0000843 APInt(width, mantissa >> (52 - exp));
844
845 // If the client didn't provide enough bits for us to shift the mantissa into
846 // then the result is undefined, just return 0
847 if (width <= exp - 52)
848 return APInt(width, 0);
Reid Spencer974551a2007-02-27 01:28:10 +0000849
850 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer54abdcf2007-02-27 18:23:40 +0000851 APInt Tmp(width, mantissa);
Chris Lattner77527f52009-01-21 18:09:24 +0000852 Tmp = Tmp.shl((unsigned)exp - 52);
Zhou Shengd707d632007-02-12 20:02:55 +0000853 return isNeg ? -Tmp : Tmp;
854}
855
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000856/// This function converts this APInt to a double.
Zhou Shengd707d632007-02-12 20:02:55 +0000857/// The layout for double is as following (IEEE Standard 754):
858/// --------------------------------------
859/// | Sign Exponent Fraction Bias |
860/// |-------------------------------------- |
861/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopher820256b2009-08-21 04:06:45 +0000862/// --------------------------------------
Reid Spencer1d072122007-02-16 22:36:51 +0000863double APInt::roundToDouble(bool isSigned) const {
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000864
865 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen54be7852009-08-12 18:04:11 +0000866 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000867 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
868 if (isSigned) {
David Majnemer03992262016-06-24 21:15:36 +0000869 int64_t sext = SignExtend64(getWord(0), BitWidth);
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000870 return double(sext);
871 } else
Dale Johannesen34c08bb2009-08-12 17:42:34 +0000872 return double(getWord(0));
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000873 }
874
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000875 // Determine if the value is negative.
Reid Spencer1d072122007-02-16 22:36:51 +0000876 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000877
878 // Construct the absolute value if we're negative.
Zhou Shengd707d632007-02-12 20:02:55 +0000879 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000880
881 // Figure out how many bits we're using.
Chris Lattner77527f52009-01-21 18:09:24 +0000882 unsigned n = Tmp.getActiveBits();
Zhou Shengd707d632007-02-12 20:02:55 +0000883
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000884 // The exponent (without bias normalization) is just the number of bits
885 // we are using. Note that the sign bit is gone since we constructed the
886 // absolute value.
887 uint64_t exp = n;
Zhou Shengd707d632007-02-12 20:02:55 +0000888
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000889 // Return infinity for exponent overflow
890 if (exp > 1023) {
891 if (!isSigned || !isNeg)
Jeff Cohene06855e2007-03-20 20:42:36 +0000892 return std::numeric_limits<double>::infinity();
Eric Christopher820256b2009-08-21 04:06:45 +0000893 else
Jeff Cohene06855e2007-03-20 20:42:36 +0000894 return -std::numeric_limits<double>::infinity();
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000895 }
896 exp += 1023; // Increment for 1023 bias
897
898 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
899 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd707d632007-02-12 20:02:55 +0000900 uint64_t mantissa;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000901 unsigned hiWord = whichWord(n-1);
902 if (hiWord == 0) {
903 mantissa = Tmp.pVal[0];
904 if (n > 52)
905 mantissa >>= n - 52; // shift down, we want the top 52 bits.
906 } else {
907 assert(hiWord > 0 && "huh?");
908 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
909 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
910 mantissa = hibits | lobits;
911 }
912
Zhou Shengd707d632007-02-12 20:02:55 +0000913 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencerfbd48a52007-02-18 00:44:22 +0000914 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd707d632007-02-12 20:02:55 +0000915 union {
916 double D;
917 uint64_t I;
918 } T;
919 T.I = sign | (exp << 52) | mantissa;
920 return T.D;
921}
922
Reid Spencer1d072122007-02-16 22:36:51 +0000923// Truncate to new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000924APInt APInt::trunc(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000925 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner1ac3e252008-08-20 17:02:31 +0000926 assert(width && "Can't truncate to 0 bits");
Jay Foad583abbc2010-12-07 08:25:19 +0000927
928 if (width <= APINT_BITS_PER_WORD)
929 return APInt(width, getRawData()[0]);
930
931 APInt Result(getMemory(getNumWords(width)), width);
932
933 // Copy full words.
934 unsigned i;
935 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
936 Result.pVal[i] = pVal[i];
937
938 // Truncate and copy any partial word.
939 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
940 if (bits != 0)
941 Result.pVal[i] = pVal[i] << bits >> bits;
942
943 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000944}
945
946// Sign extend to a new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000947APInt APInt::sext(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000948 assert(width > BitWidth && "Invalid APInt SignExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +0000949
950 if (width <= APINT_BITS_PER_WORD) {
951 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth);
952 val = (int64_t)val >> (width - BitWidth);
953 return APInt(width, val >> (APINT_BITS_PER_WORD - width));
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000954 }
955
Jay Foad583abbc2010-12-07 08:25:19 +0000956 APInt Result(getMemory(getNumWords(width)), width);
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000957
Jay Foad583abbc2010-12-07 08:25:19 +0000958 // Copy full words.
959 unsigned i;
960 uint64_t word = 0;
961 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) {
962 word = getRawData()[i];
963 Result.pVal[i] = word;
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000964 }
965
Jay Foad583abbc2010-12-07 08:25:19 +0000966 // Read and sign-extend any partial word.
967 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD;
968 if (bits != 0)
969 word = (int64_t)getRawData()[i] << bits >> bits;
970 else
971 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
972
973 // Write remaining full words.
974 for (; i != width / APINT_BITS_PER_WORD; i++) {
975 Result.pVal[i] = word;
976 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000977 }
Jay Foad583abbc2010-12-07 08:25:19 +0000978
979 // Write any partial word.
980 bits = (0 - width) % APINT_BITS_PER_WORD;
981 if (bits != 0)
982 Result.pVal[i] = word << bits >> bits;
983
984 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000985}
986
987// Zero extend to a new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000988APInt APInt::zext(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000989 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +0000990
991 if (width <= APINT_BITS_PER_WORD)
992 return APInt(width, VAL);
993
994 APInt Result(getMemory(getNumWords(width)), width);
995
996 // Copy words.
997 unsigned i;
998 for (i = 0; i != getNumWords(); i++)
999 Result.pVal[i] = getRawData()[i];
1000
1001 // Zero remaining words.
1002 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE);
1003
1004 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +00001005}
1006
Jay Foad583abbc2010-12-07 08:25:19 +00001007APInt APInt::zextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +00001008 if (BitWidth < width)
1009 return zext(width);
1010 if (BitWidth > width)
1011 return trunc(width);
1012 return *this;
1013}
1014
Jay Foad583abbc2010-12-07 08:25:19 +00001015APInt APInt::sextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +00001016 if (BitWidth < width)
1017 return sext(width);
1018 if (BitWidth > width)
1019 return trunc(width);
1020 return *this;
1021}
1022
Rafael Espindolabb893fe2012-01-27 23:33:07 +00001023APInt APInt::zextOrSelf(unsigned width) const {
1024 if (BitWidth < width)
1025 return zext(width);
1026 return *this;
1027}
1028
1029APInt APInt::sextOrSelf(unsigned width) const {
1030 if (BitWidth < width)
1031 return sext(width);
1032 return *this;
1033}
1034
Zhou Shenge93db8f2007-02-09 07:48:24 +00001035/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001036/// @brief Arithmetic right-shift function.
Dan Gohman105c1d42008-02-29 01:40:47 +00001037APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001038 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001039}
1040
1041/// Arithmetic right-shift this APInt by shiftAmt.
1042/// @brief Arithmetic right-shift function.
Chris Lattner77527f52009-01-21 18:09:24 +00001043APInt APInt::ashr(unsigned shiftAmt) const {
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001044 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer1825dd02007-03-02 22:39:11 +00001045 // Handle a degenerate case
1046 if (shiftAmt == 0)
1047 return *this;
1048
1049 // Handle single word shifts with built-in ashr
Reid Spencer522ca7c2007-02-25 01:56:07 +00001050 if (isSingleWord()) {
1051 if (shiftAmt == BitWidth)
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001052 return APInt(BitWidth, 0); // undefined
Jonathan Roelofs851b79d2016-08-10 19:50:14 +00001053 return APInt(BitWidth, SignExtend64(VAL, BitWidth) >> shiftAmt);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001054 }
Reid Spencer522ca7c2007-02-25 01:56:07 +00001055
Reid Spencer1825dd02007-03-02 22:39:11 +00001056 // If all the bits were shifted out, the result is, technically, undefined.
1057 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1058 // issues in the algorithm below.
Chris Lattnerdad2d092007-05-03 18:15:36 +00001059 if (shiftAmt == BitWidth) {
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001060 if (isNegative())
Zhou Sheng1247c072008-06-05 13:27:38 +00001061 return APInt(BitWidth, -1ULL, true);
Reid Spencera41e93b2007-02-25 19:32:03 +00001062 else
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001063 return APInt(BitWidth, 0);
Chris Lattnerdad2d092007-05-03 18:15:36 +00001064 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001065
1066 // Create some space for the result.
1067 uint64_t * val = new uint64_t[getNumWords()];
1068
Reid Spencer1825dd02007-03-02 22:39:11 +00001069 // Compute some values needed by the following shift algorithms
Chris Lattner77527f52009-01-21 18:09:24 +00001070 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1071 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1072 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1073 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Reid Spencer1825dd02007-03-02 22:39:11 +00001074 if (bitsInWord == 0)
1075 bitsInWord = APINT_BITS_PER_WORD;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001076
1077 // If we are shifting whole words, just move whole words
1078 if (wordShift == 0) {
Reid Spencer1825dd02007-03-02 22:39:11 +00001079 // Move the words containing significant bits
Chris Lattner77527f52009-01-21 18:09:24 +00001080 for (unsigned i = 0; i <= breakWord; ++i)
Reid Spencer1825dd02007-03-02 22:39:11 +00001081 val[i] = pVal[i+offset]; // move whole word
1082
1083 // Adjust the top significant word for sign bit fill, if negative
1084 if (isNegative())
1085 if (bitsInWord < APINT_BITS_PER_WORD)
1086 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1087 } else {
Eric Christopher820256b2009-08-21 04:06:45 +00001088 // Shift the low order words
Chris Lattner77527f52009-01-21 18:09:24 +00001089 for (unsigned i = 0; i < breakWord; ++i) {
Reid Spencer1825dd02007-03-02 22:39:11 +00001090 // This combines the shifted corresponding word with the low bits from
1091 // the next word (shifted into this word's high bits).
Eric Christopher820256b2009-08-21 04:06:45 +00001092 val[i] = (pVal[i+offset] >> wordShift) |
Reid Spencer1825dd02007-03-02 22:39:11 +00001093 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1094 }
1095
1096 // Shift the break word. In this case there are no bits from the next word
1097 // to include in this word.
1098 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1099
Alp Tokercb402912014-01-24 17:20:08 +00001100 // Deal with sign extension in the break word, and possibly the word before
Reid Spencer1825dd02007-03-02 22:39:11 +00001101 // it.
Chris Lattnerdad2d092007-05-03 18:15:36 +00001102 if (isNegative()) {
Reid Spencer1825dd02007-03-02 22:39:11 +00001103 if (wordShift > bitsInWord) {
1104 if (breakWord > 0)
Eric Christopher820256b2009-08-21 04:06:45 +00001105 val[breakWord-1] |=
Reid Spencer1825dd02007-03-02 22:39:11 +00001106 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1107 val[breakWord] |= ~0ULL;
Eric Christopher820256b2009-08-21 04:06:45 +00001108 } else
Reid Spencer1825dd02007-03-02 22:39:11 +00001109 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
Chris Lattnerdad2d092007-05-03 18:15:36 +00001110 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001111 }
1112
Reid Spencer1825dd02007-03-02 22:39:11 +00001113 // Remaining words are 0 or -1, just assign them.
1114 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattner77527f52009-01-21 18:09:24 +00001115 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer1825dd02007-03-02 22:39:11 +00001116 val[i] = fillValue;
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001117 APInt Result(val, BitWidth);
1118 Result.clearUnusedBits();
1119 return Result;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001120}
1121
Zhou Shenge93db8f2007-02-09 07:48:24 +00001122/// Logical right-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001123/// @brief Logical right-shift function.
Dan Gohman105c1d42008-02-29 01:40:47 +00001124APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001125 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001126}
1127
1128/// Logical right-shift this APInt by shiftAmt.
1129/// @brief Logical right-shift function.
Chris Lattner77527f52009-01-21 18:09:24 +00001130APInt APInt::lshr(unsigned shiftAmt) const {
Chris Lattnerdad2d092007-05-03 18:15:36 +00001131 if (isSingleWord()) {
Ahmed Charles0dca5d82012-02-24 19:06:15 +00001132 if (shiftAmt >= BitWidth)
Reid Spencer522ca7c2007-02-25 01:56:07 +00001133 return APInt(BitWidth, 0);
Eric Christopher820256b2009-08-21 04:06:45 +00001134 else
Reid Spencer522ca7c2007-02-25 01:56:07 +00001135 return APInt(BitWidth, this->VAL >> shiftAmt);
Chris Lattnerdad2d092007-05-03 18:15:36 +00001136 }
Reid Spencer522ca7c2007-02-25 01:56:07 +00001137
Reid Spencer44eef162007-02-26 01:19:48 +00001138 // If all the bits were shifted out, the result is 0. This avoids issues
1139 // with shifting by the size of the integer type, which produces undefined
1140 // results. We define these "undefined results" to always be 0.
Chad Rosier3d464d82012-06-08 18:04:52 +00001141 if (shiftAmt >= BitWidth)
Reid Spencer44eef162007-02-26 01:19:48 +00001142 return APInt(BitWidth, 0);
1143
Reid Spencerfffdf102007-05-17 06:26:29 +00001144 // If none of the bits are shifted out, the result is *this. This avoids
Eric Christopher820256b2009-08-21 04:06:45 +00001145 // issues with shifting by the size of the integer type, which produces
Reid Spencerfffdf102007-05-17 06:26:29 +00001146 // undefined results in the code below. This is also an optimization.
1147 if (shiftAmt == 0)
1148 return *this;
1149
Reid Spencer44eef162007-02-26 01:19:48 +00001150 // Create some space for the result.
1151 uint64_t * val = new uint64_t[getNumWords()];
1152
1153 // If we are shifting less than a word, compute the shift with a simple carry
1154 if (shiftAmt < APINT_BITS_PER_WORD) {
Richard Smith4f9a8082011-11-23 21:33:37 +00001155 lshrNear(val, pVal, getNumWords(), shiftAmt);
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001156 APInt Result(val, BitWidth);
1157 Result.clearUnusedBits();
1158 return Result;
Reid Spencera41e93b2007-02-25 19:32:03 +00001159 }
1160
Reid Spencer44eef162007-02-26 01:19:48 +00001161 // Compute some values needed by the remaining shift algorithms
Chris Lattner77527f52009-01-21 18:09:24 +00001162 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1163 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencer44eef162007-02-26 01:19:48 +00001164
1165 // If we are shifting whole words, just move whole words
1166 if (wordShift == 0) {
Chris Lattner77527f52009-01-21 18:09:24 +00001167 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Reid Spencer44eef162007-02-26 01:19:48 +00001168 val[i] = pVal[i+offset];
Chris Lattner77527f52009-01-21 18:09:24 +00001169 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Reid Spencer44eef162007-02-26 01:19:48 +00001170 val[i] = 0;
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001171 APInt Result(val, BitWidth);
1172 Result.clearUnusedBits();
1173 return Result;
Reid Spencer44eef162007-02-26 01:19:48 +00001174 }
1175
Eric Christopher820256b2009-08-21 04:06:45 +00001176 // Shift the low order words
Chris Lattner77527f52009-01-21 18:09:24 +00001177 unsigned breakWord = getNumWords() - offset -1;
1178 for (unsigned i = 0; i < breakWord; ++i)
Reid Spencerd99feaf2007-03-01 05:39:56 +00001179 val[i] = (pVal[i+offset] >> wordShift) |
1180 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
Reid Spencer44eef162007-02-26 01:19:48 +00001181 // Shift the break word.
1182 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1183
1184 // Remaining words are 0
Chris Lattner77527f52009-01-21 18:09:24 +00001185 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer44eef162007-02-26 01:19:48 +00001186 val[i] = 0;
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001187 APInt Result(val, BitWidth);
1188 Result.clearUnusedBits();
1189 return Result;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001190}
1191
Zhou Shenge93db8f2007-02-09 07:48:24 +00001192/// Left-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001193/// @brief Left-shift function.
Dan Gohman105c1d42008-02-29 01:40:47 +00001194APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky030c4502009-01-19 17:42:33 +00001195 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattner77527f52009-01-21 18:09:24 +00001196 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001197}
1198
Chris Lattner77527f52009-01-21 18:09:24 +00001199APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Reid Spencera5c84d92007-02-25 00:56:44 +00001200 // If all the bits were shifted out, the result is 0. This avoids issues
1201 // with shifting by the size of the integer type, which produces undefined
1202 // results. We define these "undefined results" to always be 0.
1203 if (shiftAmt == BitWidth)
1204 return APInt(BitWidth, 0);
1205
Reid Spencer81ee0202007-05-12 18:01:57 +00001206 // If none of the bits are shifted out, the result is *this. This avoids a
1207 // lshr by the words size in the loop below which can produce incorrect
1208 // results. It also avoids the expensive computation below for a common case.
1209 if (shiftAmt == 0)
1210 return *this;
1211
Reid Spencera5c84d92007-02-25 00:56:44 +00001212 // Create some space for the result.
1213 uint64_t * val = new uint64_t[getNumWords()];
1214
1215 // If we are shifting less than a word, do it the easy way
1216 if (shiftAmt < APINT_BITS_PER_WORD) {
1217 uint64_t carry = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001218 for (unsigned i = 0; i < getNumWords(); i++) {
Reid Spencera5c84d92007-02-25 00:56:44 +00001219 val[i] = pVal[i] << shiftAmt | carry;
1220 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1221 }
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001222 APInt Result(val, BitWidth);
1223 Result.clearUnusedBits();
1224 return Result;
Reid Spencer632ebdf2007-02-24 20:19:37 +00001225 }
1226
Reid Spencera5c84d92007-02-25 00:56:44 +00001227 // Compute some values needed by the remaining shift algorithms
Chris Lattner77527f52009-01-21 18:09:24 +00001228 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1229 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencera5c84d92007-02-25 00:56:44 +00001230
1231 // If we are shifting whole words, just move whole words
1232 if (wordShift == 0) {
Chris Lattner77527f52009-01-21 18:09:24 +00001233 for (unsigned i = 0; i < offset; i++)
Reid Spencera5c84d92007-02-25 00:56:44 +00001234 val[i] = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001235 for (unsigned i = offset; i < getNumWords(); i++)
Reid Spencera5c84d92007-02-25 00:56:44 +00001236 val[i] = pVal[i-offset];
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001237 APInt Result(val, BitWidth);
1238 Result.clearUnusedBits();
1239 return Result;
Reid Spencer632ebdf2007-02-24 20:19:37 +00001240 }
Reid Spencera5c84d92007-02-25 00:56:44 +00001241
1242 // Copy whole words from this to Result.
Chris Lattner77527f52009-01-21 18:09:24 +00001243 unsigned i = getNumWords() - 1;
Reid Spencera5c84d92007-02-25 00:56:44 +00001244 for (; i > offset; --i)
1245 val[i] = pVal[i-offset] << wordShift |
1246 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
Reid Spencerab0e08a2007-02-25 01:08:58 +00001247 val[offset] = pVal[0] << wordShift;
Reid Spencera5c84d92007-02-25 00:56:44 +00001248 for (i = 0; i < offset; ++i)
1249 val[i] = 0;
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001250 APInt Result(val, BitWidth);
1251 Result.clearUnusedBits();
1252 return Result;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001253}
1254
Dan Gohman105c1d42008-02-29 01:40:47 +00001255APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001256 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001257}
1258
Chris Lattner77527f52009-01-21 18:09:24 +00001259APInt APInt::rotl(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001260 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001261 if (rotateAmt == 0)
1262 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001263 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001264}
1265
Dan Gohman105c1d42008-02-29 01:40:47 +00001266APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001267 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001268}
1269
Chris Lattner77527f52009-01-21 18:09:24 +00001270APInt APInt::rotr(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001271 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001272 if (rotateAmt == 0)
1273 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001274 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001275}
Reid Spencerd99feaf2007-03-01 05:39:56 +00001276
1277// Square Root - this method computes and returns the square root of "this".
1278// Three mechanisms are used for computation. For small values (<= 5 bits),
1279// a table lookup is done. This gets some performance for common cases. For
1280// values using less than 52 bits, the value is converted to double and then
1281// the libc sqrt function is called. The result is rounded and then converted
1282// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopher820256b2009-08-21 04:06:45 +00001283// the Babylonian method for computing square roots is used.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001284APInt APInt::sqrt() const {
1285
1286 // Determine the magnitude of the value.
Chris Lattner77527f52009-01-21 18:09:24 +00001287 unsigned magnitude = getActiveBits();
Reid Spencerd99feaf2007-03-01 05:39:56 +00001288
1289 // Use a fast table for some small values. This also gets rid of some
1290 // rounding errors in libc sqrt for small values.
1291 if (magnitude <= 5) {
Reid Spencer2f6ad4d2007-03-01 17:47:31 +00001292 static const uint8_t results[32] = {
Reid Spencerc8841d22007-03-01 06:23:32 +00001293 /* 0 */ 0,
1294 /* 1- 2 */ 1, 1,
Eric Christopher820256b2009-08-21 04:06:45 +00001295 /* 3- 6 */ 2, 2, 2, 2,
Reid Spencerc8841d22007-03-01 06:23:32 +00001296 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1297 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1298 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1299 /* 31 */ 6
1300 };
1301 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
Reid Spencerd99feaf2007-03-01 05:39:56 +00001302 }
1303
1304 // If the magnitude of the value fits in less than 52 bits (the precision of
1305 // an IEEE double precision floating point value), then we can use the
1306 // libc sqrt function which will probably use a hardware sqrt computation.
1307 // This should be faster than the algorithm below.
Jeff Cohenb622c112007-03-05 00:00:42 +00001308 if (magnitude < 52) {
Eric Christopher820256b2009-08-21 04:06:45 +00001309 return APInt(BitWidth,
Reid Spencerd99feaf2007-03-01 05:39:56 +00001310 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
Jeff Cohenb622c112007-03-05 00:00:42 +00001311 }
Reid Spencerd99feaf2007-03-01 05:39:56 +00001312
1313 // Okay, all the short cuts are exhausted. We must compute it. The following
1314 // is a classical Babylonian method for computing the square root. This code
Sanjay Patel4cb54e02014-09-11 15:41:01 +00001315 // was adapted to APInt from a wikipedia article on such computations.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001316 // See http://www.wikipedia.org/ and go to the page named
Eric Christopher820256b2009-08-21 04:06:45 +00001317 // Calculate_an_integer_square_root.
Chris Lattner77527f52009-01-21 18:09:24 +00001318 unsigned nbits = BitWidth, i = 4;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001319 APInt testy(BitWidth, 16);
1320 APInt x_old(BitWidth, 1);
1321 APInt x_new(BitWidth, 0);
1322 APInt two(BitWidth, 2);
1323
1324 // Select a good starting value using binary logarithms.
Eric Christopher820256b2009-08-21 04:06:45 +00001325 for (;; i += 2, testy = testy.shl(2))
Reid Spencerd99feaf2007-03-01 05:39:56 +00001326 if (i >= nbits || this->ule(testy)) {
1327 x_old = x_old.shl(i / 2);
1328 break;
1329 }
1330
Eric Christopher820256b2009-08-21 04:06:45 +00001331 // Use the Babylonian method to arrive at the integer square root:
Reid Spencerd99feaf2007-03-01 05:39:56 +00001332 for (;;) {
1333 x_new = (this->udiv(x_old) + x_old).udiv(two);
1334 if (x_old.ule(x_new))
1335 break;
1336 x_old = x_new;
1337 }
1338
1339 // Make sure we return the closest approximation
Eric Christopher820256b2009-08-21 04:06:45 +00001340 // NOTE: The rounding calculation below is correct. It will produce an
Reid Spencercf817562007-03-02 04:21:55 +00001341 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopher820256b2009-08-21 04:06:45 +00001342 // determined to be a rounding issue with pari/gp as it begins to use a
Reid Spencercf817562007-03-02 04:21:55 +00001343 // floating point representation after 192 bits. There are no discrepancies
1344 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001345 APInt square(x_old * x_old);
1346 APInt nextSquare((x_old + 1) * (x_old +1));
1347 if (this->ult(square))
1348 return x_old;
David Blaikie54c94622011-12-01 20:58:30 +00001349 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1350 APInt midpoint((nextSquare - square).udiv(two));
1351 APInt offset(*this - square);
1352 if (offset.ult(midpoint))
1353 return x_old;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001354 return x_old + 1;
1355}
1356
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001357/// Computes the multiplicative inverse of this APInt for a given modulo. The
1358/// iterative extended Euclidean algorithm is used to solve for this value,
1359/// however we simplify it to speed up calculating only the inverse, and take
1360/// advantage of div+rem calculations. We also use some tricks to avoid copying
1361/// (potentially large) APInts around.
1362APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1363 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1364
1365 // Using the properties listed at the following web page (accessed 06/21/08):
1366 // http://www.numbertheory.org/php/euclid.html
1367 // (especially the properties numbered 3, 4 and 9) it can be proved that
1368 // BitWidth bits suffice for all the computations in the algorithm implemented
1369 // below. More precisely, this number of bits suffice if the multiplicative
1370 // inverse exists, but may not suffice for the general extended Euclidean
1371 // algorithm.
1372
1373 APInt r[2] = { modulo, *this };
1374 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1375 APInt q(BitWidth, 0);
Eric Christopher820256b2009-08-21 04:06:45 +00001376
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001377 unsigned i;
1378 for (i = 0; r[i^1] != 0; i ^= 1) {
1379 // An overview of the math without the confusing bit-flipping:
1380 // q = r[i-2] / r[i-1]
1381 // r[i] = r[i-2] % r[i-1]
1382 // t[i] = t[i-2] - t[i-1] * q
1383 udivrem(r[i], r[i^1], q, r[i]);
1384 t[i] -= t[i^1] * q;
1385 }
1386
1387 // If this APInt and the modulo are not coprime, there is no multiplicative
1388 // inverse, so return 0. We check this by looking at the next-to-last
1389 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1390 // algorithm.
1391 if (r[i] != 1)
1392 return APInt(BitWidth, 0);
1393
1394 // The next-to-last t is the multiplicative inverse. However, we are
1395 // interested in a positive inverse. Calcuate a positive one from a negative
1396 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00001397 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001398 return t[i].isNegative() ? t[i] + modulo : t[i];
1399}
1400
Jay Foadfe0c6482009-04-30 10:15:35 +00001401/// Calculate the magic numbers required to implement a signed integer division
1402/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1403/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1404/// Warren, Jr., chapter 10.
1405APInt::ms APInt::magic() const {
1406 const APInt& d = *this;
1407 unsigned p;
1408 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foadfe0c6482009-04-30 10:15:35 +00001409 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foadfe0c6482009-04-30 10:15:35 +00001410 struct ms mag;
Eric Christopher820256b2009-08-21 04:06:45 +00001411
Jay Foadfe0c6482009-04-30 10:15:35 +00001412 ad = d.abs();
1413 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1414 anc = t - 1 - t.urem(ad); // absolute value of nc
1415 p = d.getBitWidth() - 1; // initialize p
1416 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1417 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1418 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1419 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1420 do {
1421 p = p + 1;
1422 q1 = q1<<1; // update q1 = 2p/abs(nc)
1423 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1424 if (r1.uge(anc)) { // must be unsigned comparison
1425 q1 = q1 + 1;
1426 r1 = r1 - anc;
1427 }
1428 q2 = q2<<1; // update q2 = 2p/abs(d)
1429 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1430 if (r2.uge(ad)) { // must be unsigned comparison
1431 q2 = q2 + 1;
1432 r2 = r2 - ad;
1433 }
1434 delta = ad - r2;
Cameron Zwarich8731d0c2011-02-21 00:22:02 +00001435 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
Eric Christopher820256b2009-08-21 04:06:45 +00001436
Jay Foadfe0c6482009-04-30 10:15:35 +00001437 mag.m = q2 + 1;
1438 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1439 mag.s = p - d.getBitWidth(); // resulting shift
1440 return mag;
1441}
1442
1443/// Calculate the magic numbers required to implement an unsigned integer
1444/// division by a constant as a sequence of multiplies, adds and shifts.
1445/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1446/// S. Warren, Jr., chapter 10.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001447/// LeadingZeros can be used to simplify the calculation if the upper bits
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001448/// of the divided value are known zero.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001449APInt::mu APInt::magicu(unsigned LeadingZeros) const {
Jay Foadfe0c6482009-04-30 10:15:35 +00001450 const APInt& d = *this;
1451 unsigned p;
1452 APInt nc, delta, q1, r1, q2, r2;
1453 struct mu magu;
1454 magu.a = 0; // initialize "add" indicator
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001455 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
Jay Foadfe0c6482009-04-30 10:15:35 +00001456 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1457 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1458
Benjamin Kramer3aab6a82012-07-11 18:31:59 +00001459 nc = allOnes - (allOnes - d).urem(d);
Jay Foadfe0c6482009-04-30 10:15:35 +00001460 p = d.getBitWidth() - 1; // initialize p
1461 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1462 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1463 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1464 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1465 do {
1466 p = p + 1;
1467 if (r1.uge(nc - r1)) {
1468 q1 = q1 + q1 + 1; // update q1
1469 r1 = r1 + r1 - nc; // update r1
1470 }
1471 else {
1472 q1 = q1+q1; // update q1
1473 r1 = r1+r1; // update r1
1474 }
1475 if ((r2 + 1).uge(d - r2)) {
1476 if (q2.uge(signedMax)) magu.a = 1;
1477 q2 = q2+q2 + 1; // update q2
1478 r2 = r2+r2 + 1 - d; // update r2
1479 }
1480 else {
1481 if (q2.uge(signedMin)) magu.a = 1;
1482 q2 = q2+q2; // update q2
1483 r2 = r2+r2 + 1; // update r2
1484 }
1485 delta = d - 1 - r2;
1486 } while (p < d.getBitWidth()*2 &&
1487 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1488 magu.m = q2 + 1; // resulting magic number
1489 magu.s = p - d.getBitWidth(); // resulting shift
1490 return magu;
1491}
1492
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001493/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1494/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1495/// variables here have the same names as in the algorithm. Comments explain
1496/// the algorithm and any deviation from it.
Chris Lattner77527f52009-01-21 18:09:24 +00001497static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1498 unsigned m, unsigned n) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001499 assert(u && "Must provide dividend");
1500 assert(v && "Must provide divisor");
1501 assert(q && "Must provide quotient");
Yaron Keren39fc5a62015-03-26 19:45:19 +00001502 assert(u != v && u != q && v != q && "Must use different memory");
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001503 assert(n>1 && "n must be > 1");
1504
Yaron Keren39fc5a62015-03-26 19:45:19 +00001505 // b denotes the base of the number system. In our case b is 2^32.
George Burgess IV381fc0e2016-08-25 01:05:08 +00001506 const uint64_t b = uint64_t(1) << 32;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001507
David Greenef32fcb42010-01-05 01:28:52 +00001508 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1509 DEBUG(dbgs() << "KnuthDiv: original:");
1510 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1511 DEBUG(dbgs() << " by");
1512 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1513 DEBUG(dbgs() << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001514 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1515 // u and v by d. Note that we have taken Knuth's advice here to use a power
1516 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1517 // 2 allows us to shift instead of multiply and it is easy to determine the
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001518 // shift amount from the leading zeros. We are basically normalizing the u
1519 // and v so that its high bits are shifted to the top of v's range without
1520 // overflow. Note that this can require an extra word in u so that u must
1521 // be of length m+n+1.
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001522 unsigned shift = countLeadingZeros(v[n-1]);
Chris Lattner77527f52009-01-21 18:09:24 +00001523 unsigned v_carry = 0;
1524 unsigned u_carry = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001525 if (shift) {
Chris Lattner77527f52009-01-21 18:09:24 +00001526 for (unsigned i = 0; i < m+n; ++i) {
1527 unsigned u_tmp = u[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001528 u[i] = (u[i] << shift) | u_carry;
1529 u_carry = u_tmp;
Reid Spencer100502d2007-02-17 03:16:00 +00001530 }
Chris Lattner77527f52009-01-21 18:09:24 +00001531 for (unsigned i = 0; i < n; ++i) {
1532 unsigned v_tmp = v[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001533 v[i] = (v[i] << shift) | v_carry;
1534 v_carry = v_tmp;
1535 }
1536 }
1537 u[m+n] = u_carry;
Yaron Keren39fc5a62015-03-26 19:45:19 +00001538
David Greenef32fcb42010-01-05 01:28:52 +00001539 DEBUG(dbgs() << "KnuthDiv: normal:");
1540 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1541 DEBUG(dbgs() << " by");
1542 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1543 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001544
1545 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1546 int j = m;
1547 do {
David Greenef32fcb42010-01-05 01:28:52 +00001548 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001549 // D3. [Calculate q'.].
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001550 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1551 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1552 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1553 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1554 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopher820256b2009-08-21 04:06:45 +00001555 // value qp is one too large, and it eliminates all cases where qp is two
1556 // too large.
Reid Spencercb292e42007-02-23 01:57:13 +00001557 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
David Greenef32fcb42010-01-05 01:28:52 +00001558 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencercb292e42007-02-23 01:57:13 +00001559 uint64_t qp = dividend / v[n-1];
1560 uint64_t rp = dividend % v[n-1];
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001561 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1562 qp--;
1563 rp += v[n-1];
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001564 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencera5e0d202007-02-24 03:58:46 +00001565 qp--;
Reid Spencercb292e42007-02-23 01:57:13 +00001566 }
David Greenef32fcb42010-01-05 01:28:52 +00001567 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001568
Reid Spencercb292e42007-02-23 01:57:13 +00001569 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1570 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1571 // consists of a simple multiplication by a one-place number, combined with
Eric Christopher820256b2009-08-21 04:06:45 +00001572 // a subtraction.
Yaron Keren39fc5a62015-03-26 19:45:19 +00001573 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1574 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1575 // true value plus b**(n+1), namely as the b's complement of
1576 // the true value, and a "borrow" to the left should be remembered.
Pawel Bylica86ac4472015-04-24 07:38:39 +00001577 int64_t borrow = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001578 for (unsigned i = 0; i < n; ++i) {
Pawel Bylica86ac4472015-04-24 07:38:39 +00001579 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1580 int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p;
1581 u[j+i] = (unsigned)subres;
1582 borrow = (p >> 32) - (subres >> 32);
1583 DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i]
Daniel Dunbar763ace92009-07-13 05:27:30 +00001584 << ", borrow = " << borrow << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001585 }
Pawel Bylica86ac4472015-04-24 07:38:39 +00001586 bool isNeg = u[j+n] < borrow;
1587 u[j+n] -= (unsigned)borrow;
1588
David Greenef32fcb42010-01-05 01:28:52 +00001589 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1590 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1591 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001592
Eric Christopher820256b2009-08-21 04:06:45 +00001593 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001594 // negative, go to step D6; otherwise go on to step D7.
Chris Lattner77527f52009-01-21 18:09:24 +00001595 q[j] = (unsigned)qp;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001596 if (isNeg) {
Eric Christopher820256b2009-08-21 04:06:45 +00001597 // D6. [Add back]. The probability that this step is necessary is very
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001598 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopher820256b2009-08-21 04:06:45 +00001599 // this possibility. Decrease q[j] by 1
Reid Spencercb292e42007-02-23 01:57:13 +00001600 q[j]--;
Eric Christopher820256b2009-08-21 04:06:45 +00001601 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1602 // A carry will occur to the left of u[j+n], and it should be ignored
Reid Spencercb292e42007-02-23 01:57:13 +00001603 // since it cancels with the borrow that occurred in D4.
1604 bool carry = false;
Chris Lattner77527f52009-01-21 18:09:24 +00001605 for (unsigned i = 0; i < n; i++) {
1606 unsigned limit = std::min(u[j+i],v[i]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001607 u[j+i] += v[i] + carry;
Reid Spencera5e0d202007-02-24 03:58:46 +00001608 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001609 }
Reid Spencera5e0d202007-02-24 03:58:46 +00001610 u[j+n] += carry;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001611 }
David Greenef32fcb42010-01-05 01:28:52 +00001612 DEBUG(dbgs() << "KnuthDiv: after correction:");
Yaron Keren39fc5a62015-03-26 19:45:19 +00001613 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
David Greenef32fcb42010-01-05 01:28:52 +00001614 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001615
Reid Spencercb292e42007-02-23 01:57:13 +00001616 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1617 } while (--j >= 0);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001618
David Greenef32fcb42010-01-05 01:28:52 +00001619 DEBUG(dbgs() << "KnuthDiv: quotient:");
1620 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1621 DEBUG(dbgs() << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001622
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001623 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1624 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1625 // compute the remainder (urem uses this).
1626 if (r) {
1627 // The value d is expressed by the "shift" value above since we avoided
1628 // multiplication by d by using a shift left. So, all we have to do is
1629 // shift right here. In order to mak
Reid Spencer468ad9112007-02-24 20:38:01 +00001630 if (shift) {
Chris Lattner77527f52009-01-21 18:09:24 +00001631 unsigned carry = 0;
David Greenef32fcb42010-01-05 01:28:52 +00001632 DEBUG(dbgs() << "KnuthDiv: remainder:");
Reid Spencer468ad9112007-02-24 20:38:01 +00001633 for (int i = n-1; i >= 0; i--) {
1634 r[i] = (u[i] >> shift) | carry;
1635 carry = u[i] << (32 - shift);
David Greenef32fcb42010-01-05 01:28:52 +00001636 DEBUG(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001637 }
1638 } else {
1639 for (int i = n-1; i >= 0; i--) {
1640 r[i] = u[i];
David Greenef32fcb42010-01-05 01:28:52 +00001641 DEBUG(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001642 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001643 }
David Greenef32fcb42010-01-05 01:28:52 +00001644 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001645 }
David Greenef32fcb42010-01-05 01:28:52 +00001646 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001647}
1648
Benjamin Kramerc321e532016-06-08 19:09:22 +00001649void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS,
1650 unsigned rhsWords, APInt *Quotient, APInt *Remainder) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001651 assert(lhsWords >= rhsWords && "Fractional result");
1652
Eric Christopher820256b2009-08-21 04:06:45 +00001653 // First, compose the values into an array of 32-bit words instead of
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001654 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohman4a618822010-02-10 16:03:48 +00001655 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopher820256b2009-08-21 04:06:45 +00001656 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1657 // can't use 64-bit operands here because we don't have native results of
1658 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001659 // work on large-endian machines.
Dan Gohmancff69532009-04-01 18:45:54 +00001660 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattner77527f52009-01-21 18:09:24 +00001661 unsigned n = rhsWords * 2;
1662 unsigned m = (lhsWords * 2) - n;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001663
1664 // Allocate space for the temporary values we need either on the stack, if
1665 // it will fit, or on the heap if it won't.
Chris Lattner77527f52009-01-21 18:09:24 +00001666 unsigned SPACE[128];
Craig Topperc10719f2014-04-07 04:17:22 +00001667 unsigned *U = nullptr;
1668 unsigned *V = nullptr;
1669 unsigned *Q = nullptr;
1670 unsigned *R = nullptr;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001671 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1672 U = &SPACE[0];
1673 V = &SPACE[m+n+1];
1674 Q = &SPACE[(m+n+1) + n];
1675 if (Remainder)
1676 R = &SPACE[(m+n+1) + n + (m+n)];
1677 } else {
Chris Lattner77527f52009-01-21 18:09:24 +00001678 U = new unsigned[m + n + 1];
1679 V = new unsigned[n];
1680 Q = new unsigned[m+n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001681 if (Remainder)
Chris Lattner77527f52009-01-21 18:09:24 +00001682 R = new unsigned[n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001683 }
1684
1685 // Initialize the dividend
Chris Lattner77527f52009-01-21 18:09:24 +00001686 memset(U, 0, (m+n+1)*sizeof(unsigned));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001687 for (unsigned i = 0; i < lhsWords; ++i) {
Reid Spencer867b4062007-02-22 00:58:45 +00001688 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattner77527f52009-01-21 18:09:24 +00001689 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmancff69532009-04-01 18:45:54 +00001690 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001691 }
1692 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1693
Reid Spencer522ca7c2007-02-25 01:56:07 +00001694 // Initialize the divisor
Chris Lattner77527f52009-01-21 18:09:24 +00001695 memset(V, 0, (n)*sizeof(unsigned));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001696 for (unsigned i = 0; i < rhsWords; ++i) {
Reid Spencer867b4062007-02-22 00:58:45 +00001697 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattner77527f52009-01-21 18:09:24 +00001698 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmancff69532009-04-01 18:45:54 +00001699 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001700 }
1701
Reid Spencer522ca7c2007-02-25 01:56:07 +00001702 // initialize the quotient and remainder
Chris Lattner77527f52009-01-21 18:09:24 +00001703 memset(Q, 0, (m+n) * sizeof(unsigned));
Reid Spencer522ca7c2007-02-25 01:56:07 +00001704 if (Remainder)
Chris Lattner77527f52009-01-21 18:09:24 +00001705 memset(R, 0, n * sizeof(unsigned));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001706
Eric Christopher820256b2009-08-21 04:06:45 +00001707 // Now, adjust m and n for the Knuth division. n is the number of words in
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001708 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopher820256b2009-08-21 04:06:45 +00001709 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001710 // contain any zero words or the Knuth algorithm fails.
1711 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1712 n--;
1713 m++;
1714 }
1715 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1716 m--;
1717
1718 // If we're left with only a single word for the divisor, Knuth doesn't work
1719 // so we implement the short division algorithm here. This is much simpler
1720 // and faster because we are certain that we can divide a 64-bit quantity
1721 // by a 32-bit quantity at hardware speed and short division is simply a
1722 // series of such operations. This is just like doing short division but we
1723 // are using base 2^32 instead of base 10.
1724 assert(n != 0 && "Divide by zero?");
1725 if (n == 1) {
Chris Lattner77527f52009-01-21 18:09:24 +00001726 unsigned divisor = V[0];
1727 unsigned remainder = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001728 for (int i = m+n-1; i >= 0; i--) {
1729 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1730 if (partial_dividend == 0) {
1731 Q[i] = 0;
1732 remainder = 0;
1733 } else if (partial_dividend < divisor) {
1734 Q[i] = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001735 remainder = (unsigned)partial_dividend;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001736 } else if (partial_dividend == divisor) {
1737 Q[i] = 1;
1738 remainder = 0;
1739 } else {
Chris Lattner77527f52009-01-21 18:09:24 +00001740 Q[i] = (unsigned)(partial_dividend / divisor);
1741 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001742 }
1743 }
1744 if (R)
1745 R[0] = remainder;
1746 } else {
1747 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1748 // case n > 1.
1749 KnuthDiv(U, V, Q, R, m, n);
1750 }
1751
1752 // If the caller wants the quotient
1753 if (Quotient) {
1754 // Set up the Quotient value's memory.
1755 if (Quotient->BitWidth != LHS.BitWidth) {
1756 if (Quotient->isSingleWord())
1757 Quotient->VAL = 0;
1758 else
Reid Spencer7c16cd22007-02-26 23:38:21 +00001759 delete [] Quotient->pVal;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001760 Quotient->BitWidth = LHS.BitWidth;
1761 if (!Quotient->isSingleWord())
Reid Spencer58a6a432007-02-21 08:21:52 +00001762 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001763 } else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001764 Quotient->clearAllBits();
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001765
Eric Christopher820256b2009-08-21 04:06:45 +00001766 // The quotient is in Q. Reconstitute the quotient into Quotient's low
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001767 // order words.
Yaron Keren39fc5a62015-03-26 19:45:19 +00001768 // This case is currently dead as all users of divide() handle trivial cases
1769 // earlier.
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001770 if (lhsWords == 1) {
Eric Christopher820256b2009-08-21 04:06:45 +00001771 uint64_t tmp =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001772 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1773 if (Quotient->isSingleWord())
1774 Quotient->VAL = tmp;
1775 else
1776 Quotient->pVal[0] = tmp;
1777 } else {
1778 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1779 for (unsigned i = 0; i < lhsWords; ++i)
Eric Christopher820256b2009-08-21 04:06:45 +00001780 Quotient->pVal[i] =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001781 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1782 }
1783 }
1784
1785 // If the caller wants the remainder
1786 if (Remainder) {
1787 // Set up the Remainder value's memory.
1788 if (Remainder->BitWidth != RHS.BitWidth) {
1789 if (Remainder->isSingleWord())
1790 Remainder->VAL = 0;
1791 else
Reid Spencer7c16cd22007-02-26 23:38:21 +00001792 delete [] Remainder->pVal;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001793 Remainder->BitWidth = RHS.BitWidth;
1794 if (!Remainder->isSingleWord())
Reid Spencer58a6a432007-02-21 08:21:52 +00001795 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001796 } else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001797 Remainder->clearAllBits();
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001798
1799 // The remainder is in R. Reconstitute the remainder into Remainder's low
1800 // order words.
1801 if (rhsWords == 1) {
Eric Christopher820256b2009-08-21 04:06:45 +00001802 uint64_t tmp =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001803 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1804 if (Remainder->isSingleWord())
1805 Remainder->VAL = tmp;
1806 else
1807 Remainder->pVal[0] = tmp;
1808 } else {
1809 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1810 for (unsigned i = 0; i < rhsWords; ++i)
Eric Christopher820256b2009-08-21 04:06:45 +00001811 Remainder->pVal[i] =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001812 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1813 }
1814 }
1815
1816 // Clean up the memory we allocated.
Reid Spencer522ca7c2007-02-25 01:56:07 +00001817 if (U != &SPACE[0]) {
1818 delete [] U;
1819 delete [] V;
1820 delete [] Q;
1821 delete [] R;
1822 }
Reid Spencer100502d2007-02-17 03:16:00 +00001823}
1824
Reid Spencer1d072122007-02-16 22:36:51 +00001825APInt APInt::udiv(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001826 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001827
1828 // First, deal with the easy case
1829 if (isSingleWord()) {
1830 assert(RHS.VAL != 0 && "Divide by zero?");
1831 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001832 }
Reid Spencer39867762007-02-17 02:07:07 +00001833
Reid Spencer39867762007-02-17 02:07:07 +00001834 // Get some facts about the LHS and RHS number of bits and words
Chris Lattner77527f52009-01-21 18:09:24 +00001835 unsigned rhsBits = RHS.getActiveBits();
1836 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001837 assert(rhsWords && "Divided by zero???");
Chris Lattner77527f52009-01-21 18:09:24 +00001838 unsigned lhsBits = this->getActiveBits();
1839 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001840
1841 // Deal with some degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001842 if (!lhsWords)
Reid Spencer58a6a432007-02-21 08:21:52 +00001843 // 0 / X ===> 0
Eric Christopher820256b2009-08-21 04:06:45 +00001844 return APInt(BitWidth, 0);
Reid Spencer58a6a432007-02-21 08:21:52 +00001845 else if (lhsWords < rhsWords || this->ult(RHS)) {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001846 // X / Y ===> 0, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001847 return APInt(BitWidth, 0);
1848 } else if (*this == RHS) {
1849 // X / X ===> 1
1850 return APInt(BitWidth, 1);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001851 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer39867762007-02-17 02:07:07 +00001852 // All high words are zero, just use native divide
Reid Spencer58a6a432007-02-21 08:21:52 +00001853 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer39867762007-02-17 02:07:07 +00001854 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001855
1856 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1857 APInt Quotient(1,0); // to hold result.
Craig Topperc10719f2014-04-07 04:17:22 +00001858 divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001859 return Quotient;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001860}
1861
Jakub Staszak6605c602013-02-20 00:17:42 +00001862APInt APInt::sdiv(const APInt &RHS) const {
1863 if (isNegative()) {
1864 if (RHS.isNegative())
1865 return (-(*this)).udiv(-RHS);
1866 return -((-(*this)).udiv(RHS));
1867 }
1868 if (RHS.isNegative())
1869 return -(this->udiv(-RHS));
1870 return this->udiv(RHS);
1871}
1872
Reid Spencer1d072122007-02-16 22:36:51 +00001873APInt APInt::urem(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001874 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001875 if (isSingleWord()) {
1876 assert(RHS.VAL != 0 && "Remainder by zero?");
1877 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001878 }
Reid Spencer39867762007-02-17 02:07:07 +00001879
Reid Spencer58a6a432007-02-21 08:21:52 +00001880 // Get some facts about the LHS
Chris Lattner77527f52009-01-21 18:09:24 +00001881 unsigned lhsBits = getActiveBits();
1882 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001883
1884 // Get some facts about the RHS
Chris Lattner77527f52009-01-21 18:09:24 +00001885 unsigned rhsBits = RHS.getActiveBits();
1886 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001887 assert(rhsWords && "Performing remainder operation by zero ???");
1888
Reid Spencer39867762007-02-17 02:07:07 +00001889 // Check the degenerate cases
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001890 if (lhsWords == 0) {
Reid Spencer58a6a432007-02-21 08:21:52 +00001891 // 0 % Y ===> 0
1892 return APInt(BitWidth, 0);
1893 } else if (lhsWords < rhsWords || this->ult(RHS)) {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001894 // X % Y ===> X, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001895 return *this;
1896 } else if (*this == RHS) {
Reid Spencer39867762007-02-17 02:07:07 +00001897 // X % X == 0;
Reid Spencer58a6a432007-02-21 08:21:52 +00001898 return APInt(BitWidth, 0);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001899 } else if (lhsWords == 1) {
Reid Spencer39867762007-02-17 02:07:07 +00001900 // All high words are zero, just use native remainder
Reid Spencer58a6a432007-02-21 08:21:52 +00001901 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer39867762007-02-17 02:07:07 +00001902 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001903
Reid Spencer4c50b522007-05-13 23:44:59 +00001904 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001905 APInt Remainder(1,0);
Craig Topperc10719f2014-04-07 04:17:22 +00001906 divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001907 return Remainder;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001908}
Reid Spencer100502d2007-02-17 03:16:00 +00001909
Jakub Staszak6605c602013-02-20 00:17:42 +00001910APInt APInt::srem(const APInt &RHS) const {
1911 if (isNegative()) {
1912 if (RHS.isNegative())
1913 return -((-(*this)).urem(-RHS));
1914 return -((-(*this)).urem(RHS));
1915 }
1916 if (RHS.isNegative())
1917 return this->urem(-RHS);
1918 return this->urem(RHS);
1919}
1920
Eric Christopher820256b2009-08-21 04:06:45 +00001921void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Reid Spencer4c50b522007-05-13 23:44:59 +00001922 APInt &Quotient, APInt &Remainder) {
David Majnemer7f039202014-12-14 09:41:56 +00001923 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1924
1925 // First, deal with the easy case
1926 if (LHS.isSingleWord()) {
1927 assert(RHS.VAL != 0 && "Divide by zero?");
1928 uint64_t QuotVal = LHS.VAL / RHS.VAL;
1929 uint64_t RemVal = LHS.VAL % RHS.VAL;
1930 Quotient = APInt(LHS.BitWidth, QuotVal);
1931 Remainder = APInt(LHS.BitWidth, RemVal);
1932 return;
1933 }
1934
Reid Spencer4c50b522007-05-13 23:44:59 +00001935 // Get some size facts about the dividend and divisor
Chris Lattner77527f52009-01-21 18:09:24 +00001936 unsigned lhsBits = LHS.getActiveBits();
1937 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1938 unsigned rhsBits = RHS.getActiveBits();
1939 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer4c50b522007-05-13 23:44:59 +00001940
1941 // Check the degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001942 if (lhsWords == 0) {
Reid Spencer4c50b522007-05-13 23:44:59 +00001943 Quotient = 0; // 0 / Y ===> 0
1944 Remainder = 0; // 0 % Y ===> 0
1945 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001946 }
1947
1948 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001949 Remainder = LHS; // X % Y ===> X, iff X < Y
1950 Quotient = 0; // X / Y ===> 0, iff X < Y
Reid Spencer4c50b522007-05-13 23:44:59 +00001951 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001952 }
1953
Reid Spencer4c50b522007-05-13 23:44:59 +00001954 if (LHS == RHS) {
1955 Quotient = 1; // X / X ===> 1
1956 Remainder = 0; // X % X ===> 0;
1957 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001958 }
1959
Reid Spencer4c50b522007-05-13 23:44:59 +00001960 if (lhsWords == 1 && rhsWords == 1) {
1961 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001962 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1963 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1964 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1965 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Reid Spencer4c50b522007-05-13 23:44:59 +00001966 return;
1967 }
1968
1969 // Okay, lets do it the long way
1970 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1971}
1972
Jakub Staszak6605c602013-02-20 00:17:42 +00001973void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1974 APInt &Quotient, APInt &Remainder) {
1975 if (LHS.isNegative()) {
1976 if (RHS.isNegative())
1977 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1978 else {
1979 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1980 Quotient = -Quotient;
1981 }
1982 Remainder = -Remainder;
1983 } else if (RHS.isNegative()) {
1984 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1985 Quotient = -Quotient;
1986 } else {
1987 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1988 }
1989}
1990
Chris Lattner2c819b02010-10-13 23:54:10 +00001991APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001992 APInt Res = *this+RHS;
1993 Overflow = isNonNegative() == RHS.isNonNegative() &&
1994 Res.isNonNegative() != isNonNegative();
1995 return Res;
1996}
1997
Chris Lattner698661c2010-10-14 00:05:07 +00001998APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1999 APInt Res = *this+RHS;
2000 Overflow = Res.ult(RHS);
2001 return Res;
2002}
2003
Chris Lattner2c819b02010-10-13 23:54:10 +00002004APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00002005 APInt Res = *this - RHS;
2006 Overflow = isNonNegative() != RHS.isNonNegative() &&
2007 Res.isNonNegative() != isNonNegative();
2008 return Res;
2009}
2010
Chris Lattner698661c2010-10-14 00:05:07 +00002011APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerb9681ad2010-10-14 00:30:00 +00002012 APInt Res = *this-RHS;
2013 Overflow = Res.ugt(*this);
Chris Lattner698661c2010-10-14 00:05:07 +00002014 return Res;
2015}
2016
Chris Lattner2c819b02010-10-13 23:54:10 +00002017APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00002018 // MININT/-1 --> overflow.
2019 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
2020 return sdiv(RHS);
2021}
2022
Chris Lattner2c819b02010-10-13 23:54:10 +00002023APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00002024 APInt Res = *this * RHS;
2025
2026 if (*this != 0 && RHS != 0)
2027 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
2028 else
2029 Overflow = false;
2030 return Res;
2031}
2032
Frits van Bommel0bb2ad22011-03-27 14:26:13 +00002033APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
2034 APInt Res = *this * RHS;
2035
2036 if (*this != 0 && RHS != 0)
2037 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
2038 else
2039 Overflow = false;
2040 return Res;
2041}
2042
David Majnemera2521382014-10-13 21:48:30 +00002043APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
2044 Overflow = ShAmt.uge(getBitWidth());
Chris Lattner79bdd882010-10-13 23:46:33 +00002045 if (Overflow)
David Majnemera2521382014-10-13 21:48:30 +00002046 return APInt(BitWidth, 0);
Chris Lattner79bdd882010-10-13 23:46:33 +00002047
2048 if (isNonNegative()) // Don't allow sign change.
David Majnemera2521382014-10-13 21:48:30 +00002049 Overflow = ShAmt.uge(countLeadingZeros());
Chris Lattner79bdd882010-10-13 23:46:33 +00002050 else
David Majnemera2521382014-10-13 21:48:30 +00002051 Overflow = ShAmt.uge(countLeadingOnes());
Chris Lattner79bdd882010-10-13 23:46:33 +00002052
2053 return *this << ShAmt;
2054}
2055
David Majnemera2521382014-10-13 21:48:30 +00002056APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2057 Overflow = ShAmt.uge(getBitWidth());
2058 if (Overflow)
2059 return APInt(BitWidth, 0);
2060
2061 Overflow = ShAmt.ugt(countLeadingZeros());
2062
2063 return *this << ShAmt;
2064}
2065
Chris Lattner79bdd882010-10-13 23:46:33 +00002066
2067
2068
Benjamin Kramer92d89982010-07-14 22:38:02 +00002069void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
Reid Spencer1ba83352007-02-21 03:55:44 +00002070 // Check our assumptions here
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002071 assert(!str.empty() && "Invalid string length");
Douglas Gregor663c0682011-09-14 15:54:46 +00002072 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2073 radix == 36) &&
2074 "Radix should be 2, 8, 10, 16, or 36!");
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002075
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002076 StringRef::iterator p = str.begin();
2077 size_t slen = str.size();
2078 bool isNeg = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002079 if (*p == '-' || *p == '+') {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002080 p++;
2081 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +00002082 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002083 }
Chris Lattnerdad2d092007-05-03 18:15:36 +00002084 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002085 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2086 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002087 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2088 "Insufficient bit width");
Reid Spencer1ba83352007-02-21 03:55:44 +00002089
2090 // Allocate memory
2091 if (!isSingleWord())
2092 pVal = getClearedMemory(getNumWords());
2093
2094 // Figure out if we can shift instead of multiply
Chris Lattner77527f52009-01-21 18:09:24 +00002095 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer1ba83352007-02-21 03:55:44 +00002096
2097 // Set up an APInt for the digit to add outside the loop so we don't
2098 // constantly construct/destruct it.
2099 APInt apdigit(getBitWidth(), 0);
2100 APInt apradix(getBitWidth(), radix);
2101
2102 // Enter digit traversal loop
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002103 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaardadb15712009-08-21 03:15:28 +00002104 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar60964092009-08-21 06:48:37 +00002105 assert(digit < radix && "Invalid character in digit string");
Reid Spencer1ba83352007-02-21 03:55:44 +00002106
Reid Spencera93c9812007-05-16 19:18:22 +00002107 // Shift or multiply the value by the radix
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002108 if (slen > 1) {
2109 if (shift)
2110 *this <<= shift;
2111 else
2112 *this *= apradix;
2113 }
Reid Spencer1ba83352007-02-21 03:55:44 +00002114
2115 // Add in the digit we just interpreted
Reid Spencer632ebdf2007-02-24 20:19:37 +00002116 if (apdigit.isSingleWord())
2117 apdigit.VAL = digit;
2118 else
2119 apdigit.pVal[0] = digit;
Reid Spencer1ba83352007-02-21 03:55:44 +00002120 *this += apdigit;
Reid Spencer100502d2007-02-17 03:16:00 +00002121 }
Reid Spencerb6b5cc32007-02-25 23:44:53 +00002122 // If its negative, put it in two's complement form
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00002123 if (isNeg) {
Jakub Staszak773be0c2013-03-20 23:56:19 +00002124 --(*this);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002125 this->flipAllBits();
Reid Spencerb6b5cc32007-02-25 23:44:53 +00002126 }
Reid Spencer100502d2007-02-17 03:16:00 +00002127}
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002128
Chris Lattner17f71652008-08-17 07:19:36 +00002129void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002130 bool Signed, bool formatAsCLiteral) const {
Douglas Gregor663c0682011-09-14 15:54:46 +00002131 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2132 Radix == 36) &&
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002133 "Radix should be 2, 8, 10, 16, or 36!");
Eric Christopher820256b2009-08-21 04:06:45 +00002134
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002135 const char *Prefix = "";
2136 if (formatAsCLiteral) {
2137 switch (Radix) {
2138 case 2:
2139 // Binary literals are a non-standard extension added in gcc 4.3:
2140 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2141 Prefix = "0b";
2142 break;
2143 case 8:
2144 Prefix = "0";
2145 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002146 case 10:
2147 break; // No prefix
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002148 case 16:
2149 Prefix = "0x";
2150 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002151 default:
2152 llvm_unreachable("Invalid radix!");
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002153 }
2154 }
2155
Chris Lattner17f71652008-08-17 07:19:36 +00002156 // First, check for a zero value and just short circuit the logic below.
2157 if (*this == 0) {
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002158 while (*Prefix) {
2159 Str.push_back(*Prefix);
2160 ++Prefix;
2161 };
Chris Lattner17f71652008-08-17 07:19:36 +00002162 Str.push_back('0');
2163 return;
2164 }
Eric Christopher820256b2009-08-21 04:06:45 +00002165
Douglas Gregor663c0682011-09-14 15:54:46 +00002166 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
Eric Christopher820256b2009-08-21 04:06:45 +00002167
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002168 if (isSingleWord()) {
Chris Lattner17f71652008-08-17 07:19:36 +00002169 char Buffer[65];
2170 char *BufPtr = Buffer+65;
Eric Christopher820256b2009-08-21 04:06:45 +00002171
Chris Lattner17f71652008-08-17 07:19:36 +00002172 uint64_t N;
Chris Lattnerb91c9032010-08-18 00:33:47 +00002173 if (!Signed) {
Chris Lattner17f71652008-08-17 07:19:36 +00002174 N = getZExtValue();
Chris Lattnerb91c9032010-08-18 00:33:47 +00002175 } else {
2176 int64_t I = getSExtValue();
2177 if (I >= 0) {
2178 N = I;
2179 } else {
2180 Str.push_back('-');
2181 N = -(uint64_t)I;
2182 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002183 }
Eric Christopher820256b2009-08-21 04:06:45 +00002184
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002185 while (*Prefix) {
2186 Str.push_back(*Prefix);
2187 ++Prefix;
2188 };
2189
Chris Lattner17f71652008-08-17 07:19:36 +00002190 while (N) {
2191 *--BufPtr = Digits[N % Radix];
2192 N /= Radix;
2193 }
2194 Str.append(BufPtr, Buffer+65);
2195 return;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002196 }
2197
Chris Lattner17f71652008-08-17 07:19:36 +00002198 APInt Tmp(*this);
Eric Christopher820256b2009-08-21 04:06:45 +00002199
Chris Lattner17f71652008-08-17 07:19:36 +00002200 if (Signed && isNegative()) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002201 // They want to print the signed version and it is a negative value
2202 // Flip the bits and add one to turn it into the equivalent positive
2203 // value and put a '-' in the result.
Jay Foad25a5e4c2010-12-01 08:53:58 +00002204 Tmp.flipAllBits();
Jakub Staszak773be0c2013-03-20 23:56:19 +00002205 ++Tmp;
Chris Lattner17f71652008-08-17 07:19:36 +00002206 Str.push_back('-');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002207 }
Eric Christopher820256b2009-08-21 04:06:45 +00002208
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002209 while (*Prefix) {
2210 Str.push_back(*Prefix);
2211 ++Prefix;
2212 };
2213
Chris Lattner17f71652008-08-17 07:19:36 +00002214 // We insert the digits backward, then reverse them to get the right order.
2215 unsigned StartDig = Str.size();
Eric Christopher820256b2009-08-21 04:06:45 +00002216
2217 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2218 // because the number of bits per digit (1, 3 and 4 respectively) divides
Chris Lattner17f71652008-08-17 07:19:36 +00002219 // equaly. We just shift until the value is zero.
Douglas Gregor663c0682011-09-14 15:54:46 +00002220 if (Radix == 2 || Radix == 8 || Radix == 16) {
Chris Lattner17f71652008-08-17 07:19:36 +00002221 // Just shift tmp right for each digit width until it becomes zero
2222 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2223 unsigned MaskAmt = Radix - 1;
Eric Christopher820256b2009-08-21 04:06:45 +00002224
Chris Lattner17f71652008-08-17 07:19:36 +00002225 while (Tmp != 0) {
2226 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2227 Str.push_back(Digits[Digit]);
2228 Tmp = Tmp.lshr(ShiftAmt);
2229 }
2230 } else {
Douglas Gregor663c0682011-09-14 15:54:46 +00002231 APInt divisor(Radix == 10? 4 : 8, Radix);
Chris Lattner17f71652008-08-17 07:19:36 +00002232 while (Tmp != 0) {
2233 APInt APdigit(1, 0);
2234 APInt tmp2(Tmp.getBitWidth(), 0);
Eric Christopher820256b2009-08-21 04:06:45 +00002235 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
Chris Lattner17f71652008-08-17 07:19:36 +00002236 &APdigit);
Chris Lattner77527f52009-01-21 18:09:24 +00002237 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner17f71652008-08-17 07:19:36 +00002238 assert(Digit < Radix && "divide failed");
2239 Str.push_back(Digits[Digit]);
2240 Tmp = tmp2;
2241 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002242 }
Eric Christopher820256b2009-08-21 04:06:45 +00002243
Chris Lattner17f71652008-08-17 07:19:36 +00002244 // Reverse the digits before returning.
2245 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002246}
2247
Pawel Bylica6eeeac72015-04-06 13:31:39 +00002248/// Returns the APInt as a std::string. Note that this is an inefficient method.
2249/// It is better to pass in a SmallVector/SmallString to the methods above.
Chris Lattner17f71652008-08-17 07:19:36 +00002250std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2251 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002252 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
Daniel Dunbar8b0b1152009-08-19 20:07:03 +00002253 return S.str();
Reid Spencer1ba83352007-02-21 03:55:44 +00002254}
Chris Lattner6b695682007-08-16 15:56:55 +00002255
Matthias Braun8c209aa2017-01-28 02:02:38 +00002256#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Yaron Kereneb2a2542016-01-29 20:50:44 +00002257LLVM_DUMP_METHOD void APInt::dump() const {
Chris Lattner17f71652008-08-17 07:19:36 +00002258 SmallString<40> S, U;
2259 this->toStringUnsigned(U);
2260 this->toStringSigned(S);
David Greenef32fcb42010-01-05 01:28:52 +00002261 dbgs() << "APInt(" << BitWidth << "b, "
Davide Italiano5a473d22017-01-31 21:26:18 +00002262 << U << "u " << S << "s)\n";
Chris Lattner17f71652008-08-17 07:19:36 +00002263}
Matthias Braun8c209aa2017-01-28 02:02:38 +00002264#endif
Chris Lattner17f71652008-08-17 07:19:36 +00002265
Chris Lattner0c19df42008-08-23 22:23:09 +00002266void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner17f71652008-08-17 07:19:36 +00002267 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002268 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
Yaron Keren92e1b622015-03-18 10:17:07 +00002269 OS << S;
Chris Lattner17f71652008-08-17 07:19:36 +00002270}
2271
Chris Lattner6b695682007-08-16 15:56:55 +00002272// This implements a variety of operations on a representation of
2273// arbitrary precision, two's-complement, bignum integer values.
2274
Chris Lattner96cffa62009-08-23 23:11:28 +00002275// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2276// and unrestricting assumption.
Benjamin Kramer7000ca32014-10-12 17:56:40 +00002277static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!");
Chris Lattner6b695682007-08-16 15:56:55 +00002278
2279/* Some handy functions local to this file. */
2280namespace {
2281
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002282 /* Returns the integer part with the least significant BITS set.
2283 BITS cannot be zero. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002284 static inline integerPart
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002285 lowBitMask(unsigned int bits)
2286 {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002287 assert(bits != 0 && bits <= integerPartWidth);
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002288
2289 return ~(integerPart) 0 >> (integerPartWidth - bits);
2290 }
2291
Neil Boothc8b650a2007-10-06 00:43:45 +00002292 /* Returns the value of the lower half of PART. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002293 static inline integerPart
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002294 lowHalf(integerPart part)
2295 {
2296 return part & lowBitMask(integerPartWidth / 2);
2297 }
2298
Neil Boothc8b650a2007-10-06 00:43:45 +00002299 /* Returns the value of the upper half of PART. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002300 static inline integerPart
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002301 highHalf(integerPart part)
2302 {
2303 return part >> (integerPartWidth / 2);
2304 }
2305
Neil Boothc8b650a2007-10-06 00:43:45 +00002306 /* Returns the bit number of the most significant set bit of a part.
2307 If the input number has no bits set -1U is returned. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002308 static unsigned int
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002309 partMSB(integerPart value)
Chris Lattner6b695682007-08-16 15:56:55 +00002310 {
Benjamin Kramerb565f892013-06-01 11:26:39 +00002311 return findLastSet(value, ZB_Max);
Chris Lattner6b695682007-08-16 15:56:55 +00002312 }
2313
Neil Boothc8b650a2007-10-06 00:43:45 +00002314 /* Returns the bit number of the least significant set bit of a
2315 part. If the input number has no bits set -1U is returned. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002316 static unsigned int
Chris Lattner6b695682007-08-16 15:56:55 +00002317 partLSB(integerPart value)
2318 {
Benjamin Kramerb565f892013-06-01 11:26:39 +00002319 return findFirstSet(value, ZB_Max);
Chris Lattner6b695682007-08-16 15:56:55 +00002320 }
Alexander Kornienkof00654e2015-06-23 09:49:53 +00002321}
Chris Lattner6b695682007-08-16 15:56:55 +00002322
2323/* Sets the least significant part of a bignum to the input value, and
2324 zeroes out higher parts. */
2325void
2326APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2327{
2328 unsigned int i;
2329
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002330 assert(parts > 0);
Neil Boothb6182162007-10-08 13:47:12 +00002331
Chris Lattner6b695682007-08-16 15:56:55 +00002332 dst[0] = part;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002333 for (i = 1; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002334 dst[i] = 0;
2335}
2336
2337/* Assign one bignum to another. */
2338void
2339APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2340{
2341 unsigned int i;
2342
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002343 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002344 dst[i] = src[i];
2345}
2346
2347/* Returns true if a bignum is zero, false otherwise. */
2348bool
2349APInt::tcIsZero(const integerPart *src, unsigned int parts)
2350{
2351 unsigned int i;
2352
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002353 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002354 if (src[i])
2355 return false;
2356
2357 return true;
2358}
2359
2360/* Extract the given bit of a bignum; returns 0 or 1. */
2361int
2362APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2363{
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002364 return (parts[bit / integerPartWidth] &
2365 ((integerPart) 1 << bit % integerPartWidth)) != 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002366}
2367
John McCalldcb9a7a2010-02-28 02:51:25 +00002368/* Set the given bit of a bignum. */
Chris Lattner6b695682007-08-16 15:56:55 +00002369void
2370APInt::tcSetBit(integerPart *parts, unsigned int bit)
2371{
2372 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2373}
2374
John McCalldcb9a7a2010-02-28 02:51:25 +00002375/* Clears the given bit of a bignum. */
2376void
2377APInt::tcClearBit(integerPart *parts, unsigned int bit)
2378{
2379 parts[bit / integerPartWidth] &=
2380 ~((integerPart) 1 << (bit % integerPartWidth));
2381}
2382
Neil Boothc8b650a2007-10-06 00:43:45 +00002383/* Returns the bit number of the least significant set bit of a
2384 number. If the input number has no bits set -1U is returned. */
Chris Lattner6b695682007-08-16 15:56:55 +00002385unsigned int
2386APInt::tcLSB(const integerPart *parts, unsigned int n)
2387{
2388 unsigned int i, lsb;
2389
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002390 for (i = 0; i < n; i++) {
Chris Lattner6b695682007-08-16 15:56:55 +00002391 if (parts[i] != 0) {
2392 lsb = partLSB(parts[i]);
2393
2394 return lsb + i * integerPartWidth;
2395 }
2396 }
2397
2398 return -1U;
2399}
2400
Neil Boothc8b650a2007-10-06 00:43:45 +00002401/* Returns the bit number of the most significant set bit of a number.
2402 If the input number has no bits set -1U is returned. */
Chris Lattner6b695682007-08-16 15:56:55 +00002403unsigned int
2404APInt::tcMSB(const integerPart *parts, unsigned int n)
2405{
2406 unsigned int msb;
2407
2408 do {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002409 --n;
Chris Lattner6b695682007-08-16 15:56:55 +00002410
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002411 if (parts[n] != 0) {
2412 msb = partMSB(parts[n]);
Chris Lattner6b695682007-08-16 15:56:55 +00002413
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002414 return msb + n * integerPartWidth;
2415 }
Chris Lattner6b695682007-08-16 15:56:55 +00002416 } while (n);
2417
2418 return -1U;
2419}
2420
Neil Boothb6182162007-10-08 13:47:12 +00002421/* Copy the bit vector of width srcBITS from SRC, starting at bit
2422 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2423 the least significant bit of DST. All high bits above srcBITS in
2424 DST are zero-filled. */
2425void
Evan Chengdb338f32009-05-21 23:47:47 +00002426APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Boothb6182162007-10-08 13:47:12 +00002427 unsigned int srcBits, unsigned int srcLSB)
2428{
2429 unsigned int firstSrcPart, dstParts, shift, n;
2430
2431 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002432 assert(dstParts <= dstCount);
Neil Boothb6182162007-10-08 13:47:12 +00002433
2434 firstSrcPart = srcLSB / integerPartWidth;
2435 tcAssign (dst, src + firstSrcPart, dstParts);
2436
2437 shift = srcLSB % integerPartWidth;
2438 tcShiftRight (dst, dstParts, shift);
2439
2440 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2441 in DST. If this is less that srcBits, append the rest, else
2442 clear the high bits. */
2443 n = dstParts * integerPartWidth - shift;
2444 if (n < srcBits) {
2445 integerPart mask = lowBitMask (srcBits - n);
2446 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2447 << n % integerPartWidth);
2448 } else if (n > srcBits) {
Neil Booth7e74b172007-10-12 15:31:31 +00002449 if (srcBits % integerPartWidth)
2450 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Boothb6182162007-10-08 13:47:12 +00002451 }
2452
2453 /* Clear high parts. */
2454 while (dstParts < dstCount)
2455 dst[dstParts++] = 0;
2456}
2457
Chris Lattner6b695682007-08-16 15:56:55 +00002458/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2459integerPart
2460APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2461 integerPart c, unsigned int parts)
2462{
2463 unsigned int i;
2464
2465 assert(c <= 1);
2466
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002467 for (i = 0; i < parts; i++) {
Chris Lattner6b695682007-08-16 15:56:55 +00002468 integerPart l;
2469
2470 l = dst[i];
2471 if (c) {
2472 dst[i] += rhs[i] + 1;
2473 c = (dst[i] <= l);
2474 } else {
2475 dst[i] += rhs[i];
2476 c = (dst[i] < l);
2477 }
2478 }
2479
2480 return c;
2481}
2482
2483/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2484integerPart
2485APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2486 integerPart c, unsigned int parts)
2487{
2488 unsigned int i;
2489
2490 assert(c <= 1);
2491
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002492 for (i = 0; i < parts; i++) {
Chris Lattner6b695682007-08-16 15:56:55 +00002493 integerPart l;
2494
2495 l = dst[i];
2496 if (c) {
2497 dst[i] -= rhs[i] + 1;
2498 c = (dst[i] >= l);
2499 } else {
2500 dst[i] -= rhs[i];
2501 c = (dst[i] > l);
2502 }
2503 }
2504
2505 return c;
2506}
2507
2508/* Negate a bignum in-place. */
2509void
2510APInt::tcNegate(integerPart *dst, unsigned int parts)
2511{
2512 tcComplement(dst, parts);
2513 tcIncrement(dst, parts);
2514}
2515
Neil Boothc8b650a2007-10-06 00:43:45 +00002516/* DST += SRC * MULTIPLIER + CARRY if add is true
2517 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner6b695682007-08-16 15:56:55 +00002518
2519 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2520 they must start at the same point, i.e. DST == SRC.
2521
2522 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2523 returned. Otherwise DST is filled with the least significant
2524 DSTPARTS parts of the result, and if all of the omitted higher
2525 parts were zero return zero, otherwise overflow occurred and
2526 return one. */
2527int
2528APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2529 integerPart multiplier, integerPart carry,
2530 unsigned int srcParts, unsigned int dstParts,
2531 bool add)
2532{
2533 unsigned int i, n;
2534
2535 /* Otherwise our writes of DST kill our later reads of SRC. */
2536 assert(dst <= src || dst >= src + srcParts);
2537 assert(dstParts <= srcParts + 1);
2538
2539 /* N loops; minimum of dstParts and srcParts. */
2540 n = dstParts < srcParts ? dstParts: srcParts;
2541
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002542 for (i = 0; i < n; i++) {
Chris Lattner6b695682007-08-16 15:56:55 +00002543 integerPart low, mid, high, srcPart;
2544
2545 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2546
2547 This cannot overflow, because
2548
2549 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2550
2551 which is less than n^2. */
2552
2553 srcPart = src[i];
2554
2555 if (multiplier == 0 || srcPart == 0) {
2556 low = carry;
2557 high = 0;
2558 } else {
2559 low = lowHalf(srcPart) * lowHalf(multiplier);
2560 high = highHalf(srcPart) * highHalf(multiplier);
2561
2562 mid = lowHalf(srcPart) * highHalf(multiplier);
2563 high += highHalf(mid);
2564 mid <<= integerPartWidth / 2;
2565 if (low + mid < low)
2566 high++;
2567 low += mid;
2568
2569 mid = highHalf(srcPart) * lowHalf(multiplier);
2570 high += highHalf(mid);
2571 mid <<= integerPartWidth / 2;
2572 if (low + mid < low)
2573 high++;
2574 low += mid;
2575
2576 /* Now add carry. */
2577 if (low + carry < low)
2578 high++;
2579 low += carry;
2580 }
2581
2582 if (add) {
2583 /* And now DST[i], and store the new low part there. */
2584 if (low + dst[i] < low)
2585 high++;
2586 dst[i] += low;
2587 } else
2588 dst[i] = low;
2589
2590 carry = high;
2591 }
2592
2593 if (i < dstParts) {
2594 /* Full multiplication, there is no overflow. */
2595 assert(i + 1 == dstParts);
2596 dst[i] = carry;
2597 return 0;
2598 } else {
2599 /* We overflowed if there is carry. */
2600 if (carry)
2601 return 1;
2602
2603 /* We would overflow if any significant unwritten parts would be
2604 non-zero. This is true if any remaining src parts are non-zero
2605 and the multiplier is non-zero. */
2606 if (multiplier)
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002607 for (; i < srcParts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002608 if (src[i])
2609 return 1;
2610
2611 /* We fitted in the narrow destination. */
2612 return 0;
2613 }
2614}
2615
2616/* DST = LHS * RHS, where DST has the same width as the operands and
2617 is filled with the least significant parts of the result. Returns
2618 one if overflow occurred, otherwise zero. DST must be disjoint
2619 from both operands. */
2620int
2621APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2622 const integerPart *rhs, unsigned int parts)
2623{
2624 unsigned int i;
2625 int overflow;
2626
2627 assert(dst != lhs && dst != rhs);
2628
2629 overflow = 0;
2630 tcSet(dst, 0, parts);
2631
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002632 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002633 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2634 parts - i, true);
2635
2636 return overflow;
2637}
2638
Neil Booth0ea72a92007-10-06 00:24:48 +00002639/* DST = LHS * RHS, where DST has width the sum of the widths of the
2640 operands. No overflow occurs. DST must be disjoint from both
2641 operands. Returns the number of parts required to hold the
2642 result. */
2643unsigned int
Chris Lattner6b695682007-08-16 15:56:55 +00002644APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth0ea72a92007-10-06 00:24:48 +00002645 const integerPart *rhs, unsigned int lhsParts,
2646 unsigned int rhsParts)
Chris Lattner6b695682007-08-16 15:56:55 +00002647{
Neil Booth0ea72a92007-10-06 00:24:48 +00002648 /* Put the narrower number on the LHS for less loops below. */
2649 if (lhsParts > rhsParts) {
2650 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2651 } else {
2652 unsigned int n;
Chris Lattner6b695682007-08-16 15:56:55 +00002653
Neil Booth0ea72a92007-10-06 00:24:48 +00002654 assert(dst != lhs && dst != rhs);
Chris Lattner6b695682007-08-16 15:56:55 +00002655
Neil Booth0ea72a92007-10-06 00:24:48 +00002656 tcSet(dst, 0, rhsParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002657
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002658 for (n = 0; n < lhsParts; n++)
Neil Booth0ea72a92007-10-06 00:24:48 +00002659 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner6b695682007-08-16 15:56:55 +00002660
Neil Booth0ea72a92007-10-06 00:24:48 +00002661 n = lhsParts + rhsParts;
2662
2663 return n - (dst[n - 1] == 0);
2664 }
Chris Lattner6b695682007-08-16 15:56:55 +00002665}
2666
2667/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2668 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2669 set REMAINDER to the remainder, return zero. i.e.
2670
2671 OLD_LHS = RHS * LHS + REMAINDER
2672
2673 SCRATCH is a bignum of the same size as the operands and result for
2674 use by the routine; its contents need not be initialized and are
2675 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2676*/
2677int
2678APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2679 integerPart *remainder, integerPart *srhs,
2680 unsigned int parts)
2681{
2682 unsigned int n, shiftCount;
2683 integerPart mask;
2684
2685 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2686
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002687 shiftCount = tcMSB(rhs, parts) + 1;
2688 if (shiftCount == 0)
Chris Lattner6b695682007-08-16 15:56:55 +00002689 return true;
2690
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002691 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner6b695682007-08-16 15:56:55 +00002692 n = shiftCount / integerPartWidth;
2693 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2694
2695 tcAssign(srhs, rhs, parts);
2696 tcShiftLeft(srhs, parts, shiftCount);
2697 tcAssign(remainder, lhs, parts);
2698 tcSet(lhs, 0, parts);
2699
2700 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2701 the total. */
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002702 for (;;) {
Chris Lattner6b695682007-08-16 15:56:55 +00002703 int compare;
2704
2705 compare = tcCompare(remainder, srhs, parts);
2706 if (compare >= 0) {
2707 tcSubtract(remainder, srhs, 0, parts);
2708 lhs[n] |= mask;
2709 }
2710
2711 if (shiftCount == 0)
2712 break;
2713 shiftCount--;
2714 tcShiftRight(srhs, parts, 1);
Richard Trieu7a083812016-02-18 22:09:30 +00002715 if ((mask >>= 1) == 0) {
2716 mask = (integerPart) 1 << (integerPartWidth - 1);
2717 n--;
2718 }
Chris Lattner6b695682007-08-16 15:56:55 +00002719 }
2720
2721 return false;
2722}
2723
2724/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2725 There are no restrictions on COUNT. */
2726void
2727APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2728{
Neil Boothb6182162007-10-08 13:47:12 +00002729 if (count) {
2730 unsigned int jump, shift;
Chris Lattner6b695682007-08-16 15:56:55 +00002731
Neil Boothb6182162007-10-08 13:47:12 +00002732 /* Jump is the inter-part jump; shift is is intra-part shift. */
2733 jump = count / integerPartWidth;
2734 shift = count % integerPartWidth;
Chris Lattner6b695682007-08-16 15:56:55 +00002735
Neil Boothb6182162007-10-08 13:47:12 +00002736 while (parts > jump) {
2737 integerPart part;
Chris Lattner6b695682007-08-16 15:56:55 +00002738
Neil Boothb6182162007-10-08 13:47:12 +00002739 parts--;
Chris Lattner6b695682007-08-16 15:56:55 +00002740
Neil Boothb6182162007-10-08 13:47:12 +00002741 /* dst[i] comes from the two parts src[i - jump] and, if we have
2742 an intra-part shift, src[i - jump - 1]. */
2743 part = dst[parts - jump];
2744 if (shift) {
2745 part <<= shift;
Chris Lattner6b695682007-08-16 15:56:55 +00002746 if (parts >= jump + 1)
2747 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2748 }
2749
Neil Boothb6182162007-10-08 13:47:12 +00002750 dst[parts] = part;
2751 }
Chris Lattner6b695682007-08-16 15:56:55 +00002752
Neil Boothb6182162007-10-08 13:47:12 +00002753 while (parts > 0)
2754 dst[--parts] = 0;
2755 }
Chris Lattner6b695682007-08-16 15:56:55 +00002756}
2757
2758/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2759 zero. There are no restrictions on COUNT. */
2760void
2761APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2762{
Neil Boothb6182162007-10-08 13:47:12 +00002763 if (count) {
2764 unsigned int i, jump, shift;
Chris Lattner6b695682007-08-16 15:56:55 +00002765
Neil Boothb6182162007-10-08 13:47:12 +00002766 /* Jump is the inter-part jump; shift is is intra-part shift. */
2767 jump = count / integerPartWidth;
2768 shift = count % integerPartWidth;
Chris Lattner6b695682007-08-16 15:56:55 +00002769
Neil Boothb6182162007-10-08 13:47:12 +00002770 /* Perform the shift. This leaves the most significant COUNT bits
2771 of the result at zero. */
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002772 for (i = 0; i < parts; i++) {
Neil Boothb6182162007-10-08 13:47:12 +00002773 integerPart part;
Chris Lattner6b695682007-08-16 15:56:55 +00002774
Neil Boothb6182162007-10-08 13:47:12 +00002775 if (i + jump >= parts) {
2776 part = 0;
2777 } else {
2778 part = dst[i + jump];
2779 if (shift) {
2780 part >>= shift;
2781 if (i + jump + 1 < parts)
2782 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2783 }
Chris Lattner6b695682007-08-16 15:56:55 +00002784 }
Chris Lattner6b695682007-08-16 15:56:55 +00002785
Neil Boothb6182162007-10-08 13:47:12 +00002786 dst[i] = part;
2787 }
Chris Lattner6b695682007-08-16 15:56:55 +00002788 }
2789}
2790
2791/* Bitwise and of two bignums. */
2792void
2793APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2794{
2795 unsigned int i;
2796
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002797 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002798 dst[i] &= rhs[i];
2799}
2800
2801/* Bitwise inclusive or of two bignums. */
2802void
2803APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2804{
2805 unsigned int i;
2806
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002807 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002808 dst[i] |= rhs[i];
2809}
2810
2811/* Bitwise exclusive or of two bignums. */
2812void
2813APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2814{
2815 unsigned int i;
2816
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002817 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002818 dst[i] ^= rhs[i];
2819}
2820
2821/* Complement a bignum in-place. */
2822void
2823APInt::tcComplement(integerPart *dst, unsigned int parts)
2824{
2825 unsigned int i;
2826
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002827 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002828 dst[i] = ~dst[i];
2829}
2830
2831/* Comparison (unsigned) of two bignums. */
2832int
2833APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2834 unsigned int parts)
2835{
2836 while (parts) {
2837 parts--;
2838 if (lhs[parts] == rhs[parts])
2839 continue;
2840
2841 if (lhs[parts] > rhs[parts])
2842 return 1;
2843 else
2844 return -1;
2845 }
2846
2847 return 0;
2848}
2849
2850/* Increment a bignum in-place, return the carry flag. */
2851integerPart
2852APInt::tcIncrement(integerPart *dst, unsigned int parts)
2853{
2854 unsigned int i;
2855
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002856 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002857 if (++dst[i] != 0)
2858 break;
2859
2860 return i == parts;
2861}
2862
Michael Gottesman9d406f42013-05-28 19:50:20 +00002863/* Decrement a bignum in-place, return the borrow flag. */
2864integerPart
2865APInt::tcDecrement(integerPart *dst, unsigned int parts) {
2866 for (unsigned int i = 0; i < parts; i++) {
2867 // If the current word is non-zero, then the decrement has no effect on the
2868 // higher-order words of the integer and no borrow can occur. Exit early.
2869 if (dst[i]--)
2870 return 0;
2871 }
2872 // If every word was zero, then there is a borrow.
2873 return 1;
2874}
2875
2876
Chris Lattner6b695682007-08-16 15:56:55 +00002877/* Set the least significant BITS bits of a bignum, clear the
2878 rest. */
2879void
2880APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2881 unsigned int bits)
2882{
2883 unsigned int i;
2884
2885 i = 0;
2886 while (bits > integerPartWidth) {
2887 dst[i++] = ~(integerPart) 0;
2888 bits -= integerPartWidth;
2889 }
2890
2891 if (bits)
2892 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2893
2894 while (i < parts)
2895 dst[i++] = 0;
2896}