blob: 6883fc0149341410c5c0c3b9a3384126fe832d9e [file] [log] [blame]
Misha Brukmancf7d3af2004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukmanc88330a2005-04-21 23:38:14 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanc88330a2005-04-21 23:38:14 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnercf53bcf2003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +000011// pseudo registers into register stack instructions. This pass uses live
Chris Lattner11290272004-01-30 22:25:18 +000012// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +000015// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
Chris Lattner11290272004-01-30 22:25:18 +000020//
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +000021// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
Chris Lattnercf53bcf2003-01-13 01:01:59 +000023//
24//===----------------------------------------------------------------------===//
25
26#include "X86.h"
27#include "X86InstrInfo.h"
Akira Hatanaka35166692014-08-01 22:19:41 +000028#include "llvm/ADT/BitVector.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000029#include "llvm/ADT/DepthFirstIterator.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000030#include "llvm/ADT/STLExtras.h"
Owen Anderson1b351d42008-08-14 21:01:00 +000031#include "llvm/ADT/SmallPtrSet.h"
Akira Hatanaka35166692014-08-01 22:19:41 +000032#include "llvm/ADT/SmallSet.h"
Evan Chengbbbcac32006-11-15 20:56:39 +000033#include "llvm/ADT/SmallVector.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000034#include "llvm/ADT/Statistic.h"
Jakob Stoklund Olesenf96ae682011-01-04 21:10:05 +000035#include "llvm/CodeGen/EdgeBundles.h"
Bill Wendling6eecd562009-08-03 00:11:34 +000036#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
Akira Hatanaka35166692014-08-01 22:19:41 +000039#include "llvm/CodeGen/LivePhysRegs.h"
Bill Wendling6eecd562009-08-03 00:11:34 +000040#include "llvm/CodeGen/Passes.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000041#include "llvm/IR/InlineAsm.h"
Bill Wendling6eecd562009-08-03 00:11:34 +000042#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetMachine.h"
Eric Christopherd9134482014-08-04 21:25:23 +000047#include "llvm/Target/TargetSubtargetInfo.h"
Chris Lattnercf53bcf2003-01-13 01:01:59 +000048#include <algorithm>
Chris Lattnerd46cd682003-12-20 09:58:55 +000049using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000050
Chandler Carruth84e68b22014-04-22 02:41:26 +000051#define DEBUG_TYPE "x86-codegen"
52
Chris Lattner1ef9cd42006-12-19 22:59:26 +000053STATISTIC(NumFXCH, "Number of fxch instructions inserted");
54STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnercf53bcf2003-01-13 01:01:59 +000055
Chris Lattner1ef9cd42006-12-19 22:59:26 +000056namespace {
Akira Hatanaka35166692014-08-01 22:19:41 +000057 const unsigned ScratchFPReg = 7;
58
Nick Lewycky02d5f772009-10-25 06:33:48 +000059 struct FPS : public MachineFunctionPass {
Devang Patel8c78a0b2007-05-03 01:11:54 +000060 static char ID;
Owen Andersona7aed182010-08-06 18:33:48 +000061 FPS() : MachineFunctionPass(ID) {
Jakob Stoklund Olesenf96ae682011-01-04 21:10:05 +000062 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
Jakob Stoklund Olesen8d511492010-07-16 22:00:33 +000063 // This is really only to keep valgrind quiet.
64 // The logic in isLive() is too much for it.
65 memset(Stack, 0, sizeof(Stack));
66 memset(RegMap, 0, sizeof(RegMap));
67 }
Devang Patel09f162c2007-05-01 21:15:47 +000068
Craig Topper2d9361e2014-03-09 07:44:38 +000069 void getAnalysisUsage(AnalysisUsage &AU) const override {
Dan Gohman6735e102009-08-01 00:26:16 +000070 AU.setPreservesCFG();
Jakob Stoklund Olesenf96ae682011-01-04 21:10:05 +000071 AU.addRequired<EdgeBundles>();
Evan Cheng962c2cf2008-09-22 22:21:38 +000072 AU.addPreservedID(MachineLoopInfoID);
73 AU.addPreservedID(MachineDominatorsID);
Evan Cheng168f8f32008-09-22 20:58:04 +000074 MachineFunctionPass::getAnalysisUsage(AU);
75 }
76
Craig Topper2d9361e2014-03-09 07:44:38 +000077 bool runOnMachineFunction(MachineFunction &MF) override;
Chris Lattnercf53bcf2003-01-13 01:01:59 +000078
Craig Topper2d9361e2014-03-09 07:44:38 +000079 const char *getPassName() const override { return "X86 FP Stackifier"; }
Chris Lattnercf53bcf2003-01-13 01:01:59 +000080
Chris Lattnercf53bcf2003-01-13 01:01:59 +000081 private:
Evan Cheng845bd6e2006-12-01 10:11:51 +000082 const TargetInstrInfo *TII; // Machine instruction info.
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +000083
84 // Two CFG edges are related if they leave the same block, or enter the same
85 // block. The transitive closure of an edge under this relation is a
86 // LiveBundle. It represents a set of CFG edges where the live FP stack
87 // registers must be allocated identically in the x87 stack.
88 //
89 // A LiveBundle is usually all the edges leaving a block, or all the edges
90 // entering a block, but it can contain more edges if critical edges are
91 // present.
92 //
93 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
94 // but the exact mapping of FP registers to stack slots is fixed later.
95 struct LiveBundle {
96 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
97 unsigned Mask;
98
99 // Number of pre-assigned live registers in FixStack. This is 0 when the
100 // stack order has not yet been fixed.
101 unsigned FixCount;
102
103 // Assigned stack order for live-in registers.
104 // FixStack[i] == getStackEntry(i) for all i < FixCount.
105 unsigned char FixStack[8];
106
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000107 LiveBundle() : Mask(0), FixCount(0) {}
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000108
109 // Have the live registers been assigned a stack order yet?
110 bool isFixed() const { return !Mask || FixCount; }
111 };
112
113 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
114 // with no live FP registers.
115 SmallVector<LiveBundle, 8> LiveBundles;
116
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000117 // The edge bundle analysis provides indices into the LiveBundles vector.
118 EdgeBundles *Bundles;
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000119
120 // Return a bitmask of FP registers in block's live-in list.
Jakub Staszak59deec02012-11-21 00:59:34 +0000121 static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000122 unsigned Mask = 0;
123 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
124 E = MBB->livein_end(); I != E; ++I) {
Chad Rosieree740c42013-06-28 18:57:01 +0000125 unsigned Reg = *I;
126 if (Reg < X86::FP0 || Reg > X86::FP6)
127 continue;
128 Mask |= 1 << (Reg - X86::FP0);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000129 }
130 return Mask;
131 }
132
133 // Partition all the CFG edges into LiveBundles.
134 void bundleCFG(MachineFunction &MF);
135
Evan Cheng845bd6e2006-12-01 10:11:51 +0000136 MachineBasicBlock *MBB; // Current basic block
Jakob Stoklund Olesenff653a22011-06-27 04:08:36 +0000137
138 // The hardware keeps track of how many FP registers are live, so we have
139 // to model that exactly. Usually, each live register corresponds to an
140 // FP<n> register, but when dealing with calls, returns, and inline
Benjamin Kramerbde91762012-06-02 10:20:22 +0000141 // assembly, it is sometimes necessary to have live scratch registers.
Evan Cheng845bd6e2006-12-01 10:11:51 +0000142 unsigned Stack[8]; // FP<n> Registers in each stack slot...
Evan Cheng845bd6e2006-12-01 10:11:51 +0000143 unsigned StackTop; // The current top of the FP stack.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000144
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000145 enum {
Akira Hatanaka35166692014-08-01 22:19:41 +0000146 NumFPRegs = 8 // Including scratch pseudo-registers.
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000147 };
148
Jakob Stoklund Olesenff653a22011-06-27 04:08:36 +0000149 // For each live FP<n> register, point to its Stack[] entry.
150 // The first entries correspond to FP0-FP6, the rest are scratch registers
151 // used when we need slightly different live registers than what the
152 // register allocator thinks.
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000153 unsigned RegMap[NumFPRegs];
154
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000155 // Set up our stack model to match the incoming registers to MBB.
156 void setupBlockStack();
157
158 // Shuffle live registers to match the expectations of successor blocks.
159 void finishBlockStack();
160
Manman Ren19f49ac2012-09-11 22:23:19 +0000161#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000162 void dumpStack() const {
David Greened85fd002010-01-05 01:29:34 +0000163 dbgs() << "Stack contents:";
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000164 for (unsigned i = 0; i != StackTop; ++i) {
David Greened85fd002010-01-05 01:29:34 +0000165 dbgs() << " FP" << Stack[i];
Misha Brukmanc88330a2005-04-21 23:38:14 +0000166 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000167 }
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000168 }
Manman Ren742534c2012-09-06 19:06:06 +0000169#endif
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000170
Chris Lattner8f440bb2010-07-17 17:40:51 +0000171 /// getSlot - Return the stack slot number a particular register number is
172 /// in.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000173 unsigned getSlot(unsigned RegNo) const {
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000174 assert(RegNo < NumFPRegs && "Regno out of range!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000175 return RegMap[RegNo];
176 }
177
Chris Lattner8f440bb2010-07-17 17:40:51 +0000178 /// isLive - Is RegNo currently live in the stack?
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000179 bool isLive(unsigned RegNo) const {
180 unsigned Slot = getSlot(RegNo);
181 return Slot < StackTop && Stack[Slot] == RegNo;
182 }
183
Chris Lattner8f440bb2010-07-17 17:40:51 +0000184 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000185 unsigned getStackEntry(unsigned STi) const {
Evan Chengd565b442010-10-12 23:19:28 +0000186 if (STi >= StackTop)
187 report_fatal_error("Access past stack top!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000188 return Stack[StackTop-1-STi];
189 }
190
Chris Lattner8f440bb2010-07-17 17:40:51 +0000191 /// getSTReg - Return the X86::ST(i) register which contains the specified
192 /// FP<RegNo> register.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000193 unsigned getSTReg(unsigned RegNo) const {
Craig Topperf6e7e122012-03-27 07:21:54 +0000194 return StackTop - 1 - getSlot(RegNo) + X86::ST0;
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000195 }
196
Chris Lattner1bd44362008-03-11 03:23:40 +0000197 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000198 void pushReg(unsigned Reg) {
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000199 assert(Reg < NumFPRegs && "Register number out of range!");
Evan Chengd565b442010-10-12 23:19:28 +0000200 if (StackTop >= 8)
201 report_fatal_error("Stack overflow!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000202 Stack[StackTop] = Reg;
203 RegMap[Reg] = StackTop++;
204 }
205
206 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner1bd44362008-03-11 03:23:40 +0000207 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000208 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattner1bd44362008-03-11 03:23:40 +0000209 if (isAtTop(RegNo)) return;
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000210
Chris Lattner1bd44362008-03-11 03:23:40 +0000211 unsigned STReg = getSTReg(RegNo);
212 unsigned RegOnTop = getStackEntry(0);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000213
Chris Lattner1bd44362008-03-11 03:23:40 +0000214 // Swap the slots the regs are in.
215 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000216
Chris Lattner1bd44362008-03-11 03:23:40 +0000217 // Swap stack slot contents.
Evan Chengd565b442010-10-12 23:19:28 +0000218 if (RegMap[RegOnTop] >= StackTop)
219 report_fatal_error("Access past stack top!");
Chris Lattner1bd44362008-03-11 03:23:40 +0000220 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000221
Chris Lattner1bd44362008-03-11 03:23:40 +0000222 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen9bba9022009-02-13 02:33:27 +0000223 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmand2d1ae12010-06-22 15:08:57 +0000224 ++NumFXCH;
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000225 }
226
Chris Lattnerbc7e35b2004-04-01 04:06:09 +0000227 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000228 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000229 unsigned STReg = getSTReg(RegNo);
230 pushReg(AsReg); // New register on top of stack
231
Dale Johannesen9bba9022009-02-13 02:33:27 +0000232 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000233 }
234
Chris Lattner8f440bb2010-07-17 17:40:51 +0000235 /// popStackAfter - Pop the current value off of the top of the FP stack
236 /// after the specified instruction.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000237 void popStackAfter(MachineBasicBlock::iterator &I);
238
Chris Lattner8f440bb2010-07-17 17:40:51 +0000239 /// freeStackSlotAfter - Free the specified register from the register
240 /// stack, so that it is no longer in a register. If the register is
241 /// currently at the top of the stack, we just pop the current instruction,
242 /// otherwise we store the current top-of-stack into the specified slot,
243 /// then pop the top of stack.
Chris Lattnerbc7e35b2004-04-01 04:06:09 +0000244 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
245
Chris Lattner8f440bb2010-07-17 17:40:51 +0000246 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
247 /// instruction.
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000248 MachineBasicBlock::iterator
249 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
250
Chris Lattner8f440bb2010-07-17 17:40:51 +0000251 /// Adjust the live registers to be the set in Mask.
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000252 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
253
Jakob Stoklund Olesenff653a22011-06-27 04:08:36 +0000254 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
Chris Lattner8f440bb2010-07-17 17:40:51 +0000255 /// st(0), FP reg FixStack[1] is st(1) etc.
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000256 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
257 MachineBasicBlock::iterator I);
258
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000259 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
260
Akira Hatanaka35166692014-08-01 22:19:41 +0000261 void handleCall(MachineBasicBlock::iterator &I);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000262 void handleZeroArgFP(MachineBasicBlock::iterator &I);
263 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner7af8ad62004-02-02 19:23:15 +0000264 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000265 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattner94ff2c32004-06-11 04:25:06 +0000266 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc07c9582004-03-31 22:02:36 +0000267 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000268 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen63a622b2010-07-08 19:46:30 +0000269
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000270 // Check if a COPY instruction is using FP registers.
Jakub Staszak6f58ce12012-11-21 00:50:57 +0000271 static bool isFPCopy(MachineInstr *MI) {
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000272 unsigned DstReg = MI->getOperand(0).getReg();
273 unsigned SrcReg = MI->getOperand(1).getReg();
274
275 return X86::RFP80RegClass.contains(DstReg) ||
276 X86::RFP80RegClass.contains(SrcReg);
277 }
Akira Hatanaka35166692014-08-01 22:19:41 +0000278
279 void setKillFlags(MachineBasicBlock &MBB) const;
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000280 };
Devang Patel8c78a0b2007-05-03 01:11:54 +0000281 char FPS::ID = 0;
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000282}
283
Chris Lattnerd46cd682003-12-20 09:58:55 +0000284FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000285
Chris Lattner3c43efc2008-01-14 06:41:29 +0000286/// getFPReg - Return the X86::FPx register number for the specified operand.
287/// For example, this returns 3 for X86::FP3.
288static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohman0d1e9a82008-10-03 15:45:36 +0000289 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3c43efc2008-01-14 06:41:29 +0000290 unsigned Reg = MO.getReg();
291 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
292 return Reg - X86::FP0;
293}
294
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000295/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
296/// register references into FP stack references.
297///
298bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattnerdebae1e2005-01-23 23:13:59 +0000299 // We only need to run this pass if there are any FP registers used in this
300 // function. If it is all integer, there is nothing for us to do!
Chris Lattnerdebae1e2005-01-23 23:13:59 +0000301 bool FPIsUsed = false;
302
303 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
304 for (unsigned i = 0; i <= 6; ++i)
Chris Lattnera10fff52007-12-31 04:13:23 +0000305 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattnerdebae1e2005-01-23 23:13:59 +0000306 FPIsUsed = true;
307 break;
308 }
309
310 // Early exit.
311 if (!FPIsUsed) return false;
312
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000313 Bundles = &getAnalysis<EdgeBundles>();
Eric Christopherfc6de422014-08-05 02:39:49 +0000314 TII = MF.getSubtarget().getInstrInfo();
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000315
316 // Prepare cross-MBB liveness.
317 bundleCFG(MF);
318
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000319 StackTop = 0;
320
Chris Lattner11290272004-01-30 22:25:18 +0000321 // Process the function in depth first order so that we process at least one
322 // of the predecessors for every reachable block in the function.
Owen Anderson1b351d42008-08-14 21:01:00 +0000323 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattneracbf0c82004-05-01 21:27:53 +0000324 MachineBasicBlock *Entry = MF.begin();
Chris Lattner11290272004-01-30 22:25:18 +0000325
326 bool Changed = false;
Owen Anderson1b351d42008-08-14 21:01:00 +0000327 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner11290272004-01-30 22:25:18 +0000328 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
329 I != E; ++I)
Chris Lattneracbf0c82004-05-01 21:27:53 +0000330 Changed |= processBasicBlock(MF, **I);
Chris Lattner11290272004-01-30 22:25:18 +0000331
Chris Lattnerb2fcd072009-09-08 04:55:44 +0000332 // Process any unreachable blocks in arbitrary order now.
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000333 if (MF.size() != Processed.size())
334 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
335 if (Processed.insert(BB))
336 Changed |= processBasicBlock(MF, *BB);
Chris Lattnerb2fcd072009-09-08 04:55:44 +0000337
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000338 LiveBundles.clear();
339
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000340 return Changed;
341}
342
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000343/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
344/// live-out sets for the FP registers. Consistent means that the set of
345/// registers live-out from a block is identical to the live-in set of all
346/// successors. This is not enforced by the normal live-in lists since
347/// registers may be implicitly defined, or not used by all successors.
348void FPS::bundleCFG(MachineFunction &MF) {
349 assert(LiveBundles.empty() && "Stale data in LiveBundles");
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000350 LiveBundles.resize(Bundles->getNumBundles());
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000351
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000352 // Gather the actual live-in masks for all MBBs.
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000353 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
354 MachineBasicBlock *MBB = I;
355 const unsigned Mask = calcLiveInMask(MBB);
356 if (!Mask)
357 continue;
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000358 // Update MBB ingoing bundle mask.
359 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000360 }
361}
362
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000363/// processBasicBlock - Loop over all of the instructions in the basic block,
364/// transforming FP instructions into their stack form.
365///
366bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000367 bool Changed = false;
368 MBB = &BB;
Misha Brukmanc88330a2005-04-21 23:38:14 +0000369
Akira Hatanaka35166692014-08-01 22:19:41 +0000370 setKillFlags(BB);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000371 setupBlockStack();
372
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000373 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenos80da8652004-02-12 02:27:10 +0000374 MachineInstr *MI = I;
Bruno Cardoso Lopesc2f87b72010-06-08 22:51:23 +0000375 uint64_t Flags = MI->getDesc().TSFlags;
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000376
Chris Lattner8abed802008-03-11 19:50:13 +0000377 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattnerb06015a2010-02-09 19:54:29 +0000378 if (MI->isInlineAsm())
Chris Lattner8abed802008-03-11 19:50:13 +0000379 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen63a622b2010-07-08 19:46:30 +0000380
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000381 if (MI->isCopy() && isFPCopy(MI))
Jakob Stoklund Olesen63a622b2010-07-08 19:46:30 +0000382 FPInstClass = X86II::SpecialFP;
383
Jakob Stoklund Olesenda618422011-08-03 16:33:19 +0000384 if (MI->isImplicitDef() &&
385 X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
386 FPInstClass = X86II::SpecialFP;
387
Akira Hatanaka35166692014-08-01 22:19:41 +0000388 if (MI->isCall())
389 FPInstClass = X86II::SpecialFP;
390
Chris Lattner8abed802008-03-11 19:50:13 +0000391 if (FPInstClass == X86II::NotFP)
Chris Lattner11290272004-01-30 22:25:18 +0000392 continue; // Efficiently ignore non-fp insts!
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000393
Craig Topper062a2ba2014-04-25 05:30:21 +0000394 MachineInstr *PrevMI = nullptr;
Alkis Evlogimenos5a922402004-02-14 01:18:34 +0000395 if (I != BB.begin())
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000396 PrevMI = std::prev(I);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000397
398 ++NumFP; // Keep track of # of pseudo instrs
David Greened85fd002010-01-05 01:29:34 +0000399 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000400
401 // Get dead variables list now because the MI pointer may be deleted as part
402 // of processing!
Evan Chengbbbcac32006-11-15 20:56:39 +0000403 SmallVector<unsigned, 8> DeadRegs;
404 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
405 const MachineOperand &MO = MI->getOperand(i);
Dan Gohman0d1e9a82008-10-03 15:45:36 +0000406 if (MO.isReg() && MO.isDead())
Evan Chengbbbcac32006-11-15 20:56:39 +0000407 DeadRegs.push_back(MO.getReg());
408 }
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000409
Chris Lattner8abed802008-03-11 19:50:13 +0000410 switch (FPInstClass) {
Chris Lattner7af8ad62004-02-02 19:23:15 +0000411 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc07c9582004-03-31 22:02:36 +0000412 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner7af8ad62004-02-02 19:23:15 +0000413 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Chengdb04c952006-11-11 10:21:44 +0000414 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattner0876edf2004-06-11 04:41:24 +0000415 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc07c9582004-03-31 22:02:36 +0000416 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner7af8ad62004-02-02 19:23:15 +0000417 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinfbcc6632009-07-14 16:55:14 +0000418 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000419 }
420
421 // Check to see if any of the values defined by this instruction are dead
422 // after definition. If so, pop them.
Evan Chengbbbcac32006-11-15 20:56:39 +0000423 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
424 unsigned Reg = DeadRegs[i];
Akira Hatanaka35166692014-08-01 22:19:41 +0000425 // Check if Reg is live on the stack. An inline-asm register operand that
426 // is in the clobber list and marked dead might not be live on the stack.
427 if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
David Greened85fd002010-01-05 01:29:34 +0000428 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattner94ff2c32004-06-11 04:25:06 +0000429 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000430 }
431 }
Misha Brukmanc88330a2005-04-21 23:38:14 +0000432
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000433 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenos636e19d2004-02-15 00:46:41 +0000434 DEBUG(
435 MachineBasicBlock::iterator PrevI(PrevMI);
436 if (I == PrevI) {
David Greened85fd002010-01-05 01:29:34 +0000437 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenos636e19d2004-02-15 00:46:41 +0000438 } else {
439 MachineBasicBlock::iterator Start = I;
440 // Rewind to first instruction newly inserted.
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000441 while (Start != BB.begin() && std::prev(Start) != PrevI) --Start;
David Greened85fd002010-01-05 01:29:34 +0000442 dbgs() << "Inserted instructions:\n\t";
443 Start->print(dbgs(), &MF.getTarget());
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000444 while (++Start != std::next(I)) {}
Alkis Evlogimenos636e19d2004-02-15 00:46:41 +0000445 }
446 dumpStack();
447 );
Duncan Sandsa41634e2011-08-12 14:54:45 +0000448 (void)PrevMI;
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000449
450 Changed = true;
451 }
452
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000453 finishBlockStack();
454
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000455 return Changed;
456}
457
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000458/// setupBlockStack - Use the live bundles to set up our model of the stack
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000459/// to match predecessors' live out stack.
460void FPS::setupBlockStack() {
461 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
462 << " derived from " << MBB->getName() << ".\n");
463 StackTop = 0;
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000464 // Get the live-in bundle for MBB.
465 const LiveBundle &Bundle =
466 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000467
468 if (!Bundle.Mask) {
469 DEBUG(dbgs() << "Block has no FP live-ins.\n");
470 return;
471 }
472
473 // Depth-first iteration should ensure that we always have an assigned stack.
474 assert(Bundle.isFixed() && "Reached block before any predecessors");
475
476 // Push the fixed live-in registers.
477 for (unsigned i = Bundle.FixCount; i > 0; --i) {
478 MBB->addLiveIn(X86::ST0+i-1);
479 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
480 << unsigned(Bundle.FixStack[i-1]) << '\n');
481 pushReg(Bundle.FixStack[i-1]);
482 }
483
484 // Kill off unwanted live-ins. This can happen with a critical edge.
485 // FIXME: We could keep these live registers around as zombies. They may need
486 // to be revived at the end of a short block. It might save a few instrs.
487 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
488 DEBUG(MBB->dump());
489}
490
491/// finishBlockStack - Revive live-outs that are implicitly defined out of
492/// MBB. Shuffle live registers to match the expected fixed stack of any
493/// predecessors, and ensure that all predecessors are expecting the same
494/// stack.
495void FPS::finishBlockStack() {
496 // The RET handling below takes care of return blocks for us.
497 if (MBB->succ_empty())
498 return;
499
500 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
501 << " derived from " << MBB->getName() << ".\n");
502
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000503 // Get MBB's live-out bundle.
504 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000505 LiveBundle &Bundle = LiveBundles[BundleIdx];
506
507 // We may need to kill and define some registers to match successors.
508 // FIXME: This can probably be combined with the shuffle below.
509 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
510 adjustLiveRegs(Bundle.Mask, Term);
511
512 if (!Bundle.Mask) {
513 DEBUG(dbgs() << "No live-outs.\n");
514 return;
515 }
516
517 // Has the stack order been fixed yet?
518 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
519 if (Bundle.isFixed()) {
520 DEBUG(dbgs() << "Shuffling stack to match.\n");
521 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
522 } else {
523 // Not fixed yet, we get to choose.
524 DEBUG(dbgs() << "Fixing stack order now.\n");
525 Bundle.FixCount = StackTop;
526 for (unsigned i = 0; i < StackTop; ++i)
527 Bundle.FixStack[i] = getStackEntry(i);
528 }
529}
530
531
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000532//===----------------------------------------------------------------------===//
533// Efficient Lookup Table Support
534//===----------------------------------------------------------------------===//
535
Chris Lattnerd46cd682003-12-20 09:58:55 +0000536namespace {
537 struct TableEntry {
Craig Topper2dac9622012-03-09 07:45:21 +0000538 uint16_t from;
539 uint16_t to;
Chris Lattnerd46cd682003-12-20 09:58:55 +0000540 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen15a8c152006-01-26 20:41:32 +0000541 friend bool operator<(const TableEntry &TE, unsigned V) {
542 return TE.from < V;
543 }
Benjamin Kramer0d874f72012-09-17 16:46:22 +0000544 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
545 const TableEntry &TE) {
Jakob Stoklund Olesen2cd00732010-08-16 18:24:54 +0000546 return V < TE.from;
547 }
Chris Lattnerd46cd682003-12-20 09:58:55 +0000548 };
549}
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000550
Evan Chengfa374ca2008-07-21 20:02:45 +0000551#ifndef NDEBUG
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000552static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
553 for (unsigned i = 0; i != NumEntries-1; ++i)
554 if (!(Table[i] < Table[i+1])) return false;
555 return true;
556}
Evan Chengfa374ca2008-07-21 20:02:45 +0000557#endif
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000558
559static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
560 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
561 if (I != Table+N && I->from == Opcode)
562 return I->to;
563 return -1;
564}
565
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000566#ifdef NDEBUG
567#define ASSERT_SORTED(TABLE)
568#else
569#define ASSERT_SORTED(TABLE) \
570 { static bool TABLE##Checked = false; \
Jim Laskey181fb1c2006-07-19 19:33:08 +0000571 if (!TABLE##Checked) { \
Owen Andersone2f23a32007-09-07 04:06:50 +0000572 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000573 "All lookup tables must be sorted for efficient access!"); \
Jim Laskey181fb1c2006-07-19 19:33:08 +0000574 TABLE##Checked = true; \
575 } \
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000576 }
577#endif
578
Chris Lattnerf431ad42005-12-21 07:47:04 +0000579//===----------------------------------------------------------------------===//
580// Register File -> Register Stack Mapping Methods
581//===----------------------------------------------------------------------===//
582
583// OpcodeTable - Sorted map of register instructions to their stack version.
584// The first element is an register file pseudo instruction, the second is the
585// concrete X86 instruction which uses the register stack.
586//
587static const TableEntry OpcodeTable[] = {
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000588 { X86::ABS_Fp32 , X86::ABS_F },
589 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000590 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesen68471d22007-07-10 21:53:30 +0000591 { X86::ADD_Fp32m , X86::ADD_F32m },
592 { X86::ADD_Fp64m , X86::ADD_F64m },
593 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000594 { X86::ADD_Fp80m32 , X86::ADD_F32m },
595 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000596 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
597 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000598 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000599 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
600 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000601 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000602 { X86::CHS_Fp32 , X86::CHS_F },
603 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000604 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000605 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
606 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000607 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000608 { X86::CMOVB_Fp32 , X86::CMOVB_F },
609 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000610 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000611 { X86::CMOVE_Fp32 , X86::CMOVE_F },
612 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000613 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000614 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
615 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000616 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000617 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
618 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000619 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000620 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
621 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000622 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000623 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
624 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000625 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000626 { X86::CMOVP_Fp32 , X86::CMOVP_F },
627 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000628 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000629 { X86::COS_Fp32 , X86::COS_F },
630 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000631 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000632 { X86::DIVR_Fp32m , X86::DIVR_F32m },
633 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesen68471d22007-07-10 21:53:30 +0000634 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000635 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
636 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000637 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
638 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesenb1888e72007-08-05 18:49:15 +0000639 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000640 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
641 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesenb1888e72007-08-05 18:49:15 +0000642 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000643 { X86::DIV_Fp32m , X86::DIV_F32m },
644 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesen68471d22007-07-10 21:53:30 +0000645 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000646 { X86::DIV_Fp80m32 , X86::DIV_F32m },
647 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000648 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
649 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000650 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000651 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
652 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000653 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000654 { X86::ILD_Fp16m32 , X86::ILD_F16m },
655 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000656 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000657 { X86::ILD_Fp32m32 , X86::ILD_F32m },
658 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000659 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000660 { X86::ILD_Fp64m32 , X86::ILD_F64m },
661 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000662 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000663 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
664 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesen57c6ac5f2007-08-07 01:17:37 +0000665 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000666 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
667 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesen57c6ac5f2007-08-07 01:17:37 +0000668 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000669 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
670 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesen57c6ac5f2007-08-07 01:17:37 +0000671 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000672 { X86::IST_Fp16m32 , X86::IST_F16m },
673 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000674 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000675 { X86::IST_Fp32m32 , X86::IST_F32m },
676 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000677 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000678 { X86::IST_Fp64m32 , X86::IST_FP64m },
679 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000680 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000681 { X86::LD_Fp032 , X86::LD_F0 },
682 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000683 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000684 { X86::LD_Fp132 , X86::LD_F1 },
685 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000686 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000687 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesena47f7d72007-08-07 20:29:26 +0000688 { X86::LD_Fp32m64 , X86::LD_F32m },
689 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000690 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesena47f7d72007-08-07 20:29:26 +0000691 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000692 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000693 { X86::MUL_Fp32m , X86::MUL_F32m },
694 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesen68471d22007-07-10 21:53:30 +0000695 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000696 { X86::MUL_Fp80m32 , X86::MUL_F32m },
697 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000698 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
699 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000700 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000701 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
702 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000703 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000704 { X86::SIN_Fp32 , X86::SIN_F },
705 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000706 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000707 { X86::SQRT_Fp32 , X86::SQRT_F },
708 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000709 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000710 { X86::ST_Fp32m , X86::ST_F32m },
711 { X86::ST_Fp64m , X86::ST_F64m },
712 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000713 { X86::ST_Fp80m32 , X86::ST_F32m },
714 { X86::ST_Fp80m64 , X86::ST_F64m },
715 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000716 { X86::SUBR_Fp32m , X86::SUBR_F32m },
717 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesen68471d22007-07-10 21:53:30 +0000718 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000719 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
720 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000721 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
722 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesenb1888e72007-08-05 18:49:15 +0000723 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000724 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
725 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesenb1888e72007-08-05 18:49:15 +0000726 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000727 { X86::SUB_Fp32m , X86::SUB_F32m },
728 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesen68471d22007-07-10 21:53:30 +0000729 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000730 { X86::SUB_Fp80m32 , X86::SUB_F32m },
731 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000732 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
733 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000734 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000735 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
736 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000737 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000738 { X86::TST_Fp32 , X86::TST_F },
739 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000740 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000741 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
742 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000743 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000744 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
745 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000746 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattnerf431ad42005-12-21 07:47:04 +0000747};
748
749static unsigned getConcreteOpcode(unsigned Opcode) {
750 ASSERT_SORTED(OpcodeTable);
Owen Andersone2f23a32007-09-07 04:06:50 +0000751 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattnerf431ad42005-12-21 07:47:04 +0000752 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
753 return Opc;
754}
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000755
756//===----------------------------------------------------------------------===//
757// Helper Methods
758//===----------------------------------------------------------------------===//
759
760// PopTable - Sorted map of instructions to their popping version. The first
761// element is an instruction, the second is the version which pops.
762//
763static const TableEntry PopTable[] = {
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000764 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner637eebb2003-08-03 21:56:36 +0000765
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000766 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
767 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner637eebb2003-08-03 21:56:36 +0000768
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000769 { X86::IST_F16m , X86::IST_FP16m },
770 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000771
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000772 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000773
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000774 { X86::ST_F32m , X86::ST_FP32m },
775 { X86::ST_F64m , X86::ST_FP64m },
776 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner637eebb2003-08-03 21:56:36 +0000777
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000778 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
779 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner637eebb2003-08-03 21:56:36 +0000780
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000781 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerd1c75452004-04-12 01:39:15 +0000782
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000783 { X86::UCOM_FPr , X86::UCOM_FPPr },
784 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000785};
786
787/// popStackAfter - Pop the current value off of the top of the FP stack after
788/// the specified instruction. This attempts to be sneaky and combine the pop
789/// into the instruction itself if possible. The iterator is left pointing to
790/// the last instruction, be it a new pop instruction inserted, or the old
791/// instruction if it was modified in place.
792///
793void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen9bba9022009-02-13 02:33:27 +0000794 MachineInstr* MI = I;
795 DebugLoc dl = MI->getDebugLoc();
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000796 ASSERT_SORTED(PopTable);
Evan Chengd565b442010-10-12 23:19:28 +0000797 if (StackTop == 0)
798 report_fatal_error("Cannot pop empty stack!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000799 RegMap[Stack[--StackTop]] = ~0; // Update state
800
801 // Check to see if there is a popping version of this instruction...
Owen Andersone2f23a32007-09-07 04:06:50 +0000802 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000803 if (Opcode != -1) {
Chris Lattner59687512008-01-11 18:10:50 +0000804 I->setDesc(TII->get(Opcode));
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000805 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenos80da8652004-02-12 02:27:10 +0000806 I->RemoveOperand(0);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000807 } else { // Insert an explicit pop
Dale Johannesen9bba9022009-02-13 02:33:27 +0000808 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000809 }
810}
811
Chris Lattnerbc7e35b2004-04-01 04:06:09 +0000812/// freeStackSlotAfter - Free the specified register from the register stack, so
813/// that it is no longer in a register. If the register is currently at the top
814/// of the stack, we just pop the current instruction, otherwise we store the
815/// current top-of-stack into the specified slot, then pop the top of stack.
816void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
817 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
818 popStackAfter(I);
819 return;
820 }
821
822 // Otherwise, store the top of stack into the dead slot, killing the operand
823 // without having to add in an explicit xchg then pop.
824 //
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000825 I = freeStackSlotBefore(++I, FPRegNo);
826}
827
828/// freeStackSlotBefore - Free the specified register without trying any
829/// folding.
830MachineBasicBlock::iterator
831FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
Chris Lattnerbc7e35b2004-04-01 04:06:09 +0000832 unsigned STReg = getSTReg(FPRegNo);
833 unsigned OldSlot = getSlot(FPRegNo);
834 unsigned TopReg = Stack[StackTop-1];
835 Stack[OldSlot] = TopReg;
836 RegMap[TopReg] = OldSlot;
837 RegMap[FPRegNo] = ~0;
838 Stack[--StackTop] = ~0;
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000839 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
840}
841
842/// adjustLiveRegs - Kill and revive registers such that exactly the FP
843/// registers with a bit in Mask are live.
844void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
845 unsigned Defs = Mask;
846 unsigned Kills = 0;
847 for (unsigned i = 0; i < StackTop; ++i) {
848 unsigned RegNo = Stack[i];
849 if (!(Defs & (1 << RegNo)))
850 // This register is live, but we don't want it.
851 Kills |= (1 << RegNo);
852 else
853 // We don't need to imp-def this live register.
854 Defs &= ~(1 << RegNo);
855 }
856 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
857
858 // Produce implicit-defs for free by using killed registers.
859 while (Kills && Defs) {
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000860 unsigned KReg = countTrailingZeros(Kills);
861 unsigned DReg = countTrailingZeros(Defs);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000862 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
863 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
864 std::swap(RegMap[KReg], RegMap[DReg]);
865 Kills &= ~(1 << KReg);
866 Defs &= ~(1 << DReg);
867 }
868
869 // Kill registers by popping.
870 if (Kills && I != MBB->begin()) {
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000871 MachineBasicBlock::iterator I2 = std::prev(I);
Jakob Stoklund Olesen25a404e2011-07-02 03:53:34 +0000872 while (StackTop) {
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000873 unsigned KReg = getStackEntry(0);
874 if (!(Kills & (1 << KReg)))
875 break;
876 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
877 popStackAfter(I2);
878 Kills &= ~(1 << KReg);
879 }
880 }
881
882 // Manually kill the rest.
883 while (Kills) {
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000884 unsigned KReg = countTrailingZeros(Kills);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000885 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
886 freeStackSlotBefore(I, KReg);
887 Kills &= ~(1 << KReg);
888 }
889
890 // Load zeros for all the imp-defs.
891 while(Defs) {
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000892 unsigned DReg = countTrailingZeros(Defs);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000893 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
894 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
895 pushReg(DReg);
896 Defs &= ~(1 << DReg);
897 }
898
899 // Now we should have the correct registers live.
900 DEBUG(dumpStack());
901 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
902}
903
904/// shuffleStackTop - emit fxch instructions before I to shuffle the top
905/// FixCount entries into the order given by FixStack.
906/// FIXME: Is there a better algorithm than insertion sort?
907void FPS::shuffleStackTop(const unsigned char *FixStack,
908 unsigned FixCount,
909 MachineBasicBlock::iterator I) {
910 // Move items into place, starting from the desired stack bottom.
911 while (FixCount--) {
912 // Old register at position FixCount.
913 unsigned OldReg = getStackEntry(FixCount);
914 // Desired register at position FixCount.
915 unsigned Reg = FixStack[FixCount];
916 if (Reg == OldReg)
917 continue;
918 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
919 moveToTop(Reg, I);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000920 if (FixCount > 0)
921 moveToTop(OldReg, I);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000922 }
923 DEBUG(dumpStack());
Chris Lattnerbc7e35b2004-04-01 04:06:09 +0000924}
925
926
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000927//===----------------------------------------------------------------------===//
928// Instruction transformation implementation
929//===----------------------------------------------------------------------===//
930
Akira Hatanaka35166692014-08-01 22:19:41 +0000931void FPS::handleCall(MachineBasicBlock::iterator &I) {
932 unsigned STReturns = 0;
933
934 for (const auto &MO : I->operands()) {
935 if (!MO.isReg())
936 continue;
937
938 unsigned R = MO.getReg() - X86::FP0;
939
940 if (R < 8) {
941 assert(MO.isDef() && MO.isImplicit());
942 STReturns |= 1 << R;
943 }
944 }
945
946 unsigned N = CountTrailingOnes_32(STReturns);
947
948 // FP registers used for function return must be consecutive starting at
949 // FP0.
Akira Hatanakae457f3e2014-08-04 17:23:38 +0000950 assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
Akira Hatanaka35166692014-08-01 22:19:41 +0000951
952 for (unsigned I = 0; I < N; ++I)
953 pushReg(N - I - 1);
954}
955
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000956/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner7af8ad62004-02-02 19:23:15 +0000957///
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000958void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenos80da8652004-02-12 02:27:10 +0000959 MachineInstr *MI = I;
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000960 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000961
Chris Lattnerf431ad42005-12-21 07:47:04 +0000962 // Change from the pseudo instruction to the concrete instruction.
963 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner59687512008-01-11 18:10:50 +0000964 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chad Rosier24c19d22012-08-01 18:39:17 +0000965
Chris Lattnerf431ad42005-12-21 07:47:04 +0000966 // Result gets pushed on the stack.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000967 pushReg(DestReg);
968}
969
Chris Lattner7af8ad62004-02-02 19:23:15 +0000970/// handleOneArgFP - fst <mem>, ST(0)
971///
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000972void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenos80da8652004-02-12 02:27:10 +0000973 MachineInstr *MI = I;
Chris Lattner03ad8852008-01-07 07:27:27 +0000974 unsigned NumOps = MI->getDesc().getNumOperands();
Chris Lattnerec536272010-07-08 22:41:28 +0000975 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattner81613062004-02-03 07:27:34 +0000976 "Can only handle fst* & ftst instructions!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000977
Chris Lattner7af8ad62004-02-02 19:23:15 +0000978 // Is this the last use of the source register?
Evan Cheng14140052006-11-10 01:28:43 +0000979 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng63254462008-03-05 00:59:57 +0000980 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000981
Evan Cheng70af6202006-02-18 02:36:28 +0000982 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000983 // If we have one _and_ we don't want to pop the operand, duplicate the value
984 // on the stack instead of moving it. This ensure that popping the value is
985 // always ok.
Dale Johannesenff7e4432007-09-17 20:15:38 +0000986 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000987 //
Evan Cheng70af6202006-02-18 02:36:28 +0000988 if (!KillsSrc &&
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000989 (MI->getOpcode() == X86::IST_Fp64m32 ||
990 MI->getOpcode() == X86::ISTT_Fp16m32 ||
991 MI->getOpcode() == X86::ISTT_Fp32m32 ||
992 MI->getOpcode() == X86::ISTT_Fp64m32 ||
993 MI->getOpcode() == X86::IST_Fp64m64 ||
994 MI->getOpcode() == X86::ISTT_Fp16m64 ||
995 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesenb1888e72007-08-05 18:49:15 +0000996 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen95be0372007-09-20 01:27:54 +0000997 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesen57c6ac5f2007-08-07 01:17:37 +0000998 MI->getOpcode() == X86::ISTT_Fp16m80 ||
999 MI->getOpcode() == X86::ISTT_Fp32m80 ||
1000 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesenb1888e72007-08-05 18:49:15 +00001001 MI->getOpcode() == X86::ST_FpP80m)) {
Akira Hatanaka35166692014-08-01 22:19:41 +00001002 duplicateToTop(Reg, ScratchFPReg, I);
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001003 } else {
1004 moveToTop(Reg, I); // Move to the top of the stack...
1005 }
Chad Rosier24c19d22012-08-01 18:39:17 +00001006
Chris Lattnerf431ad42005-12-21 07:47:04 +00001007 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng14140052006-11-10 01:28:43 +00001008 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner59687512008-01-11 18:10:50 +00001009 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukmanc88330a2005-04-21 23:38:14 +00001010
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001011 if (MI->getOpcode() == X86::IST_FP64m ||
1012 MI->getOpcode() == X86::ISTT_FP16m ||
1013 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesene279fd62007-08-06 19:50:32 +00001014 MI->getOpcode() == X86::ISTT_FP64m ||
1015 MI->getOpcode() == X86::ST_FP80m) {
Evan Chengd565b442010-10-12 23:19:28 +00001016 if (StackTop == 0)
1017 report_fatal_error("Stack empty??");
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001018 --StackTop;
1019 } else if (KillsSrc) { // Last use of operand?
1020 popStackAfter(I);
1021 }
1022}
1023
Chris Lattner7af8ad62004-02-02 19:23:15 +00001024
Chris Lattner5b444722004-04-11 20:21:06 +00001025/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1026/// replace the value with a newly computed value. These instructions may have
1027/// non-fp operands after their FP operands.
1028///
1029/// Examples:
1030/// R1 = fchs R2
1031/// R1 = fadd R2, [mem]
Chris Lattner7af8ad62004-02-02 19:23:15 +00001032///
1033void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenos80da8652004-02-12 02:27:10 +00001034 MachineInstr *MI = I;
Evan Chengfa374ca2008-07-21 20:02:45 +00001035#ifndef NDEBUG
Chris Lattner03ad8852008-01-07 07:27:27 +00001036 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng14140052006-11-10 01:28:43 +00001037 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chengfa374ca2008-07-21 20:02:45 +00001038#endif
Chris Lattner7af8ad62004-02-02 19:23:15 +00001039
1040 // Is this the last use of the source register?
1041 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng63254462008-03-05 00:59:57 +00001042 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner7af8ad62004-02-02 19:23:15 +00001043
1044 if (KillsSrc) {
1045 // If this is the last use of the source register, just make sure it's on
1046 // the top of the stack.
1047 moveToTop(Reg, I);
Evan Chengd565b442010-10-12 23:19:28 +00001048 if (StackTop == 0)
1049 report_fatal_error("Stack cannot be empty!");
Chris Lattner7af8ad62004-02-02 19:23:15 +00001050 --StackTop;
1051 pushReg(getFPReg(MI->getOperand(0)));
1052 } else {
1053 // If this is not the last use of the source register, _copy_ it to the top
1054 // of the stack.
1055 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1056 }
1057
Chris Lattnerf431ad42005-12-21 07:47:04 +00001058 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner7af8ad62004-02-02 19:23:15 +00001059 MI->RemoveOperand(1); // Drop the source operand.
1060 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner59687512008-01-11 18:10:50 +00001061 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner7af8ad62004-02-02 19:23:15 +00001062}
1063
1064
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001065//===----------------------------------------------------------------------===//
1066// Define tables of various ways to map pseudo instructions
1067//
1068
1069// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1070static const TableEntry ForwardST0Table[] = {
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001071 { X86::ADD_Fp32 , X86::ADD_FST0r },
1072 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen75169a82007-08-06 21:31:06 +00001073 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001074 { X86::DIV_Fp32 , X86::DIV_FST0r },
1075 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen75169a82007-08-06 21:31:06 +00001076 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001077 { X86::MUL_Fp32 , X86::MUL_FST0r },
1078 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen75169a82007-08-06 21:31:06 +00001079 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001080 { X86::SUB_Fp32 , X86::SUB_FST0r },
1081 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen75169a82007-08-06 21:31:06 +00001082 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001083};
1084
1085// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1086static const TableEntry ReverseST0Table[] = {
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001087 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1088 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen75169a82007-08-06 21:31:06 +00001089 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001090 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1091 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen75169a82007-08-06 21:31:06 +00001092 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001093 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1094 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen75169a82007-08-06 21:31:06 +00001095 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001096 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1097 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen75169a82007-08-06 21:31:06 +00001098 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001099};
1100
1101// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1102static const TableEntry ForwardSTiTable[] = {
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001103 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1104 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen75169a82007-08-06 21:31:06 +00001105 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001106 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1107 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen75169a82007-08-06 21:31:06 +00001108 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001109 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1110 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen75169a82007-08-06 21:31:06 +00001111 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001112 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1113 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen75169a82007-08-06 21:31:06 +00001114 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001115};
1116
1117// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1118static const TableEntry ReverseSTiTable[] = {
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001119 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1120 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen75169a82007-08-06 21:31:06 +00001121 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001122 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1123 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen75169a82007-08-06 21:31:06 +00001124 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001125 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1126 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen75169a82007-08-06 21:31:06 +00001127 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001128 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1129 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen75169a82007-08-06 21:31:06 +00001130 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001131};
1132
1133
1134/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1135/// instructions which need to be simplified and possibly transformed.
1136///
1137/// Result: ST(0) = fsub ST(0), ST(i)
1138/// ST(i) = fsub ST(0), ST(i)
1139/// ST(0) = fsubr ST(0), ST(i)
1140/// ST(i) = fsubr ST(0), ST(i)
Misha Brukmanc88330a2005-04-21 23:38:14 +00001141///
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001142void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1143 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1144 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenos80da8652004-02-12 02:27:10 +00001145 MachineInstr *MI = I;
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001146
Chris Lattner03ad8852008-01-07 07:27:27 +00001147 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner94ff2c32004-06-11 04:25:06 +00001148 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001149 unsigned Dest = getFPReg(MI->getOperand(0));
1150 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1151 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng63254462008-03-05 00:59:57 +00001152 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1153 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen9bba9022009-02-13 02:33:27 +00001154 DebugLoc dl = MI->getDebugLoc();
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001155
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001156 unsigned TOS = getStackEntry(0);
1157
1158 // One of our operands must be on the top of the stack. If neither is yet, we
1159 // need to move one.
1160 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1161 // We can choose to move either operand to the top of the stack. If one of
1162 // the operands is killed by this instruction, we want that one so that we
1163 // can update right on top of the old version.
1164 if (KillsOp0) {
1165 moveToTop(Op0, I); // Move dead operand to TOS.
1166 TOS = Op0;
1167 } else if (KillsOp1) {
1168 moveToTop(Op1, I);
1169 TOS = Op1;
1170 } else {
1171 // All of the operands are live after this instruction executes, so we
1172 // cannot update on top of any operand. Because of this, we must
1173 // duplicate one of the stack elements to the top. It doesn't matter
1174 // which one we pick.
1175 //
1176 duplicateToTop(Op0, Dest, I);
1177 Op0 = TOS = Dest;
1178 KillsOp0 = true;
1179 }
Chris Lattner94ff2c32004-06-11 04:25:06 +00001180 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001181 // If we DO have one of our operands at the top of the stack, but we don't
1182 // have a dead operand, we must duplicate one of the operands to a new slot
1183 // on the stack.
1184 duplicateToTop(Op0, Dest, I);
1185 Op0 = TOS = Dest;
1186 KillsOp0 = true;
1187 }
1188
1189 // Now we know that one of our operands is on the top of the stack, and at
1190 // least one of our operands is killed by this instruction.
Misha Brukmanc88330a2005-04-21 23:38:14 +00001191 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1192 "Stack conditions not set up right!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001193
1194 // We decide which form to use based on what is on the top of the stack, and
1195 // which operand is killed by this instruction.
1196 const TableEntry *InstTable;
1197 bool isForward = TOS == Op0;
1198 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1199 if (updateST0) {
1200 if (isForward)
1201 InstTable = ForwardST0Table;
1202 else
1203 InstTable = ReverseST0Table;
1204 } else {
1205 if (isForward)
1206 InstTable = ForwardSTiTable;
1207 else
1208 InstTable = ReverseSTiTable;
1209 }
Misha Brukmanc88330a2005-04-21 23:38:14 +00001210
Owen Andersone2f23a32007-09-07 04:06:50 +00001211 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1212 MI->getOpcode());
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001213 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1214
1215 // NotTOS - The register which is not on the top of stack...
1216 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1217
1218 // Replace the old instruction with a new instruction
Chris Lattnerc07c9582004-03-31 22:02:36 +00001219 MBB->remove(I++);
Dale Johannesen9bba9022009-02-13 02:33:27 +00001220 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001221
1222 // If both operands are killed, pop one off of the stack in addition to
1223 // overwriting the other one.
1224 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1225 assert(!updateST0 && "Should have updated other operand!");
1226 popStackAfter(I); // Pop the top of stack
1227 }
1228
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001229 // Update stack information so that we know the destination register is now on
1230 // the stack.
Chris Lattner94ff2c32004-06-11 04:25:06 +00001231 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1232 assert(UpdatedSlot < StackTop && Dest < 7);
1233 Stack[UpdatedSlot] = Dest;
1234 RegMap[Dest] = UpdatedSlot;
Dan Gohman3b460302008-07-07 23:14:23 +00001235 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattner94ff2c32004-06-11 04:25:06 +00001236}
1237
Chris Lattnerb35f4762004-06-11 04:49:02 +00001238/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattner94ff2c32004-06-11 04:25:06 +00001239/// register arguments and no explicit destinations.
Misha Brukmanc88330a2005-04-21 23:38:14 +00001240///
Chris Lattner94ff2c32004-06-11 04:25:06 +00001241void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1242 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1243 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1244 MachineInstr *MI = I;
1245
Chris Lattner03ad8852008-01-07 07:27:27 +00001246 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerb35f4762004-06-11 04:49:02 +00001247 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattner94ff2c32004-06-11 04:25:06 +00001248 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1249 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng63254462008-03-05 00:59:57 +00001250 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1251 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattner94ff2c32004-06-11 04:25:06 +00001252
1253 // Make sure the first operand is on the top of stack, the other one can be
1254 // anywhere.
1255 moveToTop(Op0, I);
1256
Chris Lattnerf431ad42005-12-21 07:47:04 +00001257 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner71186e22004-06-11 05:22:44 +00001258 MI->getOperand(0).setReg(getSTReg(Op1));
1259 MI->RemoveOperand(1);
Chris Lattner59687512008-01-11 18:10:50 +00001260 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner71186e22004-06-11 05:22:44 +00001261
Chris Lattner94ff2c32004-06-11 04:25:06 +00001262 // If any of the operands are killed by this instruction, free them.
1263 if (KillsOp0) freeStackSlotAfter(I, Op0);
1264 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001265}
1266
Chris Lattnerc07c9582004-03-31 22:02:36 +00001267/// handleCondMovFP - Handle two address conditional move instructions. These
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001268/// instructions move a st(i) register to st(0) iff a condition is true. These
Chris Lattnerc07c9582004-03-31 22:02:36 +00001269/// instructions require that the first operand is at the top of the stack, but
1270/// otherwise don't modify the stack at all.
1271void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1272 MachineInstr *MI = I;
1273
1274 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner26569322006-09-05 20:27:32 +00001275 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng63254462008-03-05 00:59:57 +00001276 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc07c9582004-03-31 22:02:36 +00001277
1278 // The first operand *must* be on the top of the stack.
1279 moveToTop(Op0, I);
1280
1281 // Change the second operand to the stack register that the operand is in.
Chris Lattnerf431ad42005-12-21 07:47:04 +00001282 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc07c9582004-03-31 22:02:36 +00001283 MI->RemoveOperand(0);
Chris Lattner26569322006-09-05 20:27:32 +00001284 MI->RemoveOperand(1);
Chris Lattnerc07c9582004-03-31 22:02:36 +00001285 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner59687512008-01-11 18:10:50 +00001286 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chad Rosier24c19d22012-08-01 18:39:17 +00001287
Chris Lattnerc07c9582004-03-31 22:02:36 +00001288 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengbbbcac32006-11-15 20:56:39 +00001289 if (Op0 != Op1 && KillsOp1) {
Chris Lattner7c1c6e02005-08-23 22:49:55 +00001290 // Get this value off of the register stack.
1291 freeStackSlotAfter(I, Op1);
1292 }
Chris Lattnerc07c9582004-03-31 22:02:36 +00001293}
1294
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001295
1296/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukman8b2bd4e2003-10-10 17:57:28 +00001297/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001298/// instructions.
1299///
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001300void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1301 MachineInstr *MI = Inst;
Akira Hatanaka35166692014-08-01 22:19:41 +00001302
1303 if (MI->isCall()) {
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001304 handleCall(Inst);
Akira Hatanaka35166692014-08-01 22:19:41 +00001305 return;
1306 }
1307
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001308 switch (MI->getOpcode()) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00001309 default: llvm_unreachable("Unknown SpecialFP instruction!");
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001310 case TargetOpcode::COPY: {
1311 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
Evan Cheng968c3b02009-03-23 08:01:15 +00001312 const MachineOperand &MO1 = MI->getOperand(1);
Evan Cheng968c3b02009-03-23 08:01:15 +00001313 const MachineOperand &MO0 = MI->getOperand(0);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001314 bool KillsSrc = MI->killsRegister(MO1.getReg());
1315
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001316 // FP <- FP copy.
1317 unsigned DstFP = getFPReg(MO0);
1318 unsigned SrcFP = getFPReg(MO1);
1319 assert(isLive(SrcFP) && "Cannot copy dead register");
1320 if (KillsSrc) {
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001321 // If the input operand is killed, we can just change the owner of the
1322 // incoming stack slot into the result.
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001323 unsigned Slot = getSlot(SrcFP);
1324 Stack[Slot] = DstFP;
1325 RegMap[DstFP] = Slot;
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001326 } else {
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001327 // For COPY we just duplicate the specified value to a new stack slot.
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001328 // This could be made better, but would require substantial changes.
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001329 duplicateToTop(SrcFP, DstFP, Inst);
Nick Lewyckya3860a22008-03-11 05:56:09 +00001330 }
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001331 break;
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001332 }
1333
Jakob Stoklund Olesenda618422011-08-03 16:33:19 +00001334 case TargetOpcode::IMPLICIT_DEF: {
1335 // All FP registers must be explicitly defined, so load a 0 instead.
1336 unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1337 DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001338 BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::LD_F0));
Jakob Stoklund Olesenda618422011-08-03 16:33:19 +00001339 pushReg(Reg);
1340 break;
1341 }
1342
Chris Lattnerb06015a2010-02-09 19:54:29 +00001343 case TargetOpcode::INLINEASM: {
Chris Lattner8abed802008-03-11 19:50:13 +00001344 // The inline asm MachineInstr currently only *uses* FP registers for the
1345 // 'f' constraint. These should be turned into the current ST(x) register
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001346 // in the machine instr.
1347 //
1348 // There are special rules for x87 inline assembly. The compiler must know
1349 // exactly how many registers are popped and pushed implicitly by the asm.
1350 // Otherwise it is not possible to restore the stack state after the inline
1351 // asm.
1352 //
1353 // There are 3 kinds of input operands:
1354 //
1355 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1356 // popped input operand must be in a fixed stack slot, and it is either
1357 // tied to an output operand, or in the clobber list. The MI has ST use
1358 // and def operands for these inputs.
1359 //
1360 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1361 // preserved by the inline asm. The fixed stack slots must be STn-STm
1362 // following the popped inputs. A fixed input operand cannot be tied to
1363 // an output or appear in the clobber list. The MI has ST use operands
1364 // and no defs for these inputs.
1365 //
1366 // 3. Preserved inputs. These inputs use the "f" constraint which is
1367 // represented as an FP register. The inline asm won't change these
1368 // stack slots.
1369 //
1370 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1371 // registers do not count as output operands. The inline asm changes the
1372 // stack as if it popped all the popped inputs and then pushed all the
1373 // output operands.
1374
1375 // Scan the assembly for ST registers used, defined and clobbered. We can
1376 // only tell clobbers from defs by looking at the asm descriptor.
1377 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1378 unsigned NumOps = 0;
Akira Hatanaka35166692014-08-01 22:19:41 +00001379 SmallSet<unsigned, 1> FRegIdx;
1380 unsigned RCID;
1381
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001382 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1383 i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1384 unsigned Flags = MI->getOperand(i).getImm();
Akira Hatanaka35166692014-08-01 22:19:41 +00001385
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001386 NumOps = InlineAsm::getNumOperandRegisters(Flags);
1387 if (NumOps != 1)
1388 continue;
1389 const MachineOperand &MO = MI->getOperand(i + 1);
1390 if (!MO.isReg())
1391 continue;
Akira Hatanaka35166692014-08-01 22:19:41 +00001392 unsigned STReg = MO.getReg() - X86::FP0;
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001393 if (STReg >= 8)
1394 continue;
1395
Akira Hatanaka35166692014-08-01 22:19:41 +00001396 // If the flag has a register class constraint, this must be an operand
1397 // with constraint "f". Record its index and continue.
1398 if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1399 FRegIdx.insert(i + 1);
1400 continue;
1401 }
1402
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001403 switch (InlineAsm::getKind(Flags)) {
1404 case InlineAsm::Kind_RegUse:
1405 STUses |= (1u << STReg);
1406 break;
1407 case InlineAsm::Kind_RegDef:
1408 case InlineAsm::Kind_RegDefEarlyClobber:
1409 STDefs |= (1u << STReg);
1410 if (MO.isDead())
1411 STDeadDefs |= (1u << STReg);
1412 break;
1413 case InlineAsm::Kind_Clobber:
1414 STClobbers |= (1u << STReg);
1415 break;
1416 default:
1417 break;
1418 }
1419 }
1420
1421 if (STUses && !isMask_32(STUses))
Jakob Stoklund Olesene925f222011-07-02 07:23:40 +00001422 MI->emitError("fixed input regs must be last on the x87 stack");
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001423 unsigned NumSTUses = CountTrailingOnes_32(STUses);
1424
1425 // Defs must be contiguous from the stack top. ST0-STn.
Jakob Stoklund Olesen25a404e2011-07-02 03:53:34 +00001426 if (STDefs && !isMask_32(STDefs)) {
Jakob Stoklund Olesene925f222011-07-02 07:23:40 +00001427 MI->emitError("output regs must be last on the x87 stack");
Jakob Stoklund Olesen25a404e2011-07-02 03:53:34 +00001428 STDefs = NextPowerOf2(STDefs) - 1;
1429 }
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001430 unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1431
1432 // So must the clobbered stack slots. ST0-STm, m >= n.
1433 if (STClobbers && !isMask_32(STDefs | STClobbers))
Jakob Stoklund Olesene925f222011-07-02 07:23:40 +00001434 MI->emitError("clobbers must be last on the x87 stack");
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001435
1436 // Popped inputs are the ones that are also clobbered or defined.
1437 unsigned STPopped = STUses & (STDefs | STClobbers);
1438 if (STPopped && !isMask_32(STPopped))
Jakob Stoklund Olesene925f222011-07-02 07:23:40 +00001439 MI->emitError("implicitly popped regs must be last on the x87 stack");
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001440 unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1441
1442 DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1443 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1444
Akira Hatanaka35166692014-08-01 22:19:41 +00001445#ifndef NDEBUG
1446 // If any input operand uses constraint "f", all output register
1447 // constraints must be early-clobber defs.
1448 for (unsigned I = 0, E = MI->getNumOperands(); I < E; ++I)
1449 if (FRegIdx.count(I)) {
1450 assert((1 << getFPReg(MI->getOperand(I)) & STDefs) == 0 &&
1451 "Operands with constraint \"f\" cannot overlap with defs");
1452 }
1453#endif
1454
1455 // Collect all FP registers (register operands with constraints "t", "u",
1456 // and "f") to kill afer the instruction.
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001457 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
Chris Lattner8abed802008-03-11 19:50:13 +00001458 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1459 MachineOperand &Op = MI->getOperand(i);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00001460 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner8abed802008-03-11 19:50:13 +00001461 continue;
Chris Lattner8abed802008-03-11 19:50:13 +00001462 unsigned FPReg = getFPReg(Op);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001463
Chris Lattner8abed802008-03-11 19:50:13 +00001464 // If we kill this operand, make sure to pop it from the stack after the
1465 // asm. We just remember it for now, and pop them all off at the end in
1466 // a batch.
Akira Hatanaka35166692014-08-01 22:19:41 +00001467 if (Op.isUse() && Op.isKill())
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001468 FPKills |= 1U << FPReg;
Chris Lattner8abed802008-03-11 19:50:13 +00001469 }
1470
Akira Hatanaka35166692014-08-01 22:19:41 +00001471 // Do not include registers that are implicitly popped by defs/clobbers.
1472 FPKills &= ~(STDefs | STClobbers);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001473
1474 // Now we can rearrange the live registers to match what was requested.
Akira Hatanaka35166692014-08-01 22:19:41 +00001475 unsigned char STUsesArray[8];
1476
1477 for (unsigned I = 0; I < NumSTUses; ++I)
1478 STUsesArray[I] = I;
1479
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001480 shuffleStackTop(STUsesArray, NumSTUses, Inst);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001481 DEBUG({dbgs() << "Before asm: "; dumpStack();});
1482
1483 // With the stack layout fixed, rewrite the FP registers.
1484 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1485 MachineOperand &Op = MI->getOperand(i);
1486 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1487 continue;
Akira Hatanaka35166692014-08-01 22:19:41 +00001488
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001489 unsigned FPReg = getFPReg(Op);
Akira Hatanaka35166692014-08-01 22:19:41 +00001490
1491 if (FRegIdx.count(i))
1492 // Operand with constraint "f".
1493 Op.setReg(getSTReg(FPReg));
1494 else
1495 // Operand with a single register class constraint ("t" or "u").
1496 Op.setReg(X86::ST0 + FPReg);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001497 }
1498
1499 // Simulate the inline asm popping its inputs and pushing its outputs.
1500 StackTop -= NumSTPopped;
1501
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001502 for (unsigned i = 0; i < NumSTDefs; ++i)
Akira Hatanaka35166692014-08-01 22:19:41 +00001503 pushReg(NumSTDefs - i - 1);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001504
Chris Lattner8abed802008-03-11 19:50:13 +00001505 // If this asm kills any FP registers (is the last use of them) we must
1506 // explicitly emit pop instructions for them. Do this now after the asm has
1507 // executed so that the ST(x) numbers are not off (which would happen if we
1508 // did this inline with operand rewriting).
1509 //
1510 // Note: this might be a non-optimal pop sequence. We might be able to do
1511 // better by trying to pop in stack order or something.
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001512 while (FPKills) {
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001513 unsigned FPReg = countTrailingZeros(FPKills);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001514 if (isLive(FPReg))
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001515 freeStackSlotAfter(Inst, FPReg);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001516 FPKills &= ~(1U << FPReg);
Jakob Stoklund Olesen96fad312010-04-28 18:28:37 +00001517 }
Akira Hatanaka35166692014-08-01 22:19:41 +00001518
Chris Lattner8abed802008-03-11 19:50:13 +00001519 // Don't delete the inline asm!
1520 return;
1521 }
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001522
Michael J. Spencer248d65e2012-02-24 19:01:22 +00001523 case X86::WIN_FTOL_32:
1524 case X86::WIN_FTOL_64: {
Michael J. Spencer248d65e2012-02-24 19:01:22 +00001525 // Push the operand into ST0.
1526 MachineOperand &Op = MI->getOperand(0);
1527 assert(Op.isUse() && Op.isReg() &&
1528 Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
1529 unsigned FPReg = getFPReg(Op);
1530 if (Op.isKill())
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001531 moveToTop(FPReg, Inst);
Michael J. Spencer248d65e2012-02-24 19:01:22 +00001532 else
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001533 duplicateToTop(FPReg, FPReg, Inst);
Michael J. Spencer248d65e2012-02-24 19:01:22 +00001534
1535 // Emit the call. This will pop the operand.
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001536 BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
Michael J. Spencer248d65e2012-02-24 19:01:22 +00001537 .addExternalSymbol("_ftol2")
1538 .addReg(X86::ST0, RegState::ImplicitKill)
Craig Topper8956fe02013-07-21 07:28:13 +00001539 .addReg(X86::ECX, RegState::ImplicitDefine)
Michael J. Spencer248d65e2012-02-24 19:01:22 +00001540 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
1541 .addReg(X86::EDX, RegState::Define | RegState::Implicit)
1542 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1543 --StackTop;
1544
1545 break;
1546 }
1547
David Woodhouse79dd5052014-01-08 12:58:07 +00001548 case X86::RETQ:
1549 case X86::RETL:
David Woodhouse4e033b02014-01-13 14:05:59 +00001550 case X86::RETIL:
1551 case X86::RETIQ:
Chris Lattner1bd44362008-03-11 03:23:40 +00001552 // If RET has an FP register use operand, pass the first one in ST(0) and
1553 // the second one in ST(1).
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001554
Chris Lattner1bd44362008-03-11 03:23:40 +00001555 // Find the register operands.
1556 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001557 unsigned LiveMask = 0;
1558
Chris Lattner1bd44362008-03-11 03:23:40 +00001559 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1560 MachineOperand &Op = MI->getOperand(i);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00001561 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner1bd44362008-03-11 03:23:40 +00001562 continue;
Chris Lattnerc55b4442008-03-21 20:41:27 +00001563 // FP Register uses must be kills unless there are two uses of the same
1564 // register, in which case only one will be a kill.
1565 assert(Op.isUse() &&
1566 (Op.isKill() || // Marked kill.
1567 getFPReg(Op) == FirstFPRegOp || // Second instance.
1568 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1569 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner1bd44362008-03-11 03:23:40 +00001570
1571 if (FirstFPRegOp == ~0U)
1572 FirstFPRegOp = getFPReg(Op);
1573 else {
1574 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1575 SecondFPRegOp = getFPReg(Op);
1576 }
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001577 LiveMask |= (1 << getFPReg(Op));
Chris Lattner1bd44362008-03-11 03:23:40 +00001578
1579 // Remove the operand so that later passes don't see it.
1580 MI->RemoveOperand(i);
1581 --i, --e;
1582 }
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001583
1584 // We may have been carrying spurious live-ins, so make sure only the returned
1585 // registers are left live.
1586 adjustLiveRegs(LiveMask, MI);
1587 if (!LiveMask) return; // Quick check to see if any are possible.
1588
Chris Lattner1bd44362008-03-11 03:23:40 +00001589 // There are only four possibilities here:
1590 // 1) we are returning a single FP value. In this case, it has to be in
1591 // ST(0) already, so just declare success by removing the value from the
1592 // FP Stack.
1593 if (SecondFPRegOp == ~0U) {
1594 // Assert that the top of stack contains the right FP register.
1595 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1596 "Top of stack not the right register for RET!");
Chad Rosier24c19d22012-08-01 18:39:17 +00001597
Chris Lattner1bd44362008-03-11 03:23:40 +00001598 // Ok, everything is good, mark the value as not being on the stack
1599 // anymore so that our assertion about the stack being empty at end of
1600 // block doesn't fire.
1601 StackTop = 0;
1602 return;
1603 }
Chad Rosier24c19d22012-08-01 18:39:17 +00001604
Chris Lattner1bd44362008-03-11 03:23:40 +00001605 // Otherwise, we are returning two values:
1606 // 2) If returning the same value for both, we only have one thing in the FP
1607 // stack. Consider: RET FP1, FP1
1608 if (StackTop == 1) {
1609 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1610 "Stack misconfiguration for RET!");
Chad Rosier24c19d22012-08-01 18:39:17 +00001611
Chris Lattner1bd44362008-03-11 03:23:40 +00001612 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1613 // register to hold it.
Akira Hatanaka35166692014-08-01 22:19:41 +00001614 unsigned NewReg = ScratchFPReg;
Chris Lattner1bd44362008-03-11 03:23:40 +00001615 duplicateToTop(FirstFPRegOp, NewReg, MI);
1616 FirstFPRegOp = NewReg;
1617 }
Chad Rosier24c19d22012-08-01 18:39:17 +00001618
Chris Lattner1bd44362008-03-11 03:23:40 +00001619 /// Okay we know we have two different FPx operands now:
1620 assert(StackTop == 2 && "Must have two values live!");
Chad Rosier24c19d22012-08-01 18:39:17 +00001621
Chris Lattner1bd44362008-03-11 03:23:40 +00001622 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1623 /// in ST(1). In this case, emit an fxch.
1624 if (getStackEntry(0) == SecondFPRegOp) {
1625 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1626 moveToTop(FirstFPRegOp, MI);
1627 }
Chad Rosier24c19d22012-08-01 18:39:17 +00001628
Chris Lattner1bd44362008-03-11 03:23:40 +00001629 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1630 /// ST(1). Just remove both from our understanding of the stack and return.
1631 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattnerb6f04a32008-03-21 05:57:20 +00001632 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner1bd44362008-03-11 03:23:40 +00001633 StackTop = 0;
1634 return;
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001635 }
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001636
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001637 Inst = MBB->erase(Inst); // Remove the pseudo instruction
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001638
1639 // We want to leave I pointing to the previous instruction, but what if we
1640 // just erased the first instruction?
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001641 if (Inst == MBB->begin()) {
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001642 DEBUG(dbgs() << "Inserting dummy KILL\n");
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001643 Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001644 } else
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001645 --Inst;
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001646}
Akira Hatanaka35166692014-08-01 22:19:41 +00001647
1648void FPS::setKillFlags(MachineBasicBlock &MBB) const {
Eric Christopherd9134482014-08-04 21:25:23 +00001649 const TargetRegisterInfo *TRI =
Eric Christopherfc6de422014-08-05 02:39:49 +00001650 MBB.getParent()->getSubtarget().getRegisterInfo();
Akira Hatanaka35166692014-08-01 22:19:41 +00001651 LivePhysRegs LPR(TRI);
1652
1653 LPR.addLiveOuts(&MBB);
1654
1655 for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
1656 I != E; ++I) {
1657 BitVector Defs(8);
1658 SmallVector<MachineOperand *, 2> Uses;
1659 MachineInstr &MI = *I;
1660
1661 for (auto &MO : I->operands()) {
1662 if (!MO.isReg())
1663 continue;
1664
1665 unsigned Reg = MO.getReg() - X86::FP0;
1666
1667 if (Reg >= 8)
1668 continue;
1669
1670 if (MO.isDef()) {
1671 Defs.set(Reg);
1672 if (!LPR.contains(MO.getReg()))
1673 MO.setIsDead();
1674 } else
1675 Uses.push_back(&MO);
1676 }
1677
1678 for (auto *MO : Uses)
1679 if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1680 MO->setIsKill();
1681
1682 LPR.stepBackward(MI);
1683 }
1684}