Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1 | //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// |
| 10 | /// \file |
| 11 | /// Replaces repeated sequences of instructions with function calls. |
| 12 | /// |
| 13 | /// This works by placing every instruction from every basic block in a |
| 14 | /// suffix tree, and repeatedly querying that tree for repeated sequences of |
| 15 | /// instructions. If a sequence of instructions appears often, then it ought |
| 16 | /// to be beneficial to pull out into a function. |
| 17 | /// |
| 18 | /// This was originally presented at the 2016 LLVM Developers' Meeting in the |
| 19 | /// talk "Reducing Code Size Using Outlining". For a high-level overview of |
| 20 | /// how this pass works, the talk is available on YouTube at |
| 21 | /// |
| 22 | /// https://www.youtube.com/watch?v=yorld-WSOeU |
| 23 | /// |
| 24 | /// The slides for the talk are available at |
| 25 | /// |
| 26 | /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf |
| 27 | /// |
| 28 | /// The talk provides an overview of how the outliner finds candidates and |
| 29 | /// ultimately outlines them. It describes how the main data structure for this |
| 30 | /// pass, the suffix tree, is queried and purged for candidates. It also gives |
| 31 | /// a simplified suffix tree construction algorithm for suffix trees based off |
| 32 | /// of the algorithm actually used here, Ukkonen's algorithm. |
| 33 | /// |
| 34 | /// For the original RFC for this pass, please see |
| 35 | /// |
| 36 | /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html |
| 37 | /// |
| 38 | /// For more information on the suffix tree data structure, please see |
| 39 | /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf |
| 40 | /// |
| 41 | //===----------------------------------------------------------------------===// |
| 42 | #include "llvm/ADT/DenseMap.h" |
| 43 | #include "llvm/ADT/Statistic.h" |
| 44 | #include "llvm/ADT/Twine.h" |
| 45 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 46 | #include "llvm/CodeGen/MachineFunction.h" |
| 47 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 48 | #include "llvm/CodeGen/MachineModuleInfo.h" |
Jessica Paquette | ffe4abc | 2017-08-31 21:02:45 +0000 | [diff] [blame^] | 49 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 50 | #include "llvm/CodeGen/Passes.h" |
| 51 | #include "llvm/IR/IRBuilder.h" |
| 52 | #include "llvm/Support/Allocator.h" |
| 53 | #include "llvm/Support/Debug.h" |
| 54 | #include "llvm/Support/raw_ostream.h" |
| 55 | #include "llvm/Target/TargetInstrInfo.h" |
| 56 | #include "llvm/Target/TargetMachine.h" |
| 57 | #include "llvm/Target/TargetRegisterInfo.h" |
| 58 | #include "llvm/Target/TargetSubtargetInfo.h" |
| 59 | #include <functional> |
| 60 | #include <map> |
| 61 | #include <sstream> |
| 62 | #include <tuple> |
| 63 | #include <vector> |
| 64 | |
| 65 | #define DEBUG_TYPE "machine-outliner" |
| 66 | |
| 67 | using namespace llvm; |
Jessica Paquette | ffe4abc | 2017-08-31 21:02:45 +0000 | [diff] [blame^] | 68 | using namespace ore; |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 69 | |
| 70 | STATISTIC(NumOutlined, "Number of candidates outlined"); |
| 71 | STATISTIC(FunctionsCreated, "Number of functions created"); |
| 72 | |
| 73 | namespace { |
| 74 | |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 75 | /// \brief An individual sequence of instructions to be replaced with a call to |
| 76 | /// an outlined function. |
| 77 | struct Candidate { |
| 78 | |
| 79 | /// Set to false if the candidate overlapped with another candidate. |
| 80 | bool InCandidateList = true; |
| 81 | |
| 82 | /// The start index of this \p Candidate. |
| 83 | size_t StartIdx; |
| 84 | |
| 85 | /// The number of instructions in this \p Candidate. |
| 86 | size_t Len; |
| 87 | |
| 88 | /// The index of this \p Candidate's \p OutlinedFunction in the list of |
| 89 | /// \p OutlinedFunctions. |
| 90 | size_t FunctionIdx; |
| 91 | |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 92 | /// Target-defined unsigned defining how to emit a call for this candidate. |
| 93 | unsigned CallClass = 0; |
| 94 | |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 95 | /// \brief The number of instructions that would be saved by outlining every |
| 96 | /// candidate of this type. |
| 97 | /// |
| 98 | /// This is a fixed value which is not updated during the candidate pruning |
| 99 | /// process. It is only used for deciding which candidate to keep if two |
| 100 | /// candidates overlap. The true benefit is stored in the OutlinedFunction |
| 101 | /// for some given candidate. |
| 102 | unsigned Benefit = 0; |
| 103 | |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 104 | Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx, unsigned CallClass) |
| 105 | : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx), |
| 106 | CallClass(CallClass) {} |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 107 | |
| 108 | Candidate() {} |
| 109 | |
| 110 | /// \brief Used to ensure that \p Candidates are outlined in an order that |
| 111 | /// preserves the start and end indices of other \p Candidates. |
| 112 | bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; } |
| 113 | }; |
| 114 | |
| 115 | /// \brief The information necessary to create an outlined function for some |
| 116 | /// class of candidate. |
| 117 | struct OutlinedFunction { |
| 118 | |
| 119 | /// The actual outlined function created. |
| 120 | /// This is initialized after we go through and create the actual function. |
| 121 | MachineFunction *MF = nullptr; |
| 122 | |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 123 | /// A numbefr assigned to this function which appears at the end of its name. |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 124 | size_t Name; |
| 125 | |
| 126 | /// The number of candidates for this OutlinedFunction. |
| 127 | size_t OccurrenceCount = 0; |
| 128 | |
| 129 | /// \brief The sequence of integers corresponding to the instructions in this |
| 130 | /// function. |
| 131 | std::vector<unsigned> Sequence; |
| 132 | |
| 133 | /// The number of instructions this function would save. |
| 134 | unsigned Benefit = 0; |
| 135 | |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 136 | /// Target-defined unsigned defining how to emit the frame for this function. |
| 137 | unsigned FrameClass = 0; |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 138 | |
| 139 | OutlinedFunction(size_t Name, size_t OccurrenceCount, |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 140 | const std::vector<unsigned> &Sequence, unsigned Benefit, |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 141 | unsigned FrameClass) |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 142 | : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence), |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 143 | Benefit(Benefit), FrameClass(FrameClass) {} |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 144 | }; |
| 145 | |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 146 | /// Represents an undefined index in the suffix tree. |
| 147 | const size_t EmptyIdx = -1; |
| 148 | |
| 149 | /// A node in a suffix tree which represents a substring or suffix. |
| 150 | /// |
| 151 | /// Each node has either no children or at least two children, with the root |
| 152 | /// being a exception in the empty tree. |
| 153 | /// |
| 154 | /// Children are represented as a map between unsigned integers and nodes. If |
| 155 | /// a node N has a child M on unsigned integer k, then the mapping represented |
| 156 | /// by N is a proper prefix of the mapping represented by M. Note that this, |
| 157 | /// although similar to a trie is somewhat different: each node stores a full |
| 158 | /// substring of the full mapping rather than a single character state. |
| 159 | /// |
| 160 | /// Each internal node contains a pointer to the internal node representing |
| 161 | /// the same string, but with the first character chopped off. This is stored |
| 162 | /// in \p Link. Each leaf node stores the start index of its respective |
| 163 | /// suffix in \p SuffixIdx. |
| 164 | struct SuffixTreeNode { |
| 165 | |
| 166 | /// The children of this node. |
| 167 | /// |
| 168 | /// A child existing on an unsigned integer implies that from the mapping |
| 169 | /// represented by the current node, there is a way to reach another |
| 170 | /// mapping by tacking that character on the end of the current string. |
| 171 | DenseMap<unsigned, SuffixTreeNode *> Children; |
| 172 | |
| 173 | /// A flag set to false if the node has been pruned from the tree. |
| 174 | bool IsInTree = true; |
| 175 | |
| 176 | /// The start index of this node's substring in the main string. |
| 177 | size_t StartIdx = EmptyIdx; |
| 178 | |
| 179 | /// The end index of this node's substring in the main string. |
| 180 | /// |
| 181 | /// Every leaf node must have its \p EndIdx incremented at the end of every |
| 182 | /// step in the construction algorithm. To avoid having to update O(N) |
| 183 | /// nodes individually at the end of every step, the end index is stored |
| 184 | /// as a pointer. |
| 185 | size_t *EndIdx = nullptr; |
| 186 | |
| 187 | /// For leaves, the start index of the suffix represented by this node. |
| 188 | /// |
| 189 | /// For all other nodes, this is ignored. |
| 190 | size_t SuffixIdx = EmptyIdx; |
| 191 | |
| 192 | /// \brief For internal nodes, a pointer to the internal node representing |
| 193 | /// the same sequence with the first character chopped off. |
| 194 | /// |
Jessica Paquette | 4602c34 | 2017-07-28 05:59:30 +0000 | [diff] [blame] | 195 | /// This acts as a shortcut in Ukkonen's algorithm. One of the things that |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 196 | /// Ukkonen's algorithm does to achieve linear-time construction is |
| 197 | /// keep track of which node the next insert should be at. This makes each |
| 198 | /// insert O(1), and there are a total of O(N) inserts. The suffix link |
| 199 | /// helps with inserting children of internal nodes. |
| 200 | /// |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 201 | /// Say we add a child to an internal node with associated mapping S. The |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 202 | /// next insertion must be at the node representing S - its first character. |
| 203 | /// This is given by the way that we iteratively build the tree in Ukkonen's |
| 204 | /// algorithm. The main idea is to look at the suffixes of each prefix in the |
| 205 | /// string, starting with the longest suffix of the prefix, and ending with |
| 206 | /// the shortest. Therefore, if we keep pointers between such nodes, we can |
| 207 | /// move to the next insertion point in O(1) time. If we don't, then we'd |
| 208 | /// have to query from the root, which takes O(N) time. This would make the |
| 209 | /// construction algorithm O(N^2) rather than O(N). |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 210 | SuffixTreeNode *Link = nullptr; |
| 211 | |
| 212 | /// The parent of this node. Every node except for the root has a parent. |
| 213 | SuffixTreeNode *Parent = nullptr; |
| 214 | |
| 215 | /// The number of times this node's string appears in the tree. |
| 216 | /// |
| 217 | /// This is equal to the number of leaf children of the string. It represents |
| 218 | /// the number of suffixes that the node's string is a prefix of. |
| 219 | size_t OccurrenceCount = 0; |
| 220 | |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 221 | /// The length of the string formed by concatenating the edge labels from the |
| 222 | /// root to this node. |
| 223 | size_t ConcatLen = 0; |
| 224 | |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 225 | /// Returns true if this node is a leaf. |
| 226 | bool isLeaf() const { return SuffixIdx != EmptyIdx; } |
| 227 | |
| 228 | /// Returns true if this node is the root of its owning \p SuffixTree. |
| 229 | bool isRoot() const { return StartIdx == EmptyIdx; } |
| 230 | |
| 231 | /// Return the number of elements in the substring associated with this node. |
| 232 | size_t size() const { |
| 233 | |
| 234 | // Is it the root? If so, it's the empty string so return 0. |
| 235 | if (isRoot()) |
| 236 | return 0; |
| 237 | |
| 238 | assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); |
| 239 | |
| 240 | // Size = the number of elements in the string. |
| 241 | // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. |
| 242 | return *EndIdx - StartIdx + 1; |
| 243 | } |
| 244 | |
| 245 | SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link, |
| 246 | SuffixTreeNode *Parent) |
| 247 | : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} |
| 248 | |
| 249 | SuffixTreeNode() {} |
| 250 | }; |
| 251 | |
| 252 | /// A data structure for fast substring queries. |
| 253 | /// |
| 254 | /// Suffix trees represent the suffixes of their input strings in their leaves. |
| 255 | /// A suffix tree is a type of compressed trie structure where each node |
| 256 | /// represents an entire substring rather than a single character. Each leaf |
| 257 | /// of the tree is a suffix. |
| 258 | /// |
| 259 | /// A suffix tree can be seen as a type of state machine where each state is a |
| 260 | /// substring of the full string. The tree is structured so that, for a string |
| 261 | /// of length N, there are exactly N leaves in the tree. This structure allows |
| 262 | /// us to quickly find repeated substrings of the input string. |
| 263 | /// |
| 264 | /// In this implementation, a "string" is a vector of unsigned integers. |
| 265 | /// These integers may result from hashing some data type. A suffix tree can |
| 266 | /// contain 1 or many strings, which can then be queried as one large string. |
| 267 | /// |
| 268 | /// The suffix tree is implemented using Ukkonen's algorithm for linear-time |
| 269 | /// suffix tree construction. Ukkonen's algorithm is explained in more detail |
| 270 | /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The |
| 271 | /// paper is available at |
| 272 | /// |
| 273 | /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf |
| 274 | class SuffixTree { |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 275 | public: |
| 276 | /// Stores each leaf node in the tree. |
| 277 | /// |
| 278 | /// This is used for finding outlining candidates. |
| 279 | std::vector<SuffixTreeNode *> LeafVector; |
| 280 | |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 281 | /// Each element is an integer representing an instruction in the module. |
| 282 | ArrayRef<unsigned> Str; |
| 283 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 284 | private: |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 285 | /// Maintains each node in the tree. |
Jessica Paquette | d4cb9c6 | 2017-03-08 23:55:33 +0000 | [diff] [blame] | 286 | SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 287 | |
| 288 | /// The root of the suffix tree. |
| 289 | /// |
| 290 | /// The root represents the empty string. It is maintained by the |
| 291 | /// \p NodeAllocator like every other node in the tree. |
| 292 | SuffixTreeNode *Root = nullptr; |
| 293 | |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 294 | /// Maintains the end indices of the internal nodes in the tree. |
| 295 | /// |
| 296 | /// Each internal node is guaranteed to never have its end index change |
| 297 | /// during the construction algorithm; however, leaves must be updated at |
| 298 | /// every step. Therefore, we need to store leaf end indices by reference |
| 299 | /// to avoid updating O(N) leaves at every step of construction. Thus, |
| 300 | /// every internal node must be allocated its own end index. |
| 301 | BumpPtrAllocator InternalEndIdxAllocator; |
| 302 | |
| 303 | /// The end index of each leaf in the tree. |
| 304 | size_t LeafEndIdx = -1; |
| 305 | |
| 306 | /// \brief Helper struct which keeps track of the next insertion point in |
| 307 | /// Ukkonen's algorithm. |
| 308 | struct ActiveState { |
| 309 | /// The next node to insert at. |
| 310 | SuffixTreeNode *Node; |
| 311 | |
| 312 | /// The index of the first character in the substring currently being added. |
| 313 | size_t Idx = EmptyIdx; |
| 314 | |
| 315 | /// The length of the substring we have to add at the current step. |
| 316 | size_t Len = 0; |
| 317 | }; |
| 318 | |
| 319 | /// \brief The point the next insertion will take place at in the |
| 320 | /// construction algorithm. |
| 321 | ActiveState Active; |
| 322 | |
| 323 | /// Allocate a leaf node and add it to the tree. |
| 324 | /// |
| 325 | /// \param Parent The parent of this node. |
| 326 | /// \param StartIdx The start index of this node's associated string. |
| 327 | /// \param Edge The label on the edge leaving \p Parent to this node. |
| 328 | /// |
| 329 | /// \returns A pointer to the allocated leaf node. |
| 330 | SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx, |
| 331 | unsigned Edge) { |
| 332 | |
| 333 | assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); |
| 334 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 335 | SuffixTreeNode *N = new (NodeAllocator.Allocate()) |
| 336 | SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 337 | Parent.Children[Edge] = N; |
| 338 | |
| 339 | return N; |
| 340 | } |
| 341 | |
| 342 | /// Allocate an internal node and add it to the tree. |
| 343 | /// |
| 344 | /// \param Parent The parent of this node. Only null when allocating the root. |
| 345 | /// \param StartIdx The start index of this node's associated string. |
| 346 | /// \param EndIdx The end index of this node's associated string. |
| 347 | /// \param Edge The label on the edge leaving \p Parent to this node. |
| 348 | /// |
| 349 | /// \returns A pointer to the allocated internal node. |
| 350 | SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx, |
| 351 | size_t EndIdx, unsigned Edge) { |
| 352 | |
| 353 | assert(StartIdx <= EndIdx && "String can't start after it ends!"); |
| 354 | assert(!(!Parent && StartIdx != EmptyIdx) && |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 355 | "Non-root internal nodes must have parents!"); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 356 | |
| 357 | size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx); |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 358 | SuffixTreeNode *N = new (NodeAllocator.Allocate()) |
| 359 | SuffixTreeNode(StartIdx, E, Root, Parent); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 360 | if (Parent) |
| 361 | Parent->Children[Edge] = N; |
| 362 | |
| 363 | return N; |
| 364 | } |
| 365 | |
| 366 | /// \brief Set the suffix indices of the leaves to the start indices of their |
| 367 | /// respective suffixes. Also stores each leaf in \p LeafVector at its |
| 368 | /// respective suffix index. |
| 369 | /// |
| 370 | /// \param[in] CurrNode The node currently being visited. |
| 371 | /// \param CurrIdx The current index of the string being visited. |
| 372 | void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) { |
| 373 | |
| 374 | bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); |
| 375 | |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 376 | // Store the length of the concatenation of all strings from the root to |
| 377 | // this node. |
| 378 | if (!CurrNode.isRoot()) { |
| 379 | if (CurrNode.ConcatLen == 0) |
| 380 | CurrNode.ConcatLen = CurrNode.size(); |
| 381 | |
| 382 | if (CurrNode.Parent) |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 383 | CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 384 | } |
| 385 | |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 386 | // Traverse the tree depth-first. |
| 387 | for (auto &ChildPair : CurrNode.Children) { |
| 388 | assert(ChildPair.second && "Node had a null child!"); |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 389 | setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 390 | } |
| 391 | |
| 392 | // Is this node a leaf? |
| 393 | if (IsLeaf) { |
| 394 | // If yes, give it a suffix index and bump its parent's occurrence count. |
| 395 | CurrNode.SuffixIdx = Str.size() - CurrIdx; |
| 396 | assert(CurrNode.Parent && "CurrNode had no parent!"); |
| 397 | CurrNode.Parent->OccurrenceCount++; |
| 398 | |
| 399 | // Store the leaf in the leaf vector for pruning later. |
| 400 | LeafVector[CurrNode.SuffixIdx] = &CurrNode; |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | /// \brief Construct the suffix tree for the prefix of the input ending at |
| 405 | /// \p EndIdx. |
| 406 | /// |
| 407 | /// Used to construct the full suffix tree iteratively. At the end of each |
| 408 | /// step, the constructed suffix tree is either a valid suffix tree, or a |
| 409 | /// suffix tree with implicit suffixes. At the end of the final step, the |
| 410 | /// suffix tree is a valid tree. |
| 411 | /// |
| 412 | /// \param EndIdx The end index of the current prefix in the main string. |
| 413 | /// \param SuffixesToAdd The number of suffixes that must be added |
| 414 | /// to complete the suffix tree at the current phase. |
| 415 | /// |
| 416 | /// \returns The number of suffixes that have not been added at the end of |
| 417 | /// this step. |
| 418 | unsigned extend(size_t EndIdx, size_t SuffixesToAdd) { |
| 419 | SuffixTreeNode *NeedsLink = nullptr; |
| 420 | |
| 421 | while (SuffixesToAdd > 0) { |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 422 | |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 423 | // Are we waiting to add anything other than just the last character? |
| 424 | if (Active.Len == 0) { |
| 425 | // If not, then say the active index is the end index. |
| 426 | Active.Idx = EndIdx; |
| 427 | } |
| 428 | |
| 429 | assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); |
| 430 | |
| 431 | // The first character in the current substring we're looking at. |
| 432 | unsigned FirstChar = Str[Active.Idx]; |
| 433 | |
| 434 | // Have we inserted anything starting with FirstChar at the current node? |
| 435 | if (Active.Node->Children.count(FirstChar) == 0) { |
| 436 | // If not, then we can just insert a leaf and move too the next step. |
| 437 | insertLeaf(*Active.Node, EndIdx, FirstChar); |
| 438 | |
| 439 | // The active node is an internal node, and we visited it, so it must |
| 440 | // need a link if it doesn't have one. |
| 441 | if (NeedsLink) { |
| 442 | NeedsLink->Link = Active.Node; |
| 443 | NeedsLink = nullptr; |
| 444 | } |
| 445 | } else { |
| 446 | // There's a match with FirstChar, so look for the point in the tree to |
| 447 | // insert a new node. |
| 448 | SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; |
| 449 | |
| 450 | size_t SubstringLen = NextNode->size(); |
| 451 | |
| 452 | // Is the current suffix we're trying to insert longer than the size of |
| 453 | // the child we want to move to? |
| 454 | if (Active.Len >= SubstringLen) { |
| 455 | // If yes, then consume the characters we've seen and move to the next |
| 456 | // node. |
| 457 | Active.Idx += SubstringLen; |
| 458 | Active.Len -= SubstringLen; |
| 459 | Active.Node = NextNode; |
| 460 | continue; |
| 461 | } |
| 462 | |
| 463 | // Otherwise, the suffix we're trying to insert must be contained in the |
| 464 | // next node we want to move to. |
| 465 | unsigned LastChar = Str[EndIdx]; |
| 466 | |
| 467 | // Is the string we're trying to insert a substring of the next node? |
| 468 | if (Str[NextNode->StartIdx + Active.Len] == LastChar) { |
| 469 | // If yes, then we're done for this step. Remember our insertion point |
| 470 | // and move to the next end index. At this point, we have an implicit |
| 471 | // suffix tree. |
| 472 | if (NeedsLink && !Active.Node->isRoot()) { |
| 473 | NeedsLink->Link = Active.Node; |
| 474 | NeedsLink = nullptr; |
| 475 | } |
| 476 | |
| 477 | Active.Len++; |
| 478 | break; |
| 479 | } |
| 480 | |
| 481 | // The string we're trying to insert isn't a substring of the next node, |
| 482 | // but matches up to a point. Split the node. |
| 483 | // |
| 484 | // For example, say we ended our search at a node n and we're trying to |
| 485 | // insert ABD. Then we'll create a new node s for AB, reduce n to just |
| 486 | // representing C, and insert a new leaf node l to represent d. This |
| 487 | // allows us to ensure that if n was a leaf, it remains a leaf. |
| 488 | // |
| 489 | // | ABC ---split---> | AB |
| 490 | // n s |
| 491 | // C / \ D |
| 492 | // n l |
| 493 | |
| 494 | // The node s from the diagram |
| 495 | SuffixTreeNode *SplitNode = |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 496 | insertInternalNode(Active.Node, NextNode->StartIdx, |
| 497 | NextNode->StartIdx + Active.Len - 1, FirstChar); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 498 | |
| 499 | // Insert the new node representing the new substring into the tree as |
| 500 | // a child of the split node. This is the node l from the diagram. |
| 501 | insertLeaf(*SplitNode, EndIdx, LastChar); |
| 502 | |
| 503 | // Make the old node a child of the split node and update its start |
| 504 | // index. This is the node n from the diagram. |
| 505 | NextNode->StartIdx += Active.Len; |
| 506 | NextNode->Parent = SplitNode; |
| 507 | SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; |
| 508 | |
| 509 | // SplitNode is an internal node, update the suffix link. |
| 510 | if (NeedsLink) |
| 511 | NeedsLink->Link = SplitNode; |
| 512 | |
| 513 | NeedsLink = SplitNode; |
| 514 | } |
| 515 | |
| 516 | // We've added something new to the tree, so there's one less suffix to |
| 517 | // add. |
| 518 | SuffixesToAdd--; |
| 519 | |
| 520 | if (Active.Node->isRoot()) { |
| 521 | if (Active.Len > 0) { |
| 522 | Active.Len--; |
| 523 | Active.Idx = EndIdx - SuffixesToAdd + 1; |
| 524 | } |
| 525 | } else { |
| 526 | // Start the next phase at the next smallest suffix. |
| 527 | Active.Node = Active.Node->Link; |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | return SuffixesToAdd; |
| 532 | } |
| 533 | |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 534 | public: |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 535 | /// Construct a suffix tree from a sequence of unsigned integers. |
| 536 | /// |
| 537 | /// \param Str The string to construct the suffix tree for. |
| 538 | SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { |
| 539 | Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); |
| 540 | Root->IsInTree = true; |
| 541 | Active.Node = Root; |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 542 | LeafVector = std::vector<SuffixTreeNode *>(Str.size()); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 543 | |
| 544 | // Keep track of the number of suffixes we have to add of the current |
| 545 | // prefix. |
| 546 | size_t SuffixesToAdd = 0; |
| 547 | Active.Node = Root; |
| 548 | |
| 549 | // Construct the suffix tree iteratively on each prefix of the string. |
| 550 | // PfxEndIdx is the end index of the current prefix. |
| 551 | // End is one past the last element in the string. |
| 552 | for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) { |
| 553 | SuffixesToAdd++; |
| 554 | LeafEndIdx = PfxEndIdx; // Extend each of the leaves. |
| 555 | SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); |
| 556 | } |
| 557 | |
| 558 | // Set the suffix indices of each leaf. |
| 559 | assert(Root && "Root node can't be nullptr!"); |
| 560 | setSuffixIndices(*Root, 0); |
| 561 | } |
| 562 | }; |
| 563 | |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 564 | /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. |
| 565 | struct InstructionMapper { |
| 566 | |
| 567 | /// \brief The next available integer to assign to a \p MachineInstr that |
| 568 | /// cannot be outlined. |
| 569 | /// |
| 570 | /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. |
| 571 | unsigned IllegalInstrNumber = -3; |
| 572 | |
| 573 | /// \brief The next available integer to assign to a \p MachineInstr that can |
| 574 | /// be outlined. |
| 575 | unsigned LegalInstrNumber = 0; |
| 576 | |
| 577 | /// Correspondence from \p MachineInstrs to unsigned integers. |
| 578 | DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> |
| 579 | InstructionIntegerMap; |
| 580 | |
| 581 | /// Corresponcence from unsigned integers to \p MachineInstrs. |
| 582 | /// Inverse of \p InstructionIntegerMap. |
| 583 | DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; |
| 584 | |
| 585 | /// The vector of unsigned integers that the module is mapped to. |
| 586 | std::vector<unsigned> UnsignedVec; |
| 587 | |
| 588 | /// \brief Stores the location of the instruction associated with the integer |
| 589 | /// at index i in \p UnsignedVec for each index i. |
| 590 | std::vector<MachineBasicBlock::iterator> InstrList; |
| 591 | |
| 592 | /// \brief Maps \p *It to a legal integer. |
| 593 | /// |
| 594 | /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, |
| 595 | /// \p IntegerInstructionMap, and \p LegalInstrNumber. |
| 596 | /// |
| 597 | /// \returns The integer that \p *It was mapped to. |
| 598 | unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { |
| 599 | |
| 600 | // Get the integer for this instruction or give it the current |
| 601 | // LegalInstrNumber. |
| 602 | InstrList.push_back(It); |
| 603 | MachineInstr &MI = *It; |
| 604 | bool WasInserted; |
| 605 | DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 606 | ResultIt; |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 607 | std::tie(ResultIt, WasInserted) = |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 608 | InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 609 | unsigned MINumber = ResultIt->second; |
| 610 | |
| 611 | // There was an insertion. |
| 612 | if (WasInserted) { |
| 613 | LegalInstrNumber++; |
| 614 | IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); |
| 615 | } |
| 616 | |
| 617 | UnsignedVec.push_back(MINumber); |
| 618 | |
| 619 | // Make sure we don't overflow or use any integers reserved by the DenseMap. |
| 620 | if (LegalInstrNumber >= IllegalInstrNumber) |
| 621 | report_fatal_error("Instruction mapping overflow!"); |
| 622 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 623 | assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && |
| 624 | "Tried to assign DenseMap tombstone or empty key to instruction."); |
| 625 | assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && |
| 626 | "Tried to assign DenseMap tombstone or empty key to instruction."); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 627 | |
| 628 | return MINumber; |
| 629 | } |
| 630 | |
| 631 | /// Maps \p *It to an illegal integer. |
| 632 | /// |
| 633 | /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. |
| 634 | /// |
| 635 | /// \returns The integer that \p *It was mapped to. |
| 636 | unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { |
| 637 | unsigned MINumber = IllegalInstrNumber; |
| 638 | |
| 639 | InstrList.push_back(It); |
| 640 | UnsignedVec.push_back(IllegalInstrNumber); |
| 641 | IllegalInstrNumber--; |
| 642 | |
| 643 | assert(LegalInstrNumber < IllegalInstrNumber && |
| 644 | "Instruction mapping overflow!"); |
| 645 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 646 | assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && |
| 647 | "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 648 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 649 | assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && |
| 650 | "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 651 | |
| 652 | return MINumber; |
| 653 | } |
| 654 | |
| 655 | /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds |
| 656 | /// and appends it to \p UnsignedVec and \p InstrList. |
| 657 | /// |
| 658 | /// Two instructions are assigned the same integer if they are identical. |
| 659 | /// If an instruction is deemed unsafe to outline, then it will be assigned an |
| 660 | /// unique integer. The resulting mapping is placed into a suffix tree and |
| 661 | /// queried for candidates. |
| 662 | /// |
| 663 | /// \param MBB The \p MachineBasicBlock to be translated into integers. |
| 664 | /// \param TRI \p TargetRegisterInfo for the module. |
| 665 | /// \param TII \p TargetInstrInfo for the module. |
| 666 | void convertToUnsignedVec(MachineBasicBlock &MBB, |
| 667 | const TargetRegisterInfo &TRI, |
| 668 | const TargetInstrInfo &TII) { |
| 669 | for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; |
| 670 | It++) { |
| 671 | |
| 672 | // Keep track of where this instruction is in the module. |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 673 | switch (TII.getOutliningType(*It)) { |
| 674 | case TargetInstrInfo::MachineOutlinerInstrType::Illegal: |
| 675 | mapToIllegalUnsigned(It); |
| 676 | break; |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 677 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 678 | case TargetInstrInfo::MachineOutlinerInstrType::Legal: |
| 679 | mapToLegalUnsigned(It); |
| 680 | break; |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 681 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 682 | case TargetInstrInfo::MachineOutlinerInstrType::Invisible: |
| 683 | break; |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 684 | } |
| 685 | } |
| 686 | |
| 687 | // After we're done every insertion, uniquely terminate this part of the |
| 688 | // "string". This makes sure we won't match across basic block or function |
| 689 | // boundaries since the "end" is encoded uniquely and thus appears in no |
| 690 | // repeated substring. |
| 691 | InstrList.push_back(MBB.end()); |
| 692 | UnsignedVec.push_back(IllegalInstrNumber); |
| 693 | IllegalInstrNumber--; |
| 694 | } |
| 695 | |
| 696 | InstructionMapper() { |
| 697 | // Make sure that the implementation of DenseMapInfo<unsigned> hasn't |
| 698 | // changed. |
| 699 | assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 700 | "DenseMapInfo<unsigned>'s empty key isn't -1!"); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 701 | assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 702 | "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 703 | } |
| 704 | }; |
| 705 | |
| 706 | /// \brief An interprocedural pass which finds repeated sequences of |
| 707 | /// instructions and replaces them with calls to functions. |
| 708 | /// |
| 709 | /// Each instruction is mapped to an unsigned integer and placed in a string. |
| 710 | /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree |
| 711 | /// is then repeatedly queried for repeated sequences of instructions. Each |
| 712 | /// non-overlapping repeated sequence is then placed in its own |
| 713 | /// \p MachineFunction and each instance is then replaced with a call to that |
| 714 | /// function. |
| 715 | struct MachineOutliner : public ModulePass { |
| 716 | |
| 717 | static char ID; |
| 718 | |
| 719 | StringRef getPassName() const override { return "Machine Outliner"; } |
| 720 | |
| 721 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 722 | AU.addRequired<MachineModuleInfo>(); |
| 723 | AU.addPreserved<MachineModuleInfo>(); |
| 724 | AU.setPreservesAll(); |
| 725 | ModulePass::getAnalysisUsage(AU); |
| 726 | } |
| 727 | |
| 728 | MachineOutliner() : ModulePass(ID) { |
| 729 | initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); |
| 730 | } |
| 731 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 732 | /// Find all repeated substrings that satisfy the outlining cost model. |
| 733 | /// |
| 734 | /// If a substring appears at least twice, then it must be represented by |
| 735 | /// an internal node which appears in at least two suffixes. Each suffix is |
| 736 | /// represented by a leaf node. To do this, we visit each internal node in |
| 737 | /// the tree, using the leaf children of each internal node. If an internal |
| 738 | /// node represents a beneficial substring, then we use each of its leaf |
| 739 | /// children to find the locations of its substring. |
| 740 | /// |
| 741 | /// \param ST A suffix tree to query. |
| 742 | /// \param TII TargetInstrInfo for the target. |
| 743 | /// \param Mapper Contains outlining mapping information. |
| 744 | /// \param[out] CandidateList Filled with candidates representing each |
| 745 | /// beneficial substring. |
| 746 | /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each |
| 747 | /// type of candidate. |
| 748 | /// |
| 749 | /// \returns The length of the longest candidate found. |
| 750 | size_t findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, |
| 751 | InstructionMapper &Mapper, |
| 752 | std::vector<Candidate> &CandidateList, |
| 753 | std::vector<OutlinedFunction> &FunctionList); |
| 754 | |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 755 | /// \brief Replace the sequences of instructions represented by the |
| 756 | /// \p Candidates in \p CandidateList with calls to \p MachineFunctions |
| 757 | /// described in \p FunctionList. |
| 758 | /// |
| 759 | /// \param M The module we are outlining from. |
| 760 | /// \param CandidateList A list of candidates to be outlined. |
| 761 | /// \param FunctionList A list of functions to be inserted into the module. |
| 762 | /// \param Mapper Contains the instruction mappings for the module. |
| 763 | bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, |
| 764 | std::vector<OutlinedFunction> &FunctionList, |
| 765 | InstructionMapper &Mapper); |
| 766 | |
| 767 | /// Creates a function for \p OF and inserts it into the module. |
| 768 | MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, |
| 769 | InstructionMapper &Mapper); |
| 770 | |
| 771 | /// Find potential outlining candidates and store them in \p CandidateList. |
| 772 | /// |
| 773 | /// For each type of potential candidate, also build an \p OutlinedFunction |
| 774 | /// struct containing the information to build the function for that |
| 775 | /// candidate. |
| 776 | /// |
| 777 | /// \param[out] CandidateList Filled with outlining candidates for the module. |
| 778 | /// \param[out] FunctionList Filled with functions corresponding to each type |
| 779 | /// of \p Candidate. |
| 780 | /// \param ST The suffix tree for the module. |
| 781 | /// \param TII TargetInstrInfo for the module. |
| 782 | /// |
| 783 | /// \returns The length of the longest candidate found. 0 if there are none. |
| 784 | unsigned buildCandidateList(std::vector<Candidate> &CandidateList, |
| 785 | std::vector<OutlinedFunction> &FunctionList, |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 786 | SuffixTree &ST, InstructionMapper &Mapper, |
Jessica Paquette | c984e21 | 2017-03-13 18:39:33 +0000 | [diff] [blame] | 787 | const TargetInstrInfo &TII); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 788 | |
| 789 | /// \brief Remove any overlapping candidates that weren't handled by the |
| 790 | /// suffix tree's pruning method. |
| 791 | /// |
| 792 | /// Pruning from the suffix tree doesn't necessarily remove all overlaps. |
| 793 | /// If a short candidate is chosen for outlining, then a longer candidate |
| 794 | /// which has that short candidate as a suffix is chosen, the tree's pruning |
| 795 | /// method will not find it. Thus, we need to prune before outlining as well. |
| 796 | /// |
| 797 | /// \param[in,out] CandidateList A list of outlining candidates. |
| 798 | /// \param[in,out] FunctionList A list of functions to be outlined. |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 799 | /// \param Mapper Contains instruction mapping info for outlining. |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 800 | /// \param MaxCandidateLen The length of the longest candidate. |
| 801 | /// \param TII TargetInstrInfo for the module. |
| 802 | void pruneOverlaps(std::vector<Candidate> &CandidateList, |
| 803 | std::vector<OutlinedFunction> &FunctionList, |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 804 | InstructionMapper &Mapper, unsigned MaxCandidateLen, |
| 805 | const TargetInstrInfo &TII); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 806 | |
| 807 | /// Construct a suffix tree on the instructions in \p M and outline repeated |
| 808 | /// strings from that tree. |
| 809 | bool runOnModule(Module &M) override; |
| 810 | }; |
| 811 | |
| 812 | } // Anonymous namespace. |
| 813 | |
| 814 | char MachineOutliner::ID = 0; |
| 815 | |
| 816 | namespace llvm { |
| 817 | ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); } |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 818 | } // namespace llvm |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 819 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 820 | INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, |
| 821 | false) |
| 822 | |
| 823 | size_t |
| 824 | MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, |
| 825 | InstructionMapper &Mapper, |
| 826 | std::vector<Candidate> &CandidateList, |
| 827 | std::vector<OutlinedFunction> &FunctionList) { |
| 828 | |
| 829 | CandidateList.clear(); |
| 830 | FunctionList.clear(); |
| 831 | size_t FnIdx = 0; |
| 832 | size_t MaxLen = 0; |
| 833 | |
| 834 | // FIXME: Visit internal nodes instead of leaves. |
| 835 | for (SuffixTreeNode *Leaf : ST.LeafVector) { |
| 836 | assert(Leaf && "Leaves in LeafVector cannot be null!"); |
| 837 | if (!Leaf->IsInTree) |
| 838 | continue; |
| 839 | |
| 840 | assert(Leaf->Parent && "All leaves must have parents!"); |
| 841 | SuffixTreeNode &Parent = *(Leaf->Parent); |
| 842 | |
| 843 | // If it doesn't appear enough, or we already outlined from it, skip it. |
| 844 | if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) |
| 845 | continue; |
| 846 | |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 847 | // Figure out if this candidate is beneficial. |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 848 | size_t StringLen = Leaf->ConcatLen - Leaf->size(); |
Jessica Paquette | 95c1107 | 2017-08-14 22:57:41 +0000 | [diff] [blame] | 849 | |
| 850 | // Too short to be beneficial; skip it. |
| 851 | // FIXME: This isn't necessarily true for, say, X86. If we factor in |
| 852 | // instruction lengths we need more information than this. |
| 853 | if (StringLen < 2) |
| 854 | continue; |
| 855 | |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 856 | size_t CallOverhead = 0; |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 857 | size_t SequenceOverhead = StringLen; |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 858 | |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 859 | // If this is a beneficial class of candidate, then every one is stored in |
| 860 | // this vector. |
| 861 | std::vector<Candidate> CandidatesForRepeatedSeq; |
| 862 | |
| 863 | // Used for getOutliningFrameOverhead. |
| 864 | // FIXME: CandidatesForRepeatedSeq and this should be combined. |
| 865 | std::vector< |
| 866 | std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> |
| 867 | CandidateClass; |
| 868 | |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 869 | // Figure out the call overhead for each instance of the sequence. |
| 870 | for (auto &ChildPair : Parent.Children) { |
| 871 | SuffixTreeNode *M = ChildPair.second; |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 872 | |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 873 | if (M && M->IsInTree && M->isLeaf()) { |
| 874 | // Each sequence is over [StartIt, EndIt]. |
| 875 | MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx]; |
| 876 | MachineBasicBlock::iterator EndIt = |
| 877 | Mapper.InstrList[M->SuffixIdx + StringLen - 1]; |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 878 | |
| 879 | // Get the overhead for calling a function for this sequence and any |
| 880 | // target-specified data for how to construct the call. |
| 881 | std::pair<size_t, unsigned> CallOverheadPair = |
| 882 | TII.getOutliningCallOverhead(StartIt, EndIt); |
| 883 | CallOverhead += CallOverheadPair.first; |
| 884 | CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen, FnIdx, |
| 885 | CallOverheadPair.second); |
| 886 | CandidateClass.emplace_back(std::make_pair(StartIt, EndIt)); |
| 887 | |
| 888 | // Never visit this leaf again. |
| 889 | M->IsInTree = false; |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 890 | } |
| 891 | } |
| 892 | |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 893 | std::pair<size_t, unsigned> FrameOverheadPair = |
| 894 | TII.getOutliningFrameOverhead(CandidateClass); |
| 895 | size_t FrameOverhead = FrameOverheadPair.first; |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 896 | |
| 897 | size_t OutliningCost = CallOverhead + FrameOverhead + SequenceOverhead; |
| 898 | size_t NotOutliningCost = SequenceOverhead * Parent.OccurrenceCount; |
| 899 | |
Jessica Paquette | ffe4abc | 2017-08-31 21:02:45 +0000 | [diff] [blame^] | 900 | // Is it better to outline this candidate than not? |
| 901 | if (NotOutliningCost <= OutliningCost) { |
| 902 | // Outlining this candidate would take more instructions than not |
| 903 | // outlining. |
| 904 | // Emit a remark explaining why we didn't outline this candidate. |
| 905 | std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C = |
| 906 | CandidateClass[0]; |
| 907 | MachineOptimizationRemarkEmitter MORE( |
| 908 | *(C.first->getParent()->getParent()), nullptr); |
| 909 | MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", |
| 910 | C.first->getDebugLoc(), |
| 911 | C.first->getParent()); |
| 912 | R << "Did not outline " << NV("Length", StringLen) << " instructions" |
| 913 | << " from " << NV("NumOccurrences", CandidateClass.size()) |
| 914 | << " locations." |
| 915 | << " Instructions from outlining all occurrences (" |
| 916 | << NV("OutliningCost", OutliningCost) << ")" |
| 917 | << " >= Unoutlined instruction count (" |
| 918 | << NV("NotOutliningCost", NotOutliningCost) << ")" |
| 919 | << " (Also found at: "; |
| 920 | |
| 921 | // Tell the user the other places the candidate was found. |
| 922 | for (size_t i = 1, e = CandidateClass.size(); i < e; i++) { |
| 923 | R << NV((Twine("OtherStartLoc") + Twine(i)).str(), |
| 924 | CandidateClass[i].first->getDebugLoc()); |
| 925 | if (i != e - 1) |
| 926 | R << ", "; |
| 927 | } |
| 928 | |
| 929 | R << ")"; |
| 930 | MORE.emit(R); |
| 931 | |
| 932 | // Move to the next candidate. |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 933 | continue; |
Jessica Paquette | ffe4abc | 2017-08-31 21:02:45 +0000 | [diff] [blame^] | 934 | } |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 935 | |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 936 | size_t Benefit = NotOutliningCost - OutliningCost; |
| 937 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 938 | if (StringLen > MaxLen) |
| 939 | MaxLen = StringLen; |
| 940 | |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 941 | // At this point, the candidate class is seen as beneficial. Set their |
| 942 | // benefit values and save them in the candidate list. |
| 943 | for (Candidate &C : CandidatesForRepeatedSeq) { |
| 944 | C.Benefit = Benefit; |
| 945 | CandidateList.push_back(C); |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 946 | } |
| 947 | |
| 948 | // Save the function for the new candidate sequence. |
| 949 | std::vector<unsigned> CandidateSequence; |
| 950 | for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) |
| 951 | CandidateSequence.push_back(ST.Str[i]); |
| 952 | |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 953 | FunctionList.emplace_back(FnIdx, CandidatesForRepeatedSeq.size(), |
| 954 | CandidateSequence, Benefit, |
| 955 | FrameOverheadPair.second); |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 956 | |
| 957 | // Move to the next function. |
| 958 | FnIdx++; |
| 959 | Parent.IsInTree = false; |
| 960 | } |
| 961 | |
| 962 | return MaxLen; |
| 963 | } |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 964 | |
| 965 | void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, |
| 966 | std::vector<OutlinedFunction> &FunctionList, |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 967 | InstructionMapper &Mapper, |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 968 | unsigned MaxCandidateLen, |
| 969 | const TargetInstrInfo &TII) { |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 970 | // TODO: Experiment with interval trees or other interval-checking structures |
| 971 | // to lower the time complexity of this function. |
| 972 | // TODO: Can we do better than the simple greedy choice? |
| 973 | // Check for overlaps in the range. |
| 974 | // This is O(MaxCandidateLen * CandidateList.size()). |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 975 | for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; |
| 976 | It++) { |
| 977 | Candidate &C1 = *It; |
| 978 | OutlinedFunction &F1 = FunctionList[C1.FunctionIdx]; |
| 979 | |
| 980 | // If we removed this candidate, skip it. |
| 981 | if (!C1.InCandidateList) |
| 982 | continue; |
| 983 | |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 984 | // Is it still worth it to outline C1? |
| 985 | if (F1.Benefit < 1 || F1.OccurrenceCount < 2) { |
| 986 | assert(F1.OccurrenceCount > 0 && |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 987 | "Can't remove OutlinedFunction with no occurrences!"); |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 988 | F1.OccurrenceCount--; |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 989 | C1.InCandidateList = false; |
| 990 | continue; |
| 991 | } |
| 992 | |
| 993 | // The minimum start index of any candidate that could overlap with this |
| 994 | // one. |
| 995 | unsigned FarthestPossibleIdx = 0; |
| 996 | |
| 997 | // Either the index is 0, or it's at most MaxCandidateLen indices away. |
| 998 | if (C1.StartIdx > MaxCandidateLen) |
| 999 | FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen; |
| 1000 | |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1001 | // Compare against the candidates in the list that start at at most |
| 1002 | // FarthestPossibleIdx indices away from C1. There are at most |
| 1003 | // MaxCandidateLen of these. |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1004 | for (auto Sit = It + 1; Sit != Et; Sit++) { |
| 1005 | Candidate &C2 = *Sit; |
| 1006 | OutlinedFunction &F2 = FunctionList[C2.FunctionIdx]; |
| 1007 | |
| 1008 | // Is this candidate too far away to overlap? |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1009 | if (C2.StartIdx < FarthestPossibleIdx) |
| 1010 | break; |
| 1011 | |
| 1012 | // Did we already remove this candidate in a previous step? |
| 1013 | if (!C2.InCandidateList) |
| 1014 | continue; |
| 1015 | |
| 1016 | // Is the function beneficial to outline? |
| 1017 | if (F2.OccurrenceCount < 2 || F2.Benefit < 1) { |
| 1018 | // If not, remove this candidate and move to the next one. |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1019 | assert(F2.OccurrenceCount > 0 && |
| 1020 | "Can't remove OutlinedFunction with no occurrences!"); |
| 1021 | F2.OccurrenceCount--; |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1022 | C2.InCandidateList = false; |
| 1023 | continue; |
| 1024 | } |
| 1025 | |
| 1026 | size_t C2End = C2.StartIdx + C2.Len - 1; |
| 1027 | |
| 1028 | // Do C1 and C2 overlap? |
| 1029 | // |
| 1030 | // Not overlapping: |
| 1031 | // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices |
| 1032 | // |
| 1033 | // We sorted our candidate list so C2Start <= C1Start. We know that |
| 1034 | // C2End > C2Start since each candidate has length >= 2. Therefore, all we |
| 1035 | // have to check is C2End < C2Start to see if we overlap. |
| 1036 | if (C2End < C1.StartIdx) |
| 1037 | continue; |
| 1038 | |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1039 | // C1 and C2 overlap. |
| 1040 | // We need to choose the better of the two. |
| 1041 | // |
| 1042 | // Approximate this by picking the one which would have saved us the |
| 1043 | // most instructions before any pruning. |
| 1044 | if (C1.Benefit >= C2.Benefit) { |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1045 | |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1046 | // C1 is better, so remove C2 and update C2's OutlinedFunction to |
| 1047 | // reflect the removal. |
| 1048 | assert(F2.OccurrenceCount > 0 && |
| 1049 | "Can't remove OutlinedFunction with no occurrences!"); |
| 1050 | F2.OccurrenceCount--; |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 1051 | |
| 1052 | // Remove the call overhead from the removed sequence. |
| 1053 | MachineBasicBlock::iterator StartIt = Mapper.InstrList[C2.StartIdx]; |
| 1054 | MachineBasicBlock::iterator EndIt = |
| 1055 | Mapper.InstrList[C2.StartIdx + C2.Len - 1]; |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 1056 | |
| 1057 | F2.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt).first; |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 1058 | // Add back one instance of the sequence. |
| 1059 | |
| 1060 | if (F2.Sequence.size() > F2.Benefit) |
| 1061 | F2.Benefit = 0; |
| 1062 | else |
| 1063 | F2.Benefit -= F2.Sequence.size(); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1064 | |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1065 | C2.InCandidateList = false; |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1066 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 1067 | DEBUG(dbgs() << "- Removed C2. \n"; |
| 1068 | dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount |
| 1069 | << "\n"; |
| 1070 | dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";); |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1071 | |
| 1072 | } else { |
| 1073 | // C2 is better, so remove C1 and update C1's OutlinedFunction to |
| 1074 | // reflect the removal. |
| 1075 | assert(F1.OccurrenceCount > 0 && |
| 1076 | "Can't remove OutlinedFunction with no occurrences!"); |
| 1077 | F1.OccurrenceCount--; |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 1078 | |
| 1079 | // Remove the call overhead from the removed sequence. |
| 1080 | MachineBasicBlock::iterator StartIt = Mapper.InstrList[C1.StartIdx]; |
| 1081 | MachineBasicBlock::iterator EndIt = |
| 1082 | Mapper.InstrList[C1.StartIdx + C1.Len - 1]; |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 1083 | |
| 1084 | F1.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt).first; |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 1085 | |
| 1086 | // Add back one instance of the sequence. |
| 1087 | if (F1.Sequence.size() > F1.Benefit) |
| 1088 | F1.Benefit = 0; |
| 1089 | else |
| 1090 | F1.Benefit -= F1.Sequence.size(); |
| 1091 | |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1092 | C1.InCandidateList = false; |
| 1093 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 1094 | DEBUG(dbgs() << "- Removed C1. \n"; |
| 1095 | dbgs() << "--- Num fns left for C1: " << F1.OccurrenceCount |
| 1096 | << "\n"; |
| 1097 | dbgs() << "--- C1's benefit: " << F1.Benefit << "\n";); |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1098 | |
| 1099 | // C1 is out, so we don't have to compare it against anyone else. |
| 1100 | break; |
| 1101 | } |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1102 | } |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | unsigned |
| 1107 | MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, |
| 1108 | std::vector<OutlinedFunction> &FunctionList, |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 1109 | SuffixTree &ST, InstructionMapper &Mapper, |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1110 | const TargetInstrInfo &TII) { |
| 1111 | |
| 1112 | std::vector<unsigned> CandidateSequence; // Current outlining candidate. |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 1113 | size_t MaxCandidateLen = 0; // Length of the longest candidate. |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1114 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 1115 | MaxCandidateLen = |
| 1116 | findCandidates(ST, TII, Mapper, CandidateList, FunctionList); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1117 | |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1118 | // Sort the candidates in decending order. This will simplify the outlining |
| 1119 | // process when we have to remove the candidates from the mapping by |
| 1120 | // allowing us to cut them out without keeping track of an offset. |
| 1121 | std::stable_sort(CandidateList.begin(), CandidateList.end()); |
| 1122 | |
| 1123 | return MaxCandidateLen; |
| 1124 | } |
| 1125 | |
| 1126 | MachineFunction * |
| 1127 | MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 1128 | InstructionMapper &Mapper) { |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1129 | |
| 1130 | // Create the function name. This should be unique. For now, just hash the |
| 1131 | // module name and include it in the function name plus the number of this |
| 1132 | // function. |
| 1133 | std::ostringstream NameStream; |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 1134 | NameStream << "OUTLINED_FUNCTION_" << OF.Name; |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1135 | |
| 1136 | // Create the function using an IR-level function. |
| 1137 | LLVMContext &C = M.getContext(); |
| 1138 | Function *F = dyn_cast<Function>( |
Serge Guelton | 59a2d7b | 2017-04-11 15:01:18 +0000 | [diff] [blame] | 1139 | M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1140 | assert(F && "Function was null!"); |
| 1141 | |
| 1142 | // NOTE: If this is linkonceodr, then we can take advantage of linker deduping |
| 1143 | // which gives us better results when we outline from linkonceodr functions. |
| 1144 | F->setLinkage(GlobalValue::PrivateLinkage); |
| 1145 | F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); |
| 1146 | |
| 1147 | BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); |
| 1148 | IRBuilder<> Builder(EntryBB); |
| 1149 | Builder.CreateRetVoid(); |
| 1150 | |
| 1151 | MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); |
Matthias Braun | 7bda195 | 2017-06-06 00:44:35 +0000 | [diff] [blame] | 1152 | MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1153 | MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); |
| 1154 | const TargetSubtargetInfo &STI = MF.getSubtarget(); |
| 1155 | const TargetInstrInfo &TII = *STI.getInstrInfo(); |
| 1156 | |
| 1157 | // Insert the new function into the module. |
| 1158 | MF.insert(MF.begin(), &MBB); |
| 1159 | |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 1160 | TII.insertOutlinerPrologue(MBB, MF, OF.FrameClass); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1161 | |
| 1162 | // Copy over the instructions for the function using the integer mappings in |
| 1163 | // its sequence. |
| 1164 | for (unsigned Str : OF.Sequence) { |
| 1165 | MachineInstr *NewMI = |
| 1166 | MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); |
| 1167 | NewMI->dropMemRefs(); |
| 1168 | |
| 1169 | // Don't keep debug information for outlined instructions. |
| 1170 | // FIXME: This means outlined functions are currently undebuggable. |
| 1171 | NewMI->setDebugLoc(DebugLoc()); |
| 1172 | MBB.insert(MBB.end(), NewMI); |
| 1173 | } |
| 1174 | |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 1175 | TII.insertOutlinerEpilogue(MBB, MF, OF.FrameClass); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1176 | |
| 1177 | return &MF; |
| 1178 | } |
| 1179 | |
| 1180 | bool MachineOutliner::outline(Module &M, |
| 1181 | const ArrayRef<Candidate> &CandidateList, |
| 1182 | std::vector<OutlinedFunction> &FunctionList, |
| 1183 | InstructionMapper &Mapper) { |
| 1184 | |
| 1185 | bool OutlinedSomething = false; |
| 1186 | |
| 1187 | // Replace the candidates with calls to their respective outlined functions. |
| 1188 | for (const Candidate &C : CandidateList) { |
| 1189 | |
| 1190 | // Was the candidate removed during pruneOverlaps? |
| 1191 | if (!C.InCandidateList) |
| 1192 | continue; |
| 1193 | |
| 1194 | // If not, then look at its OutlinedFunction. |
| 1195 | OutlinedFunction &OF = FunctionList[C.FunctionIdx]; |
| 1196 | |
| 1197 | // Was its OutlinedFunction made unbeneficial during pruneOverlaps? |
| 1198 | if (OF.OccurrenceCount < 2 || OF.Benefit < 1) |
| 1199 | continue; |
| 1200 | |
| 1201 | // If not, then outline it. |
| 1202 | assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); |
| 1203 | MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent(); |
| 1204 | MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx]; |
| 1205 | unsigned EndIdx = C.StartIdx + C.Len - 1; |
| 1206 | |
| 1207 | assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); |
| 1208 | MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; |
| 1209 | assert(EndIt != MBB->end() && "EndIt out of bounds!"); |
| 1210 | |
| 1211 | EndIt++; // Erase needs one past the end index. |
| 1212 | |
| 1213 | // Does this candidate have a function yet? |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1214 | if (!OF.MF) { |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1215 | OF.MF = createOutlinedFunction(M, OF, Mapper); |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1216 | FunctionsCreated++; |
| 1217 | } |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1218 | |
| 1219 | MachineFunction *MF = OF.MF; |
| 1220 | const TargetSubtargetInfo &STI = MF->getSubtarget(); |
| 1221 | const TargetInstrInfo &TII = *STI.getInstrInfo(); |
| 1222 | |
| 1223 | // Insert a call to the new function and erase the old sequence. |
Jessica Paquette | d87f544 | 2017-07-29 02:55:46 +0000 | [diff] [blame] | 1224 | TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.CallClass); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1225 | StartIt = Mapper.InstrList[C.StartIdx]; |
| 1226 | MBB->erase(StartIt, EndIt); |
| 1227 | |
| 1228 | OutlinedSomething = true; |
| 1229 | |
| 1230 | // Statistics. |
| 1231 | NumOutlined++; |
| 1232 | } |
| 1233 | |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 1234 | DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1235 | |
| 1236 | return OutlinedSomething; |
| 1237 | } |
| 1238 | |
| 1239 | bool MachineOutliner::runOnModule(Module &M) { |
| 1240 | |
| 1241 | // Is there anything in the module at all? |
| 1242 | if (M.empty()) |
| 1243 | return false; |
| 1244 | |
| 1245 | MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); |
Jessica Paquette | 78681be | 2017-07-27 23:24:43 +0000 | [diff] [blame] | 1246 | const TargetSubtargetInfo &STI = |
| 1247 | MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1248 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
| 1249 | const TargetInstrInfo *TII = STI.getInstrInfo(); |
| 1250 | |
| 1251 | InstructionMapper Mapper; |
| 1252 | |
| 1253 | // Build instruction mappings for each function in the module. |
| 1254 | for (Function &F : M) { |
Matthias Braun | 7bda195 | 2017-06-06 00:44:35 +0000 | [diff] [blame] | 1255 | MachineFunction &MF = MMI.getOrCreateMachineFunction(F); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1256 | |
| 1257 | // Is the function empty? Safe to outline from? |
| 1258 | if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF)) |
| 1259 | continue; |
| 1260 | |
| 1261 | // If it is, look at each MachineBasicBlock in the function. |
| 1262 | for (MachineBasicBlock &MBB : MF) { |
| 1263 | |
| 1264 | // Is there anything in MBB? |
| 1265 | if (MBB.empty()) |
| 1266 | continue; |
| 1267 | |
| 1268 | // If yes, map it. |
| 1269 | Mapper.convertToUnsignedVec(MBB, *TRI, *TII); |
| 1270 | } |
| 1271 | } |
| 1272 | |
| 1273 | // Construct a suffix tree, use it to find candidates, and then outline them. |
| 1274 | SuffixTree ST(Mapper.UnsignedVec); |
| 1275 | std::vector<Candidate> CandidateList; |
| 1276 | std::vector<OutlinedFunction> FunctionList; |
| 1277 | |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1278 | // Find all of the outlining candidates. |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1279 | unsigned MaxCandidateLen = |
Jessica Paquette | c984e21 | 2017-03-13 18:39:33 +0000 | [diff] [blame] | 1280 | buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1281 | |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1282 | // Remove candidates that overlap with other candidates. |
Jessica Paquette | 809d708 | 2017-07-28 03:21:58 +0000 | [diff] [blame] | 1283 | pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); |
Jessica Paquette | acffa28 | 2017-03-23 21:27:38 +0000 | [diff] [blame] | 1284 | |
| 1285 | // Outline each of the candidates and return true if something was outlined. |
Jessica Paquette | 596f483 | 2017-03-06 21:31:18 +0000 | [diff] [blame] | 1286 | return outline(M, CandidateList, FunctionList, Mapper); |
| 1287 | } |