blob: 3ab76f04f28039e32cf7e6c4bdda304f3165a8c4 [file] [log] [blame]
Jim Cownie5e8470a2013-09-27 10:38:44 +00001/*
2 * kmp_affinity.cpp -- affinity management
Jim Cownie5e8470a2013-09-27 10:38:44 +00003 */
4
5
6//===----------------------------------------------------------------------===//
7//
8// The LLVM Compiler Infrastructure
9//
10// This file is dual licensed under the MIT and the University of Illinois Open
11// Source Licenses. See LICENSE.txt for details.
12//
13//===----------------------------------------------------------------------===//
14
15
16#include "kmp.h"
17#include "kmp_i18n.h"
18#include "kmp_io.h"
19#include "kmp_str.h"
Jim Cownie4cc4bb42014-10-07 16:25:50 +000020#include "kmp_wrapper_getpid.h"
Jonathan Peyton17078362015-09-10 19:22:07 +000021#include "kmp_affinity.h"
22
23// Store the real or imagined machine hierarchy here
24static hierarchy_info machine_hierarchy;
25
26void __kmp_cleanup_hierarchy() {
27 machine_hierarchy.fini();
28}
29
30void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
31 kmp_uint32 depth;
32 // The test below is true if affinity is available, but set to "none". Need to init on first use of hierarchical barrier.
33 if (TCR_1(machine_hierarchy.uninitialized))
34 machine_hierarchy.init(NULL, nproc);
Jonathan Peyton17078362015-09-10 19:22:07 +000035
Jonathan Peyton7dee82e2015-11-09 16:24:53 +000036 // Adjust the hierarchy in case num threads exceeds original
37 if (nproc > machine_hierarchy.base_num_threads)
38 machine_hierarchy.resize(nproc);
39
Jonathan Peyton17078362015-09-10 19:22:07 +000040 depth = machine_hierarchy.depth;
41 KMP_DEBUG_ASSERT(depth > 0);
Jonathan Peyton17078362015-09-10 19:22:07 +000042
43 thr_bar->depth = depth;
44 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0]-1;
45 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
46}
Jim Cownie5e8470a2013-09-27 10:38:44 +000047
Alp Toker763b9392014-02-28 09:42:41 +000048#if KMP_AFFINITY_SUPPORTED
Jim Cownie5e8470a2013-09-27 10:38:44 +000049
50//
51// Print the affinity mask to the character array in a pretty format.
52//
Jonathan Peyton01dcf362015-11-30 20:02:59 +000053#if KMP_USE_HWLOC
54char *
55__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
56{
57 int num_chars_to_write, num_chars_written;
58 char* scan;
59 KMP_ASSERT(buf_len >= 40);
60
61 // bufsize of 0 just retrieves the needed buffer size.
62 num_chars_to_write = hwloc_bitmap_list_snprintf(buf, 0, (hwloc_bitmap_t)mask);
63
64 // need '{', "xxxxxxxx...xx", '}', '\0' = num_chars_to_write + 3 bytes
65 // * num_chars_to_write returned by hwloc_bitmap_list_snprintf does not
66 // take into account the '\0' character.
67 if(hwloc_bitmap_iszero((hwloc_bitmap_t)mask)) {
68 KMP_SNPRINTF(buf, buf_len, "{<empty>}");
69 } else if(num_chars_to_write < buf_len - 3) {
70 // no problem fitting the mask into buf_len number of characters
71 buf[0] = '{';
72 // use buf_len-3 because we have the three characters: '{' '}' '\0' to add to the buffer
73 num_chars_written = hwloc_bitmap_list_snprintf(buf+1, buf_len-3, (hwloc_bitmap_t)mask);
74 buf[num_chars_written+1] = '}';
75 buf[num_chars_written+2] = '\0';
76 } else {
77 // Need to truncate the affinity mask string and add ellipsis.
78 // To do this, we first write out the '{' + str(mask)
79 buf[0] = '{';
Jonathan Peyton1d5487c2016-04-25 21:08:31 +000080 hwloc_bitmap_list_snprintf(buf+1, buf_len-1, (hwloc_bitmap_t)mask);
Jonathan Peyton01dcf362015-11-30 20:02:59 +000081 // then, what we do here is go to the 7th to last character, then go backwards until we are NOT
82 // on a digit then write "...}\0". This way it is a clean ellipsis addition and we don't
83 // overwrite part of an affinity number. i.e., we avoid something like { 45, 67, 8...} and get
84 // { 45, 67,...} instead.
85 scan = buf + buf_len - 7;
86 while(*scan >= '0' && *scan <= '9' && scan >= buf)
87 scan--;
88 *(scan+1) = '.';
89 *(scan+2) = '.';
90 *(scan+3) = '.';
91 *(scan+4) = '}';
92 *(scan+5) = '\0';
93 }
94 return buf;
95}
96#else
Jim Cownie5e8470a2013-09-27 10:38:44 +000097char *
98__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
99{
100 KMP_ASSERT(buf_len >= 40);
101 char *scan = buf;
102 char *end = buf + buf_len - 1;
103
104 //
105 // Find first element / check for empty set.
106 //
107 size_t i;
108 for (i = 0; i < KMP_CPU_SETSIZE; i++) {
109 if (KMP_CPU_ISSET(i, mask)) {
110 break;
111 }
112 }
113 if (i == KMP_CPU_SETSIZE) {
Jonathan Peyton7edeef12015-09-25 17:23:17 +0000114 KMP_SNPRINTF(scan, end-scan+1, "{<empty>}");
Jim Cownie5e8470a2013-09-27 10:38:44 +0000115 while (*scan != '\0') scan++;
116 KMP_ASSERT(scan <= end);
117 return buf;
118 }
119
Jonathan Peyton7edeef12015-09-25 17:23:17 +0000120 KMP_SNPRINTF(scan, end-scan+1, "{%ld", (long)i);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000121 while (*scan != '\0') scan++;
122 i++;
123 for (; i < KMP_CPU_SETSIZE; i++) {
124 if (! KMP_CPU_ISSET(i, mask)) {
125 continue;
126 }
127
128 //
129 // Check for buffer overflow. A string of the form ",<n>" will have
130 // at most 10 characters, plus we want to leave room to print ",...}"
131 // if the set is too large to print for a total of 15 characters.
132 // We already left room for '\0' in setting end.
133 //
134 if (end - scan < 15) {
135 break;
136 }
Jonathan Peyton7edeef12015-09-25 17:23:17 +0000137 KMP_SNPRINTF(scan, end-scan+1, ",%-ld", (long)i);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000138 while (*scan != '\0') scan++;
139 }
140 if (i < KMP_CPU_SETSIZE) {
Jonathan Peyton7edeef12015-09-25 17:23:17 +0000141 KMP_SNPRINTF(scan, end-scan+1, ",...");
Jim Cownie5e8470a2013-09-27 10:38:44 +0000142 while (*scan != '\0') scan++;
143 }
Jonathan Peyton7edeef12015-09-25 17:23:17 +0000144 KMP_SNPRINTF(scan, end-scan+1, "}");
Jim Cownie5e8470a2013-09-27 10:38:44 +0000145 while (*scan != '\0') scan++;
146 KMP_ASSERT(scan <= end);
147 return buf;
148}
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000149#endif // KMP_USE_HWLOC
Jim Cownie5e8470a2013-09-27 10:38:44 +0000150
151
152void
153__kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask)
154{
155 KMP_CPU_ZERO(mask);
156
Andrey Churbanov7daf9802015-01-27 16:52:57 +0000157# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +0000158
159 if (__kmp_num_proc_groups > 1) {
160 int group;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000161 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
162 for (group = 0; group < __kmp_num_proc_groups; group++) {
163 int i;
164 int num = __kmp_GetActiveProcessorCount(group);
165 for (i = 0; i < num; i++) {
166 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
167 }
168 }
169 }
170 else
171
Andrey Churbanov7daf9802015-01-27 16:52:57 +0000172# endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +0000173
174 {
175 int proc;
176 for (proc = 0; proc < __kmp_xproc; proc++) {
177 KMP_CPU_SET(proc, mask);
178 }
179 }
180}
181
Jim Cownie5e8470a2013-09-27 10:38:44 +0000182//
183// When sorting by labels, __kmp_affinity_assign_child_nums() must first be
184// called to renumber the labels from [0..n] and place them into the child_num
185// vector of the address object. This is done in case the labels used for
Alp Toker8f2d3f02014-02-24 10:40:15 +0000186// the children at one node of the hierarchy differ from those used for
Jim Cownie5e8470a2013-09-27 10:38:44 +0000187// another node at the same level. Example: suppose the machine has 2 nodes
188// with 2 packages each. The first node contains packages 601 and 602, and
189// second node contains packages 603 and 604. If we try to sort the table
190// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
191// because we are paying attention to the labels themselves, not the ordinal
192// child numbers. By using the child numbers in the sort, the result is
193// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
194//
195static void
196__kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
197 int numAddrs)
198{
199 KMP_DEBUG_ASSERT(numAddrs > 0);
200 int depth = address2os->first.depth;
201 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
202 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth
203 * sizeof(unsigned));
204 int labCt;
205 for (labCt = 0; labCt < depth; labCt++) {
206 address2os[0].first.childNums[labCt] = counts[labCt] = 0;
207 lastLabel[labCt] = address2os[0].first.labels[labCt];
208 }
209 int i;
210 for (i = 1; i < numAddrs; i++) {
211 for (labCt = 0; labCt < depth; labCt++) {
212 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
213 int labCt2;
214 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
215 counts[labCt2] = 0;
216 lastLabel[labCt2] = address2os[i].first.labels[labCt2];
217 }
218 counts[labCt]++;
219 lastLabel[labCt] = address2os[i].first.labels[labCt];
220 break;
221 }
222 }
223 for (labCt = 0; labCt < depth; labCt++) {
224 address2os[i].first.childNums[labCt] = counts[labCt];
225 }
226 for (; labCt < (int)Address::maxDepth; labCt++) {
227 address2os[i].first.childNums[labCt] = 0;
228 }
229 }
230}
231
232
233//
234// All of the __kmp_affinity_create_*_map() routines should set
235// __kmp_affinity_masks to a vector of affinity mask objects of length
236// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and
237// return the number of levels in the machine topology tree (zero if
238// __kmp_affinity_type == affinity_none).
239//
240// All of the __kmp_affinity_create_*_map() routines should set *fullMask
241// to the affinity mask for the initialization thread. They need to save and
242// restore the mask, and it could be needed later, so saving it is just an
243// optimization to avoid calling kmp_get_system_affinity() again.
244//
245static kmp_affin_mask_t *fullMask = NULL;
246
247kmp_affin_mask_t *
248__kmp_affinity_get_fullMask() { return fullMask; }
249
250
251static int nCoresPerPkg, nPackages;
Andrey Churbanovf696c822015-01-27 16:55:43 +0000252static int __kmp_nThreadsPerCore;
253#ifndef KMP_DFLT_NTH_CORES
254static int __kmp_ncores;
255#endif
Jim Cownie5e8470a2013-09-27 10:38:44 +0000256
257//
258// __kmp_affinity_uniform_topology() doesn't work when called from
259// places which support arbitrarily many levels in the machine topology
260// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
261// __kmp_affinity_create_x2apicid_map().
262//
263inline static bool
264__kmp_affinity_uniform_topology()
265{
266 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
267}
268
269
270//
271// Print out the detailed machine topology map, i.e. the physical locations
272// of each OS proc.
273//
274static void
275__kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth,
276 int pkgLevel, int coreLevel, int threadLevel)
277{
278 int proc;
279
280 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
281 for (proc = 0; proc < len; proc++) {
282 int level;
283 kmp_str_buf_t buf;
284 __kmp_str_buf_init(&buf);
285 for (level = 0; level < depth; level++) {
286 if (level == threadLevel) {
287 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
288 }
289 else if (level == coreLevel) {
290 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
291 }
292 else if (level == pkgLevel) {
293 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
294 }
295 else if (level > pkgLevel) {
296 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
297 level - pkgLevel - 1);
298 }
299 else {
300 __kmp_str_buf_print(&buf, "L%d ", level);
301 }
302 __kmp_str_buf_print(&buf, "%d ",
303 address2os[proc].first.labels[level]);
304 }
305 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
306 buf.str);
307 __kmp_str_buf_free(&buf);
308 }
309}
310
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000311#if KMP_USE_HWLOC
312static int
313__kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
314 kmp_i18n_id_t *const msg_id)
315{
316 *address2os = NULL;
317 *msg_id = kmp_i18n_null;
318
319 //
320 // Save the affinity mask for the current thread.
321 //
322 kmp_affin_mask_t *oldMask;
323 KMP_CPU_ALLOC(oldMask);
324 __kmp_get_system_affinity(oldMask, TRUE);
325
326 unsigned depth = hwloc_topology_get_depth(__kmp_hwloc_topology);
327 int threadLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_PU);
328 int coreLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_CORE);
329 int pkgLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET);
330 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 0;
331
332 //
333 // This makes an assumption about the topology being four levels:
334 // machines -> packages -> cores -> hardware threads
335 //
336 hwloc_obj_t current_level_iterator = hwloc_get_root_obj(__kmp_hwloc_topology);
337 hwloc_obj_t child_iterator;
338 for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL);
339 child_iterator != NULL;
340 child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator))
341 {
342 nPackages++;
343 }
344 current_level_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, pkgLevel, 0);
345 for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL);
346 child_iterator != NULL;
347 child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator))
348 {
349 nCoresPerPkg++;
350 }
351 current_level_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, coreLevel, 0);
352 for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL);
353 child_iterator != NULL;
354 child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator))
355 {
356 __kmp_nThreadsPerCore++;
357 }
358
359 if (! KMP_AFFINITY_CAPABLE())
360 {
361 //
362 // Hack to try and infer the machine topology using only the data
363 // available from cpuid on the current thread, and __kmp_xproc.
364 //
365 KMP_ASSERT(__kmp_affinity_type == affinity_none);
366
367 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
368 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
369 if (__kmp_affinity_verbose) {
370 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
371 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
372 if (__kmp_affinity_uniform_topology()) {
373 KMP_INFORM(Uniform, "KMP_AFFINITY");
374 } else {
375 KMP_INFORM(NonUniform, "KMP_AFFINITY");
376 }
377 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
378 __kmp_nThreadsPerCore, __kmp_ncores);
379 }
380 return 0;
381 }
382
383 //
384 // Allocate the data structure to be returned.
385 //
386 AddrUnsPair *retval = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
387
388 unsigned num_hardware_threads = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, threadLevel);
389 unsigned i;
390 hwloc_obj_t hardware_thread_iterator;
391 int nActiveThreads = 0;
392 for(i=0;i<num_hardware_threads;i++) {
393 hardware_thread_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, threadLevel, i);
394 Address addr(3);
395 if(! KMP_CPU_ISSET(i, fullMask)) continue;
396 addr.labels[0] = hardware_thread_iterator->parent->parent->logical_index;
397 addr.labels[1] = hardware_thread_iterator->parent->logical_index % nCoresPerPkg;
398 addr.labels[2] = hardware_thread_iterator->logical_index % __kmp_nThreadsPerCore;
399 retval[nActiveThreads] = AddrUnsPair(addr, hardware_thread_iterator->os_index);
400 nActiveThreads++;
401 }
402
403 //
404 // If there's only one thread context to bind to, return now.
405 //
406 KMP_ASSERT(nActiveThreads > 0);
407 if (nActiveThreads == 1) {
408 __kmp_ncores = nPackages = 1;
409 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
410 if (__kmp_affinity_verbose) {
411 char buf[KMP_AFFIN_MASK_PRINT_LEN];
412 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
413
414 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
415 if (__kmp_affinity_respect_mask) {
416 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
417 } else {
418 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
419 }
420 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
421 KMP_INFORM(Uniform, "KMP_AFFINITY");
422 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
423 __kmp_nThreadsPerCore, __kmp_ncores);
424 }
425
426 if (__kmp_affinity_type == affinity_none) {
427 __kmp_free(retval);
428 KMP_CPU_FREE(oldMask);
429 return 0;
430 }
431
432 //
433 // Form an Address object which only includes the package level.
434 //
435 Address addr(1);
436 addr.labels[0] = retval[0].first.labels[pkgLevel-1];
437 retval[0].first = addr;
438
439 if (__kmp_affinity_gran_levels < 0) {
440 __kmp_affinity_gran_levels = 0;
441 }
442
443 if (__kmp_affinity_verbose) {
444 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
445 }
446
447 *address2os = retval;
448 KMP_CPU_FREE(oldMask);
449 return 1;
450 }
451
452 //
453 // Sort the table by physical Id.
454 //
455 qsort(retval, nActiveThreads, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
456
457 //
458 // When affinity is off, this routine will still be called to set
459 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
460 // nCoresPerPkg, & nPackages. Make sure all these vars are set
461 // correctly, and return if affinity is not enabled.
462 //
463 __kmp_ncores = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, coreLevel);
464
465 //
466 // Check to see if the machine topology is uniform
467 //
468 unsigned npackages = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, pkgLevel);
469 unsigned ncores = __kmp_ncores;
470 unsigned nthreads = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, threadLevel);
471 unsigned uniform = (npackages * nCoresPerPkg * __kmp_nThreadsPerCore == nthreads);
472
473 //
474 // Print the machine topology summary.
475 //
476 if (__kmp_affinity_verbose) {
477 char mask[KMP_AFFIN_MASK_PRINT_LEN];
478 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
479
480 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
481 if (__kmp_affinity_respect_mask) {
482 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
483 } else {
484 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
485 }
486 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
487 if (uniform) {
488 KMP_INFORM(Uniform, "KMP_AFFINITY");
489 } else {
490 KMP_INFORM(NonUniform, "KMP_AFFINITY");
491 }
492
493 kmp_str_buf_t buf;
494 __kmp_str_buf_init(&buf);
495
496 __kmp_str_buf_print(&buf, "%d", npackages);
497 //for (level = 1; level <= pkgLevel; level++) {
498 // __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
499 // }
500 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
501 __kmp_nThreadsPerCore, __kmp_ncores);
502
503 __kmp_str_buf_free(&buf);
504 }
505
506 if (__kmp_affinity_type == affinity_none) {
507 KMP_CPU_FREE(oldMask);
508 return 0;
509 }
510
511 //
512 // Find any levels with radiix 1, and remove them from the map
513 // (except for the package level).
514 //
515 int new_depth = 0;
516 int level;
517 unsigned proc;
518 for (level = 1; level < (int)depth; level++) {
519 if ((hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology,level) == 1) && (level != pkgLevel)) {
520 continue;
521 }
522 new_depth++;
523 }
524
525 //
526 // If we are removing any levels, allocate a new vector to return,
527 // and copy the relevant information to it.
528 //
529 if (new_depth != depth-1) {
530 AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate(
531 sizeof(AddrUnsPair) * nActiveThreads);
532 for (proc = 0; (int)proc < nActiveThreads; proc++) {
533 Address addr(new_depth);
534 new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
535 }
536 int new_level = 0;
537 for (level = 1; level < (int)depth; level++) {
538 if ((hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology,level) == 1) && (level != pkgLevel)) {
539 if (level == threadLevel) {
540 threadLevel = -1;
541 }
542 else if ((threadLevel >= 0) && (level < threadLevel)) {
543 threadLevel--;
544 }
545 if (level == coreLevel) {
546 coreLevel = -1;
547 }
548 else if ((coreLevel >= 0) && (level < coreLevel)) {
549 coreLevel--;
550 }
551 if (level < pkgLevel) {
552 pkgLevel--;
553 }
554 continue;
555 }
556 for (proc = 0; (int)proc < nActiveThreads; proc++) {
557 new_retval[proc].first.labels[new_level]
558 = retval[proc].first.labels[level];
559 }
560 new_level++;
561 }
562
563 __kmp_free(retval);
564 retval = new_retval;
565 depth = new_depth;
566 }
567
568 if (__kmp_affinity_gran_levels < 0) {
569 //
570 // Set the granularity level based on what levels are modeled
571 // in the machine topology map.
572 //
573 __kmp_affinity_gran_levels = 0;
574 if ((threadLevel-1 >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
575 __kmp_affinity_gran_levels++;
576 }
577 if ((coreLevel-1 >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
578 __kmp_affinity_gran_levels++;
579 }
580 if (__kmp_affinity_gran > affinity_gran_package) {
581 __kmp_affinity_gran_levels++;
582 }
583 }
584
585 if (__kmp_affinity_verbose) {
586 __kmp_affinity_print_topology(retval, nActiveThreads, depth-1, pkgLevel-1,
587 coreLevel-1, threadLevel-1);
588 }
589
590 KMP_CPU_FREE(oldMask);
591 *address2os = retval;
592 if(depth == 0) return 0;
593 else return depth-1;
594}
595#endif // KMP_USE_HWLOC
Jim Cownie5e8470a2013-09-27 10:38:44 +0000596
597//
598// If we don't know how to retrieve the machine's processor topology, or
599// encounter an error in doing so, this routine is called to form a "flat"
600// mapping of os thread id's <-> processor id's.
601//
602static int
603__kmp_affinity_create_flat_map(AddrUnsPair **address2os,
604 kmp_i18n_id_t *const msg_id)
605{
606 *address2os = NULL;
607 *msg_id = kmp_i18n_null;
608
609 //
610 // Even if __kmp_affinity_type == affinity_none, this routine might still
Andrey Churbanovf696c822015-01-27 16:55:43 +0000611 // called to set __kmp_ncores, as well as
Jim Cownie5e8470a2013-09-27 10:38:44 +0000612 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
613 //
614 if (! KMP_AFFINITY_CAPABLE()) {
615 KMP_ASSERT(__kmp_affinity_type == affinity_none);
616 __kmp_ncores = nPackages = __kmp_xproc;
617 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000618 if (__kmp_affinity_verbose) {
619 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
620 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
621 KMP_INFORM(Uniform, "KMP_AFFINITY");
622 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
623 __kmp_nThreadsPerCore, __kmp_ncores);
624 }
625 return 0;
626 }
627
628 //
629 // When affinity is off, this routine will still be called to set
Andrey Churbanovf696c822015-01-27 16:55:43 +0000630 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
Jim Cownie5e8470a2013-09-27 10:38:44 +0000631 // nCoresPerPkg, & nPackages. Make sure all these vars are set
632 // correctly, and return now if affinity is not enabled.
633 //
634 __kmp_ncores = nPackages = __kmp_avail_proc;
635 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000636 if (__kmp_affinity_verbose) {
637 char buf[KMP_AFFIN_MASK_PRINT_LEN];
638 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask);
639
640 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
641 if (__kmp_affinity_respect_mask) {
642 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
643 } else {
644 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
645 }
646 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
647 KMP_INFORM(Uniform, "KMP_AFFINITY");
648 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
649 __kmp_nThreadsPerCore, __kmp_ncores);
650 }
651 if (__kmp_affinity_type == affinity_none) {
652 return 0;
653 }
654
655 //
656 // Contruct the data structure to be returned.
657 //
658 *address2os = (AddrUnsPair*)
659 __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
660 int avail_ct = 0;
661 unsigned int i;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000662 KMP_CPU_SET_ITERATE(i, fullMask) {
Jim Cownie5e8470a2013-09-27 10:38:44 +0000663 //
664 // Skip this proc if it is not included in the machine model.
665 //
666 if (! KMP_CPU_ISSET(i, fullMask)) {
667 continue;
668 }
669
670 Address addr(1);
671 addr.labels[0] = i;
672 (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
673 }
674 if (__kmp_affinity_verbose) {
675 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
676 }
677
678 if (__kmp_affinity_gran_levels < 0) {
679 //
680 // Only the package level is modeled in the machine topology map,
681 // so the #levels of granularity is either 0 or 1.
682 //
683 if (__kmp_affinity_gran > affinity_gran_package) {
684 __kmp_affinity_gran_levels = 1;
685 }
686 else {
687 __kmp_affinity_gran_levels = 0;
688 }
689 }
690 return 1;
691}
692
693
Andrey Churbanov7daf9802015-01-27 16:52:57 +0000694# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +0000695
696//
697// If multiple Windows* OS processor groups exist, we can create a 2-level
698// topology map with the groups at level 0 and the individual procs at
699// level 1.
700//
701// This facilitates letting the threads float among all procs in a group,
702// if granularity=group (the default when there are multiple groups).
703//
704static int
705__kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
706 kmp_i18n_id_t *const msg_id)
707{
708 *address2os = NULL;
709 *msg_id = kmp_i18n_null;
710
711 //
712 // If we don't have multiple processor groups, return now.
713 // The flat mapping will be used.
714 //
715 if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(fullMask) >= 0)) {
716 // FIXME set *msg_id
717 return -1;
718 }
719
720 //
721 // Contruct the data structure to be returned.
722 //
723 *address2os = (AddrUnsPair*)
724 __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
725 int avail_ct = 0;
726 int i;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000727 KMP_CPU_SET_ITERATE(i, fullMask) {
Jim Cownie5e8470a2013-09-27 10:38:44 +0000728 //
729 // Skip this proc if it is not included in the machine model.
730 //
731 if (! KMP_CPU_ISSET(i, fullMask)) {
732 continue;
733 }
734
735 Address addr(2);
736 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
737 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
738 (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
739
740 if (__kmp_affinity_verbose) {
741 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
742 addr.labels[1]);
743 }
744 }
745
746 if (__kmp_affinity_gran_levels < 0) {
747 if (__kmp_affinity_gran == affinity_gran_group) {
748 __kmp_affinity_gran_levels = 1;
749 }
750 else if ((__kmp_affinity_gran == affinity_gran_fine)
751 || (__kmp_affinity_gran == affinity_gran_thread)) {
752 __kmp_affinity_gran_levels = 0;
753 }
754 else {
755 const char *gran_str = NULL;
756 if (__kmp_affinity_gran == affinity_gran_core) {
757 gran_str = "core";
758 }
759 else if (__kmp_affinity_gran == affinity_gran_package) {
760 gran_str = "package";
761 }
762 else if (__kmp_affinity_gran == affinity_gran_node) {
763 gran_str = "node";
764 }
765 else {
766 KMP_ASSERT(0);
767 }
768
769 // Warning: can't use affinity granularity \"gran\" with group topology method, using "thread"
770 __kmp_affinity_gran_levels = 0;
771 }
772 }
773 return 2;
774}
775
Andrey Churbanov7daf9802015-01-27 16:52:57 +0000776# endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +0000777
778
779# if KMP_ARCH_X86 || KMP_ARCH_X86_64
780
781static int
782__kmp_cpuid_mask_width(int count) {
783 int r = 0;
784
785 while((1<<r) < count)
786 ++r;
787 return r;
788}
789
790
791class apicThreadInfo {
792public:
793 unsigned osId; // param to __kmp_affinity_bind_thread
794 unsigned apicId; // from cpuid after binding
795 unsigned maxCoresPerPkg; // ""
796 unsigned maxThreadsPerPkg; // ""
797 unsigned pkgId; // inferred from above values
798 unsigned coreId; // ""
799 unsigned threadId; // ""
800};
801
802
803static int
804__kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b)
805{
806 const apicThreadInfo *aa = (const apicThreadInfo *)a;
807 const apicThreadInfo *bb = (const apicThreadInfo *)b;
808 if (aa->osId < bb->osId) return -1;
809 if (aa->osId > bb->osId) return 1;
810 return 0;
811}
812
813
814static int
815__kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b)
816{
817 const apicThreadInfo *aa = (const apicThreadInfo *)a;
818 const apicThreadInfo *bb = (const apicThreadInfo *)b;
819 if (aa->pkgId < bb->pkgId) return -1;
820 if (aa->pkgId > bb->pkgId) return 1;
821 if (aa->coreId < bb->coreId) return -1;
822 if (aa->coreId > bb->coreId) return 1;
823 if (aa->threadId < bb->threadId) return -1;
824 if (aa->threadId > bb->threadId) return 1;
825 return 0;
826}
827
828
829//
830// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
831// an algorithm which cycles through the available os threads, setting
832// the current thread's affinity mask to that thread, and then retrieves
833// the Apic Id for each thread context using the cpuid instruction.
834//
835static int
836__kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
837 kmp_i18n_id_t *const msg_id)
838{
Andrey Churbanov1c331292015-01-27 17:03:42 +0000839 kmp_cpuid buf;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000840 int rc;
841 *address2os = NULL;
842 *msg_id = kmp_i18n_null;
843
Andrey Churbanov1c331292015-01-27 17:03:42 +0000844 //
845 // Check if cpuid leaf 4 is supported.
846 //
Jim Cownie5e8470a2013-09-27 10:38:44 +0000847 __kmp_x86_cpuid(0, 0, &buf);
848 if (buf.eax < 4) {
849 *msg_id = kmp_i18n_str_NoLeaf4Support;
850 return -1;
851 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000852
853 //
Jim Cownie5e8470a2013-09-27 10:38:44 +0000854 // The algorithm used starts by setting the affinity to each available
Andrey Churbanov1c331292015-01-27 17:03:42 +0000855 // thread and retrieving info from the cpuid instruction, so if we are
856 // not capable of calling __kmp_get_system_affinity() and
857 // _kmp_get_system_affinity(), then we need to do something else - use
858 // the defaults that we calculated from issuing cpuid without binding
859 // to each proc.
Jim Cownie5e8470a2013-09-27 10:38:44 +0000860 //
861 if (! KMP_AFFINITY_CAPABLE()) {
862 //
863 // Hack to try and infer the machine topology using only the data
864 // available from cpuid on the current thread, and __kmp_xproc.
865 //
866 KMP_ASSERT(__kmp_affinity_type == affinity_none);
867
868 //
869 // Get an upper bound on the number of threads per package using
870 // cpuid(1).
871 //
872 // On some OS/chps combinations where HT is supported by the chip
873 // but is disabled, this value will be 2 on a single core chip.
874 // Usually, it will be 2 if HT is enabled and 1 if HT is disabled.
875 //
Jim Cownie5e8470a2013-09-27 10:38:44 +0000876 __kmp_x86_cpuid(1, 0, &buf);
877 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
878 if (maxThreadsPerPkg == 0) {
879 maxThreadsPerPkg = 1;
880 }
881
882 //
883 // The num cores per pkg comes from cpuid(4).
884 // 1 must be added to the encoded value.
885 //
886 // The author of cpu_count.cpp treated this only an upper bound
887 // on the number of cores, but I haven't seen any cases where it
888 // was greater than the actual number of cores, so we will treat
889 // it as exact in this block of code.
890 //
891 // First, we need to check if cpuid(4) is supported on this chip.
892 // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
893 // has the value n or greater.
894 //
895 __kmp_x86_cpuid(0, 0, &buf);
896 if (buf.eax >= 4) {
897 __kmp_x86_cpuid(4, 0, &buf);
898 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
899 }
900 else {
901 nCoresPerPkg = 1;
902 }
903
904 //
905 // There is no way to reliably tell if HT is enabled without issuing
906 // the cpuid instruction from every thread, can correlating the cpuid
907 // info, so if the machine is not affinity capable, we assume that HT
908 // is off. We have seen quite a few machines where maxThreadsPerPkg
909 // is 2, yet the machine does not support HT.
910 //
911 // - Older OSes are usually found on machines with older chips, which
912 // do not support HT.
913 //
914 // - The performance penalty for mistakenly identifying a machine as
915 // HT when it isn't (which results in blocktime being incorrecly set
916 // to 0) is greater than the penalty when for mistakenly identifying
917 // a machine as being 1 thread/core when it is really HT enabled
918 // (which results in blocktime being incorrectly set to a positive
919 // value).
920 //
921 __kmp_ncores = __kmp_xproc;
922 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
923 __kmp_nThreadsPerCore = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000924 if (__kmp_affinity_verbose) {
925 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
926 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
927 if (__kmp_affinity_uniform_topology()) {
928 KMP_INFORM(Uniform, "KMP_AFFINITY");
929 } else {
930 KMP_INFORM(NonUniform, "KMP_AFFINITY");
931 }
932 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
933 __kmp_nThreadsPerCore, __kmp_ncores);
934 }
935 return 0;
936 }
937
938 //
939 //
940 // From here on, we can assume that it is safe to call
941 // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
942 // even if __kmp_affinity_type = affinity_none.
943 //
944
945 //
946 // Save the affinity mask for the current thread.
947 //
948 kmp_affin_mask_t *oldMask;
949 KMP_CPU_ALLOC(oldMask);
950 KMP_ASSERT(oldMask != NULL);
951 __kmp_get_system_affinity(oldMask, TRUE);
952
953 //
954 // Run through each of the available contexts, binding the current thread
955 // to it, and obtaining the pertinent information using the cpuid instr.
956 //
957 // The relevant information is:
958 //
959 // Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
960 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
961 //
962 // Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The
963 // value of this field determines the width of the core# + thread#
964 // fields in the Apic Id. It is also an upper bound on the number
965 // of threads per package, but it has been verified that situations
966 // happen were it is not exact. In particular, on certain OS/chip
967 // combinations where Intel(R) Hyper-Threading Technology is supported
968 // by the chip but has
969 // been disabled, the value of this field will be 2 (for a single core
970 // chip). On other OS/chip combinations supporting
971 // Intel(R) Hyper-Threading Technology, the value of
972 // this field will be 1 when Intel(R) Hyper-Threading Technology is
973 // disabled and 2 when it is enabled.
974 //
975 // Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The
976 // value of this field (+1) determines the width of the core# field in
977 // the Apic Id. The comments in "cpucount.cpp" say that this value is
978 // an upper bound, but the IA-32 architecture manual says that it is
979 // exactly the number of cores per package, and I haven't seen any
980 // case where it wasn't.
981 //
982 // From this information, deduce the package Id, core Id, and thread Id,
983 // and set the corresponding fields in the apicThreadInfo struct.
984 //
985 unsigned i;
986 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
987 __kmp_avail_proc * sizeof(apicThreadInfo));
988 unsigned nApics = 0;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000989 KMP_CPU_SET_ITERATE(i, fullMask) {
Jim Cownie5e8470a2013-09-27 10:38:44 +0000990 //
991 // Skip this proc if it is not included in the machine model.
992 //
993 if (! KMP_CPU_ISSET(i, fullMask)) {
994 continue;
995 }
996 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
997
998 __kmp_affinity_bind_thread(i);
999 threadInfo[nApics].osId = i;
1000
1001 //
1002 // The apic id and max threads per pkg come from cpuid(1).
1003 //
Jim Cownie5e8470a2013-09-27 10:38:44 +00001004 __kmp_x86_cpuid(1, 0, &buf);
1005 if (! (buf.edx >> 9) & 1) {
1006 __kmp_set_system_affinity(oldMask, TRUE);
1007 __kmp_free(threadInfo);
1008 KMP_CPU_FREE(oldMask);
1009 *msg_id = kmp_i18n_str_ApicNotPresent;
1010 return -1;
1011 }
1012 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
1013 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1014 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
1015 threadInfo[nApics].maxThreadsPerPkg = 1;
1016 }
1017
1018 //
1019 // Max cores per pkg comes from cpuid(4).
1020 // 1 must be added to the encoded value.
1021 //
1022 // First, we need to check if cpuid(4) is supported on this chip.
1023 // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
1024 // has the value n or greater.
1025 //
1026 __kmp_x86_cpuid(0, 0, &buf);
1027 if (buf.eax >= 4) {
1028 __kmp_x86_cpuid(4, 0, &buf);
1029 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1030 }
1031 else {
1032 threadInfo[nApics].maxCoresPerPkg = 1;
1033 }
1034
1035 //
1036 // Infer the pkgId / coreId / threadId using only the info
1037 // obtained locally.
1038 //
1039 int widthCT = __kmp_cpuid_mask_width(
1040 threadInfo[nApics].maxThreadsPerPkg);
1041 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
1042
1043 int widthC = __kmp_cpuid_mask_width(
1044 threadInfo[nApics].maxCoresPerPkg);
1045 int widthT = widthCT - widthC;
1046 if (widthT < 0) {
1047 //
1048 // I've never seen this one happen, but I suppose it could, if
1049 // the cpuid instruction on a chip was really screwed up.
1050 // Make sure to restore the affinity mask before the tail call.
1051 //
1052 __kmp_set_system_affinity(oldMask, TRUE);
1053 __kmp_free(threadInfo);
1054 KMP_CPU_FREE(oldMask);
1055 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1056 return -1;
1057 }
1058
1059 int maskC = (1 << widthC) - 1;
1060 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT)
1061 &maskC;
1062
1063 int maskT = (1 << widthT) - 1;
1064 threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT;
1065
1066 nApics++;
1067 }
1068
1069 //
1070 // We've collected all the info we need.
1071 // Restore the old affinity mask for this thread.
1072 //
1073 __kmp_set_system_affinity(oldMask, TRUE);
1074
1075 //
1076 // If there's only one thread context to bind to, form an Address object
1077 // with depth 1 and return immediately (or, if affinity is off, set
1078 // address2os to NULL and return).
1079 //
1080 // If it is configured to omit the package level when there is only a
1081 // single package, the logic at the end of this routine won't work if
1082 // there is only a single thread - it would try to form an Address
1083 // object with depth 0.
1084 //
1085 KMP_ASSERT(nApics > 0);
1086 if (nApics == 1) {
1087 __kmp_ncores = nPackages = 1;
1088 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001089 if (__kmp_affinity_verbose) {
1090 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1091 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1092
1093 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1094 if (__kmp_affinity_respect_mask) {
1095 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1096 } else {
1097 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1098 }
1099 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1100 KMP_INFORM(Uniform, "KMP_AFFINITY");
1101 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1102 __kmp_nThreadsPerCore, __kmp_ncores);
1103 }
1104
1105 if (__kmp_affinity_type == affinity_none) {
1106 __kmp_free(threadInfo);
1107 KMP_CPU_FREE(oldMask);
1108 return 0;
1109 }
1110
1111 *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
1112 Address addr(1);
1113 addr.labels[0] = threadInfo[0].pkgId;
1114 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
1115
1116 if (__kmp_affinity_gran_levels < 0) {
1117 __kmp_affinity_gran_levels = 0;
1118 }
1119
1120 if (__kmp_affinity_verbose) {
1121 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
1122 }
1123
1124 __kmp_free(threadInfo);
1125 KMP_CPU_FREE(oldMask);
1126 return 1;
1127 }
1128
1129 //
1130 // Sort the threadInfo table by physical Id.
1131 //
1132 qsort(threadInfo, nApics, sizeof(*threadInfo),
1133 __kmp_affinity_cmp_apicThreadInfo_phys_id);
1134
1135 //
1136 // The table is now sorted by pkgId / coreId / threadId, but we really
1137 // don't know the radix of any of the fields. pkgId's may be sparsely
1138 // assigned among the chips on a system. Although coreId's are usually
1139 // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
1140 // [0..threadsPerCore-1], we don't want to make any such assumptions.
1141 //
1142 // For that matter, we don't know what coresPerPkg and threadsPerCore
1143 // (or the total # packages) are at this point - we want to determine
1144 // that now. We only have an upper bound on the first two figures.
1145 //
1146 // We also perform a consistency check at this point: the values returned
1147 // by the cpuid instruction for any thread bound to a given package had
1148 // better return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1149 //
1150 nPackages = 1;
1151 nCoresPerPkg = 1;
1152 __kmp_nThreadsPerCore = 1;
1153 unsigned nCores = 1;
1154
1155 unsigned pkgCt = 1; // to determine radii
1156 unsigned lastPkgId = threadInfo[0].pkgId;
1157 unsigned coreCt = 1;
1158 unsigned lastCoreId = threadInfo[0].coreId;
1159 unsigned threadCt = 1;
1160 unsigned lastThreadId = threadInfo[0].threadId;
1161
1162 // intra-pkg consist checks
1163 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1164 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1165
1166 for (i = 1; i < nApics; i++) {
1167 if (threadInfo[i].pkgId != lastPkgId) {
1168 nCores++;
1169 pkgCt++;
1170 lastPkgId = threadInfo[i].pkgId;
1171 if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
1172 coreCt = 1;
1173 lastCoreId = threadInfo[i].coreId;
1174 if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
1175 threadCt = 1;
1176 lastThreadId = threadInfo[i].threadId;
1177
1178 //
1179 // This is a different package, so go on to the next iteration
1180 // without doing any consistency checks. Reset the consistency
1181 // check vars, though.
1182 //
1183 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1184 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1185 continue;
1186 }
1187
1188 if (threadInfo[i].coreId != lastCoreId) {
1189 nCores++;
1190 coreCt++;
1191 lastCoreId = threadInfo[i].coreId;
1192 if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
1193 threadCt = 1;
1194 lastThreadId = threadInfo[i].threadId;
1195 }
1196 else if (threadInfo[i].threadId != lastThreadId) {
1197 threadCt++;
1198 lastThreadId = threadInfo[i].threadId;
1199 }
1200 else {
1201 __kmp_free(threadInfo);
1202 KMP_CPU_FREE(oldMask);
1203 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1204 return -1;
1205 }
1206
1207 //
1208 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1209 // fields agree between all the threads bounds to a given package.
1210 //
1211 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg)
1212 || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1213 __kmp_free(threadInfo);
1214 KMP_CPU_FREE(oldMask);
1215 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1216 return -1;
1217 }
1218 }
1219 nPackages = pkgCt;
1220 if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
1221 if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
1222
1223 //
1224 // When affinity is off, this routine will still be called to set
Andrey Churbanovf696c822015-01-27 16:55:43 +00001225 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
Jim Cownie5e8470a2013-09-27 10:38:44 +00001226 // nCoresPerPkg, & nPackages. Make sure all these vars are set
1227 // correctly, and return now if affinity is not enabled.
1228 //
Jim Cownie5e8470a2013-09-27 10:38:44 +00001229 __kmp_ncores = nCores;
1230 if (__kmp_affinity_verbose) {
1231 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1232 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1233
1234 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1235 if (__kmp_affinity_respect_mask) {
1236 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1237 } else {
1238 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1239 }
1240 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1241 if (__kmp_affinity_uniform_topology()) {
1242 KMP_INFORM(Uniform, "KMP_AFFINITY");
1243 } else {
1244 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1245 }
1246 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1247 __kmp_nThreadsPerCore, __kmp_ncores);
1248
1249 }
1250
1251 if (__kmp_affinity_type == affinity_none) {
1252 __kmp_free(threadInfo);
1253 KMP_CPU_FREE(oldMask);
1254 return 0;
1255 }
1256
1257 //
1258 // Now that we've determined the number of packages, the number of cores
1259 // per package, and the number of threads per core, we can construct the
1260 // data structure that is to be returned.
1261 //
1262 int pkgLevel = 0;
1263 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
1264 int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1265 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1266
1267 KMP_ASSERT(depth > 0);
1268 *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1269
1270 for (i = 0; i < nApics; ++i) {
1271 Address addr(depth);
1272 unsigned os = threadInfo[i].osId;
1273 int d = 0;
1274
1275 if (pkgLevel >= 0) {
1276 addr.labels[d++] = threadInfo[i].pkgId;
1277 }
1278 if (coreLevel >= 0) {
1279 addr.labels[d++] = threadInfo[i].coreId;
1280 }
1281 if (threadLevel >= 0) {
1282 addr.labels[d++] = threadInfo[i].threadId;
1283 }
1284 (*address2os)[i] = AddrUnsPair(addr, os);
1285 }
1286
1287 if (__kmp_affinity_gran_levels < 0) {
1288 //
1289 // Set the granularity level based on what levels are modeled
1290 // in the machine topology map.
1291 //
1292 __kmp_affinity_gran_levels = 0;
1293 if ((threadLevel >= 0)
1294 && (__kmp_affinity_gran > affinity_gran_thread)) {
1295 __kmp_affinity_gran_levels++;
1296 }
1297 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1298 __kmp_affinity_gran_levels++;
1299 }
1300 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
1301 __kmp_affinity_gran_levels++;
1302 }
1303 }
1304
1305 if (__kmp_affinity_verbose) {
1306 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
1307 coreLevel, threadLevel);
1308 }
1309
1310 __kmp_free(threadInfo);
1311 KMP_CPU_FREE(oldMask);
1312 return depth;
1313}
1314
1315
1316//
1317// Intel(R) microarchitecture code name Nehalem, Dunnington and later
1318// architectures support a newer interface for specifying the x2APIC Ids,
1319// based on cpuid leaf 11.
1320//
1321static int
1322__kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
1323 kmp_i18n_id_t *const msg_id)
1324{
1325 kmp_cpuid buf;
1326
1327 *address2os = NULL;
1328 *msg_id = kmp_i18n_null;
1329
1330 //
1331 // Check to see if cpuid leaf 11 is supported.
1332 //
1333 __kmp_x86_cpuid(0, 0, &buf);
1334 if (buf.eax < 11) {
1335 *msg_id = kmp_i18n_str_NoLeaf11Support;
1336 return -1;
1337 }
1338 __kmp_x86_cpuid(11, 0, &buf);
1339 if (buf.ebx == 0) {
1340 *msg_id = kmp_i18n_str_NoLeaf11Support;
1341 return -1;
1342 }
1343
1344 //
1345 // Find the number of levels in the machine topology. While we're at it,
1346 // get the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will
1347 // try to get more accurate values later by explicitly counting them,
1348 // but get reasonable defaults now, in case we return early.
1349 //
1350 int level;
1351 int threadLevel = -1;
1352 int coreLevel = -1;
1353 int pkgLevel = -1;
1354 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1355
1356 for (level = 0;; level++) {
1357 if (level > 31) {
1358 //
1359 // FIXME: Hack for DPD200163180
1360 //
1361 // If level is big then something went wrong -> exiting
1362 //
1363 // There could actually be 32 valid levels in the machine topology,
1364 // but so far, the only machine we have seen which does not exit
1365 // this loop before iteration 32 has fubar x2APIC settings.
1366 //
1367 // For now, just reject this case based upon loop trip count.
1368 //
1369 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1370 return -1;
1371 }
1372 __kmp_x86_cpuid(11, level, &buf);
1373 if (buf.ebx == 0) {
1374 if (pkgLevel < 0) {
1375 //
1376 // Will infer nPackages from __kmp_xproc
1377 //
1378 pkgLevel = level;
1379 level++;
1380 }
1381 break;
1382 }
1383 int kind = (buf.ecx >> 8) & 0xff;
1384 if (kind == 1) {
1385 //
1386 // SMT level
1387 //
1388 threadLevel = level;
1389 coreLevel = -1;
1390 pkgLevel = -1;
1391 __kmp_nThreadsPerCore = buf.ebx & 0xff;
1392 if (__kmp_nThreadsPerCore == 0) {
1393 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1394 return -1;
1395 }
1396 }
1397 else if (kind == 2) {
1398 //
1399 // core level
1400 //
1401 coreLevel = level;
1402 pkgLevel = -1;
1403 nCoresPerPkg = buf.ebx & 0xff;
1404 if (nCoresPerPkg == 0) {
1405 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1406 return -1;
1407 }
1408 }
1409 else {
1410 if (level <= 0) {
1411 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1412 return -1;
1413 }
1414 if (pkgLevel >= 0) {
1415 continue;
1416 }
1417 pkgLevel = level;
1418 nPackages = buf.ebx & 0xff;
1419 if (nPackages == 0) {
1420 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1421 return -1;
1422 }
1423 }
1424 }
1425 int depth = level;
1426
1427 //
1428 // In the above loop, "level" was counted from the finest level (usually
1429 // thread) to the coarsest. The caller expects that we will place the
1430 // labels in (*address2os)[].first.labels[] in the inverse order, so
1431 // we need to invert the vars saying which level means what.
1432 //
1433 if (threadLevel >= 0) {
1434 threadLevel = depth - threadLevel - 1;
1435 }
1436 if (coreLevel >= 0) {
1437 coreLevel = depth - coreLevel - 1;
1438 }
1439 KMP_DEBUG_ASSERT(pkgLevel >= 0);
1440 pkgLevel = depth - pkgLevel - 1;
1441
1442 //
1443 // The algorithm used starts by setting the affinity to each available
Andrey Churbanov1c331292015-01-27 17:03:42 +00001444 // thread and retrieving info from the cpuid instruction, so if we are
1445 // not capable of calling __kmp_get_system_affinity() and
1446 // _kmp_get_system_affinity(), then we need to do something else - use
1447 // the defaults that we calculated from issuing cpuid without binding
1448 // to each proc.
Jim Cownie5e8470a2013-09-27 10:38:44 +00001449 //
1450 if (! KMP_AFFINITY_CAPABLE())
1451 {
1452 //
1453 // Hack to try and infer the machine topology using only the data
1454 // available from cpuid on the current thread, and __kmp_xproc.
1455 //
1456 KMP_ASSERT(__kmp_affinity_type == affinity_none);
1457
1458 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1459 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001460 if (__kmp_affinity_verbose) {
1461 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1462 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1463 if (__kmp_affinity_uniform_topology()) {
1464 KMP_INFORM(Uniform, "KMP_AFFINITY");
1465 } else {
1466 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1467 }
1468 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1469 __kmp_nThreadsPerCore, __kmp_ncores);
1470 }
1471 return 0;
1472 }
1473
1474 //
1475 //
1476 // From here on, we can assume that it is safe to call
1477 // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
1478 // even if __kmp_affinity_type = affinity_none.
1479 //
1480
1481 //
1482 // Save the affinity mask for the current thread.
1483 //
1484 kmp_affin_mask_t *oldMask;
1485 KMP_CPU_ALLOC(oldMask);
1486 __kmp_get_system_affinity(oldMask, TRUE);
1487
1488 //
1489 // Allocate the data structure to be returned.
1490 //
1491 AddrUnsPair *retval = (AddrUnsPair *)
1492 __kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1493
1494 //
1495 // Run through each of the available contexts, binding the current thread
1496 // to it, and obtaining the pertinent information using the cpuid instr.
1497 //
1498 unsigned int proc;
1499 int nApics = 0;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00001500 KMP_CPU_SET_ITERATE(proc, fullMask) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001501 //
1502 // Skip this proc if it is not included in the machine model.
1503 //
1504 if (! KMP_CPU_ISSET(proc, fullMask)) {
1505 continue;
1506 }
1507 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1508
1509 __kmp_affinity_bind_thread(proc);
1510
1511 //
1512 // Extrach the labels for each level in the machine topology map
1513 // from the Apic ID.
1514 //
1515 Address addr(depth);
1516 int prev_shift = 0;
1517
1518 for (level = 0; level < depth; level++) {
1519 __kmp_x86_cpuid(11, level, &buf);
1520 unsigned apicId = buf.edx;
1521 if (buf.ebx == 0) {
1522 if (level != depth - 1) {
1523 KMP_CPU_FREE(oldMask);
1524 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1525 return -1;
1526 }
1527 addr.labels[depth - level - 1] = apicId >> prev_shift;
1528 level++;
1529 break;
1530 }
1531 int shift = buf.eax & 0x1f;
1532 int mask = (1 << shift) - 1;
1533 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1534 prev_shift = shift;
1535 }
1536 if (level != depth) {
1537 KMP_CPU_FREE(oldMask);
1538 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1539 return -1;
1540 }
1541
1542 retval[nApics] = AddrUnsPair(addr, proc);
1543 nApics++;
1544 }
1545
1546 //
1547 // We've collected all the info we need.
1548 // Restore the old affinity mask for this thread.
1549 //
1550 __kmp_set_system_affinity(oldMask, TRUE);
1551
1552 //
1553 // If there's only one thread context to bind to, return now.
1554 //
1555 KMP_ASSERT(nApics > 0);
1556 if (nApics == 1) {
1557 __kmp_ncores = nPackages = 1;
1558 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001559 if (__kmp_affinity_verbose) {
1560 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1561 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1562
1563 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1564 if (__kmp_affinity_respect_mask) {
1565 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1566 } else {
1567 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1568 }
1569 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1570 KMP_INFORM(Uniform, "KMP_AFFINITY");
1571 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1572 __kmp_nThreadsPerCore, __kmp_ncores);
1573 }
1574
1575 if (__kmp_affinity_type == affinity_none) {
1576 __kmp_free(retval);
1577 KMP_CPU_FREE(oldMask);
1578 return 0;
1579 }
1580
1581 //
1582 // Form an Address object which only includes the package level.
1583 //
1584 Address addr(1);
1585 addr.labels[0] = retval[0].first.labels[pkgLevel];
1586 retval[0].first = addr;
1587
1588 if (__kmp_affinity_gran_levels < 0) {
1589 __kmp_affinity_gran_levels = 0;
1590 }
1591
1592 if (__kmp_affinity_verbose) {
1593 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1594 }
1595
1596 *address2os = retval;
1597 KMP_CPU_FREE(oldMask);
1598 return 1;
1599 }
1600
1601 //
1602 // Sort the table by physical Id.
1603 //
1604 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1605
1606 //
1607 // Find the radix at each of the levels.
1608 //
1609 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1610 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1611 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1612 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1613 for (level = 0; level < depth; level++) {
1614 totals[level] = 1;
1615 maxCt[level] = 1;
1616 counts[level] = 1;
1617 last[level] = retval[0].first.labels[level];
1618 }
1619
1620 //
1621 // From here on, the iteration variable "level" runs from the finest
1622 // level to the coarsest, i.e. we iterate forward through
1623 // (*address2os)[].first.labels[] - in the previous loops, we iterated
1624 // backwards.
1625 //
1626 for (proc = 1; (int)proc < nApics; proc++) {
1627 int level;
1628 for (level = 0; level < depth; level++) {
1629 if (retval[proc].first.labels[level] != last[level]) {
1630 int j;
1631 for (j = level + 1; j < depth; j++) {
1632 totals[j]++;
1633 counts[j] = 1;
1634 // The line below causes printing incorrect topology information
1635 // in case the max value for some level (maxCt[level]) is encountered earlier than
1636 // some less value while going through the array.
1637 // For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2
1638 // whereas it must be 4.
1639 // TODO!!! Check if it can be commented safely
1640 //maxCt[j] = 1;
1641 last[j] = retval[proc].first.labels[j];
1642 }
1643 totals[level]++;
1644 counts[level]++;
1645 if (counts[level] > maxCt[level]) {
1646 maxCt[level] = counts[level];
1647 }
1648 last[level] = retval[proc].first.labels[level];
1649 break;
1650 }
1651 else if (level == depth - 1) {
1652 __kmp_free(last);
1653 __kmp_free(maxCt);
1654 __kmp_free(counts);
1655 __kmp_free(totals);
1656 __kmp_free(retval);
1657 KMP_CPU_FREE(oldMask);
1658 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1659 return -1;
1660 }
1661 }
1662 }
1663
1664 //
1665 // When affinity is off, this routine will still be called to set
Andrey Churbanovf696c822015-01-27 16:55:43 +00001666 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
Jim Cownie5e8470a2013-09-27 10:38:44 +00001667 // nCoresPerPkg, & nPackages. Make sure all these vars are set
1668 // correctly, and return if affinity is not enabled.
1669 //
1670 if (threadLevel >= 0) {
1671 __kmp_nThreadsPerCore = maxCt[threadLevel];
1672 }
1673 else {
1674 __kmp_nThreadsPerCore = 1;
1675 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001676 nPackages = totals[pkgLevel];
1677
1678 if (coreLevel >= 0) {
1679 __kmp_ncores = totals[coreLevel];
1680 nCoresPerPkg = maxCt[coreLevel];
1681 }
1682 else {
1683 __kmp_ncores = nPackages;
1684 nCoresPerPkg = 1;
1685 }
1686
1687 //
1688 // Check to see if the machine topology is uniform
1689 //
1690 unsigned prod = maxCt[0];
1691 for (level = 1; level < depth; level++) {
1692 prod *= maxCt[level];
1693 }
1694 bool uniform = (prod == totals[level - 1]);
1695
1696 //
1697 // Print the machine topology summary.
1698 //
1699 if (__kmp_affinity_verbose) {
1700 char mask[KMP_AFFIN_MASK_PRINT_LEN];
1701 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1702
1703 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1704 if (__kmp_affinity_respect_mask) {
1705 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
1706 } else {
1707 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
1708 }
1709 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1710 if (uniform) {
1711 KMP_INFORM(Uniform, "KMP_AFFINITY");
1712 } else {
1713 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1714 }
1715
1716 kmp_str_buf_t buf;
1717 __kmp_str_buf_init(&buf);
1718
1719 __kmp_str_buf_print(&buf, "%d", totals[0]);
1720 for (level = 1; level <= pkgLevel; level++) {
1721 __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
1722 }
1723 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1724 __kmp_nThreadsPerCore, __kmp_ncores);
1725
1726 __kmp_str_buf_free(&buf);
1727 }
1728
1729 if (__kmp_affinity_type == affinity_none) {
1730 __kmp_free(last);
1731 __kmp_free(maxCt);
1732 __kmp_free(counts);
1733 __kmp_free(totals);
1734 __kmp_free(retval);
1735 KMP_CPU_FREE(oldMask);
1736 return 0;
1737 }
1738
1739 //
1740 // Find any levels with radiix 1, and remove them from the map
1741 // (except for the package level).
1742 //
1743 int new_depth = 0;
1744 for (level = 0; level < depth; level++) {
1745 if ((maxCt[level] == 1) && (level != pkgLevel)) {
1746 continue;
1747 }
1748 new_depth++;
1749 }
1750
1751 //
1752 // If we are removing any levels, allocate a new vector to return,
1753 // and copy the relevant information to it.
1754 //
1755 if (new_depth != depth) {
1756 AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate(
1757 sizeof(AddrUnsPair) * nApics);
1758 for (proc = 0; (int)proc < nApics; proc++) {
1759 Address addr(new_depth);
1760 new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1761 }
1762 int new_level = 0;
Jonathan Peyton62f38402015-08-25 18:44:41 +00001763 int newPkgLevel = -1;
1764 int newCoreLevel = -1;
1765 int newThreadLevel = -1;
1766 int i;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001767 for (level = 0; level < depth; level++) {
Jonathan Peyton62f38402015-08-25 18:44:41 +00001768 if ((maxCt[level] == 1)
1769 && (level != pkgLevel)) {
1770 //
1771 // Remove this level. Never remove the package level
1772 //
1773 continue;
1774 }
1775 if (level == pkgLevel) {
1776 newPkgLevel = level;
1777 }
1778 if (level == coreLevel) {
1779 newCoreLevel = level;
1780 }
1781 if (level == threadLevel) {
1782 newThreadLevel = level;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001783 }
1784 for (proc = 0; (int)proc < nApics; proc++) {
1785 new_retval[proc].first.labels[new_level]
1786 = retval[proc].first.labels[level];
1787 }
1788 new_level++;
1789 }
1790
1791 __kmp_free(retval);
1792 retval = new_retval;
1793 depth = new_depth;
Jonathan Peyton62f38402015-08-25 18:44:41 +00001794 pkgLevel = newPkgLevel;
1795 coreLevel = newCoreLevel;
1796 threadLevel = newThreadLevel;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001797 }
1798
1799 if (__kmp_affinity_gran_levels < 0) {
1800 //
1801 // Set the granularity level based on what levels are modeled
1802 // in the machine topology map.
1803 //
1804 __kmp_affinity_gran_levels = 0;
1805 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1806 __kmp_affinity_gran_levels++;
1807 }
1808 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1809 __kmp_affinity_gran_levels++;
1810 }
1811 if (__kmp_affinity_gran > affinity_gran_package) {
1812 __kmp_affinity_gran_levels++;
1813 }
1814 }
1815
1816 if (__kmp_affinity_verbose) {
1817 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel,
1818 coreLevel, threadLevel);
1819 }
1820
1821 __kmp_free(last);
1822 __kmp_free(maxCt);
1823 __kmp_free(counts);
1824 __kmp_free(totals);
1825 KMP_CPU_FREE(oldMask);
1826 *address2os = retval;
1827 return depth;
1828}
1829
1830
1831# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1832
1833
1834#define osIdIndex 0
1835#define threadIdIndex 1
1836#define coreIdIndex 2
1837#define pkgIdIndex 3
1838#define nodeIdIndex 4
1839
1840typedef unsigned *ProcCpuInfo;
1841static unsigned maxIndex = pkgIdIndex;
1842
1843
1844static int
1845__kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b)
1846{
1847 const unsigned *aa = (const unsigned *)a;
1848 const unsigned *bb = (const unsigned *)b;
1849 if (aa[osIdIndex] < bb[osIdIndex]) return -1;
1850 if (aa[osIdIndex] > bb[osIdIndex]) return 1;
1851 return 0;
1852};
1853
1854
1855static int
1856__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b)
1857{
1858 unsigned i;
1859 const unsigned *aa = *((const unsigned **)a);
1860 const unsigned *bb = *((const unsigned **)b);
1861 for (i = maxIndex; ; i--) {
1862 if (aa[i] < bb[i]) return -1;
1863 if (aa[i] > bb[i]) return 1;
1864 if (i == osIdIndex) break;
1865 }
1866 return 0;
1867}
1868
1869
1870//
1871// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
1872// affinity map.
1873//
1874static int
1875__kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line,
1876 kmp_i18n_id_t *const msg_id, FILE *f)
1877{
1878 *address2os = NULL;
1879 *msg_id = kmp_i18n_null;
1880
1881 //
1882 // Scan of the file, and count the number of "processor" (osId) fields,
Alp Toker8f2d3f02014-02-24 10:40:15 +00001883 // and find the highest value of <n> for a node_<n> field.
Jim Cownie5e8470a2013-09-27 10:38:44 +00001884 //
1885 char buf[256];
1886 unsigned num_records = 0;
1887 while (! feof(f)) {
1888 buf[sizeof(buf) - 1] = 1;
1889 if (! fgets(buf, sizeof(buf), f)) {
1890 //
1891 // Read errors presumably because of EOF
1892 //
1893 break;
1894 }
1895
1896 char s1[] = "processor";
1897 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
1898 num_records++;
1899 continue;
1900 }
1901
1902 //
1903 // FIXME - this will match "node_<n> <garbage>"
1904 //
1905 unsigned level;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00001906 if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001907 if (nodeIdIndex + level >= maxIndex) {
1908 maxIndex = nodeIdIndex + level;
1909 }
1910 continue;
1911 }
1912 }
1913
1914 //
1915 // Check for empty file / no valid processor records, or too many.
1916 // The number of records can't exceed the number of valid bits in the
1917 // affinity mask.
1918 //
1919 if (num_records == 0) {
1920 *line = 0;
1921 *msg_id = kmp_i18n_str_NoProcRecords;
1922 return -1;
1923 }
1924 if (num_records > (unsigned)__kmp_xproc) {
1925 *line = 0;
1926 *msg_id = kmp_i18n_str_TooManyProcRecords;
1927 return -1;
1928 }
1929
1930 //
1931 // Set the file pointer back to the begginning, so that we can scan the
1932 // file again, this time performing a full parse of the data.
1933 // Allocate a vector of ProcCpuInfo object, where we will place the data.
1934 // Adding an extra element at the end allows us to remove a lot of extra
1935 // checks for termination conditions.
1936 //
1937 if (fseek(f, 0, SEEK_SET) != 0) {
1938 *line = 0;
1939 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
1940 return -1;
1941 }
1942
1943 //
1944 // Allocate the array of records to store the proc info in. The dummy
1945 // element at the end makes the logic in filling them out easier to code.
1946 //
1947 unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1)
1948 * sizeof(unsigned *));
1949 unsigned i;
1950 for (i = 0; i <= num_records; i++) {
1951 threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1)
1952 * sizeof(unsigned));
1953 }
1954
1955#define CLEANUP_THREAD_INFO \
1956 for (i = 0; i <= num_records; i++) { \
1957 __kmp_free(threadInfo[i]); \
1958 } \
1959 __kmp_free(threadInfo);
1960
1961 //
1962 // A value of UINT_MAX means that we didn't find the field
1963 //
1964 unsigned __index;
1965
1966#define INIT_PROC_INFO(p) \
1967 for (__index = 0; __index <= maxIndex; __index++) { \
1968 (p)[__index] = UINT_MAX; \
1969 }
1970
1971 for (i = 0; i <= num_records; i++) {
1972 INIT_PROC_INFO(threadInfo[i]);
1973 }
1974
1975 unsigned num_avail = 0;
1976 *line = 0;
1977 while (! feof(f)) {
1978 //
1979 // Create an inner scoping level, so that all the goto targets at the
1980 // end of the loop appear in an outer scoping level. This avoids
1981 // warnings about jumping past an initialization to a target in the
1982 // same block.
1983 //
1984 {
1985 buf[sizeof(buf) - 1] = 1;
1986 bool long_line = false;
1987 if (! fgets(buf, sizeof(buf), f)) {
1988 //
1989 // Read errors presumably because of EOF
1990 //
1991 // If there is valid data in threadInfo[num_avail], then fake
1992 // a blank line in ensure that the last address gets parsed.
1993 //
1994 bool valid = false;
1995 for (i = 0; i <= maxIndex; i++) {
1996 if (threadInfo[num_avail][i] != UINT_MAX) {
1997 valid = true;
1998 }
1999 }
2000 if (! valid) {
2001 break;
2002 }
2003 buf[0] = 0;
2004 } else if (!buf[sizeof(buf) - 1]) {
2005 //
2006 // The line is longer than the buffer. Set a flag and don't
2007 // emit an error if we were going to ignore the line, anyway.
2008 //
2009 long_line = true;
2010
2011#define CHECK_LINE \
2012 if (long_line) { \
2013 CLEANUP_THREAD_INFO; \
2014 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
2015 return -1; \
2016 }
2017 }
2018 (*line)++;
2019
2020 char s1[] = "processor";
2021 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2022 CHECK_LINE;
2023 char *p = strchr(buf + sizeof(s1) - 1, ':');
2024 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002025 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002026 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field;
2027 threadInfo[num_avail][osIdIndex] = val;
Jim Cownie181b4bb2013-12-23 17:28:57 +00002028#if KMP_OS_LINUX && USE_SYSFS_INFO
2029 char path[256];
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002030 KMP_SNPRINTF(path, sizeof(path),
Jim Cownie181b4bb2013-12-23 17:28:57 +00002031 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2032 threadInfo[num_avail][osIdIndex]);
2033 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2034
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002035 KMP_SNPRINTF(path, sizeof(path),
Jim Cownie181b4bb2013-12-23 17:28:57 +00002036 "/sys/devices/system/cpu/cpu%u/topology/core_id",
2037 threadInfo[num_avail][osIdIndex]);
2038 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002039 continue;
Jim Cownie181b4bb2013-12-23 17:28:57 +00002040#else
Jim Cownie5e8470a2013-09-27 10:38:44 +00002041 }
2042 char s2[] = "physical id";
2043 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2044 CHECK_LINE;
2045 char *p = strchr(buf + sizeof(s2) - 1, ':');
2046 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002047 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002048 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field;
2049 threadInfo[num_avail][pkgIdIndex] = val;
2050 continue;
2051 }
2052 char s3[] = "core id";
2053 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2054 CHECK_LINE;
2055 char *p = strchr(buf + sizeof(s3) - 1, ':');
2056 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002057 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002058 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field;
2059 threadInfo[num_avail][coreIdIndex] = val;
2060 continue;
Jim Cownie181b4bb2013-12-23 17:28:57 +00002061#endif // KMP_OS_LINUX && USE_SYSFS_INFO
Jim Cownie5e8470a2013-09-27 10:38:44 +00002062 }
2063 char s4[] = "thread id";
2064 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2065 CHECK_LINE;
2066 char *p = strchr(buf + sizeof(s4) - 1, ':');
2067 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002068 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002069 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field;
2070 threadInfo[num_avail][threadIdIndex] = val;
2071 continue;
2072 }
2073 unsigned level;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002074 if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00002075 CHECK_LINE;
2076 char *p = strchr(buf + sizeof(s4) - 1, ':');
2077 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002078 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002079 KMP_ASSERT(nodeIdIndex + level <= maxIndex);
2080 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field;
2081 threadInfo[num_avail][nodeIdIndex + level] = val;
2082 continue;
2083 }
2084
2085 //
2086 // We didn't recognize the leading token on the line.
2087 // There are lots of leading tokens that we don't recognize -
2088 // if the line isn't empty, go on to the next line.
2089 //
2090 if ((*buf != 0) && (*buf != '\n')) {
2091 //
2092 // If the line is longer than the buffer, read characters
2093 // until we find a newline.
2094 //
2095 if (long_line) {
2096 int ch;
2097 while (((ch = fgetc(f)) != EOF) && (ch != '\n'));
2098 }
2099 continue;
2100 }
2101
2102 //
2103 // A newline has signalled the end of the processor record.
2104 // Check that there aren't too many procs specified.
2105 //
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002106 if ((int)num_avail == __kmp_xproc) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00002107 CLEANUP_THREAD_INFO;
2108 *msg_id = kmp_i18n_str_TooManyEntries;
2109 return -1;
2110 }
2111
2112 //
2113 // Check for missing fields. The osId field must be there, and we
2114 // currently require that the physical id field is specified, also.
2115 //
2116 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
2117 CLEANUP_THREAD_INFO;
2118 *msg_id = kmp_i18n_str_MissingProcField;
2119 return -1;
2120 }
2121 if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
2122 CLEANUP_THREAD_INFO;
2123 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
2124 return -1;
2125 }
2126
2127 //
2128 // Skip this proc if it is not included in the machine model.
2129 //
2130 if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], fullMask)) {
2131 INIT_PROC_INFO(threadInfo[num_avail]);
2132 continue;
2133 }
2134
2135 //
2136 // We have a successful parse of this proc's info.
2137 // Increment the counter, and prepare for the next proc.
2138 //
2139 num_avail++;
2140 KMP_ASSERT(num_avail <= num_records);
2141 INIT_PROC_INFO(threadInfo[num_avail]);
2142 }
2143 continue;
2144
2145 no_val:
2146 CLEANUP_THREAD_INFO;
2147 *msg_id = kmp_i18n_str_MissingValCpuinfo;
2148 return -1;
2149
2150 dup_field:
2151 CLEANUP_THREAD_INFO;
2152 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
2153 return -1;
2154 }
2155 *line = 0;
2156
2157# if KMP_MIC && REDUCE_TEAM_SIZE
2158 unsigned teamSize = 0;
2159# endif // KMP_MIC && REDUCE_TEAM_SIZE
2160
2161 // check for num_records == __kmp_xproc ???
2162
2163 //
2164 // If there's only one thread context to bind to, form an Address object
2165 // with depth 1 and return immediately (or, if affinity is off, set
2166 // address2os to NULL and return).
2167 //
2168 // If it is configured to omit the package level when there is only a
2169 // single package, the logic at the end of this routine won't work if
2170 // there is only a single thread - it would try to form an Address
2171 // object with depth 0.
2172 //
2173 KMP_ASSERT(num_avail > 0);
2174 KMP_ASSERT(num_avail <= num_records);
2175 if (num_avail == 1) {
2176 __kmp_ncores = 1;
2177 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002178 if (__kmp_affinity_verbose) {
2179 if (! KMP_AFFINITY_CAPABLE()) {
2180 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2181 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2182 KMP_INFORM(Uniform, "KMP_AFFINITY");
2183 }
2184 else {
2185 char buf[KMP_AFFIN_MASK_PRINT_LEN];
2186 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2187 fullMask);
2188 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2189 if (__kmp_affinity_respect_mask) {
2190 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2191 } else {
2192 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2193 }
2194 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2195 KMP_INFORM(Uniform, "KMP_AFFINITY");
2196 }
2197 int index;
2198 kmp_str_buf_t buf;
2199 __kmp_str_buf_init(&buf);
2200 __kmp_str_buf_print(&buf, "1");
2201 for (index = maxIndex - 1; index > pkgIdIndex; index--) {
2202 __kmp_str_buf_print(&buf, " x 1");
2203 }
2204 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
2205 __kmp_str_buf_free(&buf);
2206 }
2207
2208 if (__kmp_affinity_type == affinity_none) {
2209 CLEANUP_THREAD_INFO;
2210 return 0;
2211 }
2212
2213 *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
2214 Address addr(1);
2215 addr.labels[0] = threadInfo[0][pkgIdIndex];
2216 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
2217
2218 if (__kmp_affinity_gran_levels < 0) {
2219 __kmp_affinity_gran_levels = 0;
2220 }
2221
2222 if (__kmp_affinity_verbose) {
2223 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
2224 }
2225
2226 CLEANUP_THREAD_INFO;
2227 return 1;
2228 }
2229
2230 //
2231 // Sort the threadInfo table by physical Id.
2232 //
2233 qsort(threadInfo, num_avail, sizeof(*threadInfo),
2234 __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2235
2236 //
2237 // The table is now sorted by pkgId / coreId / threadId, but we really
2238 // don't know the radix of any of the fields. pkgId's may be sparsely
2239 // assigned among the chips on a system. Although coreId's are usually
2240 // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
2241 // [0..threadsPerCore-1], we don't want to make any such assumptions.
2242 //
2243 // For that matter, we don't know what coresPerPkg and threadsPerCore
2244 // (or the total # packages) are at this point - we want to determine
2245 // that now. We only have an upper bound on the first two figures.
2246 //
2247 unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1)
2248 * sizeof(unsigned));
2249 unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1)
2250 * sizeof(unsigned));
2251 unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1)
2252 * sizeof(unsigned));
2253 unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1)
2254 * sizeof(unsigned));
2255
2256 bool assign_thread_ids = false;
2257 unsigned threadIdCt;
2258 unsigned index;
2259
2260 restart_radix_check:
2261 threadIdCt = 0;
2262
2263 //
2264 // Initialize the counter arrays with data from threadInfo[0].
2265 //
2266 if (assign_thread_ids) {
2267 if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2268 threadInfo[0][threadIdIndex] = threadIdCt++;
2269 }
2270 else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2271 threadIdCt = threadInfo[0][threadIdIndex] + 1;
2272 }
2273 }
2274 for (index = 0; index <= maxIndex; index++) {
2275 counts[index] = 1;
2276 maxCt[index] = 1;
2277 totals[index] = 1;
2278 lastId[index] = threadInfo[0][index];;
2279 }
2280
2281 //
2282 // Run through the rest of the OS procs.
2283 //
2284 for (i = 1; i < num_avail; i++) {
2285 //
2286 // Find the most significant index whose id differs
2287 // from the id for the previous OS proc.
2288 //
2289 for (index = maxIndex; index >= threadIdIndex; index--) {
2290 if (assign_thread_ids && (index == threadIdIndex)) {
2291 //
2292 // Auto-assign the thread id field if it wasn't specified.
2293 //
2294 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2295 threadInfo[i][threadIdIndex] = threadIdCt++;
2296 }
2297
2298 //
2299 // Aparrently the thread id field was specified for some
2300 // entries and not others. Start the thread id counter
2301 // off at the next higher thread id.
2302 //
2303 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2304 threadIdCt = threadInfo[i][threadIdIndex] + 1;
2305 }
2306 }
2307 if (threadInfo[i][index] != lastId[index]) {
2308 //
2309 // Run through all indices which are less significant,
2310 // and reset the counts to 1.
2311 //
2312 // At all levels up to and including index, we need to
2313 // increment the totals and record the last id.
2314 //
2315 unsigned index2;
2316 for (index2 = threadIdIndex; index2 < index; index2++) {
2317 totals[index2]++;
2318 if (counts[index2] > maxCt[index2]) {
2319 maxCt[index2] = counts[index2];
2320 }
2321 counts[index2] = 1;
2322 lastId[index2] = threadInfo[i][index2];
2323 }
2324 counts[index]++;
2325 totals[index]++;
2326 lastId[index] = threadInfo[i][index];
2327
2328 if (assign_thread_ids && (index > threadIdIndex)) {
2329
2330# if KMP_MIC && REDUCE_TEAM_SIZE
2331 //
2332 // The default team size is the total #threads in the machine
2333 // minus 1 thread for every core that has 3 or more threads.
2334 //
2335 teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
2336# endif // KMP_MIC && REDUCE_TEAM_SIZE
2337
2338 //
2339 // Restart the thread counter, as we are on a new core.
2340 //
2341 threadIdCt = 0;
2342
2343 //
2344 // Auto-assign the thread id field if it wasn't specified.
2345 //
2346 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2347 threadInfo[i][threadIdIndex] = threadIdCt++;
2348 }
2349
2350 //
2351 // Aparrently the thread id field was specified for some
2352 // entries and not others. Start the thread id counter
2353 // off at the next higher thread id.
2354 //
2355 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2356 threadIdCt = threadInfo[i][threadIdIndex] + 1;
2357 }
2358 }
2359 break;
2360 }
2361 }
2362 if (index < threadIdIndex) {
2363 //
2364 // If thread ids were specified, it is an error if they are not
2365 // unique. Also, check that we waven't already restarted the
2366 // loop (to be safe - shouldn't need to).
2367 //
2368 if ((threadInfo[i][threadIdIndex] != UINT_MAX)
2369 || assign_thread_ids) {
2370 __kmp_free(lastId);
2371 __kmp_free(totals);
2372 __kmp_free(maxCt);
2373 __kmp_free(counts);
2374 CLEANUP_THREAD_INFO;
2375 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2376 return -1;
2377 }
2378
2379 //
2380 // If the thread ids were not specified and we see entries
2381 // entries that are duplicates, start the loop over and
2382 // assign the thread ids manually.
2383 //
2384 assign_thread_ids = true;
2385 goto restart_radix_check;
2386 }
2387 }
2388
2389# if KMP_MIC && REDUCE_TEAM_SIZE
2390 //
2391 // The default team size is the total #threads in the machine
2392 // minus 1 thread for every core that has 3 or more threads.
2393 //
2394 teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
2395# endif // KMP_MIC && REDUCE_TEAM_SIZE
2396
2397 for (index = threadIdIndex; index <= maxIndex; index++) {
2398 if (counts[index] > maxCt[index]) {
2399 maxCt[index] = counts[index];
2400 }
2401 }
2402
2403 __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2404 nCoresPerPkg = maxCt[coreIdIndex];
2405 nPackages = totals[pkgIdIndex];
2406
2407 //
2408 // Check to see if the machine topology is uniform
2409 //
2410 unsigned prod = totals[maxIndex];
2411 for (index = threadIdIndex; index < maxIndex; index++) {
2412 prod *= maxCt[index];
2413 }
2414 bool uniform = (prod == totals[threadIdIndex]);
2415
2416 //
2417 // When affinity is off, this routine will still be called to set
Andrey Churbanovf696c822015-01-27 16:55:43 +00002418 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
Jim Cownie5e8470a2013-09-27 10:38:44 +00002419 // nCoresPerPkg, & nPackages. Make sure all these vars are set
2420 // correctly, and return now if affinity is not enabled.
2421 //
Jim Cownie5e8470a2013-09-27 10:38:44 +00002422 __kmp_ncores = totals[coreIdIndex];
2423
2424 if (__kmp_affinity_verbose) {
2425 if (! KMP_AFFINITY_CAPABLE()) {
2426 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2427 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2428 if (uniform) {
2429 KMP_INFORM(Uniform, "KMP_AFFINITY");
2430 } else {
2431 KMP_INFORM(NonUniform, "KMP_AFFINITY");
2432 }
2433 }
2434 else {
2435 char buf[KMP_AFFIN_MASK_PRINT_LEN];
2436 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask);
2437 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2438 if (__kmp_affinity_respect_mask) {
2439 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2440 } else {
2441 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2442 }
2443 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2444 if (uniform) {
2445 KMP_INFORM(Uniform, "KMP_AFFINITY");
2446 } else {
2447 KMP_INFORM(NonUniform, "KMP_AFFINITY");
2448 }
2449 }
2450 kmp_str_buf_t buf;
2451 __kmp_str_buf_init(&buf);
2452
2453 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2454 for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2455 __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
2456 }
2457 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
2458 maxCt[threadIdIndex], __kmp_ncores);
2459
2460 __kmp_str_buf_free(&buf);
2461 }
2462
2463# if KMP_MIC && REDUCE_TEAM_SIZE
2464 //
2465 // Set the default team size.
2466 //
2467 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2468 __kmp_dflt_team_nth = teamSize;
2469 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n",
2470 __kmp_dflt_team_nth));
2471 }
2472# endif // KMP_MIC && REDUCE_TEAM_SIZE
2473
2474 if (__kmp_affinity_type == affinity_none) {
2475 __kmp_free(lastId);
2476 __kmp_free(totals);
2477 __kmp_free(maxCt);
2478 __kmp_free(counts);
2479 CLEANUP_THREAD_INFO;
2480 return 0;
2481 }
2482
2483 //
2484 // Count the number of levels which have more nodes at that level than
2485 // at the parent's level (with there being an implicit root node of
2486 // the top level). This is equivalent to saying that there is at least
2487 // one node at this level which has a sibling. These levels are in the
2488 // map, and the package level is always in the map.
2489 //
2490 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2491 int level = 0;
2492 for (index = threadIdIndex; index < maxIndex; index++) {
2493 KMP_ASSERT(totals[index] >= totals[index + 1]);
2494 inMap[index] = (totals[index] > totals[index + 1]);
2495 }
2496 inMap[maxIndex] = (totals[maxIndex] > 1);
2497 inMap[pkgIdIndex] = true;
2498
2499 int depth = 0;
2500 for (index = threadIdIndex; index <= maxIndex; index++) {
2501 if (inMap[index]) {
2502 depth++;
2503 }
2504 }
2505 KMP_ASSERT(depth > 0);
2506
2507 //
2508 // Construct the data structure that is to be returned.
2509 //
2510 *address2os = (AddrUnsPair*)
2511 __kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2512 int pkgLevel = -1;
2513 int coreLevel = -1;
2514 int threadLevel = -1;
2515
2516 for (i = 0; i < num_avail; ++i) {
2517 Address addr(depth);
2518 unsigned os = threadInfo[i][osIdIndex];
2519 int src_index;
2520 int dst_index = 0;
2521
2522 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2523 if (! inMap[src_index]) {
2524 continue;
2525 }
2526 addr.labels[dst_index] = threadInfo[i][src_index];
2527 if (src_index == pkgIdIndex) {
2528 pkgLevel = dst_index;
2529 }
2530 else if (src_index == coreIdIndex) {
2531 coreLevel = dst_index;
2532 }
2533 else if (src_index == threadIdIndex) {
2534 threadLevel = dst_index;
2535 }
2536 dst_index++;
2537 }
2538 (*address2os)[i] = AddrUnsPair(addr, os);
2539 }
2540
2541 if (__kmp_affinity_gran_levels < 0) {
2542 //
2543 // Set the granularity level based on what levels are modeled
2544 // in the machine topology map.
2545 //
2546 unsigned src_index;
2547 __kmp_affinity_gran_levels = 0;
2548 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2549 if (! inMap[src_index]) {
2550 continue;
2551 }
2552 switch (src_index) {
2553 case threadIdIndex:
2554 if (__kmp_affinity_gran > affinity_gran_thread) {
2555 __kmp_affinity_gran_levels++;
2556 }
2557
2558 break;
2559 case coreIdIndex:
2560 if (__kmp_affinity_gran > affinity_gran_core) {
2561 __kmp_affinity_gran_levels++;
2562 }
2563 break;
2564
2565 case pkgIdIndex:
2566 if (__kmp_affinity_gran > affinity_gran_package) {
2567 __kmp_affinity_gran_levels++;
2568 }
2569 break;
2570 }
2571 }
2572 }
2573
2574 if (__kmp_affinity_verbose) {
2575 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2576 coreLevel, threadLevel);
2577 }
2578
2579 __kmp_free(inMap);
2580 __kmp_free(lastId);
2581 __kmp_free(totals);
2582 __kmp_free(maxCt);
2583 __kmp_free(counts);
2584 CLEANUP_THREAD_INFO;
2585 return depth;
2586}
2587
2588
2589//
2590// Create and return a table of affinity masks, indexed by OS thread ID.
2591// This routine handles OR'ing together all the affinity masks of threads
2592// that are sufficiently close, if granularity > fine.
2593//
2594static kmp_affin_mask_t *
2595__kmp_create_masks(unsigned *maxIndex, unsigned *numUnique,
2596 AddrUnsPair *address2os, unsigned numAddrs)
2597{
2598 //
2599 // First form a table of affinity masks in order of OS thread id.
2600 //
2601 unsigned depth;
2602 unsigned maxOsId;
2603 unsigned i;
2604
2605 KMP_ASSERT(numAddrs > 0);
2606 depth = address2os[0].first.depth;
2607
2608 maxOsId = 0;
2609 for (i = 0; i < numAddrs; i++) {
2610 unsigned osId = address2os[i].second;
2611 if (osId > maxOsId) {
2612 maxOsId = osId;
2613 }
2614 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002615 kmp_affin_mask_t *osId2Mask;
2616 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId+1));
Jim Cownie5e8470a2013-09-27 10:38:44 +00002617
2618 //
2619 // Sort the address2os table according to physical order. Doing so
2620 // will put all threads on the same core/package/node in consecutive
2621 // locations.
2622 //
2623 qsort(address2os, numAddrs, sizeof(*address2os),
2624 __kmp_affinity_cmp_Address_labels);
2625
2626 KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2627 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2628 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2629 }
2630 if (__kmp_affinity_gran_levels >= (int)depth) {
2631 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2632 && (__kmp_affinity_type != affinity_none))) {
2633 KMP_WARNING(AffThreadsMayMigrate);
2634 }
2635 }
2636
2637 //
2638 // Run through the table, forming the masks for all threads on each
2639 // core. Threads on the same core will have identical "Address"
2640 // objects, not considering the last level, which must be the thread
2641 // id. All threads on a core will appear consecutively.
2642 //
2643 unsigned unique = 0;
2644 unsigned j = 0; // index of 1st thread on core
2645 unsigned leader = 0;
2646 Address *leaderAddr = &(address2os[0].first);
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002647 kmp_affin_mask_t *sum;
2648 KMP_CPU_ALLOC_ON_STACK(sum);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002649 KMP_CPU_ZERO(sum);
2650 KMP_CPU_SET(address2os[0].second, sum);
2651 for (i = 1; i < numAddrs; i++) {
2652 //
Alp Toker8f2d3f02014-02-24 10:40:15 +00002653 // If this thread is sufficiently close to the leader (within the
Jim Cownie5e8470a2013-09-27 10:38:44 +00002654 // granularity setting), then set the bit for this os thread in the
2655 // affinity mask for this group, and go on to the next thread.
2656 //
2657 if (leaderAddr->isClose(address2os[i].first,
2658 __kmp_affinity_gran_levels)) {
2659 KMP_CPU_SET(address2os[i].second, sum);
2660 continue;
2661 }
2662
2663 //
2664 // For every thread in this group, copy the mask to the thread's
2665 // entry in the osId2Mask table. Mark the first address as a
2666 // leader.
2667 //
2668 for (; j < i; j++) {
2669 unsigned osId = address2os[j].second;
2670 KMP_DEBUG_ASSERT(osId <= maxOsId);
2671 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2672 KMP_CPU_COPY(mask, sum);
2673 address2os[j].first.leader = (j == leader);
2674 }
2675 unique++;
2676
2677 //
2678 // Start a new mask.
2679 //
2680 leader = i;
2681 leaderAddr = &(address2os[i].first);
2682 KMP_CPU_ZERO(sum);
2683 KMP_CPU_SET(address2os[i].second, sum);
2684 }
2685
2686 //
2687 // For every thread in last group, copy the mask to the thread's
2688 // entry in the osId2Mask table.
2689 //
2690 for (; j < i; j++) {
2691 unsigned osId = address2os[j].second;
2692 KMP_DEBUG_ASSERT(osId <= maxOsId);
2693 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2694 KMP_CPU_COPY(mask, sum);
2695 address2os[j].first.leader = (j == leader);
2696 }
2697 unique++;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002698 KMP_CPU_FREE_FROM_STACK(sum);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002699
2700 *maxIndex = maxOsId;
2701 *numUnique = unique;
2702 return osId2Mask;
2703}
2704
2705
2706//
2707// Stuff for the affinity proclist parsers. It's easier to declare these vars
2708// as file-static than to try and pass them through the calling sequence of
2709// the recursive-descent OMP_PLACES parser.
2710//
2711static kmp_affin_mask_t *newMasks;
2712static int numNewMasks;
2713static int nextNewMask;
2714
2715#define ADD_MASK(_mask) \
2716 { \
2717 if (nextNewMask >= numNewMasks) { \
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002718 int i; \
Jim Cownie5e8470a2013-09-27 10:38:44 +00002719 numNewMasks *= 2; \
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002720 kmp_affin_mask_t* temp; \
2721 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
2722 for(i=0;i<numNewMasks/2;i++) { \
2723 kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); \
2724 kmp_affin_mask_t* dest = KMP_CPU_INDEX(temp, i); \
2725 KMP_CPU_COPY(dest, src); \
2726 } \
2727 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks/2); \
2728 newMasks = temp; \
Jim Cownie5e8470a2013-09-27 10:38:44 +00002729 } \
2730 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
2731 nextNewMask++; \
2732 }
2733
2734#define ADD_MASK_OSID(_osId,_osId2Mask,_maxOsId) \
2735 { \
2736 if (((_osId) > _maxOsId) || \
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002737 (! KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
Jim Cownie5e8470a2013-09-27 10:38:44 +00002738 if (__kmp_affinity_verbose || (__kmp_affinity_warnings \
2739 && (__kmp_affinity_type != affinity_none))) { \
2740 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
2741 } \
2742 } \
2743 else { \
2744 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
2745 } \
2746 }
2747
2748
2749//
2750// Re-parse the proclist (for the explicit affinity type), and form the list
2751// of affinity newMasks indexed by gtid.
2752//
2753static void
2754__kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2755 unsigned int *out_numMasks, const char *proclist,
2756 kmp_affin_mask_t *osId2Mask, int maxOsId)
2757{
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002758 int i;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002759 const char *scan = proclist;
2760 const char *next = proclist;
2761
2762 //
2763 // We use malloc() for the temporary mask vector,
2764 // so that we can use realloc() to extend it.
2765 //
2766 numNewMasks = 2;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002767 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002768 nextNewMask = 0;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002769 kmp_affin_mask_t *sumMask;
2770 KMP_CPU_ALLOC(sumMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002771 int setSize = 0;
2772
2773 for (;;) {
2774 int start, end, stride;
2775
2776 SKIP_WS(scan);
2777 next = scan;
2778 if (*next == '\0') {
2779 break;
2780 }
2781
2782 if (*next == '{') {
2783 int num;
2784 setSize = 0;
2785 next++; // skip '{'
2786 SKIP_WS(next);
2787 scan = next;
2788
2789 //
2790 // Read the first integer in the set.
2791 //
2792 KMP_ASSERT2((*next >= '0') && (*next <= '9'),
2793 "bad proclist");
2794 SKIP_DIGITS(next);
2795 num = __kmp_str_to_int(scan, *next);
2796 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2797
2798 //
2799 // Copy the mask for that osId to the sum (union) mask.
2800 //
2801 if ((num > maxOsId) ||
2802 (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2803 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2804 && (__kmp_affinity_type != affinity_none))) {
2805 KMP_WARNING(AffIgnoreInvalidProcID, num);
2806 }
2807 KMP_CPU_ZERO(sumMask);
2808 }
2809 else {
2810 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2811 setSize = 1;
2812 }
2813
2814 for (;;) {
2815 //
2816 // Check for end of set.
2817 //
2818 SKIP_WS(next);
2819 if (*next == '}') {
2820 next++; // skip '}'
2821 break;
2822 }
2823
2824 //
2825 // Skip optional comma.
2826 //
2827 if (*next == ',') {
2828 next++;
2829 }
2830 SKIP_WS(next);
2831
2832 //
2833 // Read the next integer in the set.
2834 //
2835 scan = next;
2836 KMP_ASSERT2((*next >= '0') && (*next <= '9'),
2837 "bad explicit proc list");
2838
2839 SKIP_DIGITS(next);
2840 num = __kmp_str_to_int(scan, *next);
2841 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2842
2843 //
2844 // Add the mask for that osId to the sum mask.
2845 //
2846 if ((num > maxOsId) ||
2847 (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2848 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2849 && (__kmp_affinity_type != affinity_none))) {
2850 KMP_WARNING(AffIgnoreInvalidProcID, num);
2851 }
2852 }
2853 else {
2854 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2855 setSize++;
2856 }
2857 }
2858 if (setSize > 0) {
2859 ADD_MASK(sumMask);
2860 }
2861
2862 SKIP_WS(next);
2863 if (*next == ',') {
2864 next++;
2865 }
2866 scan = next;
2867 continue;
2868 }
2869
2870 //
2871 // Read the first integer.
2872 //
2873 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2874 SKIP_DIGITS(next);
2875 start = __kmp_str_to_int(scan, *next);
2876 KMP_ASSERT2(start >= 0, "bad explicit proc list");
2877 SKIP_WS(next);
2878
2879 //
2880 // If this isn't a range, then add a mask to the list and go on.
2881 //
2882 if (*next != '-') {
2883 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2884
2885 //
2886 // Skip optional comma.
2887 //
2888 if (*next == ',') {
2889 next++;
2890 }
2891 scan = next;
2892 continue;
2893 }
2894
2895 //
2896 // This is a range. Skip over the '-' and read in the 2nd int.
2897 //
2898 next++; // skip '-'
2899 SKIP_WS(next);
2900 scan = next;
2901 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2902 SKIP_DIGITS(next);
2903 end = __kmp_str_to_int(scan, *next);
2904 KMP_ASSERT2(end >= 0, "bad explicit proc list");
2905
2906 //
2907 // Check for a stride parameter
2908 //
2909 stride = 1;
2910 SKIP_WS(next);
2911 if (*next == ':') {
2912 //
2913 // A stride is specified. Skip over the ':" and read the 3rd int.
2914 //
2915 int sign = +1;
2916 next++; // skip ':'
2917 SKIP_WS(next);
2918 scan = next;
2919 if (*next == '-') {
2920 sign = -1;
2921 next++;
2922 SKIP_WS(next);
2923 scan = next;
2924 }
2925 KMP_ASSERT2((*next >= '0') && (*next <= '9'),
2926 "bad explicit proc list");
2927 SKIP_DIGITS(next);
2928 stride = __kmp_str_to_int(scan, *next);
2929 KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2930 stride *= sign;
2931 }
2932
2933 //
2934 // Do some range checks.
2935 //
2936 KMP_ASSERT2(stride != 0, "bad explicit proc list");
2937 if (stride > 0) {
2938 KMP_ASSERT2(start <= end, "bad explicit proc list");
2939 }
2940 else {
2941 KMP_ASSERT2(start >= end, "bad explicit proc list");
2942 }
2943 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2944
2945 //
2946 // Add the mask for each OS proc # to the list.
2947 //
2948 if (stride > 0) {
2949 do {
2950 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2951 start += stride;
2952 } while (start <= end);
2953 }
2954 else {
2955 do {
2956 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2957 start += stride;
2958 } while (start >= end);
2959 }
2960
2961 //
2962 // Skip optional comma.
2963 //
2964 SKIP_WS(next);
2965 if (*next == ',') {
2966 next++;
2967 }
2968 scan = next;
2969 }
2970
2971 *out_numMasks = nextNewMask;
2972 if (nextNewMask == 0) {
2973 *out_masks = NULL;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002974 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002975 return;
2976 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002977 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
2978 for(i = 0; i < nextNewMask; i++) {
2979 kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i);
2980 kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i);
2981 KMP_CPU_COPY(dest, src);
2982 }
2983 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
2984 KMP_CPU_FREE(sumMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002985}
2986
2987
2988# if OMP_40_ENABLED
2989
2990/*-----------------------------------------------------------------------------
2991
2992Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
2993places. Again, Here is the grammar:
2994
2995place_list := place
2996place_list := place , place_list
2997place := num
2998place := place : num
2999place := place : num : signed
3000place := { subplacelist }
3001place := ! place // (lowest priority)
3002subplace_list := subplace
3003subplace_list := subplace , subplace_list
3004subplace := num
3005subplace := num : num
3006subplace := num : num : signed
3007signed := num
3008signed := + signed
3009signed := - signed
3010
3011-----------------------------------------------------------------------------*/
3012
3013static void
3014__kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask,
3015 int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
3016{
3017 const char *next;
3018
3019 for (;;) {
3020 int start, count, stride, i;
3021
3022 //
3023 // Read in the starting proc id
3024 //
3025 SKIP_WS(*scan);
3026 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
3027 "bad explicit places list");
3028 next = *scan;
3029 SKIP_DIGITS(next);
3030 start = __kmp_str_to_int(*scan, *next);
3031 KMP_ASSERT(start >= 0);
3032 *scan = next;
3033
3034 //
3035 // valid follow sets are ',' ':' and '}'
3036 //
3037 SKIP_WS(*scan);
3038 if (**scan == '}' || **scan == ',') {
3039 if ((start > maxOsId) ||
3040 (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3041 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3042 && (__kmp_affinity_type != affinity_none))) {
3043 KMP_WARNING(AffIgnoreInvalidProcID, start);
3044 }
3045 }
3046 else {
3047 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3048 (*setSize)++;
3049 }
3050 if (**scan == '}') {
3051 break;
3052 }
3053 (*scan)++; // skip ','
3054 continue;
3055 }
3056 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3057 (*scan)++; // skip ':'
3058
3059 //
3060 // Read count parameter
3061 //
3062 SKIP_WS(*scan);
3063 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
3064 "bad explicit places list");
3065 next = *scan;
3066 SKIP_DIGITS(next);
3067 count = __kmp_str_to_int(*scan, *next);
3068 KMP_ASSERT(count >= 0);
3069 *scan = next;
3070
3071 //
3072 // valid follow sets are ',' ':' and '}'
3073 //
3074 SKIP_WS(*scan);
3075 if (**scan == '}' || **scan == ',') {
3076 for (i = 0; i < count; i++) {
3077 if ((start > maxOsId) ||
3078 (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3079 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3080 && (__kmp_affinity_type != affinity_none))) {
3081 KMP_WARNING(AffIgnoreInvalidProcID, start);
3082 }
3083 break; // don't proliferate warnings for large count
3084 }
3085 else {
3086 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3087 start++;
3088 (*setSize)++;
3089 }
3090 }
3091 if (**scan == '}') {
3092 break;
3093 }
3094 (*scan)++; // skip ','
3095 continue;
3096 }
3097 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3098 (*scan)++; // skip ':'
3099
3100 //
3101 // Read stride parameter
3102 //
3103 int sign = +1;
3104 for (;;) {
3105 SKIP_WS(*scan);
3106 if (**scan == '+') {
3107 (*scan)++; // skip '+'
3108 continue;
3109 }
3110 if (**scan == '-') {
3111 sign *= -1;
3112 (*scan)++; // skip '-'
3113 continue;
3114 }
3115 break;
3116 }
3117 SKIP_WS(*scan);
3118 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
3119 "bad explicit places list");
3120 next = *scan;
3121 SKIP_DIGITS(next);
3122 stride = __kmp_str_to_int(*scan, *next);
3123 KMP_ASSERT(stride >= 0);
3124 *scan = next;
3125 stride *= sign;
3126
3127 //
3128 // valid follow sets are ',' and '}'
3129 //
3130 SKIP_WS(*scan);
3131 if (**scan == '}' || **scan == ',') {
3132 for (i = 0; i < count; i++) {
3133 if ((start > maxOsId) ||
3134 (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3135 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3136 && (__kmp_affinity_type != affinity_none))) {
3137 KMP_WARNING(AffIgnoreInvalidProcID, start);
3138 }
3139 break; // don't proliferate warnings for large count
3140 }
3141 else {
3142 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3143 start += stride;
3144 (*setSize)++;
3145 }
3146 }
3147 if (**scan == '}') {
3148 break;
3149 }
3150 (*scan)++; // skip ','
3151 continue;
3152 }
3153
3154 KMP_ASSERT2(0, "bad explicit places list");
3155 }
3156}
3157
3158
3159static void
3160__kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3161 int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
3162{
3163 const char *next;
3164
3165 //
3166 // valid follow sets are '{' '!' and num
3167 //
3168 SKIP_WS(*scan);
3169 if (**scan == '{') {
3170 (*scan)++; // skip '{'
3171 __kmp_process_subplace_list(scan, osId2Mask, maxOsId , tempMask,
3172 setSize);
3173 KMP_ASSERT2(**scan == '}', "bad explicit places list");
3174 (*scan)++; // skip '}'
3175 }
3176 else if (**scan == '!') {
Jonathan Peyton6778c732015-10-19 19:43:01 +00003177 (*scan)++; // skip '!'
Jim Cownie5e8470a2013-09-27 10:38:44 +00003178 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003179 KMP_CPU_COMPLEMENT(maxOsId, tempMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003180 }
3181 else if ((**scan >= '0') && (**scan <= '9')) {
3182 next = *scan;
3183 SKIP_DIGITS(next);
3184 int num = __kmp_str_to_int(*scan, *next);
3185 KMP_ASSERT(num >= 0);
3186 if ((num > maxOsId) ||
3187 (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3188 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3189 && (__kmp_affinity_type != affinity_none))) {
3190 KMP_WARNING(AffIgnoreInvalidProcID, num);
3191 }
3192 }
3193 else {
3194 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3195 (*setSize)++;
3196 }
3197 *scan = next; // skip num
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003198 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003199 else {
3200 KMP_ASSERT2(0, "bad explicit places list");
3201 }
3202}
3203
3204
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003205//static void
3206void
Jim Cownie5e8470a2013-09-27 10:38:44 +00003207__kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3208 unsigned int *out_numMasks, const char *placelist,
3209 kmp_affin_mask_t *osId2Mask, int maxOsId)
3210{
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003211 int i,j,count,stride,sign;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003212 const char *scan = placelist;
3213 const char *next = placelist;
3214
3215 numNewMasks = 2;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003216 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003217 nextNewMask = 0;
3218
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003219 // tempMask is modified based on the previous or initial
3220 // place to form the current place
3221 // previousMask contains the previous place
3222 kmp_affin_mask_t *tempMask;
3223 kmp_affin_mask_t *previousMask;
3224 KMP_CPU_ALLOC(tempMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003225 KMP_CPU_ZERO(tempMask);
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003226 KMP_CPU_ALLOC(previousMask);
3227 KMP_CPU_ZERO(previousMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003228 int setSize = 0;
3229
3230 for (;;) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003231 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3232
3233 //
3234 // valid follow sets are ',' ':' and EOL
3235 //
3236 SKIP_WS(scan);
3237 if (*scan == '\0' || *scan == ',') {
3238 if (setSize > 0) {
3239 ADD_MASK(tempMask);
3240 }
3241 KMP_CPU_ZERO(tempMask);
3242 setSize = 0;
3243 if (*scan == '\0') {
3244 break;
3245 }
3246 scan++; // skip ','
3247 continue;
3248 }
3249
3250 KMP_ASSERT2(*scan == ':', "bad explicit places list");
3251 scan++; // skip ':'
3252
3253 //
3254 // Read count parameter
3255 //
3256 SKIP_WS(scan);
3257 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
3258 "bad explicit places list");
3259 next = scan;
3260 SKIP_DIGITS(next);
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003261 count = __kmp_str_to_int(scan, *next);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003262 KMP_ASSERT(count >= 0);
3263 scan = next;
3264
3265 //
3266 // valid follow sets are ',' ':' and EOL
3267 //
3268 SKIP_WS(scan);
3269 if (*scan == '\0' || *scan == ',') {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003270 stride = +1;
3271 }
3272 else {
3273 KMP_ASSERT2(*scan == ':', "bad explicit places list");
3274 scan++; // skip ':'
Jim Cownie5e8470a2013-09-27 10:38:44 +00003275
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003276 //
3277 // Read stride parameter
3278 //
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003279 sign = +1;
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003280 for (;;) {
3281 SKIP_WS(scan);
3282 if (*scan == '+') {
3283 scan++; // skip '+'
3284 continue;
3285 }
3286 if (*scan == '-') {
3287 sign *= -1;
3288 scan++; // skip '-'
3289 continue;
3290 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003291 break;
3292 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003293 SKIP_WS(scan);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003294 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
3295 "bad explicit places list");
3296 next = scan;
3297 SKIP_DIGITS(next);
3298 stride = __kmp_str_to_int(scan, *next);
3299 KMP_DEBUG_ASSERT(stride >= 0);
3300 scan = next;
3301 stride *= sign;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003302 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003303
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003304 // Add places determined by initial_place : count : stride
3305 for (i = 0; i < count; i++) {
3306 if (setSize == 0) {
3307 break;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003308 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003309 // Add the current place, then build the next place (tempMask) from that
3310 KMP_CPU_COPY(previousMask, tempMask);
3311 ADD_MASK(previousMask);
3312 KMP_CPU_ZERO(tempMask);
3313 setSize = 0;
3314 KMP_CPU_SET_ITERATE(j, previousMask) {
3315 if (! KMP_CPU_ISSET(j, previousMask)) {
3316 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003317 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003318 else if ((j+stride > maxOsId) || (j+stride < 0) ||
3319 (! KMP_CPU_ISSET(j+stride, KMP_CPU_INDEX(osId2Mask, j+stride)))) {
3320 if ((__kmp_affinity_verbose || (__kmp_affinity_warnings
3321 && (__kmp_affinity_type != affinity_none))) && i < count - 1) {
3322 KMP_WARNING(AffIgnoreInvalidProcID, j+stride);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003323 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003324 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003325 else {
3326 KMP_CPU_SET(j+stride, tempMask);
3327 setSize++;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003328 }
3329 }
3330 }
3331 KMP_CPU_ZERO(tempMask);
3332 setSize = 0;
3333
3334 //
3335 // valid follow sets are ',' and EOL
3336 //
3337 SKIP_WS(scan);
3338 if (*scan == '\0') {
3339 break;
3340 }
3341 if (*scan == ',') {
3342 scan++; // skip ','
3343 continue;
3344 }
3345
3346 KMP_ASSERT2(0, "bad explicit places list");
3347 }
3348
3349 *out_numMasks = nextNewMask;
3350 if (nextNewMask == 0) {
3351 *out_masks = NULL;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003352 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003353 return;
3354 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003355 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3356 KMP_CPU_FREE(tempMask);
3357 KMP_CPU_FREE(previousMask);
3358 for(i = 0; i < nextNewMask; i++) {
3359 kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i);
3360 kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i);
3361 KMP_CPU_COPY(dest, src);
3362 }
3363 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003364}
3365
3366# endif /* OMP_40_ENABLED */
3367
3368#undef ADD_MASK
3369#undef ADD_MASK_OSID
3370
Jim Cownie5e8470a2013-09-27 10:38:44 +00003371static void
3372__kmp_apply_thread_places(AddrUnsPair **pAddr, int depth)
3373{
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003374 if (__kmp_place_num_sockets == 0 &&
3375 __kmp_place_num_cores == 0 &&
3376 __kmp_place_num_threads_per_core == 0 )
3377 return; // no topology limiting actions requested, exit
3378 if (__kmp_place_num_sockets == 0)
3379 __kmp_place_num_sockets = nPackages; // use all available sockets
3380 if (__kmp_place_num_cores == 0)
Jim Cownie5e8470a2013-09-27 10:38:44 +00003381 __kmp_place_num_cores = nCoresPerPkg; // use all available cores
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003382 if (__kmp_place_num_threads_per_core == 0 ||
3383 __kmp_place_num_threads_per_core > __kmp_nThreadsPerCore)
3384 __kmp_place_num_threads_per_core = __kmp_nThreadsPerCore; // use all HW contexts
3385
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003386 if ( !__kmp_affinity_uniform_topology() ) {
3387 KMP_WARNING( AffThrPlaceNonUniform );
3388 return; // don't support non-uniform topology
3389 }
3390 if ( depth != 3 ) {
3391 KMP_WARNING( AffThrPlaceNonThreeLevel );
3392 return; // don't support not-3-level topology
Jim Cownie5e8470a2013-09-27 10:38:44 +00003393 }
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003394 if (__kmp_place_socket_offset + __kmp_place_num_sockets > nPackages) {
3395 KMP_WARNING(AffThrPlaceManySockets);
3396 return;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003397 }
Andrey Churbanov12875572015-03-10 09:00:36 +00003398 if ( __kmp_place_core_offset + __kmp_place_num_cores > nCoresPerPkg ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003399 KMP_WARNING( AffThrPlaceManyCores );
3400 return;
3401 }
3402
3403 AddrUnsPair *newAddr = (AddrUnsPair *)__kmp_allocate( sizeof(AddrUnsPair) *
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003404 __kmp_place_num_sockets * __kmp_place_num_cores * __kmp_place_num_threads_per_core);
3405
Jim Cownie5e8470a2013-09-27 10:38:44 +00003406 int i, j, k, n_old = 0, n_new = 0;
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003407 for (i = 0; i < nPackages; ++i)
3408 if (i < __kmp_place_socket_offset ||
3409 i >= __kmp_place_socket_offset + __kmp_place_num_sockets)
3410 n_old += nCoresPerPkg * __kmp_nThreadsPerCore; // skip not-requested socket
3411 else
3412 for (j = 0; j < nCoresPerPkg; ++j) // walk through requested socket
3413 if (j < __kmp_place_core_offset ||
3414 j >= __kmp_place_core_offset + __kmp_place_num_cores)
3415 n_old += __kmp_nThreadsPerCore; // skip not-requested core
3416 else
3417 for (k = 0; k < __kmp_nThreadsPerCore; ++k) { // walk through requested core
3418 if (k < __kmp_place_num_threads_per_core) {
3419 newAddr[n_new] = (*pAddr)[n_old]; // collect requested thread's data
3420 n_new++;
3421 }
3422 n_old++;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003423 }
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003424 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
3425 KMP_DEBUG_ASSERT(n_new == __kmp_place_num_sockets * __kmp_place_num_cores *
3426 __kmp_place_num_threads_per_core);
3427
3428 nPackages = __kmp_place_num_sockets; // correct nPackages
Jim Cownie5e8470a2013-09-27 10:38:44 +00003429 nCoresPerPkg = __kmp_place_num_cores; // correct nCoresPerPkg
3430 __kmp_nThreadsPerCore = __kmp_place_num_threads_per_core; // correct __kmp_nThreadsPerCore
3431 __kmp_avail_proc = n_new; // correct avail_proc
3432 __kmp_ncores = nPackages * __kmp_place_num_cores; // correct ncores
3433
3434 __kmp_free( *pAddr );
3435 *pAddr = newAddr; // replace old topology with new one
3436}
3437
Jim Cownie5e8470a2013-09-27 10:38:44 +00003438
3439static AddrUnsPair *address2os = NULL;
3440static int * procarr = NULL;
3441static int __kmp_aff_depth = 0;
3442
3443static void
3444__kmp_aux_affinity_initialize(void)
3445{
3446 if (__kmp_affinity_masks != NULL) {
3447 KMP_ASSERT(fullMask != NULL);
3448 return;
3449 }
3450
3451 //
3452 // Create the "full" mask - this defines all of the processors that we
3453 // consider to be in the machine model. If respect is set, then it is
3454 // the initialization thread's affinity mask. Otherwise, it is all
3455 // processors that we know about on the machine.
3456 //
3457 if (fullMask == NULL) {
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003458 KMP_CPU_ALLOC(fullMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003459 }
3460 if (KMP_AFFINITY_CAPABLE()) {
3461 if (__kmp_affinity_respect_mask) {
3462 __kmp_get_system_affinity(fullMask, TRUE);
3463
3464 //
3465 // Count the number of available processors.
3466 //
3467 unsigned i;
3468 __kmp_avail_proc = 0;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003469 KMP_CPU_SET_ITERATE(i, fullMask) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003470 if (! KMP_CPU_ISSET(i, fullMask)) {
3471 continue;
3472 }
3473 __kmp_avail_proc++;
3474 }
3475 if (__kmp_avail_proc > __kmp_xproc) {
3476 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3477 && (__kmp_affinity_type != affinity_none))) {
3478 KMP_WARNING(ErrorInitializeAffinity);
3479 }
3480 __kmp_affinity_type = affinity_none;
Andrey Churbanov1f037e42015-03-10 09:15:26 +00003481 KMP_AFFINITY_DISABLE();
Jim Cownie5e8470a2013-09-27 10:38:44 +00003482 return;
3483 }
3484 }
3485 else {
3486 __kmp_affinity_entire_machine_mask(fullMask);
3487 __kmp_avail_proc = __kmp_xproc;
3488 }
3489 }
3490
3491 int depth = -1;
3492 kmp_i18n_id_t msg_id = kmp_i18n_null;
3493
3494 //
Alp Toker8f2d3f02014-02-24 10:40:15 +00003495 // For backward compatibility, setting KMP_CPUINFO_FILE =>
Jim Cownie5e8470a2013-09-27 10:38:44 +00003496 // KMP_TOPOLOGY_METHOD=cpuinfo
3497 //
3498 if ((__kmp_cpuinfo_file != NULL) &&
3499 (__kmp_affinity_top_method == affinity_top_method_all)) {
3500 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
3501 }
3502
3503 if (__kmp_affinity_top_method == affinity_top_method_all) {
3504 //
3505 // In the default code path, errors are not fatal - we just try using
3506 // another method. We only emit a warning message if affinity is on,
3507 // or the verbose flag is set, an the nowarnings flag was not set.
3508 //
3509 const char *file_name = NULL;
3510 int line = 0;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003511# if KMP_USE_HWLOC
3512 if (depth < 0) {
3513 if (__kmp_affinity_verbose) {
3514 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
3515 }
3516 if(!__kmp_hwloc_error) {
3517 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
3518 if (depth == 0) {
3519 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3520 KMP_ASSERT(address2os == NULL);
3521 return;
3522 } else if(depth < 0 && __kmp_affinity_verbose) {
3523 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3524 }
3525 } else if(__kmp_affinity_verbose) {
3526 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3527 }
3528 }
3529# endif
Jim Cownie5e8470a2013-09-27 10:38:44 +00003530
3531# if KMP_ARCH_X86 || KMP_ARCH_X86_64
3532
Jim Cownie5e8470a2013-09-27 10:38:44 +00003533 if (depth < 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003534 if (__kmp_affinity_verbose) {
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003535 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003536 }
3537
3538 file_name = NULL;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003539 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003540 if (depth == 0) {
3541 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3542 KMP_ASSERT(address2os == NULL);
3543 return;
3544 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003545
3546 if (depth < 0) {
3547 if (__kmp_affinity_verbose) {
3548 if (msg_id != kmp_i18n_null) {
3549 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id),
3550 KMP_I18N_STR(DecodingLegacyAPIC));
3551 }
3552 else {
3553 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
3554 }
3555 }
3556
3557 file_name = NULL;
3558 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
3559 if (depth == 0) {
3560 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3561 KMP_ASSERT(address2os == NULL);
3562 return;
3563 }
3564 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003565 }
3566
3567# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3568
3569# if KMP_OS_LINUX
3570
3571 if (depth < 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003572 if (__kmp_affinity_verbose) {
3573 if (msg_id != kmp_i18n_null) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003574 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
3575 }
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003576 else {
3577 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
3578 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003579 }
3580
3581 FILE *f = fopen("/proc/cpuinfo", "r");
3582 if (f == NULL) {
3583 msg_id = kmp_i18n_str_CantOpenCpuinfo;
3584 }
3585 else {
3586 file_name = "/proc/cpuinfo";
3587 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
3588 fclose(f);
3589 if (depth == 0) {
3590 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3591 KMP_ASSERT(address2os == NULL);
3592 return;
3593 }
3594 }
3595 }
3596
3597# endif /* KMP_OS_LINUX */
3598
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003599# if KMP_GROUP_AFFINITY
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003600
3601 if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
3602 if (__kmp_affinity_verbose) {
3603 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
3604 }
3605
3606 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
3607 KMP_ASSERT(depth != 0);
3608 }
3609
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003610# endif /* KMP_GROUP_AFFINITY */
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003611
Jim Cownie5e8470a2013-09-27 10:38:44 +00003612 if (depth < 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003613 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003614 if (file_name == NULL) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003615 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003616 }
3617 else if (line == 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003618 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003619 }
3620 else {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003621 KMP_INFORM(UsingFlatOSFileLine, file_name, line, __kmp_i18n_catgets(msg_id));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003622 }
3623 }
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003624 // FIXME - print msg if msg_id = kmp_i18n_null ???
Jim Cownie5e8470a2013-09-27 10:38:44 +00003625
3626 file_name = "";
3627 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
3628 if (depth == 0) {
3629 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3630 KMP_ASSERT(address2os == NULL);
3631 return;
3632 }
3633 KMP_ASSERT(depth > 0);
3634 KMP_ASSERT(address2os != NULL);
3635 }
3636 }
3637
3638 //
3639 // If the user has specified that a paricular topology discovery method
3640 // is to be used, then we abort if that method fails. The exception is
3641 // group affinity, which might have been implicitly set.
3642 //
3643
3644# if KMP_ARCH_X86 || KMP_ARCH_X86_64
3645
3646 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
3647 if (__kmp_affinity_verbose) {
3648 KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
3649 KMP_I18N_STR(Decodingx2APIC));
3650 }
3651
3652 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
3653 if (depth == 0) {
3654 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3655 KMP_ASSERT(address2os == NULL);
3656 return;
3657 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003658 if (depth < 0) {
3659 KMP_ASSERT(msg_id != kmp_i18n_null);
3660 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3661 }
3662 }
3663 else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
3664 if (__kmp_affinity_verbose) {
3665 KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
3666 KMP_I18N_STR(DecodingLegacyAPIC));
3667 }
3668
3669 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
3670 if (depth == 0) {
3671 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3672 KMP_ASSERT(address2os == NULL);
3673 return;
3674 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003675 if (depth < 0) {
3676 KMP_ASSERT(msg_id != kmp_i18n_null);
3677 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3678 }
3679 }
3680
3681# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3682
3683 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
3684 const char *filename;
3685 if (__kmp_cpuinfo_file != NULL) {
3686 filename = __kmp_cpuinfo_file;
3687 }
3688 else {
3689 filename = "/proc/cpuinfo";
3690 }
3691
3692 if (__kmp_affinity_verbose) {
3693 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
3694 }
3695
3696 FILE *f = fopen(filename, "r");
3697 if (f == NULL) {
3698 int code = errno;
3699 if (__kmp_cpuinfo_file != NULL) {
3700 __kmp_msg(
3701 kmp_ms_fatal,
3702 KMP_MSG(CantOpenFileForReading, filename),
3703 KMP_ERR(code),
3704 KMP_HNT(NameComesFrom_CPUINFO_FILE),
3705 __kmp_msg_null
3706 );
3707 }
3708 else {
3709 __kmp_msg(
3710 kmp_ms_fatal,
3711 KMP_MSG(CantOpenFileForReading, filename),
3712 KMP_ERR(code),
3713 __kmp_msg_null
3714 );
3715 }
3716 }
3717 int line = 0;
3718 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
3719 fclose(f);
3720 if (depth < 0) {
3721 KMP_ASSERT(msg_id != kmp_i18n_null);
3722 if (line > 0) {
3723 KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id));
3724 }
3725 else {
3726 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
3727 }
3728 }
3729 if (__kmp_affinity_type == affinity_none) {
3730 KMP_ASSERT(depth == 0);
3731 KMP_ASSERT(address2os == NULL);
3732 return;
3733 }
3734 }
3735
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003736# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +00003737
3738 else if (__kmp_affinity_top_method == affinity_top_method_group) {
3739 if (__kmp_affinity_verbose) {
3740 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
3741 }
3742
3743 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
3744 KMP_ASSERT(depth != 0);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003745 if (depth < 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003746 KMP_ASSERT(msg_id != kmp_i18n_null);
3747 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003748 }
3749 }
3750
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003751# endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +00003752
3753 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
3754 if (__kmp_affinity_verbose) {
3755 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
3756 }
3757
3758 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
3759 if (depth == 0) {
3760 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3761 KMP_ASSERT(address2os == NULL);
3762 return;
3763 }
3764 // should not fail
3765 KMP_ASSERT(depth > 0);
3766 KMP_ASSERT(address2os != NULL);
3767 }
3768
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003769# if KMP_USE_HWLOC
3770 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
3771 if (__kmp_affinity_verbose) {
3772 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
3773 }
3774 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
3775 if (depth == 0) {
3776 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3777 KMP_ASSERT(address2os == NULL);
3778 return;
3779 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003780 }
3781# endif // KMP_USE_HWLOC
3782
Jim Cownie5e8470a2013-09-27 10:38:44 +00003783 if (address2os == NULL) {
3784 if (KMP_AFFINITY_CAPABLE()
3785 && (__kmp_affinity_verbose || (__kmp_affinity_warnings
3786 && (__kmp_affinity_type != affinity_none)))) {
3787 KMP_WARNING(ErrorInitializeAffinity);
3788 }
3789 __kmp_affinity_type = affinity_none;
Andrey Churbanov1f037e42015-03-10 09:15:26 +00003790 KMP_AFFINITY_DISABLE();
Jim Cownie5e8470a2013-09-27 10:38:44 +00003791 return;
3792 }
3793
Jim Cownie5e8470a2013-09-27 10:38:44 +00003794 __kmp_apply_thread_places(&address2os, depth);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003795
3796 //
3797 // Create the table of masks, indexed by thread Id.
3798 //
3799 unsigned maxIndex;
3800 unsigned numUnique;
3801 kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique,
3802 address2os, __kmp_avail_proc);
3803 if (__kmp_affinity_gran_levels == 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003804 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003805 }
3806
3807 //
3808 // Set the childNums vector in all Address objects. This must be done
3809 // before we can sort using __kmp_affinity_cmp_Address_child_num(),
3810 // which takes into account the setting of __kmp_affinity_compact.
3811 //
3812 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
3813
3814 switch (__kmp_affinity_type) {
3815
3816 case affinity_explicit:
3817 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
3818# if OMP_40_ENABLED
3819 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
3820# endif
3821 {
3822 __kmp_affinity_process_proclist(&__kmp_affinity_masks,
3823 &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
3824 maxIndex);
3825 }
3826# if OMP_40_ENABLED
3827 else {
3828 __kmp_affinity_process_placelist(&__kmp_affinity_masks,
3829 &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
3830 maxIndex);
3831 }
3832# endif
3833 if (__kmp_affinity_num_masks == 0) {
3834 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3835 && (__kmp_affinity_type != affinity_none))) {
3836 KMP_WARNING(AffNoValidProcID);
3837 }
3838 __kmp_affinity_type = affinity_none;
3839 return;
3840 }
3841 break;
3842
3843 //
3844 // The other affinity types rely on sorting the Addresses according
3845 // to some permutation of the machine topology tree. Set
3846 // __kmp_affinity_compact and __kmp_affinity_offset appropriately,
3847 // then jump to a common code fragment to do the sort and create
3848 // the array of affinity masks.
3849 //
3850
3851 case affinity_logical:
3852 __kmp_affinity_compact = 0;
3853 if (__kmp_affinity_offset) {
3854 __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
3855 % __kmp_avail_proc;
3856 }
3857 goto sortAddresses;
3858
3859 case affinity_physical:
3860 if (__kmp_nThreadsPerCore > 1) {
3861 __kmp_affinity_compact = 1;
3862 if (__kmp_affinity_compact >= depth) {
3863 __kmp_affinity_compact = 0;
3864 }
3865 } else {
3866 __kmp_affinity_compact = 0;
3867 }
3868 if (__kmp_affinity_offset) {
3869 __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
3870 % __kmp_avail_proc;
3871 }
3872 goto sortAddresses;
3873
3874 case affinity_scatter:
3875 if (__kmp_affinity_compact >= depth) {
3876 __kmp_affinity_compact = 0;
3877 }
3878 else {
3879 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
3880 }
3881 goto sortAddresses;
3882
3883 case affinity_compact:
3884 if (__kmp_affinity_compact >= depth) {
3885 __kmp_affinity_compact = depth - 1;
3886 }
3887 goto sortAddresses;
3888
Jim Cownie5e8470a2013-09-27 10:38:44 +00003889 case affinity_balanced:
Jonathan Peytoncaf09fe2015-05-27 23:27:33 +00003890 // Balanced works only for the case of a single package
Jim Cownie5e8470a2013-09-27 10:38:44 +00003891 if( nPackages > 1 ) {
3892 if( __kmp_affinity_verbose || __kmp_affinity_warnings ) {
3893 KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" );
3894 }
3895 __kmp_affinity_type = affinity_none;
3896 return;
3897 } else if( __kmp_affinity_uniform_topology() ) {
3898 break;
3899 } else { // Non-uniform topology
3900
3901 // Save the depth for further usage
3902 __kmp_aff_depth = depth;
3903
3904 // Number of hyper threads per core in HT machine
3905 int nth_per_core = __kmp_nThreadsPerCore;
3906
3907 int core_level;
3908 if( nth_per_core > 1 ) {
3909 core_level = depth - 2;
3910 } else {
3911 core_level = depth - 1;
3912 }
3913 int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1;
3914 int nproc = nth_per_core * ncores;
3915
3916 procarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
3917 for( int i = 0; i < nproc; i++ ) {
3918 procarr[ i ] = -1;
3919 }
3920
3921 for( int i = 0; i < __kmp_avail_proc; i++ ) {
3922 int proc = address2os[ i ].second;
3923 // If depth == 3 then level=0 - package, level=1 - core, level=2 - thread.
3924 // If there is only one thread per core then depth == 2: level 0 - package,
3925 // level 1 - core.
3926 int level = depth - 1;
3927
3928 // __kmp_nth_per_core == 1
3929 int thread = 0;
3930 int core = address2os[ i ].first.labels[ level ];
3931 // If the thread level exists, that is we have more than one thread context per core
3932 if( nth_per_core > 1 ) {
3933 thread = address2os[ i ].first.labels[ level ] % nth_per_core;
3934 core = address2os[ i ].first.labels[ level - 1 ];
3935 }
3936 procarr[ core * nth_per_core + thread ] = proc;
3937 }
3938
3939 break;
3940 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003941
3942 sortAddresses:
3943 //
3944 // Allocate the gtid->affinity mask table.
3945 //
3946 if (__kmp_affinity_dups) {
3947 __kmp_affinity_num_masks = __kmp_avail_proc;
3948 }
3949 else {
3950 __kmp_affinity_num_masks = numUnique;
3951 }
3952
3953# if OMP_40_ENABLED
3954 if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel )
3955 && ( __kmp_affinity_num_places > 0 )
3956 && ( (unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks ) ) {
3957 __kmp_affinity_num_masks = __kmp_affinity_num_places;
3958 }
3959# endif
3960
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003961 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003962
3963 //
3964 // Sort the address2os table according to the current setting of
3965 // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
3966 //
3967 qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
3968 __kmp_affinity_cmp_Address_child_num);
3969 {
3970 int i;
3971 unsigned j;
3972 for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
3973 if ((! __kmp_affinity_dups) && (! address2os[i].first.leader)) {
3974 continue;
3975 }
3976 unsigned osId = address2os[i].second;
3977 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
3978 kmp_affin_mask_t *dest
3979 = KMP_CPU_INDEX(__kmp_affinity_masks, j);
3980 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
3981 KMP_CPU_COPY(dest, src);
3982 if (++j >= __kmp_affinity_num_masks) {
3983 break;
3984 }
3985 }
3986 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
3987 }
3988 break;
3989
3990 default:
3991 KMP_ASSERT2(0, "Unexpected affinity setting");
3992 }
3993
3994 __kmp_free(osId2Mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003995 machine_hierarchy.init(address2os, __kmp_avail_proc);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003996}
3997
3998
3999void
4000__kmp_affinity_initialize(void)
4001{
4002 //
4003 // Much of the code above was written assumming that if a machine was not
4004 // affinity capable, then __kmp_affinity_type == affinity_none. We now
4005 // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4006 //
4007 // There are too many checks for __kmp_affinity_type == affinity_none
4008 // in this code. Instead of trying to change them all, check if
4009 // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4010 // affinity_none, call the real initialization routine, then restore
4011 // __kmp_affinity_type to affinity_disabled.
4012 //
4013 int disabled = (__kmp_affinity_type == affinity_disabled);
4014 if (! KMP_AFFINITY_CAPABLE()) {
4015 KMP_ASSERT(disabled);
4016 }
4017 if (disabled) {
4018 __kmp_affinity_type = affinity_none;
4019 }
4020 __kmp_aux_affinity_initialize();
4021 if (disabled) {
4022 __kmp_affinity_type = affinity_disabled;
4023 }
4024}
4025
4026
4027void
4028__kmp_affinity_uninitialize(void)
4029{
4030 if (__kmp_affinity_masks != NULL) {
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004031 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004032 __kmp_affinity_masks = NULL;
4033 }
4034 if (fullMask != NULL) {
4035 KMP_CPU_FREE(fullMask);
4036 fullMask = NULL;
4037 }
4038 __kmp_affinity_num_masks = 0;
4039# if OMP_40_ENABLED
4040 __kmp_affinity_num_places = 0;
4041# endif
4042 if (__kmp_affinity_proclist != NULL) {
4043 __kmp_free(__kmp_affinity_proclist);
4044 __kmp_affinity_proclist = NULL;
4045 }
4046 if( address2os != NULL ) {
4047 __kmp_free( address2os );
4048 address2os = NULL;
4049 }
4050 if( procarr != NULL ) {
4051 __kmp_free( procarr );
4052 procarr = NULL;
4053 }
4054}
4055
4056
4057void
4058__kmp_affinity_set_init_mask(int gtid, int isa_root)
4059{
4060 if (! KMP_AFFINITY_CAPABLE()) {
4061 return;
4062 }
4063
4064 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4065 if (th->th.th_affin_mask == NULL) {
4066 KMP_CPU_ALLOC(th->th.th_affin_mask);
4067 }
4068 else {
4069 KMP_CPU_ZERO(th->th.th_affin_mask);
4070 }
4071
4072 //
4073 // Copy the thread mask to the kmp_info_t strucuture.
4074 // If __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one
4075 // that has all of the OS proc ids set, or if __kmp_affinity_respect_mask
4076 // is set, then the full mask is the same as the mask of the initialization
4077 // thread.
4078 //
4079 kmp_affin_mask_t *mask;
4080 int i;
4081
4082# if OMP_40_ENABLED
4083 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
4084# endif
4085 {
Andrey Churbanovf28f6132015-01-13 14:54:00 +00004086 if ((__kmp_affinity_type == affinity_none) || (__kmp_affinity_type == affinity_balanced)
Jim Cownie5e8470a2013-09-27 10:38:44 +00004087 ) {
Andrey Churbanov7daf9802015-01-27 16:52:57 +00004088# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +00004089 if (__kmp_num_proc_groups > 1) {
4090 return;
4091 }
4092# endif
4093 KMP_ASSERT(fullMask != NULL);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004094 i = KMP_PLACE_ALL;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004095 mask = fullMask;
4096 }
4097 else {
4098 KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
4099 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4100 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4101 }
4102 }
4103# if OMP_40_ENABLED
4104 else {
4105 if ((! isa_root)
4106 || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
Andrey Churbanov7daf9802015-01-27 16:52:57 +00004107# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +00004108 if (__kmp_num_proc_groups > 1) {
4109 return;
4110 }
4111# endif
4112 KMP_ASSERT(fullMask != NULL);
4113 i = KMP_PLACE_ALL;
4114 mask = fullMask;
4115 }
4116 else {
4117 //
4118 // int i = some hash function or just a counter that doesn't
4119 // always start at 0. Use gtid for now.
4120 //
4121 KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
4122 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4123 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4124 }
4125 }
4126# endif
4127
4128# if OMP_40_ENABLED
4129 th->th.th_current_place = i;
4130 if (isa_root) {
4131 th->th.th_new_place = i;
4132 th->th.th_first_place = 0;
4133 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4134 }
4135
4136 if (i == KMP_PLACE_ALL) {
4137 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4138 gtid));
4139 }
4140 else {
4141 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4142 gtid, i));
4143 }
4144# else
4145 if (i == -1) {
4146 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to fullMask\n",
4147 gtid));
4148 }
4149 else {
4150 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
4151 gtid, i));
4152 }
4153# endif /* OMP_40_ENABLED */
4154
4155 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4156
4157 if (__kmp_affinity_verbose) {
4158 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4159 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4160 th->th.th_affin_mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004161 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), gtid,
4162 buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004163 }
4164
4165# if KMP_OS_WINDOWS
4166 //
4167 // On Windows* OS, the process affinity mask might have changed.
4168 // If the user didn't request affinity and this call fails,
4169 // just continue silently. See CQ171393.
4170 //
4171 if ( __kmp_affinity_type == affinity_none ) {
4172 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4173 }
4174 else
4175# endif
4176 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4177}
4178
4179
4180# if OMP_40_ENABLED
4181
4182void
4183__kmp_affinity_set_place(int gtid)
4184{
4185 int retval;
4186
4187 if (! KMP_AFFINITY_CAPABLE()) {
4188 return;
4189 }
4190
4191 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4192
4193 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current place = %d)\n",
4194 gtid, th->th.th_new_place, th->th.th_current_place));
4195
4196 //
Alp Toker8f2d3f02014-02-24 10:40:15 +00004197 // Check that the new place is within this thread's partition.
Jim Cownie5e8470a2013-09-27 10:38:44 +00004198 //
4199 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004200 KMP_ASSERT(th->th.th_new_place >= 0);
4201 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004202 if (th->th.th_first_place <= th->th.th_last_place) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004203 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place)
Jim Cownie5e8470a2013-09-27 10:38:44 +00004204 && (th->th.th_new_place <= th->th.th_last_place));
4205 }
4206 else {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004207 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place)
Jim Cownie5e8470a2013-09-27 10:38:44 +00004208 || (th->th.th_new_place >= th->th.th_last_place));
4209 }
4210
4211 //
4212 // Copy the thread mask to the kmp_info_t strucuture,
4213 // and set this thread's affinity.
4214 //
4215 kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks,
4216 th->th.th_new_place);
4217 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4218 th->th.th_current_place = th->th.th_new_place;
4219
4220 if (__kmp_affinity_verbose) {
4221 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4222 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4223 th->th.th_affin_mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004224 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4225 gtid, buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004226 }
4227 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4228}
4229
4230# endif /* OMP_40_ENABLED */
4231
4232
4233int
4234__kmp_aux_set_affinity(void **mask)
4235{
4236 int gtid;
4237 kmp_info_t *th;
4238 int retval;
4239
4240 if (! KMP_AFFINITY_CAPABLE()) {
4241 return -1;
4242 }
4243
4244 gtid = __kmp_entry_gtid();
4245 KA_TRACE(1000, ;{
4246 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4247 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4248 (kmp_affin_mask_t *)(*mask));
4249 __kmp_debug_printf("kmp_set_affinity: setting affinity mask for thread %d = %s\n",
4250 gtid, buf);
4251 });
4252
4253 if (__kmp_env_consistency_check) {
4254 if ((mask == NULL) || (*mask == NULL)) {
4255 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4256 }
4257 else {
4258 unsigned proc;
4259 int num_procs = 0;
4260
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004261 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t*)(*mask))) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004262 if (! KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4263 continue;
4264 }
4265 num_procs++;
4266 if (! KMP_CPU_ISSET(proc, fullMask)) {
4267 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4268 break;
4269 }
4270 }
4271 if (num_procs == 0) {
4272 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4273 }
4274
Andrey Churbanov7daf9802015-01-27 16:52:57 +00004275# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +00004276 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4277 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4278 }
Andrey Churbanov7daf9802015-01-27 16:52:57 +00004279# endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +00004280
4281 }
4282 }
4283
4284 th = __kmp_threads[gtid];
4285 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4286 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4287 if (retval == 0) {
4288 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4289 }
4290
4291# if OMP_40_ENABLED
4292 th->th.th_current_place = KMP_PLACE_UNDEFINED;
4293 th->th.th_new_place = KMP_PLACE_UNDEFINED;
4294 th->th.th_first_place = 0;
4295 th->th.th_last_place = __kmp_affinity_num_masks - 1;
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004296
4297 //
4298 // Turn off 4.0 affinity for the current tread at this parallel level.
4299 //
4300 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004301# endif
4302
4303 return retval;
4304}
4305
4306
4307int
4308__kmp_aux_get_affinity(void **mask)
4309{
4310 int gtid;
4311 int retval;
4312 kmp_info_t *th;
4313
4314 if (! KMP_AFFINITY_CAPABLE()) {
4315 return -1;
4316 }
4317
4318 gtid = __kmp_entry_gtid();
4319 th = __kmp_threads[gtid];
4320 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4321
4322 KA_TRACE(1000, ;{
4323 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4324 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4325 th->th.th_affin_mask);
4326 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf);
4327 });
4328
4329 if (__kmp_env_consistency_check) {
4330 if ((mask == NULL) || (*mask == NULL)) {
4331 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4332 }
4333 }
4334
4335# if !KMP_OS_WINDOWS
4336
4337 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4338 KA_TRACE(1000, ;{
4339 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4340 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4341 (kmp_affin_mask_t *)(*mask));
4342 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf);
4343 });
4344 return retval;
4345
4346# else
4347
4348 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4349 return 0;
4350
4351# endif /* KMP_OS_WINDOWS */
4352
4353}
4354
Jim Cownie5e8470a2013-09-27 10:38:44 +00004355int
4356__kmp_aux_set_affinity_mask_proc(int proc, void **mask)
4357{
4358 int retval;
4359
4360 if (! KMP_AFFINITY_CAPABLE()) {
4361 return -1;
4362 }
4363
4364 KA_TRACE(1000, ;{
4365 int gtid = __kmp_entry_gtid();
4366 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4367 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4368 (kmp_affin_mask_t *)(*mask));
4369 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in affinity mask for thread %d = %s\n",
4370 proc, gtid, buf);
4371 });
4372
4373 if (__kmp_env_consistency_check) {
4374 if ((mask == NULL) || (*mask == NULL)) {
4375 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4376 }
4377 }
4378
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004379 if ((proc < 0)
4380# if !KMP_USE_HWLOC
4381 || ((unsigned)proc >= KMP_CPU_SETSIZE)
4382# endif
4383 ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004384 return -1;
4385 }
4386 if (! KMP_CPU_ISSET(proc, fullMask)) {
4387 return -2;
4388 }
4389
4390 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4391 return 0;
4392}
4393
4394
4395int
4396__kmp_aux_unset_affinity_mask_proc(int proc, void **mask)
4397{
4398 int retval;
4399
4400 if (! KMP_AFFINITY_CAPABLE()) {
4401 return -1;
4402 }
4403
4404 KA_TRACE(1000, ;{
4405 int gtid = __kmp_entry_gtid();
4406 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4407 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4408 (kmp_affin_mask_t *)(*mask));
4409 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in affinity mask for thread %d = %s\n",
4410 proc, gtid, buf);
4411 });
4412
4413 if (__kmp_env_consistency_check) {
4414 if ((mask == NULL) || (*mask == NULL)) {
4415 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
4416 }
4417 }
4418
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004419 if ((proc < 0)
4420# if !KMP_USE_HWLOC
4421 || ((unsigned)proc >= KMP_CPU_SETSIZE)
4422# endif
4423 ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004424 return -1;
4425 }
4426 if (! KMP_CPU_ISSET(proc, fullMask)) {
4427 return -2;
4428 }
4429
4430 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
4431 return 0;
4432}
4433
4434
4435int
4436__kmp_aux_get_affinity_mask_proc(int proc, void **mask)
4437{
4438 int retval;
4439
4440 if (! KMP_AFFINITY_CAPABLE()) {
4441 return -1;
4442 }
4443
4444 KA_TRACE(1000, ;{
4445 int gtid = __kmp_entry_gtid();
4446 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4447 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4448 (kmp_affin_mask_t *)(*mask));
4449 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in affinity mask for thread %d = %s\n",
4450 proc, gtid, buf);
4451 });
4452
4453 if (__kmp_env_consistency_check) {
4454 if ((mask == NULL) || (*mask == NULL)) {
Andrey Churbanov4b2f17a2015-01-29 15:49:22 +00004455 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
Jim Cownie5e8470a2013-09-27 10:38:44 +00004456 }
4457 }
4458
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004459 if ((proc < 0)
4460# if !KMP_USE_HWLOC
4461 || ((unsigned)proc >= KMP_CPU_SETSIZE)
4462# endif
4463 ) {
4464 return -1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004465 }
4466 if (! KMP_CPU_ISSET(proc, fullMask)) {
4467 return 0;
4468 }
4469
4470 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
4471}
4472
Jim Cownie5e8470a2013-09-27 10:38:44 +00004473
4474// Dynamic affinity settings - Affinity balanced
4475void __kmp_balanced_affinity( int tid, int nthreads )
4476{
4477 if( __kmp_affinity_uniform_topology() ) {
4478 int coreID;
4479 int threadID;
4480 // Number of hyper threads per core in HT machine
4481 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
4482 // Number of cores
4483 int ncores = __kmp_ncores;
4484 // How many threads will be bound to each core
4485 int chunk = nthreads / ncores;
4486 // How many cores will have an additional thread bound to it - "big cores"
4487 int big_cores = nthreads % ncores;
4488 // Number of threads on the big cores
4489 int big_nth = ( chunk + 1 ) * big_cores;
4490 if( tid < big_nth ) {
4491 coreID = tid / (chunk + 1 );
4492 threadID = ( tid % (chunk + 1 ) ) % __kmp_nth_per_core ;
4493 } else { //tid >= big_nth
4494 coreID = ( tid - big_cores ) / chunk;
4495 threadID = ( ( tid - big_cores ) % chunk ) % __kmp_nth_per_core ;
4496 }
4497
4498 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
4499 "Illegal set affinity operation when not capable");
4500
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004501 kmp_affin_mask_t *mask;
4502 KMP_CPU_ALLOC_ON_STACK(mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004503 KMP_CPU_ZERO(mask);
4504
4505 // Granularity == thread
4506 if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
4507 int osID = address2os[ coreID * __kmp_nth_per_core + threadID ].second;
4508 KMP_CPU_SET( osID, mask);
4509 } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
4510 for( int i = 0; i < __kmp_nth_per_core; i++ ) {
4511 int osID;
4512 osID = address2os[ coreID * __kmp_nth_per_core + i ].second;
4513 KMP_CPU_SET( osID, mask);
4514 }
4515 }
4516 if (__kmp_affinity_verbose) {
4517 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4518 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004519 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4520 tid, buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004521 }
4522 __kmp_set_system_affinity( mask, TRUE );
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004523 KMP_CPU_FREE_FROM_STACK(mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004524 } else { // Non-uniform topology
4525
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004526 kmp_affin_mask_t *mask;
4527 KMP_CPU_ALLOC_ON_STACK(mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004528 KMP_CPU_ZERO(mask);
4529
4530 // Number of hyper threads per core in HT machine
4531 int nth_per_core = __kmp_nThreadsPerCore;
4532 int core_level;
4533 if( nth_per_core > 1 ) {
4534 core_level = __kmp_aff_depth - 2;
4535 } else {
4536 core_level = __kmp_aff_depth - 1;
4537 }
4538
4539 // Number of cores - maximum value; it does not count trail cores with 0 processors
4540 int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1;
4541
4542 // For performance gain consider the special case nthreads == __kmp_avail_proc
4543 if( nthreads == __kmp_avail_proc ) {
4544 if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
4545 int osID = address2os[ tid ].second;
4546 KMP_CPU_SET( osID, mask);
4547 } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
4548 int coreID = address2os[ tid ].first.labels[ core_level ];
4549 // We'll count found osIDs for the current core; they can be not more than nth_per_core;
4550 // since the address2os is sortied we can break when cnt==nth_per_core
4551 int cnt = 0;
4552 for( int i = 0; i < __kmp_avail_proc; i++ ) {
4553 int osID = address2os[ i ].second;
4554 int core = address2os[ i ].first.labels[ core_level ];
4555 if( core == coreID ) {
4556 KMP_CPU_SET( osID, mask);
4557 cnt++;
4558 if( cnt == nth_per_core ) {
4559 break;
4560 }
4561 }
4562 }
4563 }
4564 } else if( nthreads <= __kmp_ncores ) {
4565
4566 int core = 0;
4567 for( int i = 0; i < ncores; i++ ) {
4568 // Check if this core from procarr[] is in the mask
4569 int in_mask = 0;
4570 for( int j = 0; j < nth_per_core; j++ ) {
4571 if( procarr[ i * nth_per_core + j ] != - 1 ) {
4572 in_mask = 1;
4573 break;
4574 }
4575 }
4576 if( in_mask ) {
4577 if( tid == core ) {
4578 for( int j = 0; j < nth_per_core; j++ ) {
4579 int osID = procarr[ i * nth_per_core + j ];
4580 if( osID != -1 ) {
4581 KMP_CPU_SET( osID, mask );
4582 // For granularity=thread it is enough to set the first available osID for this core
4583 if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
4584 break;
4585 }
4586 }
4587 }
4588 break;
4589 } else {
4590 core++;
4591 }
4592 }
4593 }
4594
4595 } else { // nthreads > __kmp_ncores
4596
4597 // Array to save the number of processors at each core
Jonathan Peyton7be075332015-06-22 15:53:50 +00004598 int* nproc_at_core = (int*)KMP_ALLOCA(sizeof(int)*ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004599 // Array to save the number of cores with "x" available processors;
Jonathan Peyton7be075332015-06-22 15:53:50 +00004600 int* ncores_with_x_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1));
Jim Cownie5e8470a2013-09-27 10:38:44 +00004601 // Array to save the number of cores with # procs from x to nth_per_core
Jonathan Peyton7be075332015-06-22 15:53:50 +00004602 int* ncores_with_x_to_max_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1));
Jim Cownie5e8470a2013-09-27 10:38:44 +00004603
4604 for( int i = 0; i <= nth_per_core; i++ ) {
4605 ncores_with_x_procs[ i ] = 0;
4606 ncores_with_x_to_max_procs[ i ] = 0;
4607 }
4608
4609 for( int i = 0; i < ncores; i++ ) {
4610 int cnt = 0;
4611 for( int j = 0; j < nth_per_core; j++ ) {
4612 if( procarr[ i * nth_per_core + j ] != -1 ) {
4613 cnt++;
4614 }
4615 }
4616 nproc_at_core[ i ] = cnt;
4617 ncores_with_x_procs[ cnt ]++;
4618 }
4619
4620 for( int i = 0; i <= nth_per_core; i++ ) {
4621 for( int j = i; j <= nth_per_core; j++ ) {
4622 ncores_with_x_to_max_procs[ i ] += ncores_with_x_procs[ j ];
4623 }
4624 }
4625
4626 // Max number of processors
4627 int nproc = nth_per_core * ncores;
4628 // An array to keep number of threads per each context
4629 int * newarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
4630 for( int i = 0; i < nproc; i++ ) {
4631 newarr[ i ] = 0;
4632 }
4633
4634 int nth = nthreads;
4635 int flag = 0;
4636 while( nth > 0 ) {
4637 for( int j = 1; j <= nth_per_core; j++ ) {
4638 int cnt = ncores_with_x_to_max_procs[ j ];
4639 for( int i = 0; i < ncores; i++ ) {
4640 // Skip the core with 0 processors
4641 if( nproc_at_core[ i ] == 0 ) {
4642 continue;
4643 }
4644 for( int k = 0; k < nth_per_core; k++ ) {
4645 if( procarr[ i * nth_per_core + k ] != -1 ) {
4646 if( newarr[ i * nth_per_core + k ] == 0 ) {
4647 newarr[ i * nth_per_core + k ] = 1;
4648 cnt--;
4649 nth--;
4650 break;
4651 } else {
4652 if( flag != 0 ) {
4653 newarr[ i * nth_per_core + k ] ++;
4654 cnt--;
4655 nth--;
4656 break;
4657 }
4658 }
4659 }
4660 }
4661 if( cnt == 0 || nth == 0 ) {
4662 break;
4663 }
4664 }
4665 if( nth == 0 ) {
4666 break;
4667 }
4668 }
4669 flag = 1;
4670 }
4671 int sum = 0;
4672 for( int i = 0; i < nproc; i++ ) {
4673 sum += newarr[ i ];
4674 if( sum > tid ) {
4675 // Granularity == thread
4676 if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
4677 int osID = procarr[ i ];
4678 KMP_CPU_SET( osID, mask);
4679 } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
4680 int coreID = i / nth_per_core;
4681 for( int ii = 0; ii < nth_per_core; ii++ ) {
4682 int osID = procarr[ coreID * nth_per_core + ii ];
4683 if( osID != -1 ) {
4684 KMP_CPU_SET( osID, mask);
4685 }
4686 }
4687 }
4688 break;
4689 }
4690 }
4691 __kmp_free( newarr );
4692 }
4693
4694 if (__kmp_affinity_verbose) {
4695 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4696 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004697 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4698 tid, buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004699 }
4700 __kmp_set_system_affinity( mask, TRUE );
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004701 KMP_CPU_FREE_FROM_STACK(mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004702 }
4703}
4704
Jonathan Peyton3076fa42016-01-12 17:21:55 +00004705#if KMP_OS_LINUX
4706// We don't need this entry for Windows because
4707// there is GetProcessAffinityMask() api
4708//
4709// The intended usage is indicated by these steps:
4710// 1) The user gets the current affinity mask
4711// 2) Then sets the affinity by calling this function
4712// 3) Error check the return value
4713// 4) Use non-OpenMP parallelization
4714// 5) Reset the affinity to what was stored in step 1)
4715#ifdef __cplusplus
4716extern "C"
4717#endif
4718int
4719kmp_set_thread_affinity_mask_initial()
4720// the function returns 0 on success,
4721// -1 if we cannot bind thread
4722// >0 (errno) if an error happened during binding
4723{
4724 int gtid = __kmp_get_gtid();
4725 if (gtid < 0) {
4726 // Do not touch non-omp threads
4727 KA_TRACE(30, ( "kmp_set_thread_affinity_mask_initial: "
4728 "non-omp thread, returning\n"));
4729 return -1;
4730 }
4731 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
4732 KA_TRACE(30, ( "kmp_set_thread_affinity_mask_initial: "
4733 "affinity not initialized, returning\n"));
4734 return -1;
4735 }
4736 KA_TRACE(30, ( "kmp_set_thread_affinity_mask_initial: "
4737 "set full mask for thread %d\n", gtid));
4738 KMP_DEBUG_ASSERT(fullMask != NULL);
4739 return __kmp_set_system_affinity(fullMask, FALSE);
4740}
4741#endif
4742
Alp Toker763b9392014-02-28 09:42:41 +00004743#endif // KMP_AFFINITY_SUPPORTED