blob: 2573be8f2be3a0f92cbf522cdd292bba41bf503a [file] [log] [blame]
ager@chromium.org71daaf62009-04-01 07:22:49 +00001// Copyright 2009 the V8 project authors. All rights reserved.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "accessors.h"
31#include "api.h"
32#include "bootstrapper.h"
33#include "codegen-inl.h"
kasperl@chromium.orgb9123622008-09-17 14:05:56 +000034#include "compilation-cache.h"
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000035#include "debug.h"
36#include "global-handles.h"
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000037#include "mark-compact.h"
38#include "natives.h"
39#include "scanner.h"
40#include "scopeinfo.h"
41#include "v8threads.h"
42
kasperl@chromium.org71affb52009-05-26 05:44:31 +000043namespace v8 {
44namespace internal {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000045
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000046#define ROOT_ALLOCATION(type, name) type* Heap::name##_;
47 ROOT_LIST(ROOT_ALLOCATION)
48#undef ROOT_ALLOCATION
49
50
51#define STRUCT_ALLOCATION(NAME, Name, name) Map* Heap::name##_map_;
52 STRUCT_LIST(STRUCT_ALLOCATION)
53#undef STRUCT_ALLOCATION
54
55
56#define SYMBOL_ALLOCATION(name, string) String* Heap::name##_;
57 SYMBOL_LIST(SYMBOL_ALLOCATION)
58#undef SYMBOL_ALLOCATION
59
ager@chromium.org3b45ab52009-03-19 22:21:34 +000060String* Heap::hidden_symbol_;
61
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +000062NewSpace Heap::new_space_;
ager@chromium.org9258b6b2008-09-11 09:11:10 +000063OldSpace* Heap::old_pointer_space_ = NULL;
64OldSpace* Heap::old_data_space_ = NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000065OldSpace* Heap::code_space_ = NULL;
66MapSpace* Heap::map_space_ = NULL;
67LargeObjectSpace* Heap::lo_space_ = NULL;
68
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +000069static const int kMinimumPromotionLimit = 2*MB;
70static const int kMinimumAllocationLimit = 8*MB;
71
72int Heap::old_gen_promotion_limit_ = kMinimumPromotionLimit;
73int Heap::old_gen_allocation_limit_ = kMinimumAllocationLimit;
74
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000075int Heap::old_gen_exhausted_ = false;
76
kasper.lund7276f142008-07-30 08:49:36 +000077int Heap::amount_of_external_allocated_memory_ = 0;
78int Heap::amount_of_external_allocated_memory_at_last_global_gc_ = 0;
79
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000080// semispace_size_ should be a power of 2 and old_generation_size_ should be
81// a multiple of Page::kPageSize.
ager@chromium.orgeadaf222009-06-16 09:43:10 +000082#if V8_HOST_ARCH_ARM
83int Heap::semispace_size_ = 512*KB;
84int Heap::old_generation_size_ = 128*MB;
85int Heap::initial_semispace_size_ = 128*KB;
86#else
87int Heap::semispace_size_ = 8*MB;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000088int Heap::old_generation_size_ = 512*MB;
ager@chromium.orgeadaf222009-06-16 09:43:10 +000089int Heap::initial_semispace_size_ = 512*KB;
90#endif
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000091
92GCCallback Heap::global_gc_prologue_callback_ = NULL;
93GCCallback Heap::global_gc_epilogue_callback_ = NULL;
94
95// Variables set based on semispace_size_ and old_generation_size_ in
96// ConfigureHeap.
97int Heap::young_generation_size_ = 0; // Will be 2 * semispace_size_.
98
ager@chromium.orgeadaf222009-06-16 09:43:10 +000099int Heap::survived_since_last_expansion_ = 0;
100
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000101Heap::HeapState Heap::gc_state_ = NOT_IN_GC;
102
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000103int Heap::mc_count_ = 0;
104int Heap::gc_count_ = 0;
105
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +0000106int Heap::always_allocate_scope_depth_ = 0;
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000107bool Heap::context_disposed_pending_ = false;
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +0000108
kasper.lund7276f142008-07-30 08:49:36 +0000109#ifdef DEBUG
110bool Heap::allocation_allowed_ = true;
111
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000112int Heap::allocation_timeout_ = 0;
113bool Heap::disallow_allocation_failure_ = false;
114#endif // DEBUG
115
116
117int Heap::Capacity() {
118 if (!HasBeenSetup()) return 0;
119
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000120 return new_space_.Capacity() +
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000121 old_pointer_space_->Capacity() +
122 old_data_space_->Capacity() +
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000123 code_space_->Capacity() +
124 map_space_->Capacity();
125}
126
127
128int Heap::Available() {
129 if (!HasBeenSetup()) return 0;
130
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000131 return new_space_.Available() +
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000132 old_pointer_space_->Available() +
133 old_data_space_->Available() +
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000134 code_space_->Available() +
135 map_space_->Available();
136}
137
138
139bool Heap::HasBeenSetup() {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000140 return old_pointer_space_ != NULL &&
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000141 old_data_space_ != NULL &&
142 code_space_ != NULL &&
143 map_space_ != NULL &&
144 lo_space_ != NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000145}
146
147
148GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space) {
149 // Is global GC requested?
150 if (space != NEW_SPACE || FLAG_gc_global) {
151 Counters::gc_compactor_caused_by_request.Increment();
152 return MARK_COMPACTOR;
153 }
154
155 // Is enough data promoted to justify a global GC?
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +0000156 if (OldGenerationPromotionLimitReached()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000157 Counters::gc_compactor_caused_by_promoted_data.Increment();
158 return MARK_COMPACTOR;
159 }
160
161 // Have allocation in OLD and LO failed?
162 if (old_gen_exhausted_) {
163 Counters::gc_compactor_caused_by_oldspace_exhaustion.Increment();
164 return MARK_COMPACTOR;
165 }
166
167 // Is there enough space left in OLD to guarantee that a scavenge can
168 // succeed?
169 //
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000170 // Note that MemoryAllocator->MaxAvailable() undercounts the memory available
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000171 // for object promotion. It counts only the bytes that the memory
172 // allocator has not yet allocated from the OS and assigned to any space,
173 // and does not count available bytes already in the old space or code
174 // space. Undercounting is safe---we may get an unrequested full GC when
175 // a scavenge would have succeeded.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000176 if (MemoryAllocator::MaxAvailable() <= new_space_.Size()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000177 Counters::gc_compactor_caused_by_oldspace_exhaustion.Increment();
178 return MARK_COMPACTOR;
179 }
180
181 // Default
182 return SCAVENGER;
183}
184
185
186// TODO(1238405): Combine the infrastructure for --heap-stats and
187// --log-gc to avoid the complicated preprocessor and flag testing.
188#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
189void Heap::ReportStatisticsBeforeGC() {
190 // Heap::ReportHeapStatistics will also log NewSpace statistics when
191 // compiled with ENABLE_LOGGING_AND_PROFILING and --log-gc is set. The
192 // following logic is used to avoid double logging.
193#if defined(DEBUG) && defined(ENABLE_LOGGING_AND_PROFILING)
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000194 if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000195 if (FLAG_heap_stats) {
196 ReportHeapStatistics("Before GC");
197 } else if (FLAG_log_gc) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000198 new_space_.ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000199 }
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000200 if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000201#elif defined(DEBUG)
202 if (FLAG_heap_stats) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000203 new_space_.CollectStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000204 ReportHeapStatistics("Before GC");
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000205 new_space_.ClearHistograms();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000206 }
207#elif defined(ENABLE_LOGGING_AND_PROFILING)
208 if (FLAG_log_gc) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000209 new_space_.CollectStatistics();
210 new_space_.ReportStatistics();
211 new_space_.ClearHistograms();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000212 }
213#endif
214}
215
216
217// TODO(1238405): Combine the infrastructure for --heap-stats and
218// --log-gc to avoid the complicated preprocessor and flag testing.
219void Heap::ReportStatisticsAfterGC() {
220 // Similar to the before GC, we use some complicated logic to ensure that
221 // NewSpace statistics are logged exactly once when --log-gc is turned on.
222#if defined(DEBUG) && defined(ENABLE_LOGGING_AND_PROFILING)
223 if (FLAG_heap_stats) {
224 ReportHeapStatistics("After GC");
225 } else if (FLAG_log_gc) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000226 new_space_.ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000227 }
228#elif defined(DEBUG)
229 if (FLAG_heap_stats) ReportHeapStatistics("After GC");
230#elif defined(ENABLE_LOGGING_AND_PROFILING)
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000231 if (FLAG_log_gc) new_space_.ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000232#endif
233}
234#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
235
236
237void Heap::GarbageCollectionPrologue() {
kasper.lund7276f142008-07-30 08:49:36 +0000238 gc_count_++;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000239#ifdef DEBUG
240 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
241 allow_allocation(false);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000242
243 if (FLAG_verify_heap) {
244 Verify();
245 }
246
247 if (FLAG_gc_verbose) Print();
248
249 if (FLAG_print_rset) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000250 // Not all spaces have remembered set bits that we care about.
251 old_pointer_space_->PrintRSet();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000252 map_space_->PrintRSet();
253 lo_space_->PrintRSet();
254 }
255#endif
256
257#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
258 ReportStatisticsBeforeGC();
259#endif
260}
261
262int Heap::SizeOfObjects() {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000263 int total = 0;
264 AllSpaces spaces;
265 while (Space* space = spaces.next()) total += space->Size();
266 return total;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000267}
268
269void Heap::GarbageCollectionEpilogue() {
270#ifdef DEBUG
271 allow_allocation(true);
272 ZapFromSpace();
273
274 if (FLAG_verify_heap) {
275 Verify();
276 }
277
278 if (FLAG_print_global_handles) GlobalHandles::Print();
279 if (FLAG_print_handles) PrintHandles();
280 if (FLAG_gc_verbose) Print();
281 if (FLAG_code_stats) ReportCodeStatistics("After GC");
282#endif
283
284 Counters::alive_after_last_gc.Set(SizeOfObjects());
285
286 SymbolTable* symbol_table = SymbolTable::cast(Heap::symbol_table_);
287 Counters::symbol_table_capacity.Set(symbol_table->Capacity());
288 Counters::number_of_symbols.Set(symbol_table->NumberOfElements());
289#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
290 ReportStatisticsAfterGC();
291#endif
kasperl@chromium.org71affb52009-05-26 05:44:31 +0000292#ifdef ENABLE_DEBUGGER_SUPPORT
293 Debug::AfterGarbageCollection();
294#endif
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000295}
296
297
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000298void Heap::CollectAllGarbage() {
299 // Since we are ignoring the return value, the exact choice of space does
300 // not matter, so long as we do not specify NEW_SPACE, which would not
301 // cause a full GC.
302 CollectGarbage(0, OLD_POINTER_SPACE);
303}
304
305
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000306void Heap::CollectAllGarbageIfContextDisposed() {
kasperl@chromium.orgd55d36b2009-03-05 08:03:28 +0000307 // If the garbage collector interface is exposed through the global
308 // gc() function, we avoid being clever about forcing GCs when
309 // contexts are disposed and leave it to the embedder to make
310 // informed decisions about when to force a collection.
311 if (!FLAG_expose_gc && context_disposed_pending_) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +0000312 HistogramTimerScope scope(&Counters::gc_context);
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000313 CollectAllGarbage();
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000314 }
kasperl@chromium.orgd55d36b2009-03-05 08:03:28 +0000315 context_disposed_pending_ = false;
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000316}
317
318
319void Heap::NotifyContextDisposed() {
320 context_disposed_pending_ = true;
321}
322
323
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000324bool Heap::CollectGarbage(int requested_size, AllocationSpace space) {
325 // The VM is in the GC state until exiting this function.
326 VMState state(GC);
327
328#ifdef DEBUG
329 // Reset the allocation timeout to the GC interval, but make sure to
330 // allow at least a few allocations after a collection. The reason
331 // for this is that we have a lot of allocation sequences and we
332 // assume that a garbage collection will allow the subsequent
333 // allocation attempts to go through.
334 allocation_timeout_ = Max(6, FLAG_gc_interval);
335#endif
336
337 { GCTracer tracer;
338 GarbageCollectionPrologue();
kasper.lund7276f142008-07-30 08:49:36 +0000339 // The GC count was incremented in the prologue. Tell the tracer about
340 // it.
341 tracer.set_gc_count(gc_count_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000342
343 GarbageCollector collector = SelectGarbageCollector(space);
kasper.lund7276f142008-07-30 08:49:36 +0000344 // Tell the tracer which collector we've selected.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000345 tracer.set_collector(collector);
346
ager@chromium.orgbb29dc92009-03-24 13:25:23 +0000347 HistogramTimer* rate = (collector == SCAVENGER)
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000348 ? &Counters::gc_scavenger
349 : &Counters::gc_compactor;
350 rate->Start();
kasper.lund7276f142008-07-30 08:49:36 +0000351 PerformGarbageCollection(space, collector, &tracer);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000352 rate->Stop();
353
354 GarbageCollectionEpilogue();
355 }
356
357
358#ifdef ENABLE_LOGGING_AND_PROFILING
359 if (FLAG_log_gc) HeapProfiler::WriteSample();
360#endif
361
362 switch (space) {
363 case NEW_SPACE:
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000364 return new_space_.Available() >= requested_size;
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000365 case OLD_POINTER_SPACE:
366 return old_pointer_space_->Available() >= requested_size;
367 case OLD_DATA_SPACE:
368 return old_data_space_->Available() >= requested_size;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000369 case CODE_SPACE:
370 return code_space_->Available() >= requested_size;
371 case MAP_SPACE:
372 return map_space_->Available() >= requested_size;
373 case LO_SPACE:
374 return lo_space_->Available() >= requested_size;
375 }
376 return false;
377}
378
379
kasper.lund7276f142008-07-30 08:49:36 +0000380void Heap::PerformScavenge() {
381 GCTracer tracer;
382 PerformGarbageCollection(NEW_SPACE, SCAVENGER, &tracer);
383}
384
385
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000386#ifdef DEBUG
kasperl@chromium.org416c5b02009-04-14 14:03:52 +0000387// Helper class for verifying the symbol table.
388class SymbolTableVerifier : public ObjectVisitor {
389 public:
390 SymbolTableVerifier() { }
391 void VisitPointers(Object** start, Object** end) {
392 // Visit all HeapObject pointers in [start, end).
393 for (Object** p = start; p < end; p++) {
394 if ((*p)->IsHeapObject()) {
395 // Check that the symbol is actually a symbol.
396 ASSERT((*p)->IsNull() || (*p)->IsUndefined() || (*p)->IsSymbol());
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000397 }
398 }
kasperl@chromium.org416c5b02009-04-14 14:03:52 +0000399 }
400};
401#endif // DEBUG
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000402
kasperl@chromium.org416c5b02009-04-14 14:03:52 +0000403
404static void VerifySymbolTable() {
405#ifdef DEBUG
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000406 SymbolTableVerifier verifier;
407 SymbolTable* symbol_table = SymbolTable::cast(Heap::symbol_table());
408 symbol_table->IterateElements(&verifier);
409#endif // DEBUG
410}
411
412
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000413void Heap::PerformGarbageCollection(AllocationSpace space,
kasper.lund7276f142008-07-30 08:49:36 +0000414 GarbageCollector collector,
415 GCTracer* tracer) {
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000416 VerifySymbolTable();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000417 if (collector == MARK_COMPACTOR && global_gc_prologue_callback_) {
418 ASSERT(!allocation_allowed_);
419 global_gc_prologue_callback_();
420 }
421
422 if (collector == MARK_COMPACTOR) {
kasper.lund7276f142008-07-30 08:49:36 +0000423 MarkCompact(tracer);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000424
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +0000425 int old_gen_size = PromotedSpaceSize();
426 old_gen_promotion_limit_ =
427 old_gen_size + Max(kMinimumPromotionLimit, old_gen_size / 3);
428 old_gen_allocation_limit_ =
ager@chromium.orgeadaf222009-06-16 09:43:10 +0000429 old_gen_size + Max(kMinimumAllocationLimit, old_gen_size / 2);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000430 old_gen_exhausted_ = false;
431
432 // If we have used the mark-compact collector to collect the new
433 // space, and it has not compacted the new space, we force a
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000434 // separate scavenge collection. This is a hack. It covers the
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000435 // case where (1) a new space collection was requested, (2) the
436 // collector selection policy selected the mark-compact collector,
437 // and (3) the mark-compact collector policy selected not to
438 // compact the new space. In that case, there is no more (usable)
439 // free space in the new space after the collection compared to
440 // before.
441 if (space == NEW_SPACE && !MarkCompactCollector::HasCompacted()) {
442 Scavenge();
443 }
444 } else {
445 Scavenge();
446 }
447 Counters::objs_since_last_young.Set(0);
448
ager@chromium.orga74f0da2008-12-03 16:05:52 +0000449 PostGarbageCollectionProcessing();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000450
kasper.lund7276f142008-07-30 08:49:36 +0000451 if (collector == MARK_COMPACTOR) {
452 // Register the amount of external allocated memory.
453 amount_of_external_allocated_memory_at_last_global_gc_ =
454 amount_of_external_allocated_memory_;
455 }
456
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000457 if (collector == MARK_COMPACTOR && global_gc_epilogue_callback_) {
458 ASSERT(!allocation_allowed_);
459 global_gc_epilogue_callback_();
460 }
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000461 VerifySymbolTable();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000462}
463
464
ager@chromium.orga74f0da2008-12-03 16:05:52 +0000465void Heap::PostGarbageCollectionProcessing() {
466 // Process weak handles post gc.
467 GlobalHandles::PostGarbageCollectionProcessing();
468 // Update flat string readers.
469 FlatStringReader::PostGarbageCollectionProcessing();
470}
471
472
kasper.lund7276f142008-07-30 08:49:36 +0000473void Heap::MarkCompact(GCTracer* tracer) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000474 gc_state_ = MARK_COMPACT;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000475 mc_count_++;
kasper.lund7276f142008-07-30 08:49:36 +0000476 tracer->set_full_gc_count(mc_count_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000477 LOG(ResourceEvent("markcompact", "begin"));
478
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000479 MarkCompactCollector::Prepare(tracer);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000480
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000481 bool is_compacting = MarkCompactCollector::IsCompacting();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000482
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000483 MarkCompactPrologue(is_compacting);
484
485 MarkCompactCollector::CollectGarbage();
486
487 MarkCompactEpilogue(is_compacting);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000488
489 LOG(ResourceEvent("markcompact", "end"));
490
491 gc_state_ = NOT_IN_GC;
492
493 Shrink();
494
495 Counters::objs_since_last_full.Set(0);
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000496 context_disposed_pending_ = false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000497}
498
499
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000500void Heap::MarkCompactPrologue(bool is_compacting) {
501 // At any old GC clear the keyed lookup cache to enable collection of unused
502 // maps.
ager@chromium.org5aa501c2009-06-23 07:57:28 +0000503 KeyedLookupCache::Clear();
504 ContextSlotCache::Clear();
505 DescriptorLookupCache::Clear();
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000506
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000507 CompilationCache::MarkCompactPrologue();
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000508
509 Top::MarkCompactPrologue(is_compacting);
510 ThreadManager::MarkCompactPrologue(is_compacting);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000511}
512
513
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000514void Heap::MarkCompactEpilogue(bool is_compacting) {
515 Top::MarkCompactEpilogue(is_compacting);
516 ThreadManager::MarkCompactEpilogue(is_compacting);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000517}
518
519
520Object* Heap::FindCodeObject(Address a) {
521 Object* obj = code_space_->FindObject(a);
522 if (obj->IsFailure()) {
523 obj = lo_space_->FindObject(a);
524 }
kasper.lund7276f142008-07-30 08:49:36 +0000525 ASSERT(!obj->IsFailure());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000526 return obj;
527}
528
529
530// Helper class for copying HeapObjects
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000531class ScavengeVisitor: public ObjectVisitor {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000532 public:
533
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000534 void VisitPointer(Object** p) { ScavengePointer(p); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000535
536 void VisitPointers(Object** start, Object** end) {
537 // Copy all HeapObject pointers in [start, end)
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000538 for (Object** p = start; p < end; p++) ScavengePointer(p);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000539 }
540
541 private:
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000542 void ScavengePointer(Object** p) {
543 Object* object = *p;
544 if (!Heap::InNewSpace(object)) return;
545 Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
546 reinterpret_cast<HeapObject*>(object));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000547 }
548};
549
550
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000551// A queue of pointers and maps of to-be-promoted objects during a
552// scavenge collection.
553class PromotionQueue {
554 public:
555 void Initialize(Address start_address) {
556 front_ = rear_ = reinterpret_cast<HeapObject**>(start_address);
557 }
558
559 bool is_empty() { return front_ <= rear_; }
560
561 void insert(HeapObject* object, Map* map) {
562 *(--rear_) = object;
563 *(--rear_) = map;
564 // Assert no overflow into live objects.
565 ASSERT(reinterpret_cast<Address>(rear_) >= Heap::new_space()->top());
566 }
567
568 void remove(HeapObject** object, Map** map) {
569 *object = *(--front_);
570 *map = Map::cast(*(--front_));
571 // Assert no underflow.
572 ASSERT(front_ >= rear_);
573 }
574
575 private:
576 // The front of the queue is higher in memory than the rear.
577 HeapObject** front_;
578 HeapObject** rear_;
579};
580
581
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000582// Shared state read by the scavenge collector and set by ScavengeObject.
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000583static PromotionQueue promotion_queue;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000584
585
586#ifdef DEBUG
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000587// Visitor class to verify pointers in code or data space do not point into
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000588// new space.
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000589class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000590 public:
591 void VisitPointers(Object** start, Object**end) {
592 for (Object** current = start; current < end; current++) {
593 if ((*current)->IsHeapObject()) {
594 ASSERT(!Heap::InNewSpace(HeapObject::cast(*current)));
595 }
596 }
597 }
598};
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000599
600
601static void VerifyNonPointerSpacePointers() {
602 // Verify that there are no pointers to new space in spaces where we
603 // do not expect them.
604 VerifyNonPointerSpacePointersVisitor v;
605 HeapObjectIterator code_it(Heap::code_space());
606 while (code_it.has_next()) {
607 HeapObject* object = code_it.next();
608 if (object->IsCode()) {
609 Code::cast(object)->ConvertICTargetsFromAddressToObject();
610 object->Iterate(&v);
611 Code::cast(object)->ConvertICTargetsFromObjectToAddress();
612 } else {
613 // If we find non-code objects in code space (e.g., free list
614 // nodes) we want to verify them as well.
615 object->Iterate(&v);
616 }
617 }
618
619 HeapObjectIterator data_it(Heap::old_data_space());
620 while (data_it.has_next()) data_it.next()->Iterate(&v);
621}
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000622#endif
623
624void Heap::Scavenge() {
625#ifdef DEBUG
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000626 if (FLAG_enable_slow_asserts) VerifyNonPointerSpacePointers();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000627#endif
628
629 gc_state_ = SCAVENGE;
630
631 // Implements Cheney's copying algorithm
632 LOG(ResourceEvent("scavenge", "begin"));
633
ager@chromium.org5aa501c2009-06-23 07:57:28 +0000634 // Clear descriptor cache.
635 DescriptorLookupCache::Clear();
636
ager@chromium.orgeadaf222009-06-16 09:43:10 +0000637 // Used for updating survived_since_last_expansion_ at function end.
638 int survived_watermark = PromotedSpaceSize();
639
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000640 if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
ager@chromium.orgeadaf222009-06-16 09:43:10 +0000641 survived_since_last_expansion_ > new_space_.Capacity()) {
642 // Double the size of new space if there is room to grow and enough
643 // data has survived scavenge since the last expansion.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000644 // TODO(1240712): NewSpace::Double has a return value which is
645 // ignored here.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000646 new_space_.Double();
ager@chromium.orgeadaf222009-06-16 09:43:10 +0000647 survived_since_last_expansion_ = 0;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000648 }
649
650 // Flip the semispaces. After flipping, to space is empty, from space has
651 // live objects.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000652 new_space_.Flip();
653 new_space_.ResetAllocationInfo();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000654
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000655 // We need to sweep newly copied objects which can be either in the
656 // to space or promoted to the old generation. For to-space
657 // objects, we treat the bottom of the to space as a queue. Newly
658 // copied and unswept objects lie between a 'front' mark and the
659 // allocation pointer.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000660 //
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000661 // Promoted objects can go into various old-generation spaces, and
662 // can be allocated internally in the spaces (from the free list).
663 // We treat the top of the to space as a queue of addresses of
664 // promoted objects. The addresses of newly promoted and unswept
665 // objects lie between a 'front' mark and a 'rear' mark that is
666 // updated as a side effect of promoting an object.
667 //
668 // There is guaranteed to be enough room at the top of the to space
669 // for the addresses of promoted objects: every object promoted
670 // frees up its size in bytes from the top of the new space, and
671 // objects are at least one pointer in size.
672 Address new_space_front = new_space_.ToSpaceLow();
673 promotion_queue.Initialize(new_space_.ToSpaceHigh());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000674
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000675 ScavengeVisitor scavenge_visitor;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000676 // Copy roots.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000677 IterateRoots(&scavenge_visitor);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000678
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000679 // Copy objects reachable from weak pointers.
680 GlobalHandles::IterateWeakRoots(&scavenge_visitor);
681
kasperl@chromium.org71affb52009-05-26 05:44:31 +0000682#if V8_HOST_ARCH_64_BIT
683 // TODO(X64): Make this go away again. We currently disable RSets for
684 // 64-bit-mode.
685 HeapObjectIterator old_pointer_iterator(old_pointer_space_);
686 while (old_pointer_iterator.has_next()) {
687 HeapObject* heap_object = old_pointer_iterator.next();
688 heap_object->Iterate(&scavenge_visitor);
689 }
690 HeapObjectIterator map_iterator(map_space_);
691 while (map_iterator.has_next()) {
692 HeapObject* heap_object = map_iterator.next();
693 heap_object->Iterate(&scavenge_visitor);
694 }
695 LargeObjectIterator lo_iterator(lo_space_);
696 while (lo_iterator.has_next()) {
697 HeapObject* heap_object = lo_iterator.next();
698 if (heap_object->IsFixedArray()) {
699 heap_object->Iterate(&scavenge_visitor);
700 }
701 }
702#else // V8_HOST_ARCH_64_BIT
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000703 // Copy objects reachable from the old generation. By definition,
704 // there are no intergenerational pointers in code or data spaces.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000705 IterateRSet(old_pointer_space_, &ScavengePointer);
706 IterateRSet(map_space_, &ScavengePointer);
707 lo_space_->IterateRSet(&ScavengePointer);
kasperl@chromium.org71affb52009-05-26 05:44:31 +0000708#endif // V8_HOST_ARCH_64_BIT
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000709
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000710 do {
711 ASSERT(new_space_front <= new_space_.top());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000712
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000713 // The addresses new_space_front and new_space_.top() define a
714 // queue of unprocessed copied objects. Process them until the
715 // queue is empty.
716 while (new_space_front < new_space_.top()) {
717 HeapObject* object = HeapObject::FromAddress(new_space_front);
718 object->Iterate(&scavenge_visitor);
719 new_space_front += object->Size();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000720 }
721
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000722 // Promote and process all the to-be-promoted objects.
723 while (!promotion_queue.is_empty()) {
724 HeapObject* source;
725 Map* map;
726 promotion_queue.remove(&source, &map);
727 // Copy the from-space object to its new location (given by the
728 // forwarding address) and fix its map.
729 HeapObject* target = source->map_word().ToForwardingAddress();
730 CopyBlock(reinterpret_cast<Object**>(target->address()),
731 reinterpret_cast<Object**>(source->address()),
732 source->SizeFromMap(map));
733 target->set_map(map);
734
735#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
736 // Update NewSpace stats if necessary.
737 RecordCopiedObject(target);
738#endif
739 // Visit the newly copied object for pointers to new space.
740 target->Iterate(&scavenge_visitor);
741 UpdateRSet(target);
742 }
743
744 // Take another spin if there are now unswept objects in new space
745 // (there are currently no more unswept promoted objects).
746 } while (new_space_front < new_space_.top());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000747
748 // Set age mark.
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000749 new_space_.set_age_mark(new_space_.top());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000750
ager@chromium.orgeadaf222009-06-16 09:43:10 +0000751 // Update how much has survived scavenge.
752 survived_since_last_expansion_ +=
753 (PromotedSpaceSize() - survived_watermark) + new_space_.Size();
754
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000755 LOG(ResourceEvent("scavenge", "end"));
756
757 gc_state_ = NOT_IN_GC;
758}
759
760
761void Heap::ClearRSetRange(Address start, int size_in_bytes) {
762 uint32_t start_bit;
763 Address start_word_address =
764 Page::ComputeRSetBitPosition(start, 0, &start_bit);
765 uint32_t end_bit;
766 Address end_word_address =
767 Page::ComputeRSetBitPosition(start + size_in_bytes - kIntSize,
768 0,
769 &end_bit);
770
771 // We want to clear the bits in the starting word starting with the
772 // first bit, and in the ending word up to and including the last
773 // bit. Build a pair of bitmasks to do that.
774 uint32_t start_bitmask = start_bit - 1;
775 uint32_t end_bitmask = ~((end_bit << 1) - 1);
776
777 // If the start address and end address are the same, we mask that
778 // word once, otherwise mask the starting and ending word
779 // separately and all the ones in between.
780 if (start_word_address == end_word_address) {
781 Memory::uint32_at(start_word_address) &= (start_bitmask | end_bitmask);
782 } else {
783 Memory::uint32_at(start_word_address) &= start_bitmask;
784 Memory::uint32_at(end_word_address) &= end_bitmask;
785 start_word_address += kIntSize;
786 memset(start_word_address, 0, end_word_address - start_word_address);
787 }
788}
789
790
791class UpdateRSetVisitor: public ObjectVisitor {
792 public:
793
794 void VisitPointer(Object** p) {
795 UpdateRSet(p);
796 }
797
798 void VisitPointers(Object** start, Object** end) {
799 // Update a store into slots [start, end), used (a) to update remembered
800 // set when promoting a young object to old space or (b) to rebuild
801 // remembered sets after a mark-compact collection.
802 for (Object** p = start; p < end; p++) UpdateRSet(p);
803 }
804 private:
805
806 void UpdateRSet(Object** p) {
807 // The remembered set should not be set. It should be clear for objects
808 // newly copied to old space, and it is cleared before rebuilding in the
809 // mark-compact collector.
810 ASSERT(!Page::IsRSetSet(reinterpret_cast<Address>(p), 0));
811 if (Heap::InNewSpace(*p)) {
812 Page::SetRSet(reinterpret_cast<Address>(p), 0);
813 }
814 }
815};
816
817
818int Heap::UpdateRSet(HeapObject* obj) {
kasperl@chromium.org71affb52009-05-26 05:44:31 +0000819#ifndef V8_HOST_ARCH_64_BIT
820 // TODO(X64) Reenable RSet when we have a working 64-bit layout of Page.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000821 ASSERT(!InNewSpace(obj));
822 // Special handling of fixed arrays to iterate the body based on the start
823 // address and offset. Just iterating the pointers as in UpdateRSetVisitor
824 // will not work because Page::SetRSet needs to have the start of the
825 // object.
826 if (obj->IsFixedArray()) {
827 FixedArray* array = FixedArray::cast(obj);
828 int length = array->length();
829 for (int i = 0; i < length; i++) {
830 int offset = FixedArray::kHeaderSize + i * kPointerSize;
831 ASSERT(!Page::IsRSetSet(obj->address(), offset));
832 if (Heap::InNewSpace(array->get(i))) {
833 Page::SetRSet(obj->address(), offset);
834 }
835 }
836 } else if (!obj->IsCode()) {
837 // Skip code object, we know it does not contain inter-generational
838 // pointers.
839 UpdateRSetVisitor v;
840 obj->Iterate(&v);
841 }
kasperl@chromium.org71affb52009-05-26 05:44:31 +0000842#endif // V8_HOST_ARCH_64_BIT
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000843 return obj->Size();
844}
845
846
847void Heap::RebuildRSets() {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000848 // By definition, we do not care about remembered set bits in code or data
849 // spaces.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000850 map_space_->ClearRSet();
851 RebuildRSets(map_space_);
852
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000853 old_pointer_space_->ClearRSet();
854 RebuildRSets(old_pointer_space_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000855
856 Heap::lo_space_->ClearRSet();
857 RebuildRSets(lo_space_);
858}
859
860
861void Heap::RebuildRSets(PagedSpace* space) {
862 HeapObjectIterator it(space);
863 while (it.has_next()) Heap::UpdateRSet(it.next());
864}
865
866
867void Heap::RebuildRSets(LargeObjectSpace* space) {
868 LargeObjectIterator it(space);
869 while (it.has_next()) Heap::UpdateRSet(it.next());
870}
871
872
873#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
874void Heap::RecordCopiedObject(HeapObject* obj) {
875 bool should_record = false;
876#ifdef DEBUG
877 should_record = FLAG_heap_stats;
878#endif
879#ifdef ENABLE_LOGGING_AND_PROFILING
880 should_record = should_record || FLAG_log_gc;
881#endif
882 if (should_record) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000883 if (new_space_.Contains(obj)) {
884 new_space_.RecordAllocation(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000885 } else {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000886 new_space_.RecordPromotion(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000887 }
888 }
889}
890#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
891
892
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000893
894HeapObject* Heap::MigrateObject(HeapObject* source,
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000895 HeapObject* target,
896 int size) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000897 // Copy the content of source to target.
898 CopyBlock(reinterpret_cast<Object**>(target->address()),
899 reinterpret_cast<Object**>(source->address()),
900 size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000901
kasper.lund7276f142008-07-30 08:49:36 +0000902 // Set the forwarding address.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000903 source->set_map_word(MapWord::FromForwardingAddress(target));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000904
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000905#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000906 // Update NewSpace stats if necessary.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000907 RecordCopiedObject(target);
908#endif
909
910 return target;
911}
912
913
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000914static inline bool IsShortcutCandidate(HeapObject* object, Map* map) {
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000915 STATIC_ASSERT(kNotStringTag != 0 && kSymbolTag != 0);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000916 ASSERT(object->map() == map);
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000917 InstanceType type = map->instance_type();
918 if ((type & kShortcutTypeMask) != kShortcutTypeTag) return false;
919 ASSERT(object->IsString() && !object->IsSymbol());
920 return ConsString::cast(object)->unchecked_second() == Heap::empty_string();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000921}
922
923
924void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
925 ASSERT(InFromSpace(object));
926 MapWord first_word = object->map_word();
927 ASSERT(!first_word.IsForwardingAddress());
928
929 // Optimization: Bypass flattened ConsString objects.
930 if (IsShortcutCandidate(object, first_word.ToMap())) {
ager@chromium.org870a0b62008-11-04 11:43:05 +0000931 object = HeapObject::cast(ConsString::cast(object)->unchecked_first());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000932 *p = object;
933 // After patching *p we have to repeat the checks that object is in the
934 // active semispace of the young generation and not already copied.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000935 if (!InNewSpace(object)) return;
kasper.lund7276f142008-07-30 08:49:36 +0000936 first_word = object->map_word();
937 if (first_word.IsForwardingAddress()) {
938 *p = first_word.ToForwardingAddress();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000939 return;
940 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000941 }
942
kasper.lund7276f142008-07-30 08:49:36 +0000943 int object_size = object->SizeFromMap(first_word.ToMap());
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000944 // We rely on live objects in new space to be at least two pointers,
945 // so we can store the from-space address and map pointer of promoted
946 // objects in the to space.
947 ASSERT(object_size >= 2 * kPointerSize);
948
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000949 // If the object should be promoted, we try to copy it to old space.
950 if (ShouldBePromoted(object->address(), object_size)) {
ager@chromium.org5aa501c2009-06-23 07:57:28 +0000951 Object* result;
952 if (object_size > MaxObjectSizeInPagedSpace()) {
953 result = lo_space_->AllocateRawFixedArray(object_size);
954 if (!result->IsFailure()) {
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000955 // Save the from-space object pointer and its map pointer at the
956 // top of the to space to be swept and copied later. Write the
957 // forwarding address over the map word of the from-space
958 // object.
ager@chromium.org5aa501c2009-06-23 07:57:28 +0000959 HeapObject* target = HeapObject::cast(result);
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000960 promotion_queue.insert(object, first_word.ToMap());
961 object->set_map_word(MapWord::FromForwardingAddress(target));
962
963 // Give the space allocated for the result a proper map by
964 // treating it as a free list node (not linked into the free
965 // list).
966 FreeListNode* node = FreeListNode::FromAddress(target->address());
967 node->set_size(object_size);
968
969 *p = target;
ager@chromium.org5aa501c2009-06-23 07:57:28 +0000970 return;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000971 }
ager@chromium.org5aa501c2009-06-23 07:57:28 +0000972 } else {
973 OldSpace* target_space = Heap::TargetSpace(object);
974 ASSERT(target_space == Heap::old_pointer_space_ ||
975 target_space == Heap::old_data_space_);
976 result = target_space->AllocateRaw(object_size);
977 if (!result->IsFailure()) {
978 HeapObject* target = HeapObject::cast(result);
979 if (target_space == Heap::old_pointer_space_) {
980 // Save the from-space object pointer and its map pointer at the
981 // top of the to space to be swept and copied later. Write the
982 // forwarding address over the map word of the from-space
983 // object.
984 promotion_queue.insert(object, first_word.ToMap());
985 object->set_map_word(MapWord::FromForwardingAddress(target));
986
987 // Give the space allocated for the result a proper map by
988 // treating it as a free list node (not linked into the free
989 // list).
990 FreeListNode* node = FreeListNode::FromAddress(target->address());
991 node->set_size(object_size);
992
993 *p = target;
994 } else {
995 // Objects promoted to the data space can be copied immediately
996 // and not revisited---we will never sweep that space for
997 // pointers and the copied objects do not contain pointers to
998 // new space objects.
999 *p = MigrateObject(object, target, object_size);
1000#ifdef DEBUG
1001 VerifyNonPointerSpacePointersVisitor v;
1002 (*p)->Iterate(&v);
1003#endif
1004 }
1005 return;
1006 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001007 }
1008 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001009 // The object should remain in new space or the old space allocation failed.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001010 Object* result = new_space_.AllocateRaw(object_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001011 // Failed allocation at this point is utterly unexpected.
1012 ASSERT(!result->IsFailure());
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001013 *p = MigrateObject(object, HeapObject::cast(result), object_size);
1014}
1015
1016
1017void Heap::ScavengePointer(HeapObject** p) {
1018 ScavengeObject(p, *p);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001019}
1020
1021
1022Object* Heap::AllocatePartialMap(InstanceType instance_type,
1023 int instance_size) {
1024 Object* result = AllocateRawMap(Map::kSize);
1025 if (result->IsFailure()) return result;
1026
1027 // Map::cast cannot be used due to uninitialized map field.
1028 reinterpret_cast<Map*>(result)->set_map(meta_map());
1029 reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
1030 reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001031 reinterpret_cast<Map*>(result)->set_inobject_properties(0);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001032 reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
1033 return result;
1034}
1035
1036
1037Object* Heap::AllocateMap(InstanceType instance_type, int instance_size) {
1038 Object* result = AllocateRawMap(Map::kSize);
1039 if (result->IsFailure()) return result;
1040
1041 Map* map = reinterpret_cast<Map*>(result);
1042 map->set_map(meta_map());
1043 map->set_instance_type(instance_type);
1044 map->set_prototype(null_value());
1045 map->set_constructor(null_value());
1046 map->set_instance_size(instance_size);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001047 map->set_inobject_properties(0);
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001048 map->set_instance_descriptors(empty_descriptor_array());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001049 map->set_code_cache(empty_fixed_array());
1050 map->set_unused_property_fields(0);
1051 map->set_bit_field(0);
ager@chromium.org3a37e9b2009-04-27 09:26:21 +00001052 map->set_bit_field2(0);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001053 return map;
1054}
1055
1056
1057bool Heap::CreateInitialMaps() {
1058 Object* obj = AllocatePartialMap(MAP_TYPE, Map::kSize);
1059 if (obj->IsFailure()) return false;
1060
1061 // Map::cast cannot be used due to uninitialized map field.
1062 meta_map_ = reinterpret_cast<Map*>(obj);
1063 meta_map()->set_map(meta_map());
1064
kasperl@chromium.org71affb52009-05-26 05:44:31 +00001065 obj = AllocatePartialMap(FIXED_ARRAY_TYPE, FixedArray::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001066 if (obj->IsFailure()) return false;
1067 fixed_array_map_ = Map::cast(obj);
1068
1069 obj = AllocatePartialMap(ODDBALL_TYPE, Oddball::kSize);
1070 if (obj->IsFailure()) return false;
1071 oddball_map_ = Map::cast(obj);
1072
1073 // Allocate the empty array
1074 obj = AllocateEmptyFixedArray();
1075 if (obj->IsFailure()) return false;
1076 empty_fixed_array_ = FixedArray::cast(obj);
1077
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001078 obj = Allocate(oddball_map(), OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001079 if (obj->IsFailure()) return false;
1080 null_value_ = obj;
1081
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001082 // Allocate the empty descriptor array. AllocateMap can now be used.
1083 obj = AllocateEmptyFixedArray();
1084 if (obj->IsFailure()) return false;
1085 // There is a check against empty_descriptor_array() in cast().
1086 empty_descriptor_array_ = reinterpret_cast<DescriptorArray*>(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001087
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001088 // Fix the instance_descriptors for the existing maps.
1089 meta_map()->set_instance_descriptors(empty_descriptor_array());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001090 meta_map()->set_code_cache(empty_fixed_array());
1091
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001092 fixed_array_map()->set_instance_descriptors(empty_descriptor_array());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001093 fixed_array_map()->set_code_cache(empty_fixed_array());
1094
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001095 oddball_map()->set_instance_descriptors(empty_descriptor_array());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001096 oddball_map()->set_code_cache(empty_fixed_array());
1097
1098 // Fix prototype object for existing maps.
1099 meta_map()->set_prototype(null_value());
1100 meta_map()->set_constructor(null_value());
1101
1102 fixed_array_map()->set_prototype(null_value());
1103 fixed_array_map()->set_constructor(null_value());
1104 oddball_map()->set_prototype(null_value());
1105 oddball_map()->set_constructor(null_value());
1106
1107 obj = AllocateMap(HEAP_NUMBER_TYPE, HeapNumber::kSize);
1108 if (obj->IsFailure()) return false;
1109 heap_number_map_ = Map::cast(obj);
1110
1111 obj = AllocateMap(PROXY_TYPE, Proxy::kSize);
1112 if (obj->IsFailure()) return false;
1113 proxy_map_ = Map::cast(obj);
1114
1115#define ALLOCATE_STRING_MAP(type, size, name) \
1116 obj = AllocateMap(type, size); \
1117 if (obj->IsFailure()) return false; \
1118 name##_map_ = Map::cast(obj);
1119 STRING_TYPE_LIST(ALLOCATE_STRING_MAP);
1120#undef ALLOCATE_STRING_MAP
1121
kasperl@chromium.org71affb52009-05-26 05:44:31 +00001122 obj = AllocateMap(SHORT_STRING_TYPE, SeqTwoByteString::kAlignedSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001123 if (obj->IsFailure()) return false;
1124 undetectable_short_string_map_ = Map::cast(obj);
1125 undetectable_short_string_map_->set_is_undetectable();
1126
kasperl@chromium.org71affb52009-05-26 05:44:31 +00001127 obj = AllocateMap(MEDIUM_STRING_TYPE, SeqTwoByteString::kAlignedSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001128 if (obj->IsFailure()) return false;
1129 undetectable_medium_string_map_ = Map::cast(obj);
1130 undetectable_medium_string_map_->set_is_undetectable();
1131
kasperl@chromium.org71affb52009-05-26 05:44:31 +00001132 obj = AllocateMap(LONG_STRING_TYPE, SeqTwoByteString::kAlignedSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001133 if (obj->IsFailure()) return false;
1134 undetectable_long_string_map_ = Map::cast(obj);
1135 undetectable_long_string_map_->set_is_undetectable();
1136
kasperl@chromium.org71affb52009-05-26 05:44:31 +00001137 obj = AllocateMap(SHORT_ASCII_STRING_TYPE, SeqAsciiString::kAlignedSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001138 if (obj->IsFailure()) return false;
1139 undetectable_short_ascii_string_map_ = Map::cast(obj);
1140 undetectable_short_ascii_string_map_->set_is_undetectable();
1141
kasperl@chromium.org71affb52009-05-26 05:44:31 +00001142 obj = AllocateMap(MEDIUM_ASCII_STRING_TYPE, SeqAsciiString::kAlignedSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001143 if (obj->IsFailure()) return false;
1144 undetectable_medium_ascii_string_map_ = Map::cast(obj);
1145 undetectable_medium_ascii_string_map_->set_is_undetectable();
1146
kasperl@chromium.org71affb52009-05-26 05:44:31 +00001147 obj = AllocateMap(LONG_ASCII_STRING_TYPE, SeqAsciiString::kAlignedSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001148 if (obj->IsFailure()) return false;
1149 undetectable_long_ascii_string_map_ = Map::cast(obj);
1150 undetectable_long_ascii_string_map_->set_is_undetectable();
1151
kasperl@chromium.org71affb52009-05-26 05:44:31 +00001152 obj = AllocateMap(BYTE_ARRAY_TYPE, Array::kAlignedSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001153 if (obj->IsFailure()) return false;
1154 byte_array_map_ = Map::cast(obj);
1155
1156 obj = AllocateMap(CODE_TYPE, Code::kHeaderSize);
1157 if (obj->IsFailure()) return false;
1158 code_map_ = Map::cast(obj);
1159
1160 obj = AllocateMap(FILLER_TYPE, kPointerSize);
1161 if (obj->IsFailure()) return false;
1162 one_word_filler_map_ = Map::cast(obj);
1163
1164 obj = AllocateMap(FILLER_TYPE, 2 * kPointerSize);
1165 if (obj->IsFailure()) return false;
1166 two_word_filler_map_ = Map::cast(obj);
1167
1168#define ALLOCATE_STRUCT_MAP(NAME, Name, name) \
1169 obj = AllocateMap(NAME##_TYPE, Name::kSize); \
1170 if (obj->IsFailure()) return false; \
1171 name##_map_ = Map::cast(obj);
1172 STRUCT_LIST(ALLOCATE_STRUCT_MAP)
1173#undef ALLOCATE_STRUCT_MAP
1174
ager@chromium.org236ad962008-09-25 09:45:57 +00001175 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001176 if (obj->IsFailure()) return false;
1177 hash_table_map_ = Map::cast(obj);
1178
ager@chromium.org236ad962008-09-25 09:45:57 +00001179 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001180 if (obj->IsFailure()) return false;
1181 context_map_ = Map::cast(obj);
1182
ager@chromium.org236ad962008-09-25 09:45:57 +00001183 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001184 if (obj->IsFailure()) return false;
christian.plesner.hansen@gmail.com37abdec2009-01-06 14:43:28 +00001185 catch_context_map_ = Map::cast(obj);
1186
1187 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
1188 if (obj->IsFailure()) return false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001189 global_context_map_ = Map::cast(obj);
1190
1191 obj = AllocateMap(JS_FUNCTION_TYPE, JSFunction::kSize);
1192 if (obj->IsFailure()) return false;
1193 boilerplate_function_map_ = Map::cast(obj);
1194
1195 obj = AllocateMap(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kSize);
1196 if (obj->IsFailure()) return false;
1197 shared_function_info_map_ = Map::cast(obj);
1198
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001199 ASSERT(!Heap::InNewSpace(Heap::empty_fixed_array()));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001200 return true;
1201}
1202
1203
1204Object* Heap::AllocateHeapNumber(double value, PretenureFlag pretenure) {
1205 // Statically ensure that it is safe to allocate heap numbers in paged
1206 // spaces.
1207 STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001208 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001209 Object* result = AllocateRaw(HeapNumber::kSize, space, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001210 if (result->IsFailure()) return result;
1211
1212 HeapObject::cast(result)->set_map(heap_number_map());
1213 HeapNumber::cast(result)->set_value(value);
1214 return result;
1215}
1216
1217
1218Object* Heap::AllocateHeapNumber(double value) {
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001219 // Use general version, if we're forced to always allocate.
1220 if (always_allocate()) return AllocateHeapNumber(value, NOT_TENURED);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001221 // This version of AllocateHeapNumber is optimized for
1222 // allocation in new space.
1223 STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
1224 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001225 Object* result = new_space_.AllocateRaw(HeapNumber::kSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001226 if (result->IsFailure()) return result;
1227 HeapObject::cast(result)->set_map(heap_number_map());
1228 HeapNumber::cast(result)->set_value(value);
1229 return result;
1230}
1231
1232
1233Object* Heap::CreateOddball(Map* map,
1234 const char* to_string,
1235 Object* to_number) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001236 Object* result = Allocate(map, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001237 if (result->IsFailure()) return result;
1238 return Oddball::cast(result)->Initialize(to_string, to_number);
1239}
1240
1241
1242bool Heap::CreateApiObjects() {
1243 Object* obj;
1244
1245 obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
1246 if (obj->IsFailure()) return false;
1247 neander_map_ = Map::cast(obj);
1248
1249 obj = Heap::AllocateJSObjectFromMap(neander_map_);
1250 if (obj->IsFailure()) return false;
1251 Object* elements = AllocateFixedArray(2);
1252 if (elements->IsFailure()) return false;
1253 FixedArray::cast(elements)->set(0, Smi::FromInt(0));
1254 JSObject::cast(obj)->set_elements(FixedArray::cast(elements));
1255 message_listeners_ = JSObject::cast(obj);
1256
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001257 return true;
1258}
1259
1260void Heap::CreateFixedStubs() {
1261 // Here we create roots for fixed stubs. They are needed at GC
1262 // for cooking and uncooking (check out frames.cc).
1263 // The eliminates the need for doing dictionary lookup in the
1264 // stub cache for these stubs.
1265 HandleScope scope;
1266 {
1267 CEntryStub stub;
1268 c_entry_code_ = *stub.GetCode();
1269 }
1270 {
1271 CEntryDebugBreakStub stub;
1272 c_entry_debug_break_code_ = *stub.GetCode();
1273 }
1274 {
1275 JSEntryStub stub;
1276 js_entry_code_ = *stub.GetCode();
1277 }
1278 {
1279 JSConstructEntryStub stub;
1280 js_construct_entry_code_ = *stub.GetCode();
1281 }
1282}
1283
1284
1285bool Heap::CreateInitialObjects() {
1286 Object* obj;
1287
1288 // The -0 value must be set before NumberFromDouble works.
1289 obj = AllocateHeapNumber(-0.0, TENURED);
1290 if (obj->IsFailure()) return false;
1291 minus_zero_value_ = obj;
1292 ASSERT(signbit(minus_zero_value_->Number()) != 0);
1293
1294 obj = AllocateHeapNumber(OS::nan_value(), TENURED);
1295 if (obj->IsFailure()) return false;
1296 nan_value_ = obj;
1297
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001298 obj = Allocate(oddball_map(), OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001299 if (obj->IsFailure()) return false;
1300 undefined_value_ = obj;
1301 ASSERT(!InNewSpace(undefined_value()));
1302
1303 // Allocate initial symbol table.
1304 obj = SymbolTable::Allocate(kInitialSymbolTableSize);
1305 if (obj->IsFailure()) return false;
1306 symbol_table_ = obj;
1307
1308 // Assign the print strings for oddballs after creating symboltable.
1309 Object* symbol = LookupAsciiSymbol("undefined");
1310 if (symbol->IsFailure()) return false;
1311 Oddball::cast(undefined_value_)->set_to_string(String::cast(symbol));
1312 Oddball::cast(undefined_value_)->set_to_number(nan_value_);
1313
1314 // Assign the print strings for oddballs after creating symboltable.
1315 symbol = LookupAsciiSymbol("null");
1316 if (symbol->IsFailure()) return false;
1317 Oddball::cast(null_value_)->set_to_string(String::cast(symbol));
1318 Oddball::cast(null_value_)->set_to_number(Smi::FromInt(0));
1319
1320 // Allocate the null_value
1321 obj = Oddball::cast(null_value())->Initialize("null", Smi::FromInt(0));
1322 if (obj->IsFailure()) return false;
1323
1324 obj = CreateOddball(oddball_map(), "true", Smi::FromInt(1));
1325 if (obj->IsFailure()) return false;
1326 true_value_ = obj;
1327
1328 obj = CreateOddball(oddball_map(), "false", Smi::FromInt(0));
1329 if (obj->IsFailure()) return false;
1330 false_value_ = obj;
1331
1332 obj = CreateOddball(oddball_map(), "hole", Smi::FromInt(-1));
1333 if (obj->IsFailure()) return false;
1334 the_hole_value_ = obj;
1335
1336 // Allocate the empty string.
1337 obj = AllocateRawAsciiString(0, TENURED);
1338 if (obj->IsFailure()) return false;
1339 empty_string_ = String::cast(obj);
1340
1341#define SYMBOL_INITIALIZE(name, string) \
1342 obj = LookupAsciiSymbol(string); \
1343 if (obj->IsFailure()) return false; \
1344 (name##_) = String::cast(obj);
1345 SYMBOL_LIST(SYMBOL_INITIALIZE)
1346#undef SYMBOL_INITIALIZE
1347
ager@chromium.org3b45ab52009-03-19 22:21:34 +00001348 // Allocate the hidden symbol which is used to identify the hidden properties
1349 // in JSObjects. The hash code has a special value so that it will not match
1350 // the empty string when searching for the property. It cannot be part of the
1351 // SYMBOL_LIST because it needs to be allocated manually with the special
1352 // hash code in place. The hash code for the hidden_symbol is zero to ensure
1353 // that it will always be at the first entry in property descriptors.
1354 obj = AllocateSymbol(CStrVector(""), 0, String::kHashComputedMask);
1355 if (obj->IsFailure()) return false;
1356 hidden_symbol_ = String::cast(obj);
1357
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001358 // Allocate the proxy for __proto__.
1359 obj = AllocateProxy((Address) &Accessors::ObjectPrototype);
1360 if (obj->IsFailure()) return false;
1361 prototype_accessors_ = Proxy::cast(obj);
1362
1363 // Allocate the code_stubs dictionary.
1364 obj = Dictionary::Allocate(4);
1365 if (obj->IsFailure()) return false;
1366 code_stubs_ = Dictionary::cast(obj);
1367
1368 // Allocate the non_monomorphic_cache used in stub-cache.cc
1369 obj = Dictionary::Allocate(4);
1370 if (obj->IsFailure()) return false;
1371 non_monomorphic_cache_ = Dictionary::cast(obj);
1372
1373 CreateFixedStubs();
1374
1375 // Allocate the number->string conversion cache
1376 obj = AllocateFixedArray(kNumberStringCacheSize * 2);
1377 if (obj->IsFailure()) return false;
1378 number_string_cache_ = FixedArray::cast(obj);
1379
1380 // Allocate cache for single character strings.
1381 obj = AllocateFixedArray(String::kMaxAsciiCharCode+1);
1382 if (obj->IsFailure()) return false;
1383 single_character_string_cache_ = FixedArray::cast(obj);
1384
1385 // Allocate cache for external strings pointing to native source code.
1386 obj = AllocateFixedArray(Natives::GetBuiltinsCount());
1387 if (obj->IsFailure()) return false;
1388 natives_source_cache_ = FixedArray::cast(obj);
1389
kasperl@chromium.org7be3c992009-03-12 07:19:55 +00001390 // Handling of script id generation is in Factory::NewScript.
1391 last_script_id_ = undefined_value();
1392
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001393 // Initialize keyed lookup cache.
ager@chromium.org5aa501c2009-06-23 07:57:28 +00001394 KeyedLookupCache::Clear();
1395
1396 // Initialize context slot cache.
1397 ContextSlotCache::Clear();
1398
1399 // Initialize descriptor cache.
1400 DescriptorLookupCache::Clear();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001401
kasperl@chromium.orgb9123622008-09-17 14:05:56 +00001402 // Initialize compilation cache.
1403 CompilationCache::Clear();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001404
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001405 return true;
1406}
1407
1408
1409static inline int double_get_hash(double d) {
1410 DoubleRepresentation rep(d);
1411 return ((static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) &
1412 (Heap::kNumberStringCacheSize - 1));
1413}
1414
1415
1416static inline int smi_get_hash(Smi* smi) {
1417 return (smi->value() & (Heap::kNumberStringCacheSize - 1));
1418}
1419
1420
1421
1422Object* Heap::GetNumberStringCache(Object* number) {
1423 int hash;
1424 if (number->IsSmi()) {
1425 hash = smi_get_hash(Smi::cast(number));
1426 } else {
1427 hash = double_get_hash(number->Number());
1428 }
1429 Object* key = number_string_cache_->get(hash * 2);
1430 if (key == number) {
1431 return String::cast(number_string_cache_->get(hash * 2 + 1));
1432 } else if (key->IsHeapNumber() &&
1433 number->IsHeapNumber() &&
1434 key->Number() == number->Number()) {
1435 return String::cast(number_string_cache_->get(hash * 2 + 1));
1436 }
1437 return undefined_value();
1438}
1439
1440
1441void Heap::SetNumberStringCache(Object* number, String* string) {
1442 int hash;
1443 if (number->IsSmi()) {
1444 hash = smi_get_hash(Smi::cast(number));
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001445 number_string_cache_->set(hash * 2, number, SKIP_WRITE_BARRIER);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001446 } else {
1447 hash = double_get_hash(number->Number());
1448 number_string_cache_->set(hash * 2, number);
1449 }
1450 number_string_cache_->set(hash * 2 + 1, string);
1451}
1452
1453
1454Object* Heap::SmiOrNumberFromDouble(double value,
1455 bool new_object,
1456 PretenureFlag pretenure) {
1457 // We need to distinguish the minus zero value and this cannot be
1458 // done after conversion to int. Doing this by comparing bit
1459 // patterns is faster than using fpclassify() et al.
1460 static const DoubleRepresentation plus_zero(0.0);
1461 static const DoubleRepresentation minus_zero(-0.0);
1462 static const DoubleRepresentation nan(OS::nan_value());
1463 ASSERT(minus_zero_value_ != NULL);
1464 ASSERT(sizeof(plus_zero.value) == sizeof(plus_zero.bits));
1465
1466 DoubleRepresentation rep(value);
1467 if (rep.bits == plus_zero.bits) return Smi::FromInt(0); // not uncommon
1468 if (rep.bits == minus_zero.bits) {
1469 return new_object ? AllocateHeapNumber(-0.0, pretenure)
1470 : minus_zero_value_;
1471 }
1472 if (rep.bits == nan.bits) {
1473 return new_object
1474 ? AllocateHeapNumber(OS::nan_value(), pretenure)
1475 : nan_value_;
1476 }
1477
1478 // Try to represent the value as a tagged small integer.
1479 int int_value = FastD2I(value);
1480 if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
1481 return Smi::FromInt(int_value);
1482 }
1483
1484 // Materialize the value in the heap.
1485 return AllocateHeapNumber(value, pretenure);
1486}
1487
1488
1489Object* Heap::NewNumberFromDouble(double value, PretenureFlag pretenure) {
1490 return SmiOrNumberFromDouble(value,
1491 true /* number object must be new */,
1492 pretenure);
1493}
1494
1495
1496Object* Heap::NumberFromDouble(double value, PretenureFlag pretenure) {
1497 return SmiOrNumberFromDouble(value,
1498 false /* use preallocated NaN, -0.0 */,
1499 pretenure);
1500}
1501
1502
1503Object* Heap::AllocateProxy(Address proxy, PretenureFlag pretenure) {
1504 // Statically ensure that it is safe to allocate proxies in paged spaces.
1505 STATIC_ASSERT(Proxy::kSize <= Page::kMaxHeapObjectSize);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001506 AllocationSpace space =
1507 (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001508 Object* result = Allocate(proxy_map(), space);
1509 if (result->IsFailure()) return result;
1510
1511 Proxy::cast(result)->set_proxy(proxy);
1512 return result;
1513}
1514
1515
1516Object* Heap::AllocateSharedFunctionInfo(Object* name) {
1517 Object* result = Allocate(shared_function_info_map(), NEW_SPACE);
1518 if (result->IsFailure()) return result;
1519
1520 SharedFunctionInfo* share = SharedFunctionInfo::cast(result);
1521 share->set_name(name);
1522 Code* illegal = Builtins::builtin(Builtins::Illegal);
1523 share->set_code(illegal);
ager@chromium.org5aa501c2009-06-23 07:57:28 +00001524 Code* construct_stub = Builtins::builtin(Builtins::JSConstructStubGeneric);
1525 share->set_construct_stub(construct_stub);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001526 share->set_expected_nof_properties(0);
1527 share->set_length(0);
1528 share->set_formal_parameter_count(0);
1529 share->set_instance_class_name(Object_symbol());
1530 share->set_function_data(undefined_value());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001531 share->set_script(undefined_value());
1532 share->set_start_position_and_type(0);
1533 share->set_debug_info(undefined_value());
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +00001534 share->set_inferred_name(empty_string());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001535 return result;
1536}
1537
1538
ager@chromium.org870a0b62008-11-04 11:43:05 +00001539Object* Heap::AllocateConsString(String* first,
ager@chromium.orgc3e50d82008-11-05 11:53:10 +00001540 String* second) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001541 int first_length = first->length();
1542 int second_length = second->length();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001543 int length = first_length + second_length;
ager@chromium.org5ec48922009-05-05 07:25:34 +00001544 bool is_ascii = first->IsAsciiRepresentation()
1545 && second->IsAsciiRepresentation();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001546
1547 // If the resulting string is small make a flat string.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001548 if (length < String::kMinNonFlatLength) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001549 ASSERT(first->IsFlat());
1550 ASSERT(second->IsFlat());
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001551 if (is_ascii) {
1552 Object* result = AllocateRawAsciiString(length);
1553 if (result->IsFailure()) return result;
1554 // Copy the characters into the new object.
1555 char* dest = SeqAsciiString::cast(result)->GetChars();
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001556 String::WriteToFlat(first, dest, 0, first_length);
1557 String::WriteToFlat(second, dest + first_length, 0, second_length);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001558 return result;
1559 } else {
1560 Object* result = AllocateRawTwoByteString(length);
1561 if (result->IsFailure()) return result;
1562 // Copy the characters into the new object.
1563 uc16* dest = SeqTwoByteString::cast(result)->GetChars();
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001564 String::WriteToFlat(first, dest, 0, first_length);
1565 String::WriteToFlat(second, dest + first_length, 0, second_length);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001566 return result;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001567 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001568 }
1569
1570 Map* map;
1571 if (length <= String::kMaxShortStringSize) {
1572 map = is_ascii ? short_cons_ascii_string_map()
1573 : short_cons_string_map();
1574 } else if (length <= String::kMaxMediumStringSize) {
1575 map = is_ascii ? medium_cons_ascii_string_map()
1576 : medium_cons_string_map();
1577 } else {
1578 map = is_ascii ? long_cons_ascii_string_map()
1579 : long_cons_string_map();
1580 }
1581
1582 Object* result = Allocate(map, NEW_SPACE);
1583 if (result->IsFailure()) return result;
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00001584 ASSERT(InNewSpace(result));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001585 ConsString* cons_string = ConsString::cast(result);
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00001586 cons_string->set_first(first, SKIP_WRITE_BARRIER);
1587 cons_string->set_second(second, SKIP_WRITE_BARRIER);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001588 cons_string->set_length(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001589 return result;
1590}
1591
1592
ager@chromium.org870a0b62008-11-04 11:43:05 +00001593Object* Heap::AllocateSlicedString(String* buffer,
ager@chromium.org870a0b62008-11-04 11:43:05 +00001594 int start,
1595 int end) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001596 int length = end - start;
1597
1598 // If the resulting string is small make a sub string.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001599 if (end - start <= String::kMinNonFlatLength) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001600 return Heap::AllocateSubString(buffer, start, end);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001601 }
1602
1603 Map* map;
1604 if (length <= String::kMaxShortStringSize) {
ager@chromium.org5ec48922009-05-05 07:25:34 +00001605 map = buffer->IsAsciiRepresentation() ?
ager@chromium.org870a0b62008-11-04 11:43:05 +00001606 short_sliced_ascii_string_map() :
1607 short_sliced_string_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001608 } else if (length <= String::kMaxMediumStringSize) {
ager@chromium.org5ec48922009-05-05 07:25:34 +00001609 map = buffer->IsAsciiRepresentation() ?
ager@chromium.org870a0b62008-11-04 11:43:05 +00001610 medium_sliced_ascii_string_map() :
1611 medium_sliced_string_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001612 } else {
ager@chromium.org5ec48922009-05-05 07:25:34 +00001613 map = buffer->IsAsciiRepresentation() ?
ager@chromium.org870a0b62008-11-04 11:43:05 +00001614 long_sliced_ascii_string_map() :
1615 long_sliced_string_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001616 }
1617
1618 Object* result = Allocate(map, NEW_SPACE);
1619 if (result->IsFailure()) return result;
1620
1621 SlicedString* sliced_string = SlicedString::cast(result);
1622 sliced_string->set_buffer(buffer);
1623 sliced_string->set_start(start);
1624 sliced_string->set_length(length);
1625
1626 return result;
1627}
1628
1629
ager@chromium.org870a0b62008-11-04 11:43:05 +00001630Object* Heap::AllocateSubString(String* buffer,
ager@chromium.org870a0b62008-11-04 11:43:05 +00001631 int start,
1632 int end) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001633 int length = end - start;
1634
ager@chromium.org7c537e22008-10-16 08:43:32 +00001635 if (length == 1) {
ager@chromium.org870a0b62008-11-04 11:43:05 +00001636 return Heap::LookupSingleCharacterStringFromCode(
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001637 buffer->Get(start));
ager@chromium.org7c537e22008-10-16 08:43:32 +00001638 }
1639
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001640 // Make an attempt to flatten the buffer to reduce access time.
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001641 if (!buffer->IsFlat()) {
1642 buffer->TryFlatten();
ager@chromium.org870a0b62008-11-04 11:43:05 +00001643 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001644
ager@chromium.org5ec48922009-05-05 07:25:34 +00001645 Object* result = buffer->IsAsciiRepresentation()
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001646 ? AllocateRawAsciiString(length)
1647 : AllocateRawTwoByteString(length);
1648 if (result->IsFailure()) return result;
1649
1650 // Copy the characters into the new object.
1651 String* string_result = String::cast(result);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001652 StringHasher hasher(length);
1653 int i = 0;
1654 for (; i < length && hasher.is_array_index(); i++) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001655 uc32 c = buffer->Get(start + i);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001656 hasher.AddCharacter(c);
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001657 string_result->Set(i, c);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001658 }
ager@chromium.org7c537e22008-10-16 08:43:32 +00001659 for (; i < length; i++) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001660 uc32 c = buffer->Get(start + i);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001661 hasher.AddCharacterNoIndex(c);
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001662 string_result->Set(i, c);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001663 }
1664 string_result->set_length_field(hasher.GetHashField());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001665 return result;
1666}
1667
1668
1669Object* Heap::AllocateExternalStringFromAscii(
1670 ExternalAsciiString::Resource* resource) {
1671 Map* map;
1672 int length = resource->length();
1673 if (length <= String::kMaxShortStringSize) {
1674 map = short_external_ascii_string_map();
1675 } else if (length <= String::kMaxMediumStringSize) {
1676 map = medium_external_ascii_string_map();
1677 } else {
1678 map = long_external_ascii_string_map();
1679 }
1680
1681 Object* result = Allocate(map, NEW_SPACE);
1682 if (result->IsFailure()) return result;
1683
1684 ExternalAsciiString* external_string = ExternalAsciiString::cast(result);
1685 external_string->set_length(length);
1686 external_string->set_resource(resource);
1687
1688 return result;
1689}
1690
1691
1692Object* Heap::AllocateExternalStringFromTwoByte(
1693 ExternalTwoByteString::Resource* resource) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001694 int length = resource->length();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001695
ager@chromium.org6f10e412009-02-13 10:11:16 +00001696 Map* map = ExternalTwoByteString::StringMap(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001697 Object* result = Allocate(map, NEW_SPACE);
1698 if (result->IsFailure()) return result;
1699
1700 ExternalTwoByteString* external_string = ExternalTwoByteString::cast(result);
1701 external_string->set_length(length);
1702 external_string->set_resource(resource);
1703
1704 return result;
1705}
1706
1707
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001708Object* Heap::LookupSingleCharacterStringFromCode(uint16_t code) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001709 if (code <= String::kMaxAsciiCharCode) {
1710 Object* value = Heap::single_character_string_cache()->get(code);
1711 if (value != Heap::undefined_value()) return value;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001712
1713 char buffer[1];
1714 buffer[0] = static_cast<char>(code);
1715 Object* result = LookupSymbol(Vector<const char>(buffer, 1));
1716
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001717 if (result->IsFailure()) return result;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001718 Heap::single_character_string_cache()->set(code, result);
1719 return result;
1720 }
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001721
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001722 Object* result = Heap::AllocateRawTwoByteString(1);
1723 if (result->IsFailure()) return result;
ager@chromium.org870a0b62008-11-04 11:43:05 +00001724 String* answer = String::cast(result);
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001725 answer->Set(0, code);
ager@chromium.org870a0b62008-11-04 11:43:05 +00001726 return answer;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001727}
1728
1729
ager@chromium.orga74f0da2008-12-03 16:05:52 +00001730Object* Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
1731 if (pretenure == NOT_TENURED) {
1732 return AllocateByteArray(length);
1733 }
1734 int size = ByteArray::SizeFor(length);
1735 AllocationSpace space =
ager@chromium.org5aa501c2009-06-23 07:57:28 +00001736 size > MaxObjectSizeInPagedSpace() ? LO_SPACE : OLD_DATA_SPACE;
ager@chromium.orga74f0da2008-12-03 16:05:52 +00001737
1738 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
1739
1740 if (result->IsFailure()) return result;
1741
1742 reinterpret_cast<Array*>(result)->set_map(byte_array_map());
1743 reinterpret_cast<Array*>(result)->set_length(length);
1744 return result;
1745}
1746
1747
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001748Object* Heap::AllocateByteArray(int length) {
1749 int size = ByteArray::SizeFor(length);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001750 AllocationSpace space =
ager@chromium.org5aa501c2009-06-23 07:57:28 +00001751 size > MaxObjectSizeInPagedSpace() ? LO_SPACE : NEW_SPACE;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001752
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001753 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001754
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001755 if (result->IsFailure()) return result;
1756
1757 reinterpret_cast<Array*>(result)->set_map(byte_array_map());
1758 reinterpret_cast<Array*>(result)->set_length(length);
1759 return result;
1760}
1761
1762
ager@chromium.org6f10e412009-02-13 10:11:16 +00001763void Heap::CreateFillerObjectAt(Address addr, int size) {
1764 if (size == 0) return;
1765 HeapObject* filler = HeapObject::FromAddress(addr);
1766 if (size == kPointerSize) {
1767 filler->set_map(Heap::one_word_filler_map());
1768 } else {
1769 filler->set_map(Heap::byte_array_map());
1770 ByteArray::cast(filler)->set_length(ByteArray::LengthFor(size));
1771 }
1772}
1773
1774
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001775Object* Heap::CreateCode(const CodeDesc& desc,
kasperl@chromium.org71affb52009-05-26 05:44:31 +00001776 ZoneScopeInfo* sinfo,
ager@chromium.orga74f0da2008-12-03 16:05:52 +00001777 Code::Flags flags,
kasperl@chromium.org061ef742009-02-27 12:16:20 +00001778 Handle<Object> self_reference) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001779 // Compute size
1780 int body_size = RoundUp(desc.instr_size + desc.reloc_size, kObjectAlignment);
1781 int sinfo_size = 0;
1782 if (sinfo != NULL) sinfo_size = sinfo->Serialize(NULL);
1783 int obj_size = Code::SizeFor(body_size, sinfo_size);
kasperl@chromium.org061ef742009-02-27 12:16:20 +00001784 ASSERT(IsAligned(obj_size, Code::kCodeAlignment));
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001785 Object* result;
ager@chromium.org5aa501c2009-06-23 07:57:28 +00001786 if (obj_size > MaxObjectSizeInPagedSpace()) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001787 result = lo_space_->AllocateRawCode(obj_size);
1788 } else {
1789 result = code_space_->AllocateRaw(obj_size);
1790 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001791
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001792 if (result->IsFailure()) return result;
1793
1794 // Initialize the object
1795 HeapObject::cast(result)->set_map(code_map());
1796 Code* code = Code::cast(result);
1797 code->set_instruction_size(desc.instr_size);
1798 code->set_relocation_size(desc.reloc_size);
1799 code->set_sinfo_size(sinfo_size);
1800 code->set_flags(flags);
1801 code->set_ic_flag(Code::IC_TARGET_IS_ADDRESS);
kasperl@chromium.org061ef742009-02-27 12:16:20 +00001802 // Allow self references to created code object by patching the handle to
1803 // point to the newly allocated Code object.
1804 if (!self_reference.is_null()) {
1805 *(self_reference.location()) = code;
ager@chromium.orga74f0da2008-12-03 16:05:52 +00001806 }
1807 // Migrate generated code.
1808 // The generated code can contain Object** values (typically from handles)
1809 // that are dereferenced during the copy to point directly to the actual heap
1810 // objects. These pointers can include references to the code object itself,
1811 // through the self_reference parameter.
1812 code->CopyFrom(desc);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001813 if (sinfo != NULL) sinfo->Serialize(code); // write scope info
1814
1815#ifdef DEBUG
1816 code->Verify();
1817#endif
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001818 return code;
1819}
1820
1821
1822Object* Heap::CopyCode(Code* code) {
1823 // Allocate an object the same size as the code object.
1824 int obj_size = code->Size();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001825 Object* result;
ager@chromium.org5aa501c2009-06-23 07:57:28 +00001826 if (obj_size > MaxObjectSizeInPagedSpace()) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001827 result = lo_space_->AllocateRawCode(obj_size);
1828 } else {
1829 result = code_space_->AllocateRaw(obj_size);
1830 }
1831
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001832 if (result->IsFailure()) return result;
1833
1834 // Copy code object.
1835 Address old_addr = code->address();
1836 Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001837 CopyBlock(reinterpret_cast<Object**>(new_addr),
1838 reinterpret_cast<Object**>(old_addr),
1839 obj_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001840 // Relocate the copy.
1841 Code* new_code = Code::cast(result);
1842 new_code->Relocate(new_addr - old_addr);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001843 return new_code;
1844}
1845
1846
1847Object* Heap::Allocate(Map* map, AllocationSpace space) {
1848 ASSERT(gc_state_ == NOT_IN_GC);
1849 ASSERT(map->instance_type() != MAP_TYPE);
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001850 Object* result = AllocateRaw(map->instance_size(),
1851 space,
1852 TargetSpaceId(map->instance_type()));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001853 if (result->IsFailure()) return result;
1854 HeapObject::cast(result)->set_map(map);
1855 return result;
1856}
1857
1858
1859Object* Heap::InitializeFunction(JSFunction* function,
1860 SharedFunctionInfo* shared,
1861 Object* prototype) {
1862 ASSERT(!prototype->IsMap());
1863 function->initialize_properties();
1864 function->initialize_elements();
1865 function->set_shared(shared);
1866 function->set_prototype_or_initial_map(prototype);
1867 function->set_context(undefined_value());
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00001868 function->set_literals(empty_fixed_array(), SKIP_WRITE_BARRIER);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001869 return function;
1870}
1871
1872
1873Object* Heap::AllocateFunctionPrototype(JSFunction* function) {
ager@chromium.orgddb913d2009-01-27 10:01:48 +00001874 // Allocate the prototype. Make sure to use the object function
1875 // from the function's context, since the function can be from a
1876 // different context.
1877 JSFunction* object_function =
1878 function->context()->global_context()->object_function();
1879 Object* prototype = AllocateJSObject(object_function);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001880 if (prototype->IsFailure()) return prototype;
1881 // When creating the prototype for the function we must set its
1882 // constructor to the function.
1883 Object* result =
1884 JSObject::cast(prototype)->SetProperty(constructor_symbol(),
1885 function,
1886 DONT_ENUM);
1887 if (result->IsFailure()) return result;
1888 return prototype;
1889}
1890
1891
1892Object* Heap::AllocateFunction(Map* function_map,
1893 SharedFunctionInfo* shared,
1894 Object* prototype) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001895 Object* result = Allocate(function_map, OLD_POINTER_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001896 if (result->IsFailure()) return result;
1897 return InitializeFunction(JSFunction::cast(result), shared, prototype);
1898}
1899
1900
1901Object* Heap::AllocateArgumentsObject(Object* callee, int length) {
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001902 // To get fast allocation and map sharing for arguments objects we
1903 // allocate them based on an arguments boilerplate.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001904
1905 // This calls Copy directly rather than using Heap::AllocateRaw so we
1906 // duplicate the check here.
1907 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
1908
1909 JSObject* boilerplate =
1910 Top::context()->global_context()->arguments_boilerplate();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001911
1912 // Make the clone.
1913 Map* map = boilerplate->map();
1914 int object_size = map->instance_size();
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001915 Object* result = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001916 if (result->IsFailure()) return result;
1917
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001918 // Copy the content. The arguments boilerplate doesn't have any
1919 // fields that point to new space so it's safe to skip the write
1920 // barrier here.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001921 CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(result)->address()),
1922 reinterpret_cast<Object**>(boilerplate->address()),
1923 object_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001924
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001925 // Set the two properties.
1926 JSObject::cast(result)->InObjectPropertyAtPut(arguments_callee_index,
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001927 callee);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001928 JSObject::cast(result)->InObjectPropertyAtPut(arguments_length_index,
1929 Smi::FromInt(length),
1930 SKIP_WRITE_BARRIER);
1931
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001932 // Check the state of the object
1933 ASSERT(JSObject::cast(result)->HasFastProperties());
1934 ASSERT(JSObject::cast(result)->HasFastElements());
1935
1936 return result;
1937}
1938
1939
1940Object* Heap::AllocateInitialMap(JSFunction* fun) {
1941 ASSERT(!fun->has_initial_map());
1942
ager@chromium.org7c537e22008-10-16 08:43:32 +00001943 // First create a new map with the expected number of properties being
1944 // allocated in-object.
1945 int expected_nof_properties = fun->shared()->expected_nof_properties();
1946 int instance_size = JSObject::kHeaderSize +
1947 expected_nof_properties * kPointerSize;
1948 if (instance_size > JSObject::kMaxInstanceSize) {
1949 instance_size = JSObject::kMaxInstanceSize;
1950 expected_nof_properties = (instance_size - JSObject::kHeaderSize) /
1951 kPointerSize;
1952 }
1953 Object* map_obj = Heap::AllocateMap(JS_OBJECT_TYPE, instance_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001954 if (map_obj->IsFailure()) return map_obj;
1955
1956 // Fetch or allocate prototype.
1957 Object* prototype;
1958 if (fun->has_instance_prototype()) {
1959 prototype = fun->instance_prototype();
1960 } else {
1961 prototype = AllocateFunctionPrototype(fun);
1962 if (prototype->IsFailure()) return prototype;
1963 }
1964 Map* map = Map::cast(map_obj);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001965 map->set_inobject_properties(expected_nof_properties);
1966 map->set_unused_property_fields(expected_nof_properties);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001967 map->set_prototype(prototype);
1968 return map;
1969}
1970
1971
1972void Heap::InitializeJSObjectFromMap(JSObject* obj,
1973 FixedArray* properties,
1974 Map* map) {
1975 obj->set_properties(properties);
1976 obj->initialize_elements();
1977 // TODO(1240798): Initialize the object's body using valid initial values
1978 // according to the object's initial map. For example, if the map's
1979 // instance type is JS_ARRAY_TYPE, the length field should be initialized
1980 // to a number (eg, Smi::FromInt(0)) and the elements initialized to a
1981 // fixed array (eg, Heap::empty_fixed_array()). Currently, the object
1982 // verification code has to cope with (temporarily) invalid objects. See
1983 // for example, JSArray::JSArrayVerify).
1984 obj->InitializeBody(map->instance_size());
1985}
1986
1987
1988Object* Heap::AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure) {
1989 // JSFunctions should be allocated using AllocateFunction to be
1990 // properly initialized.
1991 ASSERT(map->instance_type() != JS_FUNCTION_TYPE);
1992
1993 // Allocate the backing storage for the properties.
ager@chromium.org7c537e22008-10-16 08:43:32 +00001994 int prop_size = map->unused_property_fields() - map->inobject_properties();
1995 Object* properties = AllocateFixedArray(prop_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001996 if (properties->IsFailure()) return properties;
1997
1998 // Allocate the JSObject.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001999 AllocationSpace space =
2000 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
ager@chromium.org5aa501c2009-06-23 07:57:28 +00002001 if (map->instance_size() > MaxObjectSizeInPagedSpace()) space = LO_SPACE;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002002 Object* obj = Allocate(map, space);
2003 if (obj->IsFailure()) return obj;
2004
2005 // Initialize the JSObject.
2006 InitializeJSObjectFromMap(JSObject::cast(obj),
2007 FixedArray::cast(properties),
2008 map);
2009 return obj;
2010}
2011
2012
2013Object* Heap::AllocateJSObject(JSFunction* constructor,
2014 PretenureFlag pretenure) {
2015 // Allocate the initial map if absent.
2016 if (!constructor->has_initial_map()) {
2017 Object* initial_map = AllocateInitialMap(constructor);
2018 if (initial_map->IsFailure()) return initial_map;
2019 constructor->set_initial_map(Map::cast(initial_map));
2020 Map::cast(initial_map)->set_constructor(constructor);
2021 }
2022 // Allocate the object based on the constructors initial map.
2023 return AllocateJSObjectFromMap(constructor->initial_map(), pretenure);
2024}
2025
2026
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002027Object* Heap::CopyJSObject(JSObject* source) {
2028 // Never used to copy functions. If functions need to be copied we
2029 // have to be careful to clear the literals array.
2030 ASSERT(!source->IsJSFunction());
2031
2032 // Make the clone.
2033 Map* map = source->map();
2034 int object_size = map->instance_size();
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002035 Object* clone;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002036
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002037 // If we're forced to always allocate, we use the general allocation
2038 // functions which may leave us with an object in old space.
2039 if (always_allocate()) {
2040 clone = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
2041 if (clone->IsFailure()) return clone;
2042 Address clone_address = HeapObject::cast(clone)->address();
2043 CopyBlock(reinterpret_cast<Object**>(clone_address),
2044 reinterpret_cast<Object**>(source->address()),
2045 object_size);
2046 // Update write barrier for all fields that lie beyond the header.
2047 for (int offset = JSObject::kHeaderSize;
2048 offset < object_size;
2049 offset += kPointerSize) {
2050 RecordWrite(clone_address, offset);
2051 }
2052 } else {
2053 clone = new_space_.AllocateRaw(object_size);
2054 if (clone->IsFailure()) return clone;
2055 ASSERT(Heap::InNewSpace(clone));
2056 // Since we know the clone is allocated in new space, we can copy
ager@chromium.org32912102009-01-16 10:38:43 +00002057 // the contents without worrying about updating the write barrier.
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002058 CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(clone)->address()),
2059 reinterpret_cast<Object**>(source->address()),
2060 object_size);
2061 }
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002062
2063 FixedArray* elements = FixedArray::cast(source->elements());
2064 FixedArray* properties = FixedArray::cast(source->properties());
2065 // Update elements if necessary.
2066 if (elements->length()> 0) {
2067 Object* elem = CopyFixedArray(elements);
2068 if (elem->IsFailure()) return elem;
2069 JSObject::cast(clone)->set_elements(FixedArray::cast(elem));
2070 }
2071 // Update properties if necessary.
2072 if (properties->length() > 0) {
2073 Object* prop = CopyFixedArray(properties);
2074 if (prop->IsFailure()) return prop;
2075 JSObject::cast(clone)->set_properties(FixedArray::cast(prop));
2076 }
2077 // Return the new clone.
2078 return clone;
2079}
2080
2081
2082Object* Heap::ReinitializeJSGlobalProxy(JSFunction* constructor,
2083 JSGlobalProxy* object) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002084 // Allocate initial map if absent.
2085 if (!constructor->has_initial_map()) {
2086 Object* initial_map = AllocateInitialMap(constructor);
2087 if (initial_map->IsFailure()) return initial_map;
2088 constructor->set_initial_map(Map::cast(initial_map));
2089 Map::cast(initial_map)->set_constructor(constructor);
2090 }
2091
2092 Map* map = constructor->initial_map();
2093
2094 // Check that the already allocated object has the same size as
2095 // objects allocated using the constructor.
2096 ASSERT(map->instance_size() == object->map()->instance_size());
2097
2098 // Allocate the backing storage for the properties.
ager@chromium.org7c537e22008-10-16 08:43:32 +00002099 int prop_size = map->unused_property_fields() - map->inobject_properties();
2100 Object* properties = AllocateFixedArray(prop_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002101 if (properties->IsFailure()) return properties;
2102
2103 // Reset the map for the object.
2104 object->set_map(constructor->initial_map());
2105
2106 // Reinitialize the object from the constructor map.
2107 InitializeJSObjectFromMap(object, FixedArray::cast(properties), map);
2108 return object;
2109}
2110
2111
2112Object* Heap::AllocateStringFromAscii(Vector<const char> string,
2113 PretenureFlag pretenure) {
2114 Object* result = AllocateRawAsciiString(string.length(), pretenure);
2115 if (result->IsFailure()) return result;
2116
2117 // Copy the characters into the new object.
ager@chromium.org7c537e22008-10-16 08:43:32 +00002118 SeqAsciiString* string_result = SeqAsciiString::cast(result);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002119 for (int i = 0; i < string.length(); i++) {
ager@chromium.org7c537e22008-10-16 08:43:32 +00002120 string_result->SeqAsciiStringSet(i, string[i]);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002121 }
2122 return result;
2123}
2124
2125
2126Object* Heap::AllocateStringFromUtf8(Vector<const char> string,
2127 PretenureFlag pretenure) {
2128 // Count the number of characters in the UTF-8 string and check if
2129 // it is an ASCII string.
2130 Access<Scanner::Utf8Decoder> decoder(Scanner::utf8_decoder());
2131 decoder->Reset(string.start(), string.length());
2132 int chars = 0;
2133 bool is_ascii = true;
2134 while (decoder->has_more()) {
2135 uc32 r = decoder->GetNext();
2136 if (r > String::kMaxAsciiCharCode) is_ascii = false;
2137 chars++;
2138 }
2139
2140 // If the string is ascii, we do not need to convert the characters
2141 // since UTF8 is backwards compatible with ascii.
2142 if (is_ascii) return AllocateStringFromAscii(string, pretenure);
2143
2144 Object* result = AllocateRawTwoByteString(chars, pretenure);
2145 if (result->IsFailure()) return result;
2146
2147 // Convert and copy the characters into the new object.
2148 String* string_result = String::cast(result);
2149 decoder->Reset(string.start(), string.length());
2150 for (int i = 0; i < chars; i++) {
2151 uc32 r = decoder->GetNext();
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00002152 string_result->Set(i, r);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002153 }
2154 return result;
2155}
2156
2157
2158Object* Heap::AllocateStringFromTwoByte(Vector<const uc16> string,
2159 PretenureFlag pretenure) {
2160 // Check if the string is an ASCII string.
2161 int i = 0;
2162 while (i < string.length() && string[i] <= String::kMaxAsciiCharCode) i++;
2163
2164 Object* result;
2165 if (i == string.length()) { // It's an ASCII string.
2166 result = AllocateRawAsciiString(string.length(), pretenure);
2167 } else { // It's not an ASCII string.
2168 result = AllocateRawTwoByteString(string.length(), pretenure);
2169 }
2170 if (result->IsFailure()) return result;
2171
2172 // Copy the characters into the new object, which may be either ASCII or
2173 // UTF-16.
2174 String* string_result = String::cast(result);
2175 for (int i = 0; i < string.length(); i++) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00002176 string_result->Set(i, string[i]);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002177 }
2178 return result;
2179}
2180
2181
2182Map* Heap::SymbolMapForString(String* string) {
2183 // If the string is in new space it cannot be used as a symbol.
2184 if (InNewSpace(string)) return NULL;
2185
2186 // Find the corresponding symbol map for strings.
2187 Map* map = string->map();
2188
2189 if (map == short_ascii_string_map()) return short_ascii_symbol_map();
2190 if (map == medium_ascii_string_map()) return medium_ascii_symbol_map();
2191 if (map == long_ascii_string_map()) return long_ascii_symbol_map();
2192
2193 if (map == short_string_map()) return short_symbol_map();
2194 if (map == medium_string_map()) return medium_symbol_map();
2195 if (map == long_string_map()) return long_symbol_map();
2196
2197 if (map == short_cons_string_map()) return short_cons_symbol_map();
2198 if (map == medium_cons_string_map()) return medium_cons_symbol_map();
2199 if (map == long_cons_string_map()) return long_cons_symbol_map();
2200
2201 if (map == short_cons_ascii_string_map()) {
2202 return short_cons_ascii_symbol_map();
2203 }
2204 if (map == medium_cons_ascii_string_map()) {
2205 return medium_cons_ascii_symbol_map();
2206 }
2207 if (map == long_cons_ascii_string_map()) {
2208 return long_cons_ascii_symbol_map();
2209 }
2210
2211 if (map == short_sliced_string_map()) return short_sliced_symbol_map();
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00002212 if (map == medium_sliced_string_map()) return medium_sliced_symbol_map();
2213 if (map == long_sliced_string_map()) return long_sliced_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002214
2215 if (map == short_sliced_ascii_string_map()) {
2216 return short_sliced_ascii_symbol_map();
2217 }
2218 if (map == medium_sliced_ascii_string_map()) {
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00002219 return medium_sliced_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002220 }
2221 if (map == long_sliced_ascii_string_map()) {
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00002222 return long_sliced_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002223 }
2224
ager@chromium.org6f10e412009-02-13 10:11:16 +00002225 if (map == short_external_string_map()) {
2226 return short_external_symbol_map();
2227 }
2228 if (map == medium_external_string_map()) {
2229 return medium_external_symbol_map();
2230 }
2231 if (map == long_external_string_map()) {
2232 return long_external_symbol_map();
2233 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002234
2235 if (map == short_external_ascii_string_map()) {
ager@chromium.org6f10e412009-02-13 10:11:16 +00002236 return short_external_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002237 }
2238 if (map == medium_external_ascii_string_map()) {
ager@chromium.org6f10e412009-02-13 10:11:16 +00002239 return medium_external_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002240 }
2241 if (map == long_external_ascii_string_map()) {
ager@chromium.org6f10e412009-02-13 10:11:16 +00002242 return long_external_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002243 }
2244
2245 // No match found.
2246 return NULL;
2247}
2248
2249
ager@chromium.orga74f0da2008-12-03 16:05:52 +00002250Object* Heap::AllocateInternalSymbol(unibrow::CharacterStream* buffer,
2251 int chars,
2252 uint32_t length_field) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002253 // Ensure the chars matches the number of characters in the buffer.
2254 ASSERT(static_cast<unsigned>(chars) == buffer->Length());
2255 // Determine whether the string is ascii.
2256 bool is_ascii = true;
ager@chromium.org6f10e412009-02-13 10:11:16 +00002257 while (buffer->has_more() && is_ascii) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002258 if (buffer->GetNext() > unibrow::Utf8::kMaxOneByteChar) is_ascii = false;
2259 }
2260 buffer->Rewind();
2261
2262 // Compute map and object size.
2263 int size;
2264 Map* map;
2265
2266 if (is_ascii) {
2267 if (chars <= String::kMaxShortStringSize) {
2268 map = short_ascii_symbol_map();
2269 } else if (chars <= String::kMaxMediumStringSize) {
2270 map = medium_ascii_symbol_map();
2271 } else {
2272 map = long_ascii_symbol_map();
2273 }
ager@chromium.org7c537e22008-10-16 08:43:32 +00002274 size = SeqAsciiString::SizeFor(chars);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002275 } else {
2276 if (chars <= String::kMaxShortStringSize) {
2277 map = short_symbol_map();
2278 } else if (chars <= String::kMaxMediumStringSize) {
2279 map = medium_symbol_map();
2280 } else {
2281 map = long_symbol_map();
2282 }
ager@chromium.org7c537e22008-10-16 08:43:32 +00002283 size = SeqTwoByteString::SizeFor(chars);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002284 }
2285
2286 // Allocate string.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002287 AllocationSpace space =
ager@chromium.org5aa501c2009-06-23 07:57:28 +00002288 (size > MaxObjectSizeInPagedSpace()) ? LO_SPACE : OLD_DATA_SPACE;
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002289 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002290 if (result->IsFailure()) return result;
2291
2292 reinterpret_cast<HeapObject*>(result)->set_map(map);
2293 // The hash value contains the length of the string.
ager@chromium.org870a0b62008-11-04 11:43:05 +00002294 String* answer = String::cast(result);
ager@chromium.org870a0b62008-11-04 11:43:05 +00002295 answer->set_length_field(length_field);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002296
ager@chromium.org870a0b62008-11-04 11:43:05 +00002297 ASSERT_EQ(size, answer->Size());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002298
2299 // Fill in the characters.
2300 for (int i = 0; i < chars; i++) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00002301 answer->Set(i, buffer->GetNext());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002302 }
ager@chromium.org870a0b62008-11-04 11:43:05 +00002303 return answer;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002304}
2305
2306
2307Object* Heap::AllocateRawAsciiString(int length, PretenureFlag pretenure) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002308 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
ager@chromium.org7c537e22008-10-16 08:43:32 +00002309 int size = SeqAsciiString::SizeFor(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002310
ager@chromium.org5aa501c2009-06-23 07:57:28 +00002311 Object* result = Failure::OutOfMemoryException();
2312 if (space == NEW_SPACE) {
2313 result = size <= kMaxObjectSizeInNewSpace
2314 ? new_space_.AllocateRaw(size)
2315 : lo_space_->AllocateRawFixedArray(size);
2316 } else {
2317 if (size > MaxObjectSizeInPagedSpace()) space = LO_SPACE;
2318 result = AllocateRaw(size, space, OLD_DATA_SPACE);
2319 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002320 if (result->IsFailure()) return result;
2321
2322 // Determine the map based on the string's length.
2323 Map* map;
2324 if (length <= String::kMaxShortStringSize) {
2325 map = short_ascii_string_map();
2326 } else if (length <= String::kMaxMediumStringSize) {
2327 map = medium_ascii_string_map();
2328 } else {
2329 map = long_ascii_string_map();
2330 }
2331
2332 // Partially initialize the object.
2333 HeapObject::cast(result)->set_map(map);
2334 String::cast(result)->set_length(length);
2335 ASSERT_EQ(size, HeapObject::cast(result)->Size());
2336 return result;
2337}
2338
2339
2340Object* Heap::AllocateRawTwoByteString(int length, PretenureFlag pretenure) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002341 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
ager@chromium.org7c537e22008-10-16 08:43:32 +00002342 int size = SeqTwoByteString::SizeFor(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002343
ager@chromium.org5aa501c2009-06-23 07:57:28 +00002344 Object* result = Failure::OutOfMemoryException();
2345 if (space == NEW_SPACE) {
2346 result = size <= kMaxObjectSizeInNewSpace
2347 ? new_space_.AllocateRaw(size)
2348 : lo_space_->AllocateRawFixedArray(size);
2349 } else {
2350 if (size > MaxObjectSizeInPagedSpace()) space = LO_SPACE;
2351 result = AllocateRaw(size, space, OLD_DATA_SPACE);
2352 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002353 if (result->IsFailure()) return result;
2354
2355 // Determine the map based on the string's length.
2356 Map* map;
2357 if (length <= String::kMaxShortStringSize) {
2358 map = short_string_map();
2359 } else if (length <= String::kMaxMediumStringSize) {
2360 map = medium_string_map();
2361 } else {
2362 map = long_string_map();
2363 }
2364
2365 // Partially initialize the object.
2366 HeapObject::cast(result)->set_map(map);
2367 String::cast(result)->set_length(length);
2368 ASSERT_EQ(size, HeapObject::cast(result)->Size());
2369 return result;
2370}
2371
2372
2373Object* Heap::AllocateEmptyFixedArray() {
2374 int size = FixedArray::SizeFor(0);
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002375 Object* result = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002376 if (result->IsFailure()) return result;
2377 // Initialize the object.
2378 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2379 reinterpret_cast<Array*>(result)->set_length(0);
2380 return result;
2381}
2382
2383
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002384Object* Heap::AllocateRawFixedArray(int length) {
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002385 // Use the general function if we're forced to always allocate.
2386 if (always_allocate()) return AllocateFixedArray(length, NOT_TENURED);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002387 // Allocate the raw data for a fixed array.
2388 int size = FixedArray::SizeFor(length);
ager@chromium.org5aa501c2009-06-23 07:57:28 +00002389 return size <= kMaxObjectSizeInNewSpace
2390 ? new_space_.AllocateRaw(size)
2391 : lo_space_->AllocateRawFixedArray(size);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002392}
2393
2394
2395Object* Heap::CopyFixedArray(FixedArray* src) {
2396 int len = src->length();
2397 Object* obj = AllocateRawFixedArray(len);
2398 if (obj->IsFailure()) return obj;
2399 if (Heap::InNewSpace(obj)) {
2400 HeapObject* dst = HeapObject::cast(obj);
2401 CopyBlock(reinterpret_cast<Object**>(dst->address()),
2402 reinterpret_cast<Object**>(src->address()),
2403 FixedArray::SizeFor(len));
2404 return obj;
2405 }
2406 HeapObject::cast(obj)->set_map(src->map());
2407 FixedArray* result = FixedArray::cast(obj);
2408 result->set_length(len);
2409 // Copy the content
2410 WriteBarrierMode mode = result->GetWriteBarrierMode();
2411 for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
2412 return result;
2413}
2414
2415
2416Object* Heap::AllocateFixedArray(int length) {
ager@chromium.org32912102009-01-16 10:38:43 +00002417 if (length == 0) return empty_fixed_array();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002418 Object* result = AllocateRawFixedArray(length);
2419 if (!result->IsFailure()) {
2420 // Initialize header.
2421 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2422 FixedArray* array = FixedArray::cast(result);
2423 array->set_length(length);
2424 Object* value = undefined_value();
2425 // Initialize body.
2426 for (int index = 0; index < length; index++) {
2427 array->set(index, value, SKIP_WRITE_BARRIER);
2428 }
2429 }
2430 return result;
2431}
2432
2433
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002434Object* Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
2435 ASSERT(empty_fixed_array()->IsFixedArray());
2436 if (length == 0) return empty_fixed_array();
2437
2438 int size = FixedArray::SizeFor(length);
ager@chromium.org5aa501c2009-06-23 07:57:28 +00002439 Object* result = Failure::OutOfMemoryException();
2440 if (pretenure != TENURED) {
2441 result = size <= kMaxObjectSizeInNewSpace
2442 ? new_space_.AllocateRaw(size)
2443 : lo_space_->AllocateRawFixedArray(size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002444 }
ager@chromium.org5aa501c2009-06-23 07:57:28 +00002445 if (result->IsFailure()) {
2446 if (size > MaxObjectSizeInPagedSpace()) {
2447 result = lo_space_->AllocateRawFixedArray(size);
2448 } else {
2449 AllocationSpace space =
2450 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
2451 result = AllocateRaw(size, space, OLD_POINTER_SPACE);
2452 }
2453 if (result->IsFailure()) return result;
2454 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002455 // Initialize the object.
2456 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2457 FixedArray* array = FixedArray::cast(result);
2458 array->set_length(length);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002459 Object* value = undefined_value();
2460 for (int index = 0; index < length; index++) {
2461 array->set(index, value, SKIP_WRITE_BARRIER);
2462 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002463 return array;
2464}
2465
2466
2467Object* Heap::AllocateFixedArrayWithHoles(int length) {
2468 if (length == 0) return empty_fixed_array();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002469 Object* result = AllocateRawFixedArray(length);
2470 if (!result->IsFailure()) {
2471 // Initialize header.
2472 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2473 FixedArray* array = FixedArray::cast(result);
2474 array->set_length(length);
2475 // Initialize body.
2476 Object* value = the_hole_value();
2477 for (int index = 0; index < length; index++) {
2478 array->set(index, value, SKIP_WRITE_BARRIER);
2479 }
2480 }
2481 return result;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002482}
2483
2484
2485Object* Heap::AllocateHashTable(int length) {
2486 Object* result = Heap::AllocateFixedArray(length);
2487 if (result->IsFailure()) return result;
2488 reinterpret_cast<Array*>(result)->set_map(hash_table_map());
2489 ASSERT(result->IsDictionary());
2490 return result;
2491}
2492
2493
2494Object* Heap::AllocateGlobalContext() {
2495 Object* result = Heap::AllocateFixedArray(Context::GLOBAL_CONTEXT_SLOTS);
2496 if (result->IsFailure()) return result;
2497 Context* context = reinterpret_cast<Context*>(result);
2498 context->set_map(global_context_map());
2499 ASSERT(context->IsGlobalContext());
2500 ASSERT(result->IsContext());
2501 return result;
2502}
2503
2504
2505Object* Heap::AllocateFunctionContext(int length, JSFunction* function) {
2506 ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
2507 Object* result = Heap::AllocateFixedArray(length);
2508 if (result->IsFailure()) return result;
2509 Context* context = reinterpret_cast<Context*>(result);
2510 context->set_map(context_map());
2511 context->set_closure(function);
2512 context->set_fcontext(context);
2513 context->set_previous(NULL);
2514 context->set_extension(NULL);
2515 context->set_global(function->context()->global());
2516 ASSERT(!context->IsGlobalContext());
2517 ASSERT(context->is_function_context());
2518 ASSERT(result->IsContext());
2519 return result;
2520}
2521
2522
christian.plesner.hansen@gmail.com37abdec2009-01-06 14:43:28 +00002523Object* Heap::AllocateWithContext(Context* previous,
2524 JSObject* extension,
2525 bool is_catch_context) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002526 Object* result = Heap::AllocateFixedArray(Context::MIN_CONTEXT_SLOTS);
2527 if (result->IsFailure()) return result;
2528 Context* context = reinterpret_cast<Context*>(result);
christian.plesner.hansen@gmail.com37abdec2009-01-06 14:43:28 +00002529 context->set_map(is_catch_context ? catch_context_map() : context_map());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002530 context->set_closure(previous->closure());
2531 context->set_fcontext(previous->fcontext());
2532 context->set_previous(previous);
2533 context->set_extension(extension);
2534 context->set_global(previous->global());
2535 ASSERT(!context->IsGlobalContext());
2536 ASSERT(!context->is_function_context());
2537 ASSERT(result->IsContext());
2538 return result;
2539}
2540
2541
2542Object* Heap::AllocateStruct(InstanceType type) {
2543 Map* map;
2544 switch (type) {
2545#define MAKE_CASE(NAME, Name, name) case NAME##_TYPE: map = name##_map(); break;
2546STRUCT_LIST(MAKE_CASE)
2547#undef MAKE_CASE
2548 default:
2549 UNREACHABLE();
2550 return Failure::InternalError();
2551 }
2552 int size = map->instance_size();
2553 AllocationSpace space =
ager@chromium.org5aa501c2009-06-23 07:57:28 +00002554 (size > MaxObjectSizeInPagedSpace()) ? LO_SPACE : OLD_POINTER_SPACE;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002555 Object* result = Heap::Allocate(map, space);
2556 if (result->IsFailure()) return result;
2557 Struct::cast(result)->InitializeBody(size);
2558 return result;
2559}
2560
2561
2562#ifdef DEBUG
2563
2564void Heap::Print() {
2565 if (!HasBeenSetup()) return;
2566 Top::PrintStack();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002567 AllSpaces spaces;
2568 while (Space* space = spaces.next()) space->Print();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002569}
2570
2571
2572void Heap::ReportCodeStatistics(const char* title) {
2573 PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
2574 PagedSpace::ResetCodeStatistics();
2575 // We do not look for code in new space, map space, or old space. If code
2576 // somehow ends up in those spaces, we would miss it here.
2577 code_space_->CollectCodeStatistics();
2578 lo_space_->CollectCodeStatistics();
2579 PagedSpace::ReportCodeStatistics();
2580}
2581
2582
2583// This function expects that NewSpace's allocated objects histogram is
2584// populated (via a call to CollectStatistics or else as a side effect of a
2585// just-completed scavenge collection).
2586void Heap::ReportHeapStatistics(const char* title) {
2587 USE(title);
2588 PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
2589 title, gc_count_);
2590 PrintF("mark-compact GC : %d\n", mc_count_);
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002591 PrintF("old_gen_promotion_limit_ %d\n", old_gen_promotion_limit_);
2592 PrintF("old_gen_allocation_limit_ %d\n", old_gen_allocation_limit_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002593
2594 PrintF("\n");
2595 PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles());
2596 GlobalHandles::PrintStats();
2597 PrintF("\n");
2598
2599 PrintF("Heap statistics : ");
2600 MemoryAllocator::ReportStatistics();
2601 PrintF("To space : ");
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002602 new_space_.ReportStatistics();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002603 PrintF("Old pointer space : ");
2604 old_pointer_space_->ReportStatistics();
2605 PrintF("Old data space : ");
2606 old_data_space_->ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002607 PrintF("Code space : ");
2608 code_space_->ReportStatistics();
2609 PrintF("Map space : ");
2610 map_space_->ReportStatistics();
2611 PrintF("Large object space : ");
2612 lo_space_->ReportStatistics();
2613 PrintF(">>>>>> ========================================= >>>>>>\n");
2614}
2615
2616#endif // DEBUG
2617
2618bool Heap::Contains(HeapObject* value) {
2619 return Contains(value->address());
2620}
2621
2622
2623bool Heap::Contains(Address addr) {
2624 if (OS::IsOutsideAllocatedSpace(addr)) return false;
2625 return HasBeenSetup() &&
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002626 (new_space_.ToSpaceContains(addr) ||
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002627 old_pointer_space_->Contains(addr) ||
2628 old_data_space_->Contains(addr) ||
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002629 code_space_->Contains(addr) ||
2630 map_space_->Contains(addr) ||
2631 lo_space_->SlowContains(addr));
2632}
2633
2634
2635bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
2636 return InSpace(value->address(), space);
2637}
2638
2639
2640bool Heap::InSpace(Address addr, AllocationSpace space) {
2641 if (OS::IsOutsideAllocatedSpace(addr)) return false;
2642 if (!HasBeenSetup()) return false;
2643
2644 switch (space) {
2645 case NEW_SPACE:
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002646 return new_space_.ToSpaceContains(addr);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002647 case OLD_POINTER_SPACE:
2648 return old_pointer_space_->Contains(addr);
2649 case OLD_DATA_SPACE:
2650 return old_data_space_->Contains(addr);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002651 case CODE_SPACE:
2652 return code_space_->Contains(addr);
2653 case MAP_SPACE:
2654 return map_space_->Contains(addr);
2655 case LO_SPACE:
2656 return lo_space_->SlowContains(addr);
2657 }
2658
2659 return false;
2660}
2661
2662
2663#ifdef DEBUG
2664void Heap::Verify() {
2665 ASSERT(HasBeenSetup());
2666
2667 VerifyPointersVisitor visitor;
2668 Heap::IterateRoots(&visitor);
2669
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002670 AllSpaces spaces;
2671 while (Space* space = spaces.next()) {
2672 space->Verify();
2673 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002674}
2675#endif // DEBUG
2676
2677
2678Object* Heap::LookupSymbol(Vector<const char> string) {
2679 Object* symbol = NULL;
2680 Object* new_table =
2681 SymbolTable::cast(symbol_table_)->LookupSymbol(string, &symbol);
2682 if (new_table->IsFailure()) return new_table;
2683 symbol_table_ = new_table;
2684 ASSERT(symbol != NULL);
2685 return symbol;
2686}
2687
2688
2689Object* Heap::LookupSymbol(String* string) {
2690 if (string->IsSymbol()) return string;
2691 Object* symbol = NULL;
2692 Object* new_table =
2693 SymbolTable::cast(symbol_table_)->LookupString(string, &symbol);
2694 if (new_table->IsFailure()) return new_table;
2695 symbol_table_ = new_table;
2696 ASSERT(symbol != NULL);
2697 return symbol;
2698}
2699
2700
ager@chromium.org7c537e22008-10-16 08:43:32 +00002701bool Heap::LookupSymbolIfExists(String* string, String** symbol) {
2702 if (string->IsSymbol()) {
2703 *symbol = string;
2704 return true;
2705 }
2706 SymbolTable* table = SymbolTable::cast(symbol_table_);
2707 return table->LookupSymbolIfExists(string, symbol);
2708}
2709
2710
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002711#ifdef DEBUG
2712void Heap::ZapFromSpace() {
2713 ASSERT(HAS_HEAP_OBJECT_TAG(kFromSpaceZapValue));
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002714 for (Address a = new_space_.FromSpaceLow();
2715 a < new_space_.FromSpaceHigh();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002716 a += kPointerSize) {
2717 Memory::Address_at(a) = kFromSpaceZapValue;
2718 }
2719}
2720#endif // DEBUG
2721
2722
kasperl@chromium.org71affb52009-05-26 05:44:31 +00002723int Heap::IterateRSetRange(Address object_start,
2724 Address object_end,
2725 Address rset_start,
2726 ObjectSlotCallback copy_object_func) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002727 Address object_address = object_start;
2728 Address rset_address = rset_start;
kasperl@chromium.org71affb52009-05-26 05:44:31 +00002729 int set_bits_count = 0;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002730
2731 // Loop over all the pointers in [object_start, object_end).
2732 while (object_address < object_end) {
2733 uint32_t rset_word = Memory::uint32_at(rset_address);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002734 if (rset_word != 0) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002735 uint32_t result_rset = rset_word;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002736 for (uint32_t bitmask = 1; bitmask != 0; bitmask = bitmask << 1) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002737 // Do not dereference pointers at or past object_end.
2738 if ((rset_word & bitmask) != 0 && object_address < object_end) {
2739 Object** object_p = reinterpret_cast<Object**>(object_address);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002740 if (Heap::InNewSpace(*object_p)) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002741 copy_object_func(reinterpret_cast<HeapObject**>(object_p));
2742 }
2743 // If this pointer does not need to be remembered anymore, clear
2744 // the remembered set bit.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002745 if (!Heap::InNewSpace(*object_p)) result_rset &= ~bitmask;
kasperl@chromium.org71affb52009-05-26 05:44:31 +00002746 set_bits_count++;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002747 }
2748 object_address += kPointerSize;
2749 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002750 // Update the remembered set if it has changed.
2751 if (result_rset != rset_word) {
2752 Memory::uint32_at(rset_address) = result_rset;
2753 }
2754 } else {
2755 // No bits in the word were set. This is the common case.
2756 object_address += kPointerSize * kBitsPerInt;
2757 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002758 rset_address += kIntSize;
2759 }
kasperl@chromium.org71affb52009-05-26 05:44:31 +00002760 return set_bits_count;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002761}
2762
2763
2764void Heap::IterateRSet(PagedSpace* space, ObjectSlotCallback copy_object_func) {
2765 ASSERT(Page::is_rset_in_use());
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002766 ASSERT(space == old_pointer_space_ || space == map_space_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002767
kasperl@chromium.org71affb52009-05-26 05:44:31 +00002768 static void* paged_rset_histogram = StatsTable::CreateHistogram(
2769 "V8.RSetPaged",
2770 0,
2771 Page::kObjectAreaSize / kPointerSize,
2772 30);
2773
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002774 PageIterator it(space, PageIterator::PAGES_IN_USE);
2775 while (it.has_next()) {
2776 Page* page = it.next();
kasperl@chromium.org71affb52009-05-26 05:44:31 +00002777 int count = IterateRSetRange(page->ObjectAreaStart(), page->AllocationTop(),
2778 page->RSetStart(), copy_object_func);
2779 if (paged_rset_histogram != NULL) {
2780 StatsTable::AddHistogramSample(paged_rset_histogram, count);
2781 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002782 }
2783}
2784
2785
2786#ifdef DEBUG
2787#define SYNCHRONIZE_TAG(tag) v->Synchronize(tag)
2788#else
2789#define SYNCHRONIZE_TAG(tag)
2790#endif
2791
2792void Heap::IterateRoots(ObjectVisitor* v) {
2793 IterateStrongRoots(v);
2794 v->VisitPointer(reinterpret_cast<Object**>(&symbol_table_));
2795 SYNCHRONIZE_TAG("symbol_table");
2796}
2797
2798
2799void Heap::IterateStrongRoots(ObjectVisitor* v) {
2800#define ROOT_ITERATE(type, name) \
kasperl@chromium.org41044eb2008-10-06 08:24:46 +00002801 v->VisitPointer(bit_cast<Object**, type**>(&name##_));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002802 STRONG_ROOT_LIST(ROOT_ITERATE);
2803#undef ROOT_ITERATE
2804 SYNCHRONIZE_TAG("strong_root_list");
2805
2806#define STRUCT_MAP_ITERATE(NAME, Name, name) \
kasperl@chromium.org41044eb2008-10-06 08:24:46 +00002807 v->VisitPointer(bit_cast<Object**, Map**>(&name##_map_));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002808 STRUCT_LIST(STRUCT_MAP_ITERATE);
2809#undef STRUCT_MAP_ITERATE
2810 SYNCHRONIZE_TAG("struct_map");
2811
2812#define SYMBOL_ITERATE(name, string) \
kasperl@chromium.org41044eb2008-10-06 08:24:46 +00002813 v->VisitPointer(bit_cast<Object**, String**>(&name##_));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002814 SYMBOL_LIST(SYMBOL_ITERATE)
2815#undef SYMBOL_ITERATE
ager@chromium.org3b45ab52009-03-19 22:21:34 +00002816 v->VisitPointer(bit_cast<Object**, String**>(&hidden_symbol_));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002817 SYNCHRONIZE_TAG("symbol");
2818
2819 Bootstrapper::Iterate(v);
2820 SYNCHRONIZE_TAG("bootstrapper");
2821 Top::Iterate(v);
2822 SYNCHRONIZE_TAG("top");
ager@chromium.org65dad4b2009-04-23 08:48:43 +00002823
2824#ifdef ENABLE_DEBUGGER_SUPPORT
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002825 Debug::Iterate(v);
ager@chromium.org65dad4b2009-04-23 08:48:43 +00002826#endif
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002827 SYNCHRONIZE_TAG("debug");
kasperl@chromium.orgb9123622008-09-17 14:05:56 +00002828 CompilationCache::Iterate(v);
2829 SYNCHRONIZE_TAG("compilationcache");
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002830
2831 // Iterate over local handles in handle scopes.
2832 HandleScopeImplementer::Iterate(v);
2833 SYNCHRONIZE_TAG("handlescope");
2834
2835 // Iterate over the builtin code objects and code stubs in the heap. Note
2836 // that it is not strictly necessary to iterate over code objects on
2837 // scavenge collections. We still do it here because this same function
2838 // is used by the mark-sweep collector and the deserializer.
2839 Builtins::IterateBuiltins(v);
2840 SYNCHRONIZE_TAG("builtins");
2841
2842 // Iterate over global handles.
2843 GlobalHandles::IterateRoots(v);
2844 SYNCHRONIZE_TAG("globalhandles");
2845
2846 // Iterate over pointers being held by inactive threads.
2847 ThreadManager::Iterate(v);
2848 SYNCHRONIZE_TAG("threadmanager");
2849}
2850#undef SYNCHRONIZE_TAG
2851
2852
2853// Flag is set when the heap has been configured. The heap can be repeatedly
2854// configured through the API until it is setup.
2855static bool heap_configured = false;
2856
2857// TODO(1236194): Since the heap size is configurable on the command line
2858// and through the API, we should gracefully handle the case that the heap
2859// size is not big enough to fit all the initial objects.
2860bool Heap::ConfigureHeap(int semispace_size, int old_gen_size) {
2861 if (HasBeenSetup()) return false;
2862
2863 if (semispace_size > 0) semispace_size_ = semispace_size;
2864 if (old_gen_size > 0) old_generation_size_ = old_gen_size;
2865
2866 // The new space size must be a power of two to support single-bit testing
2867 // for containment.
mads.s.ager@gmail.com769cc962008-08-06 10:02:49 +00002868 semispace_size_ = RoundUpToPowerOf2(semispace_size_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002869 initial_semispace_size_ = Min(initial_semispace_size_, semispace_size_);
2870 young_generation_size_ = 2 * semispace_size_;
2871
2872 // The old generation is paged.
2873 old_generation_size_ = RoundUp(old_generation_size_, Page::kPageSize);
2874
2875 heap_configured = true;
2876 return true;
2877}
2878
2879
kasper.lund7276f142008-07-30 08:49:36 +00002880bool Heap::ConfigureHeapDefault() {
2881 return ConfigureHeap(FLAG_new_space_size, FLAG_old_space_size);
2882}
2883
2884
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002885int Heap::PromotedSpaceSize() {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002886 return old_pointer_space_->Size()
2887 + old_data_space_->Size()
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002888 + code_space_->Size()
2889 + map_space_->Size()
2890 + lo_space_->Size();
2891}
2892
2893
kasper.lund7276f142008-07-30 08:49:36 +00002894int Heap::PromotedExternalMemorySize() {
2895 if (amount_of_external_allocated_memory_
2896 <= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
2897 return amount_of_external_allocated_memory_
2898 - amount_of_external_allocated_memory_at_last_global_gc_;
2899}
2900
2901
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002902bool Heap::Setup(bool create_heap_objects) {
2903 // Initialize heap spaces and initial maps and objects. Whenever something
2904 // goes wrong, just return false. The caller should check the results and
2905 // call Heap::TearDown() to release allocated memory.
2906 //
2907 // If the heap is not yet configured (eg, through the API), configure it.
2908 // Configuration is based on the flags new-space-size (really the semispace
2909 // size) and old-space-size if set or the initial values of semispace_size_
2910 // and old_generation_size_ otherwise.
2911 if (!heap_configured) {
kasper.lund7276f142008-07-30 08:49:36 +00002912 if (!ConfigureHeapDefault()) return false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002913 }
2914
2915 // Setup memory allocator and allocate an initial chunk of memory. The
2916 // initial chunk is double the size of the new space to ensure that we can
2917 // find a pair of semispaces that are contiguous and aligned to their size.
2918 if (!MemoryAllocator::Setup(MaxCapacity())) return false;
2919 void* chunk
2920 = MemoryAllocator::ReserveInitialChunk(2 * young_generation_size_);
2921 if (chunk == NULL) return false;
2922
2923 // Put the initial chunk of the old space at the start of the initial
2924 // chunk, then the two new space semispaces, then the initial chunk of
2925 // code space. Align the pair of semispaces to their size, which must be
2926 // a power of 2.
2927 ASSERT(IsPowerOf2(young_generation_size_));
kasperl@chromium.orgb9123622008-09-17 14:05:56 +00002928 Address code_space_start = reinterpret_cast<Address>(chunk);
2929 Address new_space_start = RoundUp(code_space_start, young_generation_size_);
2930 Address old_space_start = new_space_start + young_generation_size_;
2931 int code_space_size = new_space_start - code_space_start;
2932 int old_space_size = young_generation_size_ - code_space_size;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002933
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002934 // Initialize new space.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002935 if (!new_space_.Setup(new_space_start, young_generation_size_)) return false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002936
2937 // Initialize old space, set the maximum capacity to the old generation
kasper.lund7276f142008-07-30 08:49:36 +00002938 // size. It will not contain code.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002939 old_pointer_space_ =
2940 new OldSpace(old_generation_size_, OLD_POINTER_SPACE, NOT_EXECUTABLE);
2941 if (old_pointer_space_ == NULL) return false;
2942 if (!old_pointer_space_->Setup(old_space_start, old_space_size >> 1)) {
2943 return false;
2944 }
2945 old_data_space_ =
2946 new OldSpace(old_generation_size_, OLD_DATA_SPACE, NOT_EXECUTABLE);
2947 if (old_data_space_ == NULL) return false;
2948 if (!old_data_space_->Setup(old_space_start + (old_space_size >> 1),
2949 old_space_size >> 1)) {
2950 return false;
2951 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002952
2953 // Initialize the code space, set its maximum capacity to the old
kasper.lund7276f142008-07-30 08:49:36 +00002954 // generation size. It needs executable memory.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002955 code_space_ =
2956 new OldSpace(old_generation_size_, CODE_SPACE, EXECUTABLE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002957 if (code_space_ == NULL) return false;
2958 if (!code_space_->Setup(code_space_start, code_space_size)) return false;
2959
2960 // Initialize map space.
kasper.lund7276f142008-07-30 08:49:36 +00002961 map_space_ = new MapSpace(kMaxMapSpaceSize, MAP_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002962 if (map_space_ == NULL) return false;
2963 // Setting up a paged space without giving it a virtual memory range big
2964 // enough to hold at least a page will cause it to allocate.
2965 if (!map_space_->Setup(NULL, 0)) return false;
2966
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002967 // The large object code space may contain code or data. We set the memory
2968 // to be non-executable here for safety, but this means we need to enable it
2969 // explicitly when allocating large code objects.
2970 lo_space_ = new LargeObjectSpace(LO_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002971 if (lo_space_ == NULL) return false;
2972 if (!lo_space_->Setup()) return false;
2973
2974 if (create_heap_objects) {
2975 // Create initial maps.
2976 if (!CreateInitialMaps()) return false;
2977 if (!CreateApiObjects()) return false;
2978
2979 // Create initial objects
2980 if (!CreateInitialObjects()) return false;
2981 }
2982
2983 LOG(IntEvent("heap-capacity", Capacity()));
2984 LOG(IntEvent("heap-available", Available()));
2985
2986 return true;
2987}
2988
2989
2990void Heap::TearDown() {
2991 GlobalHandles::TearDown();
2992
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002993 new_space_.TearDown();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002994
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002995 if (old_pointer_space_ != NULL) {
2996 old_pointer_space_->TearDown();
2997 delete old_pointer_space_;
2998 old_pointer_space_ = NULL;
2999 }
3000
3001 if (old_data_space_ != NULL) {
3002 old_data_space_->TearDown();
3003 delete old_data_space_;
3004 old_data_space_ = NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00003005 }
3006
3007 if (code_space_ != NULL) {
3008 code_space_->TearDown();
3009 delete code_space_;
3010 code_space_ = NULL;
3011 }
3012
3013 if (map_space_ != NULL) {
3014 map_space_->TearDown();
3015 delete map_space_;
3016 map_space_ = NULL;
3017 }
3018
3019 if (lo_space_ != NULL) {
3020 lo_space_->TearDown();
3021 delete lo_space_;
3022 lo_space_ = NULL;
3023 }
3024
3025 MemoryAllocator::TearDown();
3026}
3027
3028
3029void Heap::Shrink() {
3030 // Try to shrink map, old, and code spaces.
3031 map_space_->Shrink();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00003032 old_pointer_space_->Shrink();
3033 old_data_space_->Shrink();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00003034 code_space_->Shrink();
3035}
3036
3037
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00003038#ifdef ENABLE_HEAP_PROTECTION
3039
3040void Heap::Protect() {
ager@chromium.org71daaf62009-04-01 07:22:49 +00003041 if (HasBeenSetup()) {
3042 new_space_.Protect();
3043 map_space_->Protect();
3044 old_pointer_space_->Protect();
3045 old_data_space_->Protect();
3046 code_space_->Protect();
3047 lo_space_->Protect();
3048 }
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00003049}
3050
3051
3052void Heap::Unprotect() {
ager@chromium.org71daaf62009-04-01 07:22:49 +00003053 if (HasBeenSetup()) {
3054 new_space_.Unprotect();
3055 map_space_->Unprotect();
3056 old_pointer_space_->Unprotect();
3057 old_data_space_->Unprotect();
3058 code_space_->Unprotect();
3059 lo_space_->Unprotect();
3060 }
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00003061}
3062
3063#endif
3064
3065
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00003066#ifdef DEBUG
3067
3068class PrintHandleVisitor: public ObjectVisitor {
3069 public:
3070 void VisitPointers(Object** start, Object** end) {
3071 for (Object** p = start; p < end; p++)
3072 PrintF(" handle %p to %p\n", p, *p);
3073 }
3074};
3075
3076void Heap::PrintHandles() {
3077 PrintF("Handles:\n");
3078 PrintHandleVisitor v;
3079 HandleScopeImplementer::Iterate(&v);
3080}
3081
3082#endif
3083
3084
ager@chromium.org9258b6b2008-09-11 09:11:10 +00003085Space* AllSpaces::next() {
3086 switch (counter_++) {
3087 case NEW_SPACE:
3088 return Heap::new_space();
3089 case OLD_POINTER_SPACE:
3090 return Heap::old_pointer_space();
3091 case OLD_DATA_SPACE:
3092 return Heap::old_data_space();
3093 case CODE_SPACE:
3094 return Heap::code_space();
3095 case MAP_SPACE:
3096 return Heap::map_space();
3097 case LO_SPACE:
3098 return Heap::lo_space();
3099 default:
3100 return NULL;
3101 }
3102}
3103
3104
3105PagedSpace* PagedSpaces::next() {
3106 switch (counter_++) {
3107 case OLD_POINTER_SPACE:
3108 return Heap::old_pointer_space();
3109 case OLD_DATA_SPACE:
3110 return Heap::old_data_space();
3111 case CODE_SPACE:
3112 return Heap::code_space();
3113 case MAP_SPACE:
3114 return Heap::map_space();
3115 default:
3116 return NULL;
3117 }
3118}
3119
3120
3121
3122OldSpace* OldSpaces::next() {
3123 switch (counter_++) {
3124 case OLD_POINTER_SPACE:
3125 return Heap::old_pointer_space();
3126 case OLD_DATA_SPACE:
3127 return Heap::old_data_space();
3128 case CODE_SPACE:
3129 return Heap::code_space();
3130 default:
3131 return NULL;
3132 }
3133}
3134
3135
kasper.lund7276f142008-07-30 08:49:36 +00003136SpaceIterator::SpaceIterator() : current_space_(FIRST_SPACE), iterator_(NULL) {
3137}
3138
3139
3140SpaceIterator::~SpaceIterator() {
3141 // Delete active iterator if any.
3142 delete iterator_;
3143}
3144
3145
3146bool SpaceIterator::has_next() {
3147 // Iterate until no more spaces.
3148 return current_space_ != LAST_SPACE;
3149}
3150
3151
3152ObjectIterator* SpaceIterator::next() {
3153 if (iterator_ != NULL) {
3154 delete iterator_;
3155 iterator_ = NULL;
3156 // Move to the next space
3157 current_space_++;
3158 if (current_space_ > LAST_SPACE) {
3159 return NULL;
3160 }
3161 }
3162
3163 // Return iterator for the new current space.
3164 return CreateIterator();
3165}
3166
3167
3168// Create an iterator for the space to iterate.
3169ObjectIterator* SpaceIterator::CreateIterator() {
3170 ASSERT(iterator_ == NULL);
3171
3172 switch (current_space_) {
3173 case NEW_SPACE:
3174 iterator_ = new SemiSpaceIterator(Heap::new_space());
3175 break;
ager@chromium.org9258b6b2008-09-11 09:11:10 +00003176 case OLD_POINTER_SPACE:
3177 iterator_ = new HeapObjectIterator(Heap::old_pointer_space());
3178 break;
3179 case OLD_DATA_SPACE:
3180 iterator_ = new HeapObjectIterator(Heap::old_data_space());
kasper.lund7276f142008-07-30 08:49:36 +00003181 break;
3182 case CODE_SPACE:
3183 iterator_ = new HeapObjectIterator(Heap::code_space());
3184 break;
3185 case MAP_SPACE:
3186 iterator_ = new HeapObjectIterator(Heap::map_space());
3187 break;
3188 case LO_SPACE:
3189 iterator_ = new LargeObjectIterator(Heap::lo_space());
3190 break;
3191 }
3192
3193 // Return the newly allocated iterator;
3194 ASSERT(iterator_ != NULL);
3195 return iterator_;
3196}
3197
3198
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00003199HeapIterator::HeapIterator() {
3200 Init();
3201}
3202
3203
3204HeapIterator::~HeapIterator() {
3205 Shutdown();
3206}
3207
3208
3209void HeapIterator::Init() {
3210 // Start the iteration.
3211 space_iterator_ = new SpaceIterator();
3212 object_iterator_ = space_iterator_->next();
3213}
3214
3215
3216void HeapIterator::Shutdown() {
3217 // Make sure the last iterator is deallocated.
3218 delete space_iterator_;
3219 space_iterator_ = NULL;
3220 object_iterator_ = NULL;
3221}
3222
3223
3224bool HeapIterator::has_next() {
3225 // No iterator means we are done.
3226 if (object_iterator_ == NULL) return false;
3227
3228 if (object_iterator_->has_next_object()) {
3229 // If the current iterator has more objects we are fine.
3230 return true;
3231 } else {
3232 // Go though the spaces looking for one that has objects.
3233 while (space_iterator_->has_next()) {
3234 object_iterator_ = space_iterator_->next();
3235 if (object_iterator_->has_next_object()) {
3236 return true;
3237 }
3238 }
3239 }
3240 // Done with the last space.
3241 object_iterator_ = NULL;
3242 return false;
3243}
3244
3245
3246HeapObject* HeapIterator::next() {
3247 if (has_next()) {
3248 return object_iterator_->next_object();
3249 } else {
3250 return NULL;
3251 }
3252}
3253
3254
3255void HeapIterator::reset() {
3256 // Restart the iterator.
3257 Shutdown();
3258 Init();
3259}
3260
3261
3262//
3263// HeapProfiler class implementation.
3264//
3265#ifdef ENABLE_LOGGING_AND_PROFILING
3266void HeapProfiler::CollectStats(HeapObject* obj, HistogramInfo* info) {
3267 InstanceType type = obj->map()->instance_type();
3268 ASSERT(0 <= type && type <= LAST_TYPE);
3269 info[type].increment_number(1);
3270 info[type].increment_bytes(obj->Size());
3271}
3272#endif
3273
3274
3275#ifdef ENABLE_LOGGING_AND_PROFILING
3276void HeapProfiler::WriteSample() {
3277 LOG(HeapSampleBeginEvent("Heap", "allocated"));
3278
3279 HistogramInfo info[LAST_TYPE+1];
3280#define DEF_TYPE_NAME(name) info[name].set_name(#name);
3281 INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
3282#undef DEF_TYPE_NAME
3283
3284 HeapIterator iterator;
3285 while (iterator.has_next()) {
3286 CollectStats(iterator.next(), info);
3287 }
3288
3289 // Lump all the string types together.
3290 int string_number = 0;
3291 int string_bytes = 0;
3292#define INCREMENT_SIZE(type, size, name) \
3293 string_number += info[type].number(); \
3294 string_bytes += info[type].bytes();
3295 STRING_TYPE_LIST(INCREMENT_SIZE)
3296#undef INCREMENT_SIZE
3297 if (string_bytes > 0) {
3298 LOG(HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
3299 }
3300
3301 for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
3302 if (info[i].bytes() > 0) {
3303 LOG(HeapSampleItemEvent(info[i].name(), info[i].number(),
3304 info[i].bytes()));
3305 }
3306 }
3307
3308 LOG(HeapSampleEndEvent("Heap", "allocated"));
3309}
3310
3311
3312#endif
3313
3314
3315
3316#ifdef DEBUG
3317
3318static bool search_for_any_global;
3319static Object* search_target;
3320static bool found_target;
3321static List<Object*> object_stack(20);
3322
3323
3324// Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
3325static const int kMarkTag = 2;
3326
3327static void MarkObjectRecursively(Object** p);
3328class MarkObjectVisitor : public ObjectVisitor {
3329 public:
3330 void VisitPointers(Object** start, Object** end) {
3331 // Copy all HeapObject pointers in [start, end)
3332 for (Object** p = start; p < end; p++) {
3333 if ((*p)->IsHeapObject())
3334 MarkObjectRecursively(p);
3335 }
3336 }
3337};
3338
3339static MarkObjectVisitor mark_visitor;
3340
3341static void MarkObjectRecursively(Object** p) {
3342 if (!(*p)->IsHeapObject()) return;
3343
3344 HeapObject* obj = HeapObject::cast(*p);
3345
3346 Object* map = obj->map();
3347
3348 if (!map->IsHeapObject()) return; // visited before
3349
3350 if (found_target) return; // stop if target found
3351 object_stack.Add(obj);
3352 if ((search_for_any_global && obj->IsJSGlobalObject()) ||
3353 (!search_for_any_global && (obj == search_target))) {
3354 found_target = true;
3355 return;
3356 }
3357
3358 if (obj->IsCode()) {
3359 Code::cast(obj)->ConvertICTargetsFromAddressToObject();
3360 }
3361
3362 // not visited yet
3363 Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
3364
3365 Address map_addr = map_p->address();
3366
3367 obj->set_map(reinterpret_cast<Map*>(map_addr + kMarkTag));
3368
3369 MarkObjectRecursively(&map);
3370
3371 obj->IterateBody(map_p->instance_type(), obj->SizeFromMap(map_p),
3372 &mark_visitor);
3373
3374 if (!found_target) // don't pop if found the target
3375 object_stack.RemoveLast();
3376}
3377
3378
3379static void UnmarkObjectRecursively(Object** p);
3380class UnmarkObjectVisitor : public ObjectVisitor {
3381 public:
3382 void VisitPointers(Object** start, Object** end) {
3383 // Copy all HeapObject pointers in [start, end)
3384 for (Object** p = start; p < end; p++) {
3385 if ((*p)->IsHeapObject())
3386 UnmarkObjectRecursively(p);
3387 }
3388 }
3389};
3390
3391static UnmarkObjectVisitor unmark_visitor;
3392
3393static void UnmarkObjectRecursively(Object** p) {
3394 if (!(*p)->IsHeapObject()) return;
3395
3396 HeapObject* obj = HeapObject::cast(*p);
3397
3398 Object* map = obj->map();
3399
3400 if (map->IsHeapObject()) return; // unmarked already
3401
3402 Address map_addr = reinterpret_cast<Address>(map);
3403
3404 map_addr -= kMarkTag;
3405
3406 ASSERT_TAG_ALIGNED(map_addr);
3407
3408 HeapObject* map_p = HeapObject::FromAddress(map_addr);
3409
3410 obj->set_map(reinterpret_cast<Map*>(map_p));
3411
3412 UnmarkObjectRecursively(reinterpret_cast<Object**>(&map_p));
3413
3414 obj->IterateBody(Map::cast(map_p)->instance_type(),
3415 obj->SizeFromMap(Map::cast(map_p)),
3416 &unmark_visitor);
3417
3418 if (obj->IsCode()) {
3419 Code::cast(obj)->ConvertICTargetsFromObjectToAddress();
3420 }
3421}
3422
3423
3424static void MarkRootObjectRecursively(Object** root) {
3425 if (search_for_any_global) {
3426 ASSERT(search_target == NULL);
3427 } else {
3428 ASSERT(search_target->IsHeapObject());
3429 }
3430 found_target = false;
3431 object_stack.Clear();
3432
3433 MarkObjectRecursively(root);
3434 UnmarkObjectRecursively(root);
3435
3436 if (found_target) {
3437 PrintF("=====================================\n");
3438 PrintF("==== Path to object ====\n");
3439 PrintF("=====================================\n\n");
3440
3441 ASSERT(!object_stack.is_empty());
3442 for (int i = 0; i < object_stack.length(); i++) {
3443 if (i > 0) PrintF("\n |\n |\n V\n\n");
3444 Object* obj = object_stack[i];
3445 obj->Print();
3446 }
3447 PrintF("=====================================\n");
3448 }
3449}
3450
3451
3452// Helper class for visiting HeapObjects recursively.
3453class MarkRootVisitor: public ObjectVisitor {
3454 public:
3455 void VisitPointers(Object** start, Object** end) {
3456 // Visit all HeapObject pointers in [start, end)
3457 for (Object** p = start; p < end; p++) {
3458 if ((*p)->IsHeapObject())
3459 MarkRootObjectRecursively(p);
3460 }
3461 }
3462};
3463
3464
3465// Triggers a depth-first traversal of reachable objects from roots
3466// and finds a path to a specific heap object and prints it.
3467void Heap::TracePathToObject() {
3468 search_target = NULL;
3469 search_for_any_global = false;
3470
3471 MarkRootVisitor root_visitor;
3472 IterateRoots(&root_visitor);
3473}
3474
3475
3476// Triggers a depth-first traversal of reachable objects from roots
3477// and finds a path to any global object and prints it. Useful for
3478// determining the source for leaks of global objects.
3479void Heap::TracePathToGlobal() {
3480 search_target = NULL;
3481 search_for_any_global = true;
3482
3483 MarkRootVisitor root_visitor;
3484 IterateRoots(&root_visitor);
3485}
3486#endif
3487
3488
kasper.lund7276f142008-07-30 08:49:36 +00003489GCTracer::GCTracer()
3490 : start_time_(0.0),
3491 start_size_(0.0),
3492 gc_count_(0),
3493 full_gc_count_(0),
3494 is_compacting_(false),
3495 marked_count_(0) {
3496 // These two fields reflect the state of the previous full collection.
3497 // Set them before they are changed by the collector.
3498 previous_has_compacted_ = MarkCompactCollector::HasCompacted();
3499 previous_marked_count_ = MarkCompactCollector::previous_marked_count();
3500 if (!FLAG_trace_gc) return;
3501 start_time_ = OS::TimeCurrentMillis();
3502 start_size_ = SizeOfHeapObjects();
3503}
3504
3505
3506GCTracer::~GCTracer() {
3507 if (!FLAG_trace_gc) return;
3508 // Printf ONE line iff flag is set.
3509 PrintF("%s %.1f -> %.1f MB, %d ms.\n",
3510 CollectorString(),
3511 start_size_, SizeOfHeapObjects(),
3512 static_cast<int>(OS::TimeCurrentMillis() - start_time_));
3513}
3514
3515
3516const char* GCTracer::CollectorString() {
3517 switch (collector_) {
3518 case SCAVENGER:
3519 return "Scavenge";
3520 case MARK_COMPACTOR:
3521 return MarkCompactCollector::HasCompacted() ? "Mark-compact"
3522 : "Mark-sweep";
3523 }
3524 return "Unknown GC";
3525}
3526
3527
ager@chromium.org5aa501c2009-06-23 07:57:28 +00003528int KeyedLookupCache::Hash(Map* map, String* name) {
3529 // Uses only lower 32 bits if pointers are larger.
3530 uintptr_t addr_hash =
3531 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map)) >> 2;
3532 return (addr_hash ^ name->Hash()) % kLength;
3533}
3534
3535
3536int KeyedLookupCache::Lookup(Map* map, String* name) {
3537 int index = Hash(map, name);
3538 Key& key = keys_[index];
3539 if ((key.map == map) && key.name->Equals(name)) {
3540 return field_offsets_[index];
3541 }
3542 return -1;
3543}
3544
3545
3546void KeyedLookupCache::Update(Map* map, String* name, int field_offset) {
3547 String* symbol;
3548 if (Heap::LookupSymbolIfExists(name, &symbol)) {
3549 int index = Hash(map, symbol);
3550 Key& key = keys_[index];
3551 key.map = map;
3552 key.name = symbol;
3553 field_offsets_[index] = field_offset;
3554 }
3555}
3556
3557
3558void KeyedLookupCache::Clear() {
3559 for (int index = 0; index < kLength; index++) keys_[index].map = NULL;
3560}
3561
3562
3563KeyedLookupCache::Key KeyedLookupCache::keys_[KeyedLookupCache::kLength];
3564
3565
3566int KeyedLookupCache::field_offsets_[KeyedLookupCache::kLength];
3567
3568
3569void DescriptorLookupCache::Clear() {
3570 for (int index = 0; index < kLength; index++) keys_[index].array = NULL;
3571}
3572
3573
3574DescriptorLookupCache::Key
3575DescriptorLookupCache::keys_[DescriptorLookupCache::kLength];
3576
3577int DescriptorLookupCache::results_[DescriptorLookupCache::kLength];
3578
3579
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00003580#ifdef DEBUG
3581bool Heap::GarbageCollectionGreedyCheck() {
3582 ASSERT(FLAG_gc_greedy);
3583 if (Bootstrapper::IsActive()) return true;
3584 if (disallow_allocation_failure()) return true;
3585 return CollectGarbage(0, NEW_SPACE);
3586}
3587#endif
3588
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00003589} } // namespace v8::internal