Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1 | //===--- HexagonGenInsert.cpp ---------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #define DEBUG_TYPE "hexinsert" |
| 11 | |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 12 | #include "llvm/ADT/BitVector.h" |
| 13 | #include "llvm/ADT/DenseMap.h" |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 14 | #include "llvm/ADT/PostOrderIterator.h" |
| 15 | #include "llvm/CodeGen/MachineDominators.h" |
| 16 | #include "llvm/CodeGen/MachineFunction.h" |
| 17 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 18 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 19 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 20 | #include "llvm/IR/Constants.h" |
Mehdi Amini | b550cb1 | 2016-04-18 09:17:29 +0000 | [diff] [blame] | 21 | #include "llvm/Pass.h" |
| 22 | #include "llvm/PassRegistry.h" |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 23 | #include "llvm/Support/CommandLine.h" |
| 24 | #include "llvm/Support/Debug.h" |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 25 | #include "llvm/Support/Timer.h" |
Mehdi Amini | b550cb1 | 2016-04-18 09:17:29 +0000 | [diff] [blame] | 26 | #include "llvm/Support/raw_ostream.h" |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 27 | #include "llvm/Target/TargetMachine.h" |
| 28 | #include "llvm/Target/TargetRegisterInfo.h" |
| 29 | |
| 30 | #include "Hexagon.h" |
| 31 | #include "HexagonRegisterInfo.h" |
| 32 | #include "HexagonTargetMachine.h" |
| 33 | #include "HexagonBitTracker.h" |
| 34 | |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 35 | #include <vector> |
| 36 | |
| 37 | using namespace llvm; |
| 38 | |
| 39 | static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U), |
| 40 | cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation.")); |
| 41 | // The distance cutoff is selected based on the precheckin-perf results: |
| 42 | // cutoffs 20, 25, 35, and 40 are worse than 30. |
| 43 | static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U), |
| 44 | cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert " |
| 45 | "generation.")); |
| 46 | |
| 47 | static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden, |
| 48 | cl::ZeroOrMore, cl::desc("Enable timing of insert generation")); |
| 49 | static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false), |
| 50 | cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert " |
| 51 | "generation")); |
| 52 | |
| 53 | static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden, |
| 54 | cl::ZeroOrMore); |
| 55 | static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden, |
| 56 | cl::ZeroOrMore); |
| 57 | // Whether to construct constant values via "insert". Could eliminate constant |
| 58 | // extenders, but often not practical. |
| 59 | static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden, |
| 60 | cl::ZeroOrMore); |
| 61 | |
| 62 | namespace { |
| 63 | // The preprocessor gets confused when the DEBUG macro is passed larger |
| 64 | // chunks of code. Use this function to detect debugging. |
| 65 | inline bool isDebug() { |
| 66 | #ifndef NDEBUG |
| 67 | return ::llvm::DebugFlag && ::llvm::isCurrentDebugType(DEBUG_TYPE); |
| 68 | #else |
| 69 | return false; |
| 70 | #endif |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | |
| 75 | namespace { |
| 76 | // Set of virtual registers, based on BitVector. |
| 77 | struct RegisterSet : private BitVector { |
David Blaikie | 7863380 | 2015-08-01 05:31:27 +0000 | [diff] [blame] | 78 | RegisterSet() = default; |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 79 | explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 80 | |
| 81 | using BitVector::clear; |
| 82 | |
| 83 | unsigned find_first() const { |
| 84 | int First = BitVector::find_first(); |
| 85 | if (First < 0) |
| 86 | return 0; |
| 87 | return x2v(First); |
| 88 | } |
| 89 | |
| 90 | unsigned find_next(unsigned Prev) const { |
| 91 | int Next = BitVector::find_next(v2x(Prev)); |
| 92 | if (Next < 0) |
| 93 | return 0; |
| 94 | return x2v(Next); |
| 95 | } |
| 96 | |
| 97 | RegisterSet &insert(unsigned R) { |
| 98 | unsigned Idx = v2x(R); |
| 99 | ensure(Idx); |
| 100 | return static_cast<RegisterSet&>(BitVector::set(Idx)); |
| 101 | } |
| 102 | RegisterSet &remove(unsigned R) { |
| 103 | unsigned Idx = v2x(R); |
| 104 | if (Idx >= size()) |
| 105 | return *this; |
| 106 | return static_cast<RegisterSet&>(BitVector::reset(Idx)); |
| 107 | } |
| 108 | |
| 109 | RegisterSet &insert(const RegisterSet &Rs) { |
| 110 | return static_cast<RegisterSet&>(BitVector::operator|=(Rs)); |
| 111 | } |
| 112 | RegisterSet &remove(const RegisterSet &Rs) { |
| 113 | return static_cast<RegisterSet&>(BitVector::reset(Rs)); |
| 114 | } |
| 115 | |
| 116 | reference operator[](unsigned R) { |
| 117 | unsigned Idx = v2x(R); |
| 118 | ensure(Idx); |
| 119 | return BitVector::operator[](Idx); |
| 120 | } |
| 121 | bool operator[](unsigned R) const { |
| 122 | unsigned Idx = v2x(R); |
| 123 | assert(Idx < size()); |
| 124 | return BitVector::operator[](Idx); |
| 125 | } |
| 126 | bool has(unsigned R) const { |
| 127 | unsigned Idx = v2x(R); |
| 128 | if (Idx >= size()) |
| 129 | return false; |
| 130 | return BitVector::test(Idx); |
| 131 | } |
| 132 | |
| 133 | bool empty() const { |
| 134 | return !BitVector::any(); |
| 135 | } |
| 136 | bool includes(const RegisterSet &Rs) const { |
| 137 | // A.BitVector::test(B) <=> A-B != {} |
| 138 | return !Rs.BitVector::test(*this); |
| 139 | } |
| 140 | bool intersects(const RegisterSet &Rs) const { |
| 141 | return BitVector::anyCommon(Rs); |
| 142 | } |
| 143 | |
| 144 | private: |
| 145 | void ensure(unsigned Idx) { |
| 146 | if (size() <= Idx) |
| 147 | resize(std::max(Idx+1, 32U)); |
| 148 | } |
| 149 | static inline unsigned v2x(unsigned v) { |
| 150 | return TargetRegisterInfo::virtReg2Index(v); |
| 151 | } |
| 152 | static inline unsigned x2v(unsigned x) { |
| 153 | return TargetRegisterInfo::index2VirtReg(x); |
| 154 | } |
| 155 | }; |
| 156 | |
| 157 | |
| 158 | struct PrintRegSet { |
| 159 | PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) |
| 160 | : RS(S), TRI(RI) {} |
| 161 | friend raw_ostream &operator<< (raw_ostream &OS, |
| 162 | const PrintRegSet &P); |
| 163 | private: |
| 164 | const RegisterSet &RS; |
| 165 | const TargetRegisterInfo *TRI; |
| 166 | }; |
| 167 | |
| 168 | raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { |
| 169 | OS << '{'; |
| 170 | for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R)) |
| 171 | OS << ' ' << PrintReg(R, P.TRI); |
| 172 | OS << " }"; |
| 173 | return OS; |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | |
| 178 | namespace { |
| 179 | // A convenience class to associate unsigned numbers (such as virtual |
| 180 | // registers) with unsigned numbers. |
| 181 | struct UnsignedMap : public DenseMap<unsigned,unsigned> { |
| 182 | UnsignedMap() : BaseType() {} |
| 183 | private: |
| 184 | typedef DenseMap<unsigned,unsigned> BaseType; |
| 185 | }; |
| 186 | |
| 187 | // A utility to establish an ordering between virtual registers: |
| 188 | // VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB] |
| 189 | // This is meant as a cache for the ordering of virtual registers defined |
| 190 | // by a potentially expensive comparison function, or obtained by a proce- |
| 191 | // dure that should not be repeated each time two registers are compared. |
| 192 | struct RegisterOrdering : public UnsignedMap { |
| 193 | RegisterOrdering() : UnsignedMap() {} |
| 194 | unsigned operator[](unsigned VR) const { |
| 195 | const_iterator F = find(VR); |
| 196 | assert(F != end()); |
| 197 | return F->second; |
| 198 | } |
| 199 | // Add operator(), so that objects of this class can be used as |
| 200 | // comparators in std::sort et al. |
| 201 | bool operator() (unsigned VR1, unsigned VR2) const { |
| 202 | return operator[](VR1) < operator[](VR2); |
| 203 | } |
| 204 | }; |
| 205 | } |
| 206 | |
| 207 | |
| 208 | namespace { |
| 209 | // Ordering of bit values. This class does not have operator[], but |
| 210 | // is supplies a comparison operator() for use in std:: algorithms. |
| 211 | // The order is as follows: |
| 212 | // - 0 < 1 < ref |
| 213 | // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg), |
| 214 | // or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos. |
| 215 | struct BitValueOrdering { |
| 216 | BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {} |
| 217 | bool operator() (const BitTracker::BitValue &V1, |
| 218 | const BitTracker::BitValue &V2) const; |
| 219 | const RegisterOrdering &BaseOrd; |
| 220 | }; |
| 221 | } |
| 222 | |
| 223 | |
| 224 | bool BitValueOrdering::operator() (const BitTracker::BitValue &V1, |
| 225 | const BitTracker::BitValue &V2) const { |
| 226 | if (V1 == V2) |
| 227 | return false; |
| 228 | // V1==0 => true, V2==0 => false |
| 229 | if (V1.is(0) || V2.is(0)) |
| 230 | return V1.is(0); |
| 231 | // Neither of V1,V2 is 0, and V1!=V2. |
| 232 | // V2==1 => false, V1==1 => true |
| 233 | if (V2.is(1) || V1.is(1)) |
| 234 | return !V2.is(1); |
| 235 | // Both V1,V2 are refs. |
| 236 | unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg]; |
| 237 | if (Ind1 != Ind2) |
| 238 | return Ind1 < Ind2; |
| 239 | // If V1.Pos==V2.Pos |
| 240 | assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different"); |
| 241 | return V1.RefI.Pos < V2.RefI.Pos; |
| 242 | } |
| 243 | |
| 244 | |
| 245 | namespace { |
| 246 | // Cache for the BitTracker's cell map. Map lookup has a logarithmic |
| 247 | // complexity, this class will memoize the lookup results to reduce |
| 248 | // the access time for repeated lookups of the same cell. |
| 249 | struct CellMapShadow { |
| 250 | CellMapShadow(const BitTracker &T) : BT(T) {} |
| 251 | const BitTracker::RegisterCell &lookup(unsigned VR) { |
| 252 | unsigned RInd = TargetRegisterInfo::virtReg2Index(VR); |
| 253 | // Grow the vector to at least 32 elements. |
| 254 | if (RInd >= CVect.size()) |
| 255 | CVect.resize(std::max(RInd+16, 32U), 0); |
| 256 | const BitTracker::RegisterCell *CP = CVect[RInd]; |
| 257 | if (CP == 0) |
| 258 | CP = CVect[RInd] = &BT.lookup(VR); |
| 259 | return *CP; |
| 260 | } |
| 261 | |
| 262 | const BitTracker &BT; |
| 263 | |
| 264 | private: |
| 265 | typedef std::vector<const BitTracker::RegisterCell*> CellVectType; |
| 266 | CellVectType CVect; |
| 267 | }; |
| 268 | } |
| 269 | |
| 270 | |
| 271 | namespace { |
| 272 | // Comparator class for lexicographic ordering of virtual registers |
| 273 | // according to the corresponding BitTracker::RegisterCell objects. |
| 274 | struct RegisterCellLexCompare { |
| 275 | RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M) |
| 276 | : BitOrd(BO), CM(M) {} |
| 277 | bool operator() (unsigned VR1, unsigned VR2) const; |
| 278 | private: |
| 279 | const BitValueOrdering &BitOrd; |
| 280 | CellMapShadow &CM; |
| 281 | }; |
| 282 | |
| 283 | // Comparator class for lexicographic ordering of virtual registers |
| 284 | // according to the specified bits of the corresponding BitTracker:: |
| 285 | // RegisterCell objects. |
| 286 | // Specifically, this class will be used to compare bit B of a register |
| 287 | // cell for a selected virtual register R with bit N of any register |
| 288 | // other than R. |
| 289 | struct RegisterCellBitCompareSel { |
| 290 | RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N, |
| 291 | const BitValueOrdering &BO, CellMapShadow &M) |
| 292 | : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {} |
| 293 | bool operator() (unsigned VR1, unsigned VR2) const; |
| 294 | private: |
| 295 | const unsigned SelR, SelB; |
| 296 | const unsigned BitN; |
| 297 | const BitValueOrdering &BitOrd; |
| 298 | CellMapShadow &CM; |
| 299 | }; |
| 300 | } |
| 301 | |
| 302 | |
| 303 | bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const { |
| 304 | // Ordering of registers, made up from two given orderings: |
| 305 | // - the ordering of the register numbers, and |
| 306 | // - the ordering of register cells. |
| 307 | // Def. R1 < R2 if: |
| 308 | // - cell(R1) < cell(R2), or |
| 309 | // - cell(R1) == cell(R2), and index(R1) < index(R2). |
| 310 | // |
| 311 | // For register cells, the ordering is lexicographic, with index 0 being |
| 312 | // the most significant. |
| 313 | if (VR1 == VR2) |
| 314 | return false; |
| 315 | |
| 316 | const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2); |
| 317 | uint16_t W1 = RC1.width(), W2 = RC2.width(); |
| 318 | for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) { |
| 319 | const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i]; |
| 320 | if (V1 != V2) |
| 321 | return BitOrd(V1, V2); |
| 322 | } |
| 323 | // Cells are equal up until the common length. |
| 324 | if (W1 != W2) |
| 325 | return W1 < W2; |
| 326 | |
| 327 | return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2]; |
| 328 | } |
| 329 | |
| 330 | |
| 331 | bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const { |
| 332 | if (VR1 == VR2) |
| 333 | return false; |
| 334 | const BitTracker::RegisterCell &RC1 = CM.lookup(VR1); |
| 335 | const BitTracker::RegisterCell &RC2 = CM.lookup(VR2); |
| 336 | uint16_t W1 = RC1.width(), W2 = RC2.width(); |
| 337 | uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN; |
| 338 | uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN; |
| 339 | // If Bit1 exceeds the width of VR1, then: |
| 340 | // - return false, if at the same time Bit2 exceeds VR2, or |
| 341 | // - return true, otherwise. |
| 342 | // (I.e. "a bit value that does not exist is less than any bit value |
| 343 | // that does exist".) |
| 344 | if (W1 <= Bit1) |
| 345 | return Bit2 < W2; |
| 346 | // If Bit1 is within VR1, but Bit2 is not within VR2, return false. |
| 347 | if (W2 <= Bit2) |
| 348 | return false; |
| 349 | |
| 350 | const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2]; |
| 351 | if (V1 != V2) |
| 352 | return BitOrd(V1, V2); |
| 353 | return false; |
| 354 | } |
| 355 | |
| 356 | |
| 357 | namespace { |
| 358 | class OrderedRegisterList { |
| 359 | typedef std::vector<unsigned> ListType; |
| 360 | public: |
| 361 | OrderedRegisterList(const RegisterOrdering &RO) : Ord(RO) {} |
| 362 | void insert(unsigned VR); |
| 363 | void remove(unsigned VR); |
| 364 | unsigned operator[](unsigned Idx) const { |
| 365 | assert(Idx < Seq.size()); |
| 366 | return Seq[Idx]; |
| 367 | } |
| 368 | unsigned size() const { |
| 369 | return Seq.size(); |
| 370 | } |
| 371 | |
| 372 | typedef ListType::iterator iterator; |
| 373 | typedef ListType::const_iterator const_iterator; |
| 374 | iterator begin() { return Seq.begin(); } |
| 375 | iterator end() { return Seq.end(); } |
| 376 | const_iterator begin() const { return Seq.begin(); } |
| 377 | const_iterator end() const { return Seq.end(); } |
| 378 | |
| 379 | // Convenience function to convert an iterator to the corresponding index. |
| 380 | unsigned idx(iterator It) const { return It-begin(); } |
| 381 | private: |
| 382 | ListType Seq; |
| 383 | const RegisterOrdering &Ord; |
| 384 | }; |
| 385 | |
| 386 | |
| 387 | struct PrintORL { |
| 388 | PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI) |
| 389 | : RL(L), TRI(RI) {} |
| 390 | friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P); |
| 391 | private: |
| 392 | const OrderedRegisterList &RL; |
| 393 | const TargetRegisterInfo *TRI; |
| 394 | }; |
| 395 | |
| 396 | raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) { |
| 397 | OS << '('; |
| 398 | OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end(); |
| 399 | for (OrderedRegisterList::const_iterator I = B; I != E; ++I) { |
| 400 | if (I != B) |
| 401 | OS << ", "; |
| 402 | OS << PrintReg(*I, P.TRI); |
| 403 | } |
| 404 | OS << ')'; |
| 405 | return OS; |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | |
| 410 | void OrderedRegisterList::insert(unsigned VR) { |
| 411 | iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord); |
| 412 | if (L == Seq.end()) |
| 413 | Seq.push_back(VR); |
| 414 | else |
| 415 | Seq.insert(L, VR); |
| 416 | } |
| 417 | |
| 418 | |
| 419 | void OrderedRegisterList::remove(unsigned VR) { |
| 420 | iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord); |
| 421 | assert(L != Seq.end()); |
| 422 | Seq.erase(L); |
| 423 | } |
| 424 | |
| 425 | |
| 426 | namespace { |
| 427 | // A record of the insert form. The fields correspond to the operands |
| 428 | // of the "insert" instruction: |
| 429 | // ... = insert(SrcR, InsR, #Wdh, #Off) |
| 430 | struct IFRecord { |
| 431 | IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0) |
| 432 | : SrcR(SR), InsR(IR), Wdh(W), Off(O) {} |
| 433 | unsigned SrcR, InsR; |
| 434 | uint16_t Wdh, Off; |
| 435 | }; |
| 436 | |
| 437 | struct PrintIFR { |
| 438 | PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI) |
| 439 | : IFR(R), TRI(RI) {} |
| 440 | private: |
| 441 | const IFRecord &IFR; |
| 442 | const TargetRegisterInfo *TRI; |
| 443 | friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P); |
| 444 | }; |
| 445 | |
| 446 | raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) { |
| 447 | unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR; |
| 448 | OS << '(' << PrintReg(SrcR, P.TRI) << ',' << PrintReg(InsR, P.TRI) |
| 449 | << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')'; |
| 450 | return OS; |
| 451 | } |
| 452 | |
| 453 | typedef std::pair<IFRecord,RegisterSet> IFRecordWithRegSet; |
| 454 | } |
| 455 | |
| 456 | |
| 457 | namespace llvm { |
| 458 | void initializeHexagonGenInsertPass(PassRegistry&); |
| 459 | FunctionPass *createHexagonGenInsert(); |
| 460 | } |
| 461 | |
| 462 | |
| 463 | namespace { |
| 464 | class HexagonGenInsert : public MachineFunctionPass { |
| 465 | public: |
| 466 | static char ID; |
| 467 | HexagonGenInsert() : MachineFunctionPass(ID), HII(0), HRI(0) { |
| 468 | initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry()); |
| 469 | } |
Mehdi Amini | 117296c | 2016-10-01 02:56:57 +0000 | [diff] [blame] | 470 | virtual StringRef getPassName() const { |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 471 | return "Hexagon generate \"insert\" instructions"; |
| 472 | } |
| 473 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 474 | AU.addRequired<MachineDominatorTree>(); |
| 475 | AU.addPreserved<MachineDominatorTree>(); |
| 476 | MachineFunctionPass::getAnalysisUsage(AU); |
| 477 | } |
| 478 | virtual bool runOnMachineFunction(MachineFunction &MF); |
| 479 | |
| 480 | private: |
| 481 | typedef DenseMap<std::pair<unsigned,unsigned>,unsigned> PairMapType; |
| 482 | |
| 483 | void buildOrderingMF(RegisterOrdering &RO) const; |
| 484 | void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const; |
| 485 | bool isIntClass(const TargetRegisterClass *RC) const; |
| 486 | bool isConstant(unsigned VR) const; |
| 487 | bool isSmallConstant(unsigned VR) const; |
| 488 | bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR, |
| 489 | uint16_t L, uint16_t S) const; |
| 490 | bool findSelfReference(unsigned VR) const; |
| 491 | bool findNonSelfReference(unsigned VR) const; |
| 492 | void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const; |
| 493 | void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const; |
| 494 | unsigned distance(const MachineBasicBlock *FromB, |
| 495 | const MachineBasicBlock *ToB, const UnsignedMap &RPO, |
| 496 | PairMapType &M) const; |
| 497 | unsigned distance(MachineBasicBlock::const_iterator FromI, |
| 498 | MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO, |
| 499 | PairMapType &M) const; |
| 500 | bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs); |
| 501 | void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs); |
| 502 | void findRemovableRegisters(unsigned VR, IFRecord IF, |
| 503 | RegisterSet &RMs) const; |
| 504 | void computeRemovableRegisters(); |
| 505 | |
| 506 | void pruneEmptyLists(); |
| 507 | void pruneCoveredSets(unsigned VR); |
| 508 | void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M); |
| 509 | void pruneRegCopies(unsigned VR); |
| 510 | void pruneCandidates(); |
| 511 | void selectCandidates(); |
| 512 | bool generateInserts(); |
| 513 | |
| 514 | bool removeDeadCode(MachineDomTreeNode *N); |
| 515 | |
| 516 | // IFRecord coupled with a set of potentially removable registers: |
| 517 | typedef std::vector<IFRecordWithRegSet> IFListType; |
| 518 | typedef DenseMap<unsigned,IFListType> IFMapType; // vreg -> IFListType |
| 519 | |
| 520 | void dump_map() const; |
| 521 | |
| 522 | const HexagonInstrInfo *HII; |
| 523 | const HexagonRegisterInfo *HRI; |
| 524 | |
| 525 | MachineFunction *MFN; |
| 526 | MachineRegisterInfo *MRI; |
| 527 | MachineDominatorTree *MDT; |
| 528 | CellMapShadow *CMS; |
| 529 | |
| 530 | RegisterOrdering BaseOrd; |
| 531 | RegisterOrdering CellOrd; |
| 532 | IFMapType IFMap; |
| 533 | }; |
| 534 | |
| 535 | char HexagonGenInsert::ID = 0; |
| 536 | } |
| 537 | |
| 538 | |
| 539 | void HexagonGenInsert::dump_map() const { |
| 540 | typedef IFMapType::const_iterator iterator; |
| 541 | for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { |
| 542 | dbgs() << " " << PrintReg(I->first, HRI) << ":\n"; |
| 543 | const IFListType &LL = I->second; |
| 544 | for (unsigned i = 0, n = LL.size(); i < n; ++i) |
| 545 | dbgs() << " " << PrintIFR(LL[i].first, HRI) << ", " |
| 546 | << PrintRegSet(LL[i].second, HRI) << '\n'; |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | |
| 551 | void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const { |
| 552 | unsigned Index = 0; |
| 553 | typedef MachineFunction::const_iterator mf_iterator; |
| 554 | for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) { |
| 555 | const MachineBasicBlock &B = *A; |
| 556 | if (!CMS->BT.reached(&B)) |
| 557 | continue; |
| 558 | typedef MachineBasicBlock::const_iterator mb_iterator; |
| 559 | for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) { |
| 560 | const MachineInstr *MI = &*I; |
| 561 | for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { |
| 562 | const MachineOperand &MO = MI->getOperand(i); |
| 563 | if (MO.isReg() && MO.isDef()) { |
| 564 | unsigned R = MO.getReg(); |
| 565 | assert(MO.getSubReg() == 0 && "Unexpected subregister in definition"); |
| 566 | if (TargetRegisterInfo::isVirtualRegister(R)) |
| 567 | RO.insert(std::make_pair(R, Index++)); |
| 568 | } |
| 569 | } |
| 570 | } |
| 571 | } |
| 572 | // Since some virtual registers may have had their def and uses eliminated, |
| 573 | // they are no longer referenced in the code, and so they will not appear |
| 574 | // in the map. |
| 575 | } |
| 576 | |
| 577 | |
| 578 | void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB, |
| 579 | RegisterOrdering &RO) const { |
| 580 | // Create a vector of all virtual registers (collect them from the base |
| 581 | // ordering RB), and then sort it using the RegisterCell comparator. |
| 582 | BitValueOrdering BVO(RB); |
| 583 | RegisterCellLexCompare LexCmp(BVO, *CMS); |
| 584 | typedef std::vector<unsigned> SortableVectorType; |
| 585 | SortableVectorType VRs; |
| 586 | for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I) |
| 587 | VRs.push_back(I->first); |
| 588 | std::sort(VRs.begin(), VRs.end(), LexCmp); |
| 589 | // Transfer the results to the outgoing register ordering. |
| 590 | for (unsigned i = 0, n = VRs.size(); i < n; ++i) |
| 591 | RO.insert(std::make_pair(VRs[i], i)); |
| 592 | } |
| 593 | |
| 594 | |
| 595 | inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const { |
| 596 | return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass; |
| 597 | } |
| 598 | |
| 599 | |
| 600 | bool HexagonGenInsert::isConstant(unsigned VR) const { |
| 601 | const BitTracker::RegisterCell &RC = CMS->lookup(VR); |
| 602 | uint16_t W = RC.width(); |
| 603 | for (uint16_t i = 0; i < W; ++i) { |
| 604 | const BitTracker::BitValue &BV = RC[i]; |
| 605 | if (BV.is(0) || BV.is(1)) |
| 606 | continue; |
| 607 | return false; |
| 608 | } |
| 609 | return true; |
| 610 | } |
| 611 | |
| 612 | |
| 613 | bool HexagonGenInsert::isSmallConstant(unsigned VR) const { |
| 614 | const BitTracker::RegisterCell &RC = CMS->lookup(VR); |
| 615 | uint16_t W = RC.width(); |
| 616 | if (W > 64) |
| 617 | return false; |
| 618 | uint64_t V = 0, B = 1; |
| 619 | for (uint16_t i = 0; i < W; ++i) { |
| 620 | const BitTracker::BitValue &BV = RC[i]; |
| 621 | if (BV.is(1)) |
| 622 | V |= B; |
| 623 | else if (!BV.is(0)) |
| 624 | return false; |
| 625 | B <<= 1; |
| 626 | } |
| 627 | |
| 628 | // For 32-bit registers, consider: Rd = #s16. |
| 629 | if (W == 32) |
| 630 | return isInt<16>(V); |
| 631 | |
| 632 | // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8) |
| 633 | return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V)); |
| 634 | } |
| 635 | |
| 636 | |
| 637 | bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR, |
| 638 | unsigned InsR, uint16_t L, uint16_t S) const { |
| 639 | const TargetRegisterClass *DstRC = MRI->getRegClass(DstR); |
| 640 | const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR); |
| 641 | const TargetRegisterClass *InsRC = MRI->getRegClass(InsR); |
| 642 | // Only integet (32-/64-bit) register classes. |
| 643 | if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC)) |
| 644 | return false; |
| 645 | // The "source" register must be of the same class as DstR. |
| 646 | if (DstRC != SrcRC) |
| 647 | return false; |
| 648 | if (DstRC == InsRC) |
| 649 | return true; |
| 650 | // A 64-bit register can only be generated from other 64-bit registers. |
| 651 | if (DstRC == &Hexagon::DoubleRegsRegClass) |
| 652 | return false; |
| 653 | // Otherwise, the L and S cannot span 32-bit word boundary. |
| 654 | if (S < 32 && S+L > 32) |
| 655 | return false; |
| 656 | return true; |
| 657 | } |
| 658 | |
| 659 | |
| 660 | bool HexagonGenInsert::findSelfReference(unsigned VR) const { |
| 661 | const BitTracker::RegisterCell &RC = CMS->lookup(VR); |
| 662 | for (uint16_t i = 0, w = RC.width(); i < w; ++i) { |
| 663 | const BitTracker::BitValue &V = RC[i]; |
| 664 | if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR) |
| 665 | return true; |
| 666 | } |
| 667 | return false; |
| 668 | } |
| 669 | |
| 670 | |
| 671 | bool HexagonGenInsert::findNonSelfReference(unsigned VR) const { |
| 672 | BitTracker::RegisterCell RC = CMS->lookup(VR); |
| 673 | for (uint16_t i = 0, w = RC.width(); i < w; ++i) { |
| 674 | const BitTracker::BitValue &V = RC[i]; |
| 675 | if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR) |
| 676 | return true; |
| 677 | } |
| 678 | return false; |
| 679 | } |
| 680 | |
| 681 | |
| 682 | void HexagonGenInsert::getInstrDefs(const MachineInstr *MI, |
| 683 | RegisterSet &Defs) const { |
| 684 | for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { |
| 685 | const MachineOperand &MO = MI->getOperand(i); |
| 686 | if (!MO.isReg() || !MO.isDef()) |
| 687 | continue; |
| 688 | unsigned R = MO.getReg(); |
| 689 | if (!TargetRegisterInfo::isVirtualRegister(R)) |
| 690 | continue; |
| 691 | Defs.insert(R); |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | |
| 696 | void HexagonGenInsert::getInstrUses(const MachineInstr *MI, |
| 697 | RegisterSet &Uses) const { |
| 698 | for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { |
| 699 | const MachineOperand &MO = MI->getOperand(i); |
| 700 | if (!MO.isReg() || !MO.isUse()) |
| 701 | continue; |
| 702 | unsigned R = MO.getReg(); |
| 703 | if (!TargetRegisterInfo::isVirtualRegister(R)) |
| 704 | continue; |
| 705 | Uses.insert(R); |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | |
| 710 | unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB, |
| 711 | const MachineBasicBlock *ToB, const UnsignedMap &RPO, |
| 712 | PairMapType &M) const { |
| 713 | // Forward distance from the end of a block to the beginning of it does |
| 714 | // not make sense. This function should not be called with FromB == ToB. |
| 715 | assert(FromB != ToB); |
| 716 | |
| 717 | unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber(); |
| 718 | // If we have already computed it, return the cached result. |
| 719 | PairMapType::iterator F = M.find(std::make_pair(FromN, ToN)); |
| 720 | if (F != M.end()) |
| 721 | return F->second; |
| 722 | unsigned ToRPO = RPO.lookup(ToN); |
| 723 | |
| 724 | unsigned MaxD = 0; |
| 725 | typedef MachineBasicBlock::const_pred_iterator pred_iterator; |
| 726 | for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) { |
| 727 | const MachineBasicBlock *PB = *I; |
| 728 | // Skip back edges. Also, if FromB is a predecessor of ToB, the distance |
| 729 | // along that path will be 0, and we don't need to do any calculations |
| 730 | // on it. |
| 731 | if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO) |
| 732 | continue; |
| 733 | unsigned D = PB->size() + distance(FromB, PB, RPO, M); |
| 734 | if (D > MaxD) |
| 735 | MaxD = D; |
| 736 | } |
| 737 | |
| 738 | // Memoize the result for later lookup. |
| 739 | M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD)); |
| 740 | return MaxD; |
| 741 | } |
| 742 | |
| 743 | |
| 744 | unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI, |
| 745 | MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO, |
| 746 | PairMapType &M) const { |
| 747 | const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent(); |
| 748 | if (FB == TB) |
| 749 | return std::distance(FromI, ToI); |
| 750 | unsigned D1 = std::distance(TB->begin(), ToI); |
| 751 | unsigned D2 = distance(FB, TB, RPO, M); |
| 752 | unsigned D3 = std::distance(FromI, FB->end()); |
| 753 | return D1+D2+D3; |
| 754 | } |
| 755 | |
| 756 | |
| 757 | bool HexagonGenInsert::findRecordInsertForms(unsigned VR, |
| 758 | OrderedRegisterList &AVs) { |
| 759 | if (isDebug()) { |
Reid Kleckner | 40d7230 | 2016-10-20 00:22:23 +0000 | [diff] [blame] | 760 | dbgs() << __func__ << ": " << PrintReg(VR, HRI) |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 761 | << " AVs: " << PrintORL(AVs, HRI) << "\n"; |
| 762 | } |
| 763 | if (AVs.size() == 0) |
| 764 | return false; |
| 765 | |
| 766 | typedef OrderedRegisterList::iterator iterator; |
| 767 | BitValueOrdering BVO(BaseOrd); |
| 768 | const BitTracker::RegisterCell &RC = CMS->lookup(VR); |
| 769 | uint16_t W = RC.width(); |
| 770 | |
| 771 | typedef std::pair<unsigned,uint16_t> RSRecord; // (reg,shift) |
| 772 | typedef std::vector<RSRecord> RSListType; |
| 773 | // Have a map, with key being the matching prefix length, and the value |
| 774 | // being the list of pairs (R,S), where R's prefix matches VR at S. |
| 775 | // (DenseMap<uint16_t,RSListType> fails to instantiate.) |
| 776 | typedef DenseMap<unsigned,RSListType> LRSMapType; |
| 777 | LRSMapType LM; |
| 778 | |
| 779 | // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S, |
| 780 | // and find matching prefixes from AVs with the rotated RC. Such a prefix |
| 781 | // would match a string of bits (of length L) in RC starting at S. |
| 782 | for (uint16_t S = 0; S < W; ++S) { |
| 783 | iterator B = AVs.begin(), E = AVs.end(); |
| 784 | // The registers in AVs are ordered according to the lexical order of |
| 785 | // the corresponding register cells. This means that the range of regis- |
| 786 | // ters in AVs that match a prefix of length L+1 will be contained in |
| 787 | // the range that matches a prefix of length L. This means that we can |
| 788 | // keep narrowing the search space as the prefix length goes up. This |
| 789 | // helps reduce the overall complexity of the search. |
| 790 | uint16_t L; |
| 791 | for (L = 0; L < W-S; ++L) { |
| 792 | // Compare against VR's bits starting at S, which emulates rotation |
| 793 | // of VR by S. |
| 794 | RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS); |
| 795 | iterator NewB = std::lower_bound(B, E, VR, RCB); |
| 796 | iterator NewE = std::upper_bound(NewB, E, VR, RCB); |
| 797 | // For the registers that are eliminated from the next range, L is |
| 798 | // the longest prefix matching VR at position S (their prefixes |
| 799 | // differ from VR at S+L). If L>0, record this information for later |
| 800 | // use. |
| 801 | if (L > 0) { |
| 802 | for (iterator I = B; I != NewB; ++I) |
| 803 | LM[L].push_back(std::make_pair(*I, S)); |
| 804 | for (iterator I = NewE; I != E; ++I) |
| 805 | LM[L].push_back(std::make_pair(*I, S)); |
| 806 | } |
| 807 | B = NewB, E = NewE; |
| 808 | if (B == E) |
| 809 | break; |
| 810 | } |
| 811 | // Record the final register range. If this range is non-empty, then |
| 812 | // L=W-S. |
| 813 | assert(B == E || L == W-S); |
| 814 | if (B != E) { |
| 815 | for (iterator I = B; I != E; ++I) |
| 816 | LM[L].push_back(std::make_pair(*I, S)); |
| 817 | // If B!=E, then we found a range of registers whose prefixes cover the |
| 818 | // rest of VR from position S. There is no need to further advance S. |
| 819 | break; |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | if (isDebug()) { |
| 824 | dbgs() << "Prefixes matching register " << PrintReg(VR, HRI) << "\n"; |
| 825 | for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) { |
| 826 | dbgs() << " L=" << I->first << ':'; |
| 827 | const RSListType &LL = I->second; |
| 828 | for (unsigned i = 0, n = LL.size(); i < n; ++i) |
| 829 | dbgs() << " (" << PrintReg(LL[i].first, HRI) << ",@" |
| 830 | << LL[i].second << ')'; |
| 831 | dbgs() << '\n'; |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | |
| 836 | bool Recorded = false; |
| 837 | |
| 838 | for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) { |
| 839 | unsigned SrcR = *I; |
| 840 | int FDi = -1, LDi = -1; // First/last different bit. |
| 841 | const BitTracker::RegisterCell &AC = CMS->lookup(SrcR); |
| 842 | uint16_t AW = AC.width(); |
| 843 | for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) { |
| 844 | if (RC[i] == AC[i]) |
| 845 | continue; |
| 846 | if (FDi == -1) |
| 847 | FDi = i; |
| 848 | LDi = i; |
| 849 | } |
| 850 | if (FDi == -1) |
| 851 | continue; // TODO (future): Record identical registers. |
| 852 | // Look for a register whose prefix could patch the range [FD..LD] |
| 853 | // where VR and SrcR differ. |
| 854 | uint16_t FD = FDi, LD = LDi; // Switch to unsigned type. |
| 855 | uint16_t MinL = LD-FD+1; |
| 856 | for (uint16_t L = MinL; L < W; ++L) { |
| 857 | LRSMapType::iterator F = LM.find(L); |
| 858 | if (F == LM.end()) |
| 859 | continue; |
| 860 | RSListType &LL = F->second; |
| 861 | for (unsigned i = 0, n = LL.size(); i < n; ++i) { |
| 862 | uint16_t S = LL[i].second; |
| 863 | // MinL is the minimum length of the prefix. Any length above MinL |
| 864 | // allows some flexibility as to where the prefix can start: |
| 865 | // given the extra length EL=L-MinL, the prefix must start between |
| 866 | // max(0,FD-EL) and FD. |
| 867 | if (S > FD) // Starts too late. |
| 868 | continue; |
| 869 | uint16_t EL = L-MinL; |
| 870 | uint16_t LowS = (EL < FD) ? FD-EL : 0; |
| 871 | if (S < LowS) // Starts too early. |
| 872 | continue; |
| 873 | unsigned InsR = LL[i].first; |
| 874 | if (!isValidInsertForm(VR, SrcR, InsR, L, S)) |
| 875 | continue; |
| 876 | if (isDebug()) { |
| 877 | dbgs() << PrintReg(VR, HRI) << " = insert(" << PrintReg(SrcR, HRI) |
| 878 | << ',' << PrintReg(InsR, HRI) << ",#" << L << ",#" |
| 879 | << S << ")\n"; |
| 880 | } |
| 881 | IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet()); |
| 882 | IFMap[VR].push_back(RR); |
| 883 | Recorded = true; |
| 884 | } |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | return Recorded; |
| 889 | } |
| 890 | |
| 891 | |
| 892 | void HexagonGenInsert::collectInBlock(MachineBasicBlock *B, |
| 893 | OrderedRegisterList &AVs) { |
| 894 | if (isDebug()) |
| 895 | dbgs() << "visiting block BB#" << B->getNumber() << "\n"; |
| 896 | |
| 897 | // First, check if this block is reachable at all. If not, the bit tracker |
| 898 | // will not have any information about registers in it. |
| 899 | if (!CMS->BT.reached(B)) |
| 900 | return; |
| 901 | |
| 902 | bool DoConst = OptConst; |
| 903 | // Keep a separate set of registers defined in this block, so that we |
| 904 | // can remove them from the list of available registers once all DT |
| 905 | // successors have been processed. |
| 906 | RegisterSet BlockDefs, InsDefs; |
| 907 | for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) { |
| 908 | MachineInstr *MI = &*I; |
| 909 | InsDefs.clear(); |
| 910 | getInstrDefs(MI, InsDefs); |
| 911 | // Leave those alone. They are more transparent than "insert". |
| 912 | bool Skip = MI->isCopy() || MI->isRegSequence(); |
| 913 | |
| 914 | if (!Skip) { |
| 915 | // Visit all defined registers, and attempt to find the corresponding |
| 916 | // "insert" representations. |
| 917 | for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) { |
| 918 | // Do not collect registers that are known to be compile-time cons- |
| 919 | // tants, unless requested. |
| 920 | if (!DoConst && isConstant(VR)) |
| 921 | continue; |
| 922 | // If VR's cell contains a reference to VR, then VR cannot be defined |
| 923 | // via "insert". If VR is a constant that can be generated in a single |
| 924 | // instruction (without constant extenders), generating it via insert |
| 925 | // makes no sense. |
| 926 | if (findSelfReference(VR) || isSmallConstant(VR)) |
| 927 | continue; |
| 928 | |
| 929 | findRecordInsertForms(VR, AVs); |
| 930 | } |
| 931 | } |
| 932 | |
| 933 | // Insert the defined registers into the list of available registers |
| 934 | // after they have been processed. |
| 935 | for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) |
| 936 | AVs.insert(VR); |
| 937 | BlockDefs.insert(InsDefs); |
| 938 | } |
| 939 | |
| 940 | MachineDomTreeNode *N = MDT->getNode(B); |
| 941 | typedef GraphTraits<MachineDomTreeNode*> GTN; |
| 942 | typedef GTN::ChildIteratorType ChildIter; |
| 943 | for (ChildIter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) { |
| 944 | MachineBasicBlock *SB = (*I)->getBlock(); |
| 945 | collectInBlock(SB, AVs); |
| 946 | } |
| 947 | |
| 948 | for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR)) |
| 949 | AVs.remove(VR); |
| 950 | } |
| 951 | |
| 952 | |
| 953 | void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF, |
| 954 | RegisterSet &RMs) const { |
| 955 | // For a given register VR and a insert form, find the registers that are |
| 956 | // used by the current definition of VR, and which would no longer be |
| 957 | // needed for it after the definition of VR is replaced with the insert |
| 958 | // form. These are the registers that could potentially become dead. |
| 959 | RegisterSet Regs[2]; |
| 960 | |
| 961 | unsigned S = 0; // Register set selector. |
| 962 | Regs[S].insert(VR); |
| 963 | |
| 964 | while (!Regs[S].empty()) { |
| 965 | // Breadth-first search. |
| 966 | unsigned OtherS = 1-S; |
| 967 | Regs[OtherS].clear(); |
| 968 | for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) { |
| 969 | Regs[S].remove(R); |
| 970 | if (R == IF.SrcR || R == IF.InsR) |
| 971 | continue; |
| 972 | // Check if a given register has bits that are references to any other |
| 973 | // registers. This is to detect situations where the instruction that |
| 974 | // defines register R takes register Q as an operand, but R itself does |
| 975 | // not contain any bits from Q. Loads are examples of how this could |
| 976 | // happen: |
| 977 | // R = load Q |
| 978 | // In this case (assuming we do not have any knowledge about the loaded |
| 979 | // value), we must not treat R as a "conveyance" of the bits from Q. |
| 980 | // (The information in BT about R's bits would have them as constants, |
| 981 | // in case of zero-extending loads, or refs to R.) |
| 982 | if (!findNonSelfReference(R)) |
| 983 | continue; |
| 984 | RMs.insert(R); |
| 985 | const MachineInstr *DefI = MRI->getVRegDef(R); |
| 986 | assert(DefI); |
| 987 | // Do not iterate past PHI nodes to avoid infinite loops. This can |
| 988 | // make the final set a bit less accurate, but the removable register |
| 989 | // sets are an approximation anyway. |
| 990 | if (DefI->isPHI()) |
| 991 | continue; |
| 992 | getInstrUses(DefI, Regs[OtherS]); |
| 993 | } |
| 994 | S = OtherS; |
| 995 | } |
| 996 | // The register VR is added to the list as a side-effect of the algorithm, |
| 997 | // but it is not "potentially removable". A potentially removable register |
| 998 | // is one that may become unused (dead) after conversion to the insert form |
| 999 | // IF, and obviously VR (or its replacement) will not become dead by apply- |
| 1000 | // ing IF. |
| 1001 | RMs.remove(VR); |
| 1002 | } |
| 1003 | |
| 1004 | |
| 1005 | void HexagonGenInsert::computeRemovableRegisters() { |
| 1006 | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { |
| 1007 | IFListType &LL = I->second; |
| 1008 | for (unsigned i = 0, n = LL.size(); i < n; ++i) |
| 1009 | findRemovableRegisters(I->first, LL[i].first, LL[i].second); |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | |
| 1014 | void HexagonGenInsert::pruneEmptyLists() { |
| 1015 | // Remove all entries from the map, where the register has no insert forms |
| 1016 | // associated with it. |
| 1017 | typedef SmallVector<IFMapType::iterator,16> IterListType; |
| 1018 | IterListType Prune; |
| 1019 | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { |
| 1020 | if (I->second.size() == 0) |
| 1021 | Prune.push_back(I); |
| 1022 | } |
| 1023 | for (unsigned i = 0, n = Prune.size(); i < n; ++i) |
| 1024 | IFMap.erase(Prune[i]); |
| 1025 | } |
| 1026 | |
| 1027 | |
| 1028 | void HexagonGenInsert::pruneCoveredSets(unsigned VR) { |
| 1029 | IFMapType::iterator F = IFMap.find(VR); |
| 1030 | assert(F != IFMap.end()); |
| 1031 | IFListType &LL = F->second; |
| 1032 | |
| 1033 | // First, examine the IF candidates for register VR whose removable-regis- |
| 1034 | // ter sets are empty. This means that a given candidate will not help eli- |
| 1035 | // minate any registers, but since "insert" is not a constant-extendable |
| 1036 | // instruction, using such a candidate may reduce code size if the defini- |
| 1037 | // tion of VR is constant-extended. |
| 1038 | // If there exists a candidate with a non-empty set, the ones with empty |
| 1039 | // sets will not be used and can be removed. |
| 1040 | MachineInstr *DefVR = MRI->getVRegDef(VR); |
Krzysztof Parzyszek | f0b34a5 | 2016-07-29 21:49:42 +0000 | [diff] [blame] | 1041 | bool DefEx = HII->isConstExtended(*DefVR); |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1042 | bool HasNE = false; |
| 1043 | for (unsigned i = 0, n = LL.size(); i < n; ++i) { |
| 1044 | if (LL[i].second.empty()) |
| 1045 | continue; |
| 1046 | HasNE = true; |
| 1047 | break; |
| 1048 | } |
| 1049 | if (!DefEx || HasNE) { |
| 1050 | // The definition of VR is not constant-extended, or there is a candidate |
| 1051 | // with a non-empty set. Remove all candidates with empty sets. |
| 1052 | auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool { |
| 1053 | return IR.second.empty(); |
| 1054 | }; |
David Majnemer | c700490 | 2016-08-12 04:32:37 +0000 | [diff] [blame] | 1055 | auto End = remove_if(LL, IsEmpty); |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1056 | if (End != LL.end()) |
| 1057 | LL.erase(End, LL.end()); |
| 1058 | } else { |
| 1059 | // The definition of VR is constant-extended, and all candidates have |
| 1060 | // empty removable-register sets. Pick the maximum candidate, and remove |
| 1061 | // all others. The "maximum" does not have any special meaning here, it |
| 1062 | // is only so that the candidate that will remain on the list is selec- |
| 1063 | // ted deterministically. |
| 1064 | IFRecord MaxIF = LL[0].first; |
| 1065 | for (unsigned i = 1, n = LL.size(); i < n; ++i) { |
| 1066 | // If LL[MaxI] < LL[i], then MaxI = i. |
| 1067 | const IFRecord &IF = LL[i].first; |
| 1068 | unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR]; |
| 1069 | unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR]; |
| 1070 | if (M0 > R0) |
| 1071 | continue; |
| 1072 | if (M0 == R0) { |
| 1073 | if (M1 > R1) |
| 1074 | continue; |
| 1075 | if (M1 == R1) { |
| 1076 | if (MaxIF.Wdh > IF.Wdh) |
| 1077 | continue; |
| 1078 | if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off) |
| 1079 | continue; |
| 1080 | } |
| 1081 | } |
| 1082 | // MaxIF < IF. |
| 1083 | MaxIF = IF; |
| 1084 | } |
| 1085 | // Remove everything except the maximum candidate. All register sets |
| 1086 | // are empty, so no need to preserve anything. |
| 1087 | LL.clear(); |
| 1088 | LL.push_back(std::make_pair(MaxIF, RegisterSet())); |
| 1089 | } |
| 1090 | |
| 1091 | // Now, remove those whose sets of potentially removable registers are |
| 1092 | // contained in another IF candidate for VR. For example, given these |
| 1093 | // candidates for vreg45, |
| 1094 | // %vreg45: |
| 1095 | // (%vreg44,%vreg41,#9,#8), { %vreg42 } |
| 1096 | // (%vreg43,%vreg41,#9,#8), { %vreg42 %vreg44 } |
| 1097 | // remove the first one, since it is contained in the second one. |
| 1098 | for (unsigned i = 0, n = LL.size(); i < n; ) { |
| 1099 | const RegisterSet &RMi = LL[i].second; |
| 1100 | unsigned j = 0; |
| 1101 | while (j < n) { |
| 1102 | if (j != i && LL[j].second.includes(RMi)) |
| 1103 | break; |
| 1104 | j++; |
| 1105 | } |
| 1106 | if (j == n) { // RMi not contained in anything else. |
| 1107 | i++; |
| 1108 | continue; |
| 1109 | } |
| 1110 | LL.erase(LL.begin()+i); |
| 1111 | n = LL.size(); |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | |
| 1116 | void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, |
| 1117 | PairMapType &M) { |
| 1118 | IFMapType::iterator F = IFMap.find(VR); |
| 1119 | assert(F != IFMap.end()); |
| 1120 | IFListType &LL = F->second; |
| 1121 | unsigned Cutoff = VRegDistCutoff; |
| 1122 | const MachineInstr *DefV = MRI->getVRegDef(VR); |
| 1123 | |
| 1124 | for (unsigned i = LL.size(); i > 0; --i) { |
| 1125 | unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR; |
| 1126 | const MachineInstr *DefS = MRI->getVRegDef(SR); |
| 1127 | const MachineInstr *DefI = MRI->getVRegDef(IR); |
| 1128 | unsigned DSV = distance(DefS, DefV, RPO, M); |
| 1129 | if (DSV < Cutoff) { |
| 1130 | unsigned DIV = distance(DefI, DefV, RPO, M); |
| 1131 | if (DIV < Cutoff) |
| 1132 | continue; |
| 1133 | } |
| 1134 | LL.erase(LL.begin()+(i-1)); |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | |
| 1139 | void HexagonGenInsert::pruneRegCopies(unsigned VR) { |
| 1140 | IFMapType::iterator F = IFMap.find(VR); |
| 1141 | assert(F != IFMap.end()); |
| 1142 | IFListType &LL = F->second; |
| 1143 | |
| 1144 | auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool { |
| 1145 | return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32); |
| 1146 | }; |
David Majnemer | c700490 | 2016-08-12 04:32:37 +0000 | [diff] [blame] | 1147 | auto End = remove_if(LL, IsCopy); |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1148 | if (End != LL.end()) |
| 1149 | LL.erase(End, LL.end()); |
| 1150 | } |
| 1151 | |
| 1152 | |
| 1153 | void HexagonGenInsert::pruneCandidates() { |
| 1154 | // Remove candidates that are not beneficial, regardless of the final |
| 1155 | // selection method. |
| 1156 | // First, remove candidates whose potentially removable set is a subset |
| 1157 | // of another candidate's set. |
| 1158 | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) |
| 1159 | pruneCoveredSets(I->first); |
| 1160 | |
| 1161 | UnsignedMap RPO; |
| 1162 | typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType; |
| 1163 | RPOTType RPOT(MFN); |
| 1164 | unsigned RPON = 0; |
| 1165 | for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) |
| 1166 | RPO[(*I)->getNumber()] = RPON++; |
| 1167 | |
| 1168 | PairMapType Memo; // Memoization map for distance calculation. |
| 1169 | // Remove candidates that would use registers defined too far away. |
| 1170 | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) |
| 1171 | pruneUsesTooFar(I->first, RPO, Memo); |
| 1172 | |
| 1173 | pruneEmptyLists(); |
| 1174 | |
| 1175 | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) |
| 1176 | pruneRegCopies(I->first); |
| 1177 | } |
| 1178 | |
| 1179 | |
| 1180 | namespace { |
| 1181 | // Class for comparing IF candidates for registers that have multiple of |
| 1182 | // them. The smaller the candidate, according to this ordering, the better. |
| 1183 | // First, compare the number of zeros in the associated potentially remova- |
| 1184 | // ble register sets. "Zero" indicates that the register is very likely to |
| 1185 | // become dead after this transformation. |
| 1186 | // Second, compare "averages", i.e. use-count per size. The lower wins. |
| 1187 | // After that, it does not really matter which one is smaller. Resolve |
| 1188 | // the tie in some deterministic way. |
| 1189 | struct IFOrdering { |
| 1190 | IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO) |
| 1191 | : UseC(UC), BaseOrd(BO) {} |
| 1192 | bool operator() (const IFRecordWithRegSet &A, |
| 1193 | const IFRecordWithRegSet &B) const; |
| 1194 | private: |
| 1195 | void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero, |
| 1196 | unsigned &Sum) const; |
| 1197 | const UnsignedMap &UseC; |
| 1198 | const RegisterOrdering &BaseOrd; |
| 1199 | }; |
| 1200 | } |
| 1201 | |
| 1202 | |
| 1203 | bool IFOrdering::operator() (const IFRecordWithRegSet &A, |
| 1204 | const IFRecordWithRegSet &B) const { |
| 1205 | unsigned SizeA = 0, ZeroA = 0, SumA = 0; |
| 1206 | unsigned SizeB = 0, ZeroB = 0, SumB = 0; |
| 1207 | stats(A.second, SizeA, ZeroA, SumA); |
| 1208 | stats(B.second, SizeB, ZeroB, SumB); |
| 1209 | |
| 1210 | // We will pick the minimum element. The more zeros, the better. |
| 1211 | if (ZeroA != ZeroB) |
| 1212 | return ZeroA > ZeroB; |
| 1213 | // Compare SumA/SizeA with SumB/SizeB, lower is better. |
| 1214 | uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA; |
| 1215 | if (AvgA != AvgB) |
| 1216 | return AvgA < AvgB; |
| 1217 | |
| 1218 | // The sets compare identical so far. Resort to comparing the IF records. |
| 1219 | // The actual values don't matter, this is only for determinism. |
| 1220 | unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR]; |
| 1221 | if (OSA != OSB) |
| 1222 | return OSA < OSB; |
| 1223 | unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR]; |
| 1224 | if (OIA != OIB) |
| 1225 | return OIA < OIB; |
| 1226 | if (A.first.Wdh != B.first.Wdh) |
| 1227 | return A.first.Wdh < B.first.Wdh; |
| 1228 | return A.first.Off < B.first.Off; |
| 1229 | } |
| 1230 | |
| 1231 | |
| 1232 | void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero, |
| 1233 | unsigned &Sum) const { |
| 1234 | for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) { |
| 1235 | UnsignedMap::const_iterator F = UseC.find(R); |
| 1236 | assert(F != UseC.end()); |
| 1237 | unsigned UC = F->second; |
| 1238 | if (UC == 0) |
| 1239 | Zero++; |
| 1240 | Sum += UC; |
| 1241 | Size++; |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | |
| 1246 | void HexagonGenInsert::selectCandidates() { |
| 1247 | // Some registers may have multiple valid candidates. Pick the best one |
| 1248 | // (or decide not to use any). |
| 1249 | |
| 1250 | // Compute the "removability" measure of R: |
| 1251 | // For each potentially removable register R, record the number of regis- |
| 1252 | // ters with IF candidates, where R appears in at least one set. |
| 1253 | RegisterSet AllRMs; |
| 1254 | UnsignedMap UseC, RemC; |
| 1255 | IFMapType::iterator End = IFMap.end(); |
| 1256 | |
| 1257 | for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { |
| 1258 | const IFListType &LL = I->second; |
| 1259 | RegisterSet TT; |
| 1260 | for (unsigned i = 0, n = LL.size(); i < n; ++i) |
| 1261 | TT.insert(LL[i].second); |
| 1262 | for (unsigned R = TT.find_first(); R; R = TT.find_next(R)) |
| 1263 | RemC[R]++; |
| 1264 | AllRMs.insert(TT); |
| 1265 | } |
| 1266 | |
| 1267 | for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) { |
| 1268 | typedef MachineRegisterInfo::use_nodbg_iterator use_iterator; |
| 1269 | typedef SmallSet<const MachineInstr*,16> InstrSet; |
| 1270 | InstrSet UIs; |
| 1271 | // Count as the number of instructions in which R is used, not the |
| 1272 | // number of operands. |
| 1273 | use_iterator E = MRI->use_nodbg_end(); |
| 1274 | for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I) |
| 1275 | UIs.insert(I->getParent()); |
| 1276 | unsigned C = UIs.size(); |
| 1277 | // Calculate a measure, which is the number of instructions using R, |
| 1278 | // minus the "removability" count computed earlier. |
| 1279 | unsigned D = RemC[R]; |
| 1280 | UseC[R] = (C > D) ? C-D : 0; // doz |
| 1281 | } |
| 1282 | |
| 1283 | |
| 1284 | bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0; |
| 1285 | if (!SelectAll0 && !SelectHas0) |
| 1286 | SelectAll0 = true; |
| 1287 | |
| 1288 | // The smaller the number UseC for a given register R, the "less used" |
| 1289 | // R is aside from the opportunities for removal offered by generating |
| 1290 | // "insert" instructions. |
| 1291 | // Iterate over the IF map, and for those registers that have multiple |
| 1292 | // candidates, pick the minimum one according to IFOrdering. |
| 1293 | IFOrdering IFO(UseC, BaseOrd); |
| 1294 | for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { |
| 1295 | IFListType &LL = I->second; |
| 1296 | if (LL.empty()) |
| 1297 | continue; |
| 1298 | // Get the minimum element, remember it and clear the list. If the |
| 1299 | // element found is adequate, we will put it back on the list, other- |
| 1300 | // wise the list will remain empty, and the entry for this register |
| 1301 | // will be removed (i.e. this register will not be replaced by insert). |
| 1302 | IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO); |
| 1303 | assert(MinI != LL.end()); |
| 1304 | IFRecordWithRegSet M = *MinI; |
| 1305 | LL.clear(); |
| 1306 | |
| 1307 | // We want to make sure that this replacement will have a chance to be |
| 1308 | // beneficial, and that means that we want to have indication that some |
| 1309 | // register will be removed. The most likely registers to be eliminated |
| 1310 | // are the use operands in the definition of I->first. Accept/reject a |
| 1311 | // candidate based on how many of its uses it can potentially eliminate. |
| 1312 | |
| 1313 | RegisterSet Us; |
| 1314 | const MachineInstr *DefI = MRI->getVRegDef(I->first); |
| 1315 | getInstrUses(DefI, Us); |
| 1316 | bool Accept = false; |
| 1317 | |
| 1318 | if (SelectAll0) { |
| 1319 | bool All0 = true; |
| 1320 | for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) { |
| 1321 | if (UseC[R] == 0) |
| 1322 | continue; |
| 1323 | All0 = false; |
| 1324 | break; |
| 1325 | } |
| 1326 | Accept = All0; |
| 1327 | } else if (SelectHas0) { |
| 1328 | bool Has0 = false; |
| 1329 | for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) { |
| 1330 | if (UseC[R] != 0) |
| 1331 | continue; |
| 1332 | Has0 = true; |
| 1333 | break; |
| 1334 | } |
| 1335 | Accept = Has0; |
| 1336 | } |
| 1337 | if (Accept) |
| 1338 | LL.push_back(M); |
| 1339 | } |
| 1340 | |
| 1341 | // Remove candidates that add uses of removable registers, unless the |
| 1342 | // removable registers are among replacement candidates. |
| 1343 | // Recompute the removable registers, since some candidates may have |
| 1344 | // been eliminated. |
| 1345 | AllRMs.clear(); |
| 1346 | for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { |
| 1347 | const IFListType &LL = I->second; |
| 1348 | if (LL.size() > 0) |
| 1349 | AllRMs.insert(LL[0].second); |
| 1350 | } |
| 1351 | for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { |
| 1352 | IFListType &LL = I->second; |
| 1353 | if (LL.size() == 0) |
| 1354 | continue; |
| 1355 | unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR; |
| 1356 | if (AllRMs[SR] || AllRMs[IR]) |
| 1357 | LL.clear(); |
| 1358 | } |
| 1359 | |
| 1360 | pruneEmptyLists(); |
| 1361 | } |
| 1362 | |
| 1363 | |
| 1364 | bool HexagonGenInsert::generateInserts() { |
| 1365 | // Create a new register for each one from IFMap, and store them in the |
| 1366 | // map. |
| 1367 | UnsignedMap RegMap; |
| 1368 | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { |
| 1369 | unsigned VR = I->first; |
| 1370 | const TargetRegisterClass *RC = MRI->getRegClass(VR); |
| 1371 | unsigned NewVR = MRI->createVirtualRegister(RC); |
| 1372 | RegMap[VR] = NewVR; |
| 1373 | } |
| 1374 | |
| 1375 | // We can generate the "insert" instructions using potentially stale re- |
| 1376 | // gisters: SrcR and InsR for a given VR may be among other registers that |
| 1377 | // are also replaced. This is fine, we will do the mass "rauw" a bit later. |
| 1378 | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { |
| 1379 | MachineInstr *MI = MRI->getVRegDef(I->first); |
| 1380 | MachineBasicBlock &B = *MI->getParent(); |
| 1381 | DebugLoc DL = MI->getDebugLoc(); |
| 1382 | unsigned NewR = RegMap[I->first]; |
| 1383 | bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass; |
| 1384 | const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert) |
| 1385 | : HII->get(Hexagon::S2_insertp); |
| 1386 | IFRecord IF = I->second[0].first; |
| 1387 | unsigned Wdh = IF.Wdh, Off = IF.Off; |
| 1388 | unsigned InsS = 0; |
| 1389 | if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) { |
| 1390 | InsS = Hexagon::subreg_loreg; |
| 1391 | if (Off >= 32) { |
| 1392 | InsS = Hexagon::subreg_hireg; |
| 1393 | Off -= 32; |
| 1394 | } |
| 1395 | } |
| 1396 | // Advance to the proper location for inserting instructions. This could |
| 1397 | // be B.end(). |
| 1398 | MachineBasicBlock::iterator At = MI; |
| 1399 | if (MI->isPHI()) |
| 1400 | At = B.getFirstNonPHI(); |
| 1401 | |
| 1402 | BuildMI(B, At, DL, D, NewR) |
| 1403 | .addReg(IF.SrcR) |
| 1404 | .addReg(IF.InsR, 0, InsS) |
| 1405 | .addImm(Wdh) |
| 1406 | .addImm(Off); |
| 1407 | |
| 1408 | MRI->clearKillFlags(IF.SrcR); |
| 1409 | MRI->clearKillFlags(IF.InsR); |
| 1410 | } |
| 1411 | |
| 1412 | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { |
| 1413 | MachineInstr *DefI = MRI->getVRegDef(I->first); |
| 1414 | MRI->replaceRegWith(I->first, RegMap[I->first]); |
| 1415 | DefI->eraseFromParent(); |
| 1416 | } |
| 1417 | |
| 1418 | return true; |
| 1419 | } |
| 1420 | |
| 1421 | |
| 1422 | bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) { |
| 1423 | bool Changed = false; |
| 1424 | typedef GraphTraits<MachineDomTreeNode*> GTN; |
| 1425 | for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) |
| 1426 | Changed |= removeDeadCode(*I); |
| 1427 | |
| 1428 | MachineBasicBlock *B = N->getBlock(); |
| 1429 | std::vector<MachineInstr*> Instrs; |
| 1430 | for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) |
| 1431 | Instrs.push_back(&*I); |
| 1432 | |
| 1433 | for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) { |
| 1434 | MachineInstr *MI = *I; |
| 1435 | unsigned Opc = MI->getOpcode(); |
| 1436 | // Do not touch lifetime markers. This is why the target-independent DCE |
| 1437 | // cannot be used. |
| 1438 | if (Opc == TargetOpcode::LIFETIME_START || |
| 1439 | Opc == TargetOpcode::LIFETIME_END) |
| 1440 | continue; |
| 1441 | bool Store = false; |
| 1442 | if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store)) |
| 1443 | continue; |
| 1444 | |
| 1445 | bool AllDead = true; |
| 1446 | SmallVector<unsigned,2> Regs; |
Matthias Braun | fc37155 | 2016-10-24 21:36:43 +0000 | [diff] [blame^] | 1447 | for (const MachineOperand &MO : MI->operands()) { |
| 1448 | if (!MO.isReg() || !MO.isDef()) |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1449 | continue; |
Matthias Braun | fc37155 | 2016-10-24 21:36:43 +0000 | [diff] [blame^] | 1450 | unsigned R = MO.getReg(); |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1451 | if (!TargetRegisterInfo::isVirtualRegister(R) || |
| 1452 | !MRI->use_nodbg_empty(R)) { |
| 1453 | AllDead = false; |
| 1454 | break; |
| 1455 | } |
| 1456 | Regs.push_back(R); |
| 1457 | } |
| 1458 | if (!AllDead) |
| 1459 | continue; |
| 1460 | |
| 1461 | B->erase(MI); |
| 1462 | for (unsigned I = 0, N = Regs.size(); I != N; ++I) |
| 1463 | MRI->markUsesInDebugValueAsUndef(Regs[I]); |
| 1464 | Changed = true; |
| 1465 | } |
| 1466 | |
| 1467 | return Changed; |
| 1468 | } |
| 1469 | |
| 1470 | |
| 1471 | bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) { |
Andrew Kaylor | 5b444a2 | 2016-04-26 19:46:28 +0000 | [diff] [blame] | 1472 | if (skipFunction(*MF.getFunction())) |
| 1473 | return false; |
| 1474 | |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1475 | bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail; |
| 1476 | bool Changed = false; |
| 1477 | TimerGroup __G("hexinsert"); |
| 1478 | NamedRegionTimer __T("hexinsert", Timing && !TimingDetail); |
| 1479 | |
| 1480 | // Sanity check: one, but not both. |
| 1481 | assert(!OptSelectAll0 || !OptSelectHas0); |
| 1482 | |
| 1483 | IFMap.clear(); |
| 1484 | BaseOrd.clear(); |
| 1485 | CellOrd.clear(); |
| 1486 | |
| 1487 | const auto &ST = MF.getSubtarget<HexagonSubtarget>(); |
| 1488 | HII = ST.getInstrInfo(); |
| 1489 | HRI = ST.getRegisterInfo(); |
| 1490 | MFN = &MF; |
| 1491 | MRI = &MF.getRegInfo(); |
| 1492 | MDT = &getAnalysis<MachineDominatorTree>(); |
| 1493 | |
| 1494 | // Clean up before any further processing, so that dead code does not |
| 1495 | // get used in a newly generated "insert" instruction. Have a custom |
| 1496 | // version of DCE that preserves lifetime markers. Without it, merging |
| 1497 | // of stack objects can fail to recognize and merge disjoint objects |
| 1498 | // leading to unnecessary stack growth. |
Krzysztof Parzyszek | 6c5ca95 | 2015-11-20 20:46:23 +0000 | [diff] [blame] | 1499 | Changed = removeDeadCode(MDT->getRootNode()); |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1500 | |
| 1501 | const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); |
| 1502 | BitTracker BTLoc(HE, MF); |
| 1503 | BTLoc.trace(isDebug()); |
| 1504 | BTLoc.run(); |
| 1505 | CellMapShadow MS(BTLoc); |
| 1506 | CMS = &MS; |
| 1507 | |
| 1508 | buildOrderingMF(BaseOrd); |
| 1509 | buildOrderingBT(BaseOrd, CellOrd); |
| 1510 | |
| 1511 | if (isDebug()) { |
| 1512 | dbgs() << "Cell ordering:\n"; |
| 1513 | for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end(); |
| 1514 | I != E; ++I) { |
| 1515 | unsigned VR = I->first, Pos = I->second; |
| 1516 | dbgs() << PrintReg(VR, HRI) << " -> " << Pos << "\n"; |
| 1517 | } |
| 1518 | } |
| 1519 | |
| 1520 | // Collect candidates for conversion into the insert forms. |
| 1521 | MachineBasicBlock *RootB = MDT->getRoot(); |
| 1522 | OrderedRegisterList AvailR(CellOrd); |
| 1523 | |
| 1524 | { |
| 1525 | NamedRegionTimer _T("collection", "hexinsert", TimingDetail); |
| 1526 | collectInBlock(RootB, AvailR); |
| 1527 | // Complete the information gathered in IFMap. |
| 1528 | computeRemovableRegisters(); |
| 1529 | } |
| 1530 | |
| 1531 | if (isDebug()) { |
| 1532 | dbgs() << "Candidates after collection:\n"; |
| 1533 | dump_map(); |
| 1534 | } |
| 1535 | |
| 1536 | if (IFMap.empty()) |
Krzysztof Parzyszek | 6c5ca95 | 2015-11-20 20:46:23 +0000 | [diff] [blame] | 1537 | return Changed; |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1538 | |
| 1539 | { |
| 1540 | NamedRegionTimer _T("pruning", "hexinsert", TimingDetail); |
| 1541 | pruneCandidates(); |
| 1542 | } |
| 1543 | |
| 1544 | if (isDebug()) { |
| 1545 | dbgs() << "Candidates after pruning:\n"; |
| 1546 | dump_map(); |
| 1547 | } |
| 1548 | |
| 1549 | if (IFMap.empty()) |
Krzysztof Parzyszek | 6c5ca95 | 2015-11-20 20:46:23 +0000 | [diff] [blame] | 1550 | return Changed; |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1551 | |
| 1552 | { |
| 1553 | NamedRegionTimer _T("selection", "hexinsert", TimingDetail); |
| 1554 | selectCandidates(); |
| 1555 | } |
| 1556 | |
| 1557 | if (isDebug()) { |
| 1558 | dbgs() << "Candidates after selection:\n"; |
| 1559 | dump_map(); |
| 1560 | } |
| 1561 | |
| 1562 | // Filter out vregs beyond the cutoff. |
| 1563 | if (VRegIndexCutoff.getPosition()) { |
| 1564 | unsigned Cutoff = VRegIndexCutoff; |
| 1565 | typedef SmallVector<IFMapType::iterator,16> IterListType; |
| 1566 | IterListType Out; |
| 1567 | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { |
| 1568 | unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first); |
| 1569 | if (Idx >= Cutoff) |
| 1570 | Out.push_back(I); |
| 1571 | } |
| 1572 | for (unsigned i = 0, n = Out.size(); i < n; ++i) |
| 1573 | IFMap.erase(Out[i]); |
| 1574 | } |
Krzysztof Parzyszek | 6c5ca95 | 2015-11-20 20:46:23 +0000 | [diff] [blame] | 1575 | if (IFMap.empty()) |
| 1576 | return Changed; |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1577 | |
| 1578 | { |
| 1579 | NamedRegionTimer _T("generation", "hexinsert", TimingDetail); |
Krzysztof Parzyszek | 6c5ca95 | 2015-11-20 20:46:23 +0000 | [diff] [blame] | 1580 | generateInserts(); |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1581 | } |
| 1582 | |
Krzysztof Parzyszek | 6c5ca95 | 2015-11-20 20:46:23 +0000 | [diff] [blame] | 1583 | return true; |
Krzysztof Parzyszek | 21b53a5 | 2015-07-08 14:47:34 +0000 | [diff] [blame] | 1584 | } |
| 1585 | |
| 1586 | |
| 1587 | FunctionPass *llvm::createHexagonGenInsert() { |
| 1588 | return new HexagonGenInsert(); |
| 1589 | } |
| 1590 | |
| 1591 | |
| 1592 | //===----------------------------------------------------------------------===// |
| 1593 | // Public Constructor Functions |
| 1594 | //===----------------------------------------------------------------------===// |
| 1595 | |
| 1596 | INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert", |
| 1597 | "Hexagon generate \"insert\" instructions", false, false) |
| 1598 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| 1599 | INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert", |
| 1600 | "Hexagon generate \"insert\" instructions", false, false) |