blob: 2c5604496b3c8a2e9605f8fae9fc7caeb3a9c8d4 [file] [log] [blame]
Nadav Rotemc4efbb82012-12-19 07:22:24 +00001==========================
2Auto-Vectorization in LLVM
3==========================
4
Sean Silva99e12f92012-12-20 22:42:20 +00005.. contents::
6 :local:
7
8LLVM has two vectorizers: The :ref:`Loop Vectorizer <loop-vectorizer>`,
9which operates on Loops, and the :ref:`Basic Block Vectorizer
10<bb-vectorizer>`, which optimizes straight-line code. These vectorizers
11focus on different optimization opportunities and use different techniques.
12The BB vectorizer merges multiple scalars that are found in the code into
13vectors while the Loop Vectorizer widens instructions in the original loop
14to operate on multiple consecutive loop iterations.
15
16.. _loop-vectorizer:
Nadav Rotemc4efbb82012-12-19 07:22:24 +000017
18The Loop Vectorizer
19===================
20
Nadav Rotem0328f5e2012-12-19 18:04:44 +000021Usage
Sean Silva08fd0882012-12-20 02:40:45 +000022-----
Nadav Rotem0328f5e2012-12-19 18:04:44 +000023
Nadav Rotemfe47d582013-04-08 21:34:49 +000024LLVM's Loop Vectorizer is now enabled by default for -O3.
25The vectorizer can be disabled using the command line:
Nadav Rotemc4efbb82012-12-19 07:22:24 +000026
27.. code-block:: console
28
Nadav Rotemfe47d582013-04-08 21:34:49 +000029 $ clang ... -fno-vectorize file.c
Nadav Rotem8f4a6cc2012-12-19 18:02:36 +000030
Nadav Rotemfe47d582013-04-08 21:34:49 +000031At this point the loop vectorizer is only enabled for -O3, and will not work for -O2 or -Os.
Nadav Rotemc4efbb82012-12-19 07:22:24 +000032
Nadav Rotem7daadf22013-01-04 17:49:45 +000033Command line flags
34^^^^^^^^^^^^^^^^^^
35
36The loop vectorizer uses a cost model to decide on the optimal vectorization factor
37and unroll factor. However, users of the vectorizer can force the vectorizer to use
38specific values. Both 'clang' and 'opt' support the flags below.
39
40Users can control the vectorization SIMD width using the command line flag "-force-vector-width".
41
42.. code-block:: console
43
44 $ clang -mllvm -force-vector-width=8 ...
45 $ opt -loop-vectorize -force-vector-width=8 ...
46
47Users can control the unroll factor using the command line flag "-force-vector-unroll"
48
49.. code-block:: console
50
51 $ clang -mllvm -force-vector-unroll=2 ...
52 $ opt -loop-vectorize -force-vector-unroll=2 ...
53
Nadav Rotemc4efbb82012-12-19 07:22:24 +000054Features
Sean Silva08fd0882012-12-20 02:40:45 +000055--------
Nadav Rotemc4efbb82012-12-19 07:22:24 +000056
57The LLVM Loop Vectorizer has a number of features that allow it to vectorize
58complex loops.
59
60Loops with unknown trip count
Sean Silva08fd0882012-12-20 02:40:45 +000061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +000062
63The Loop Vectorizer supports loops with an unknown trip count.
64In the loop below, the iteration ``start`` and ``finish`` points are unknown,
65and the Loop Vectorizer has a mechanism to vectorize loops that do not start
Sean Silva13ed79c2012-12-20 02:23:25 +000066at zero. In this example, 'n' may not be a multiple of the vector width, and
Nadav Rotemc4efbb82012-12-19 07:22:24 +000067the vectorizer has to execute the last few iterations as scalar code. Keeping
68a scalar copy of the loop increases the code size.
69
70.. code-block:: c++
71
72 void bar(float *A, float* B, float K, int start, int end) {
Sean Silva8c44a472012-12-20 22:47:41 +000073 for (int i = start; i < end; ++i)
74 A[i] *= B[i] + K;
Nadav Rotemc4efbb82012-12-19 07:22:24 +000075 }
76
77Runtime Checks of Pointers
Sean Silva08fd0882012-12-20 02:40:45 +000078^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +000079
80In the example below, if the pointers A and B point to consecutive addresses,
81then it is illegal to vectorize the code because some elements of A will be
82written before they are read from array B.
83
84Some programmers use the 'restrict' keyword to notify the compiler that the
85pointers are disjointed, but in our example, the Loop Vectorizer has no way of
86knowing that the pointers A and B are unique. The Loop Vectorizer handles this
87loop by placing code that checks, at runtime, if the arrays A and B point to
88disjointed memory locations. If arrays A and B overlap, then the scalar version
Sean Silva287e7d22012-12-20 22:59:36 +000089of the loop is executed.
Nadav Rotemc4efbb82012-12-19 07:22:24 +000090
91.. code-block:: c++
92
93 void bar(float *A, float* B, float K, int n) {
Sean Silva8c44a472012-12-20 22:47:41 +000094 for (int i = 0; i < n; ++i)
95 A[i] *= B[i] + K;
Nadav Rotemc4efbb82012-12-19 07:22:24 +000096 }
97
98
99Reductions
Sean Silva08fd0882012-12-20 02:40:45 +0000100^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000101
Sean Silva287e7d22012-12-20 22:59:36 +0000102In this example the ``sum`` variable is used by consecutive iterations of
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000103the loop. Normally, this would prevent vectorization, but the vectorizer can
Sean Silva13ed79c2012-12-20 02:23:25 +0000104detect that 'sum' is a reduction variable. The variable 'sum' becomes a vector
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000105of integers, and at the end of the loop the elements of the array are added
Sean Silva287e7d22012-12-20 22:59:36 +0000106together to create the correct result. We support a number of different
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000107reduction operations, such as addition, multiplication, XOR, AND and OR.
108
109.. code-block:: c++
110
111 int foo(int *A, int *B, int n) {
112 unsigned sum = 0;
113 for (int i = 0; i < n; ++i)
Sean Silva287e7d22012-12-20 22:59:36 +0000114 sum += A[i] + 5;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000115 return sum;
116 }
117
Nadav Rotem9f207812013-01-08 17:46:30 +0000118We support floating point reduction operations when `-ffast-math` is used.
119
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000120Inductions
Sean Silva08fd0882012-12-20 02:40:45 +0000121^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000122
123In this example the value of the induction variable ``i`` is saved into an
124array. The Loop Vectorizer knows to vectorize induction variables.
125
126.. code-block:: c++
127
128 void bar(float *A, float* B, float K, int n) {
Sean Silva8c44a472012-12-20 22:47:41 +0000129 for (int i = 0; i < n; ++i)
130 A[i] = i;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000131 }
132
133If Conversion
Sean Silva08fd0882012-12-20 02:40:45 +0000134^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000135
136The Loop Vectorizer is able to "flatten" the IF statement in the code and
137generate a single stream of instructions. The Loop Vectorizer supports any
138control flow in the innermost loop. The innermost loop may contain complex
139nesting of IFs, ELSEs and even GOTOs.
140
141.. code-block:: c++
142
143 int foo(int *A, int *B, int n) {
144 unsigned sum = 0;
145 for (int i = 0; i < n; ++i)
146 if (A[i] > B[i])
147 sum += A[i] + 5;
148 return sum;
149 }
150
151Pointer Induction Variables
Sean Silva08fd0882012-12-20 02:40:45 +0000152^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000153
154This example uses the "accumulate" function of the standard c++ library. This
155loop uses C++ iterators, which are pointers, and not integer indices.
156The Loop Vectorizer detects pointer induction variables and can vectorize
157this loop. This feature is important because many C++ programs use iterators.
158
159.. code-block:: c++
160
161 int baz(int *A, int n) {
162 return std::accumulate(A, A + n, 0);
163 }
164
165Reverse Iterators
Sean Silva08fd0882012-12-20 02:40:45 +0000166^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000167
168The Loop Vectorizer can vectorize loops that count backwards.
169
170.. code-block:: c++
171
172 int foo(int *A, int *B, int n) {
173 for (int i = n; i > 0; --i)
174 A[i] +=1;
175 }
176
177Scatter / Gather
Sean Silva08fd0882012-12-20 02:40:45 +0000178^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000179
Nadav Rotema616d682013-01-03 01:47:02 +0000180The Loop Vectorizer can vectorize code that becomes a sequence of scalar instructions
181that scatter/gathers memory.
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000182
183.. code-block:: c++
184
185 int foo(int *A, int *B, int n, int k) {
Sean Silva8c44a472012-12-20 22:47:41 +0000186 for (int i = 0; i < n; ++i)
Sean Silvae140b2e2012-12-20 22:49:13 +0000187 A[i*7] += B[i*k];
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000188 }
189
Nadav Rotemaf14a3f2012-12-19 07:36:35 +0000190Vectorization of Mixed Types
Sean Silva08fd0882012-12-20 02:40:45 +0000191^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000192
193The Loop Vectorizer can vectorize programs with mixed types. The Vectorizer
194cost model can estimate the cost of the type conversion and decide if
195vectorization is profitable.
196
197.. code-block:: c++
198
199 int foo(int *A, char *B, int n, int k) {
Sean Silva8c44a472012-12-20 22:47:41 +0000200 for (int i = 0; i < n; ++i)
Sean Silvae140b2e2012-12-20 22:49:13 +0000201 A[i] += 4 * B[i];
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000202 }
203
Renato Golinf2ea19e2013-02-23 13:25:41 +0000204Global Structures Alias Analysis
205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
206
207Access to global structures can also be vectorized, with alias analysis being
208used to make sure accesses don't alias. Run-time checks can also be added on
209pointer access to structure members.
210
211Many variations are supported, but some that rely on undefined behaviour being
212ignored (as other compilers do) are still being left un-vectorized.
213
214.. code-block:: c++
215
216 struct { int A[100], K, B[100]; } Foo;
217
218 int foo() {
219 for (int i = 0; i < 100; ++i)
220 Foo.A[i] = Foo.B[i] + 100;
221 }
222
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000223Vectorization of function calls
Sean Silva08fd0882012-12-20 02:40:45 +0000224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000225
226The Loop Vectorize can vectorize intrinsic math functions.
227See the table below for a list of these functions.
228
229+-----+-----+---------+
230| pow | exp | exp2 |
231+-----+-----+---------+
232| sin | cos | sqrt |
233+-----+-----+---------+
234| log |log2 | log10 |
235+-----+-----+---------+
236|fabs |floor| ceil |
237+-----+-----+---------+
238|fma |trunc|nearbyint|
239+-----+-----+---------+
Nadav Rotem7375d352012-12-26 06:03:35 +0000240| | | fmuladd |
241+-----+-----+---------+
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000242
Benjamin Kramera87d5122013-02-28 19:33:46 +0000243The loop vectorizer knows about special instructions on the target and will
244vectorize a loop containing a function call that maps to the instructions. For
245example, the loop below will be vectorized on Intel x86 if the SSE4.1 roundps
246instruction is available.
247
248.. code-block:: c++
249
250 void foo(float *f) {
251 for (int i = 0; i != 1024; ++i)
252 f[i] = floorf(f[i]);
253 }
Nadav Rotema616d682013-01-03 01:47:02 +0000254
255Partial unrolling during vectorization
256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
257
258Modern processors feature multiple execution units, and only programs that contain a
Nadav Rotem7ea18a72013-01-03 01:56:33 +0000259high degree of parallelism can fully utilize the entire width of the machine.
Nadav Rotema616d682013-01-03 01:47:02 +0000260The Loop Vectorizer increases the instruction level parallelism (ILP) by
261performing partial-unrolling of loops.
262
263In the example below the entire array is accumulated into the variable 'sum'.
Nadav Rotem7ea18a72013-01-03 01:56:33 +0000264This is inefficient because only a single execution port can be used by the processor.
Nadav Rotema616d682013-01-03 01:47:02 +0000265By unrolling the code the Loop Vectorizer allows two or more execution ports
Nadav Rotem7ea18a72013-01-03 01:56:33 +0000266to be used simultaneously.
Nadav Rotema616d682013-01-03 01:47:02 +0000267
268.. code-block:: c++
269
270 int foo(int *A, int *B, int n) {
271 unsigned sum = 0;
272 for (int i = 0; i < n; ++i)
273 sum += A[i];
274 return sum;
275 }
276
Nadav Rotem7daadf22013-01-04 17:49:45 +0000277The Loop Vectorizer uses a cost model to decide when it is profitable to unroll loops.
278The decision to unroll the loop depends on the register pressure and the generated code size.
Nadav Rotema616d682013-01-03 01:47:02 +0000279
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000280Performance
Sean Silva08fd0882012-12-20 02:40:45 +0000281-----------
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000282
Sean Silva287e7d22012-12-20 22:59:36 +0000283This section shows the the execution time of Clang on a simple benchmark:
Nadav Rotem90c8b4b2012-12-19 08:43:05 +0000284`gcc-loops <http://llvm.org/viewvc/llvm-project/test-suite/trunk/SingleSource/UnitTests/Vectorizer/>`_.
Sean Silva287e7d22012-12-20 22:59:36 +0000285This benchmarks is a collection of loops from the GCC autovectorization
Nadav Rotem8f4a6cc2012-12-19 18:02:36 +0000286`page <http://gcc.gnu.org/projects/tree-ssa/vectorization.html>`_ by Dorit Nuzman.
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000287
Nadav Rotem12da3962012-12-20 00:03:36 +0000288The chart below compares GCC-4.7, ICC-13, and Clang-SVN with and without loop vectorization at -O3, tuned for "corei7-avx", running on a Sandybridge iMac.
Sean Silva287e7d22012-12-20 22:59:36 +0000289The Y-axis shows the time in msec. Lower is better. The last column shows the geomean of all the kernels.
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000290
291.. image:: gcc-loops.png
292
Nadav Rotem014e19c2013-01-04 19:00:42 +0000293And Linpack-pc with the same configuration. Result is Mflops, higher is better.
294
295.. image:: linpack-pc.png
296
Sean Silva99e12f92012-12-20 22:42:20 +0000297.. _bb-vectorizer:
298
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000299The Basic Block Vectorizer
300==========================
301
Nadav Rotem0328f5e2012-12-19 18:04:44 +0000302Usage
Sean Silva08fd0882012-12-20 02:40:45 +0000303------
Nadav Rotem0328f5e2012-12-19 18:04:44 +0000304
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000305The Basic Block Vectorizer is not enabled by default, but it can be enabled
306through clang using the command line flag:
307
308.. code-block:: console
309
Sean Silva287e7d22012-12-20 22:59:36 +0000310 $ clang -fslp-vectorize file.c
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000311
Nadav Rotem0328f5e2012-12-19 18:04:44 +0000312Details
Sean Silva08fd0882012-12-20 02:40:45 +0000313-------
Nadav Rotem0328f5e2012-12-19 18:04:44 +0000314
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000315The goal of basic-block vectorization (a.k.a. superword-level parallelism) is
316to combine similar independent instructions within simple control-flow regions
317into vector instructions. Memory accesses, arithemetic operations, comparison
318operations and some math functions can all be vectorized using this technique
Sean Silva287e7d22012-12-20 22:59:36 +0000319(subject to the capabilities of the target architecture).
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000320
321For example, the following function performs very similar operations on its
322inputs (a1, b1) and (a2, b2). The basic-block vectorizer may combine these
323into vector operations.
324
325.. code-block:: c++
326
327 int foo(int a1, int a2, int b1, int b2) {
328 int r1 = a1*(a1 + b1)/b1 + 50*b1/a1;
329 int r2 = a2*(a2 + b2)/b2 + 50*b2/a2;
330 return r1 + r2;
331 }
332
333