blob: 5e3ec3f4bbd2e3cdcf119d01b71bfacf6276f517 [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000023#include "llvm/Support/Compiler.h"
24#include <algorithm>
25
26namespace clang {
27
28/// GetConversionCategory - Retrieve the implicit conversion
29/// category corresponding to the given implicit conversion kind.
30ImplicitConversionCategory
31GetConversionCategory(ImplicitConversionKind Kind) {
32 static const ImplicitConversionCategory
33 Category[(int)ICK_Num_Conversion_Kinds] = {
34 ICC_Identity,
35 ICC_Lvalue_Transformation,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Qualification_Adjustment,
39 ICC_Promotion,
40 ICC_Promotion,
41 ICC_Conversion,
42 ICC_Conversion,
43 ICC_Conversion,
44 ICC_Conversion,
45 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000046 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000047 ICC_Conversion
48 };
49 return Category[(int)Kind];
50}
51
52/// GetConversionRank - Retrieve the implicit conversion rank
53/// corresponding to the given implicit conversion kind.
54ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
55 static const ImplicitConversionRank
56 Rank[(int)ICK_Num_Conversion_Kinds] = {
57 ICR_Exact_Match,
58 ICR_Exact_Match,
59 ICR_Exact_Match,
60 ICR_Exact_Match,
61 ICR_Exact_Match,
62 ICR_Promotion,
63 ICR_Promotion,
64 ICR_Conversion,
65 ICR_Conversion,
66 ICR_Conversion,
67 ICR_Conversion,
68 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000069 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000070 ICR_Conversion
71 };
72 return Rank[(int)Kind];
73}
74
75/// GetImplicitConversionName - Return the name of this kind of
76/// implicit conversion.
77const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
78 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
79 "No conversion",
80 "Lvalue-to-rvalue",
81 "Array-to-pointer",
82 "Function-to-pointer",
83 "Qualification",
84 "Integral promotion",
85 "Floating point promotion",
86 "Integral conversion",
87 "Floating conversion",
88 "Floating-integral conversion",
89 "Pointer conversion",
90 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +000091 "Boolean conversion",
92 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000093 };
94 return Name[Kind];
95}
96
Douglas Gregor60d62c22008-10-31 16:23:19 +000097/// StandardConversionSequence - Set the standard conversion
98/// sequence to the identity conversion.
99void StandardConversionSequence::setAsIdentityConversion() {
100 First = ICK_Identity;
101 Second = ICK_Identity;
102 Third = ICK_Identity;
103 Deprecated = false;
104 ReferenceBinding = false;
105 DirectBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000106 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000107}
108
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000109/// getRank - Retrieve the rank of this standard conversion sequence
110/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
111/// implicit conversions.
112ImplicitConversionRank StandardConversionSequence::getRank() const {
113 ImplicitConversionRank Rank = ICR_Exact_Match;
114 if (GetConversionRank(First) > Rank)
115 Rank = GetConversionRank(First);
116 if (GetConversionRank(Second) > Rank)
117 Rank = GetConversionRank(Second);
118 if (GetConversionRank(Third) > Rank)
119 Rank = GetConversionRank(Third);
120 return Rank;
121}
122
123/// isPointerConversionToBool - Determines whether this conversion is
124/// a conversion of a pointer or pointer-to-member to bool. This is
125/// used as part of the ranking of standard conversion sequences
126/// (C++ 13.3.3.2p4).
127bool StandardConversionSequence::isPointerConversionToBool() const
128{
129 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
130 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
131
132 // Note that FromType has not necessarily been transformed by the
133 // array-to-pointer or function-to-pointer implicit conversions, so
134 // check for their presence as well as checking whether FromType is
135 // a pointer.
136 if (ToType->isBooleanType() &&
137 (FromType->isPointerType() ||
138 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
139 return true;
140
141 return false;
142}
143
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000144/// isPointerConversionToVoidPointer - Determines whether this
145/// conversion is a conversion of a pointer to a void pointer. This is
146/// used as part of the ranking of standard conversion sequences (C++
147/// 13.3.3.2p4).
148bool
149StandardConversionSequence::
150isPointerConversionToVoidPointer(ASTContext& Context) const
151{
152 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
153 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
154
155 // Note that FromType has not necessarily been transformed by the
156 // array-to-pointer implicit conversion, so check for its presence
157 // and redo the conversion to get a pointer.
158 if (First == ICK_Array_To_Pointer)
159 FromType = Context.getArrayDecayedType(FromType);
160
161 if (Second == ICK_Pointer_Conversion)
162 if (const PointerType* ToPtrType = ToType->getAsPointerType())
163 return ToPtrType->getPointeeType()->isVoidType();
164
165 return false;
166}
167
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000168/// DebugPrint - Print this standard conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void StandardConversionSequence::DebugPrint() const {
171 bool PrintedSomething = false;
172 if (First != ICK_Identity) {
173 fprintf(stderr, "%s", GetImplicitConversionName(First));
174 PrintedSomething = true;
175 }
176
177 if (Second != ICK_Identity) {
178 if (PrintedSomething) {
179 fprintf(stderr, " -> ");
180 }
181 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000182
183 if (CopyConstructor) {
184 fprintf(stderr, " (by copy constructor)");
185 } else if (DirectBinding) {
186 fprintf(stderr, " (direct reference binding)");
187 } else if (ReferenceBinding) {
188 fprintf(stderr, " (reference binding)");
189 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000190 PrintedSomething = true;
191 }
192
193 if (Third != ICK_Identity) {
194 if (PrintedSomething) {
195 fprintf(stderr, " -> ");
196 }
197 fprintf(stderr, "%s", GetImplicitConversionName(Third));
198 PrintedSomething = true;
199 }
200
201 if (!PrintedSomething) {
202 fprintf(stderr, "No conversions required");
203 }
204}
205
206/// DebugPrint - Print this user-defined conversion sequence to standard
207/// error. Useful for debugging overloading issues.
208void UserDefinedConversionSequence::DebugPrint() const {
209 if (Before.First || Before.Second || Before.Third) {
210 Before.DebugPrint();
211 fprintf(stderr, " -> ");
212 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000213 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000214 if (After.First || After.Second || After.Third) {
215 fprintf(stderr, " -> ");
216 After.DebugPrint();
217 }
218}
219
220/// DebugPrint - Print this implicit conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void ImplicitConversionSequence::DebugPrint() const {
223 switch (ConversionKind) {
224 case StandardConversion:
225 fprintf(stderr, "Standard conversion: ");
226 Standard.DebugPrint();
227 break;
228 case UserDefinedConversion:
229 fprintf(stderr, "User-defined conversion: ");
230 UserDefined.DebugPrint();
231 break;
232 case EllipsisConversion:
233 fprintf(stderr, "Ellipsis conversion");
234 break;
235 case BadConversion:
236 fprintf(stderr, "Bad conversion");
237 break;
238 }
239
240 fprintf(stderr, "\n");
241}
242
243// IsOverload - Determine whether the given New declaration is an
244// overload of the Old declaration. This routine returns false if New
245// and Old cannot be overloaded, e.g., if they are functions with the
246// same signature (C++ 1.3.10) or if the Old declaration isn't a
247// function (or overload set). When it does return false and Old is an
248// OverloadedFunctionDecl, MatchedDecl will be set to point to the
249// FunctionDecl that New cannot be overloaded with.
250//
251// Example: Given the following input:
252//
253// void f(int, float); // #1
254// void f(int, int); // #2
255// int f(int, int); // #3
256//
257// When we process #1, there is no previous declaration of "f",
258// so IsOverload will not be used.
259//
260// When we process #2, Old is a FunctionDecl for #1. By comparing the
261// parameter types, we see that #1 and #2 are overloaded (since they
262// have different signatures), so this routine returns false;
263// MatchedDecl is unchanged.
264//
265// When we process #3, Old is an OverloadedFunctionDecl containing #1
266// and #2. We compare the signatures of #3 to #1 (they're overloaded,
267// so we do nothing) and then #3 to #2. Since the signatures of #3 and
268// #2 are identical (return types of functions are not part of the
269// signature), IsOverload returns false and MatchedDecl will be set to
270// point to the FunctionDecl for #2.
271bool
272Sema::IsOverload(FunctionDecl *New, Decl* OldD,
273 OverloadedFunctionDecl::function_iterator& MatchedDecl)
274{
275 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
276 // Is this new function an overload of every function in the
277 // overload set?
278 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
279 FuncEnd = Ovl->function_end();
280 for (; Func != FuncEnd; ++Func) {
281 if (!IsOverload(New, *Func, MatchedDecl)) {
282 MatchedDecl = Func;
283 return false;
284 }
285 }
286
287 // This function overloads every function in the overload set.
288 return true;
289 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
290 // Is the function New an overload of the function Old?
291 QualType OldQType = Context.getCanonicalType(Old->getType());
292 QualType NewQType = Context.getCanonicalType(New->getType());
293
294 // Compare the signatures (C++ 1.3.10) of the two functions to
295 // determine whether they are overloads. If we find any mismatch
296 // in the signature, they are overloads.
297
298 // If either of these functions is a K&R-style function (no
299 // prototype), then we consider them to have matching signatures.
300 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
301 isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
302 return false;
303
304 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
305 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
306
307 // The signature of a function includes the types of its
308 // parameters (C++ 1.3.10), which includes the presence or absence
309 // of the ellipsis; see C++ DR 357).
310 if (OldQType != NewQType &&
311 (OldType->getNumArgs() != NewType->getNumArgs() ||
312 OldType->isVariadic() != NewType->isVariadic() ||
313 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
314 NewType->arg_type_begin())))
315 return true;
316
317 // If the function is a class member, its signature includes the
318 // cv-qualifiers (if any) on the function itself.
319 //
320 // As part of this, also check whether one of the member functions
321 // is static, in which case they are not overloads (C++
322 // 13.1p2). While not part of the definition of the signature,
323 // this check is important to determine whether these functions
324 // can be overloaded.
325 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
326 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
327 if (OldMethod && NewMethod &&
328 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000329 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000330 return true;
331
332 // The signatures match; this is not an overload.
333 return false;
334 } else {
335 // (C++ 13p1):
336 // Only function declarations can be overloaded; object and type
337 // declarations cannot be overloaded.
338 return false;
339 }
340}
341
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000342/// TryImplicitConversion - Attempt to perform an implicit conversion
343/// from the given expression (Expr) to the given type (ToType). This
344/// function returns an implicit conversion sequence that can be used
345/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000346///
347/// void f(float f);
348/// void g(int i) { f(i); }
349///
350/// this routine would produce an implicit conversion sequence to
351/// describe the initialization of f from i, which will be a standard
352/// conversion sequence containing an lvalue-to-rvalue conversion (C++
353/// 4.1) followed by a floating-integral conversion (C++ 4.9).
354//
355/// Note that this routine only determines how the conversion can be
356/// performed; it does not actually perform the conversion. As such,
357/// it will not produce any diagnostics if no conversion is available,
358/// but will instead return an implicit conversion sequence of kind
359/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000360///
361/// If @p SuppressUserConversions, then user-defined conversions are
362/// not permitted.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000363ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000364Sema::TryImplicitConversion(Expr* From, QualType ToType,
365 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000366{
367 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000368 if (IsStandardConversion(From, ToType, ICS.Standard))
369 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000370 else if (!SuppressUserConversions &&
371 IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000372 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000373 // C++ [over.ics.user]p4:
374 // A conversion of an expression of class type to the same class
375 // type is given Exact Match rank, and a conversion of an
376 // expression of class type to a base class of that type is
377 // given Conversion rank, in spite of the fact that a copy
378 // constructor (i.e., a user-defined conversion function) is
379 // called for those cases.
380 if (CXXConstructorDecl *Constructor
381 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
382 if (Constructor->isCopyConstructor(Context)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000383 // Turn this into a "standard" conversion sequence, so that it
384 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000385 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
386 ICS.Standard.setAsIdentityConversion();
387 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
388 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000389 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000390 if (IsDerivedFrom(From->getType().getUnqualifiedType(),
391 ToType.getUnqualifiedType()))
392 ICS.Standard.Second = ICK_Derived_To_Base;
393 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000394 }
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000395 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000396 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000397
398 return ICS;
399}
400
401/// IsStandardConversion - Determines whether there is a standard
402/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
403/// expression From to the type ToType. Standard conversion sequences
404/// only consider non-class types; for conversions that involve class
405/// types, use TryImplicitConversion. If a conversion exists, SCS will
406/// contain the standard conversion sequence required to perform this
407/// conversion and this routine will return true. Otherwise, this
408/// routine will return false and the value of SCS is unspecified.
409bool
410Sema::IsStandardConversion(Expr* From, QualType ToType,
411 StandardConversionSequence &SCS)
412{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000413 QualType FromType = From->getType();
414
Douglas Gregor60d62c22008-10-31 16:23:19 +0000415 // There are no standard conversions for class types, so abort early.
416 if (FromType->isRecordType() || ToType->isRecordType())
417 return false;
418
419 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000420 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000421 SCS.Deprecated = false;
422 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000423 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000424
425 // The first conversion can be an lvalue-to-rvalue conversion,
426 // array-to-pointer conversion, or function-to-pointer conversion
427 // (C++ 4p1).
428
429 // Lvalue-to-rvalue conversion (C++ 4.1):
430 // An lvalue (3.10) of a non-function, non-array type T can be
431 // converted to an rvalue.
432 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
433 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000434 !FromType->isFunctionType() && !FromType->isArrayType() &&
435 !FromType->isOverloadType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000436 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000437
438 // If T is a non-class type, the type of the rvalue is the
439 // cv-unqualified version of T. Otherwise, the type of the rvalue
440 // is T (C++ 4.1p1).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000441 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000442 }
443 // Array-to-pointer conversion (C++ 4.2)
444 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000445 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000446
447 // An lvalue or rvalue of type "array of N T" or "array of unknown
448 // bound of T" can be converted to an rvalue of type "pointer to
449 // T" (C++ 4.2p1).
450 FromType = Context.getArrayDecayedType(FromType);
451
452 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
453 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000454 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000455
456 // For the purpose of ranking in overload resolution
457 // (13.3.3.1.1), this conversion is considered an
458 // array-to-pointer conversion followed by a qualification
459 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000460 SCS.Second = ICK_Identity;
461 SCS.Third = ICK_Qualification;
462 SCS.ToTypePtr = ToType.getAsOpaquePtr();
463 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000464 }
465 }
466 // Function-to-pointer conversion (C++ 4.3).
467 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000468 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000469
470 // An lvalue of function type T can be converted to an rvalue of
471 // type "pointer to T." The result is a pointer to the
472 // function. (C++ 4.3p1).
473 FromType = Context.getPointerType(FromType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000474 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000475 // Address of overloaded function (C++ [over.over]).
476 else if (FunctionDecl *Fn
477 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
478 SCS.First = ICK_Function_To_Pointer;
479
480 // We were able to resolve the address of the overloaded function,
481 // so we can convert to the type of that function.
482 FromType = Fn->getType();
483 if (ToType->isReferenceType())
484 FromType = Context.getReferenceType(FromType);
485 else
486 FromType = Context.getPointerType(FromType);
487 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000488 // We don't require any conversions for the first step.
489 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000490 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000491 }
492
493 // The second conversion can be an integral promotion, floating
494 // point promotion, integral conversion, floating point conversion,
495 // floating-integral conversion, pointer conversion,
496 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
497 if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
498 Context.getCanonicalType(ToType).getUnqualifiedType()) {
499 // The unqualified versions of the types are the same: there's no
500 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000501 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000502 }
503 // Integral promotion (C++ 4.5).
504 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000505 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000506 FromType = ToType.getUnqualifiedType();
507 }
508 // Floating point promotion (C++ 4.6).
509 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000510 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000511 FromType = ToType.getUnqualifiedType();
512 }
513 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000514 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000515 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000516 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000517 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000518 FromType = ToType.getUnqualifiedType();
519 }
520 // Floating point conversions (C++ 4.8).
521 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000522 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000523 FromType = ToType.getUnqualifiedType();
524 }
525 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000526 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000527 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000528 ToType->isIntegralType() && !ToType->isBooleanType() &&
529 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000530 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
531 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000532 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000533 FromType = ToType.getUnqualifiedType();
534 }
535 // Pointer conversions (C++ 4.10).
Sebastian Redl07779722008-10-31 14:43:28 +0000536 else if (IsPointerConversion(From, FromType, ToType, FromType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000537 SCS.Second = ICK_Pointer_Conversion;
Sebastian Redl07779722008-10-31 14:43:28 +0000538 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000539 // FIXME: Pointer to member conversions (4.11).
540 // Boolean conversions (C++ 4.12).
541 // FIXME: pointer-to-member type
542 else if (ToType->isBooleanType() &&
543 (FromType->isArithmeticType() ||
544 FromType->isEnumeralType() ||
545 FromType->isPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000546 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000547 FromType = Context.BoolTy;
548 } else {
549 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000550 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000551 }
552
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000553 QualType CanonFrom;
554 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000555 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000556 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000557 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000558 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000559 CanonFrom = Context.getCanonicalType(FromType);
560 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000561 } else {
562 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000563 SCS.Third = ICK_Identity;
564
565 // C++ [over.best.ics]p6:
566 // [...] Any difference in top-level cv-qualification is
567 // subsumed by the initialization itself and does not constitute
568 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000569 CanonFrom = Context.getCanonicalType(FromType);
570 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000571 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000572 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
573 FromType = ToType;
574 CanonFrom = CanonTo;
575 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000576 }
577
578 // If we have not converted the argument type to the parameter type,
579 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000580 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000581 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000582
Douglas Gregor60d62c22008-10-31 16:23:19 +0000583 SCS.ToTypePtr = FromType.getAsOpaquePtr();
584 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000585}
586
587/// IsIntegralPromotion - Determines whether the conversion from the
588/// expression From (whose potentially-adjusted type is FromType) to
589/// ToType is an integral promotion (C++ 4.5). If so, returns true and
590/// sets PromotedType to the promoted type.
591bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
592{
593 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000594 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000595 if (!To) {
596 return false;
597 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000598
599 // An rvalue of type char, signed char, unsigned char, short int, or
600 // unsigned short int can be converted to an rvalue of type int if
601 // int can represent all the values of the source type; otherwise,
602 // the source rvalue can be converted to an rvalue of type unsigned
603 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000604 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000605 if (// We can promote any signed, promotable integer type to an int
606 (FromType->isSignedIntegerType() ||
607 // We can promote any unsigned integer type whose size is
608 // less than int to an int.
609 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000610 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000611 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000612 }
613
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000614 return To->getKind() == BuiltinType::UInt;
615 }
616
617 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
618 // can be converted to an rvalue of the first of the following types
619 // that can represent all the values of its underlying type: int,
620 // unsigned int, long, or unsigned long (C++ 4.5p2).
621 if ((FromType->isEnumeralType() || FromType->isWideCharType())
622 && ToType->isIntegerType()) {
623 // Determine whether the type we're converting from is signed or
624 // unsigned.
625 bool FromIsSigned;
626 uint64_t FromSize = Context.getTypeSize(FromType);
627 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
628 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
629 FromIsSigned = UnderlyingType->isSignedIntegerType();
630 } else {
631 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
632 FromIsSigned = true;
633 }
634
635 // The types we'll try to promote to, in the appropriate
636 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000637 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000638 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000639 Context.LongTy, Context.UnsignedLongTy ,
640 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000641 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000642 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000643 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
644 if (FromSize < ToSize ||
645 (FromSize == ToSize &&
646 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
647 // We found the type that we can promote to. If this is the
648 // type we wanted, we have a promotion. Otherwise, no
649 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000650 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000651 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
652 }
653 }
654 }
655
656 // An rvalue for an integral bit-field (9.6) can be converted to an
657 // rvalue of type int if int can represent all the values of the
658 // bit-field; otherwise, it can be converted to unsigned int if
659 // unsigned int can represent all the values of the bit-field. If
660 // the bit-field is larger yet, no integral promotion applies to
661 // it. If the bit-field has an enumerated type, it is treated as any
662 // other value of that type for promotion purposes (C++ 4.5p3).
663 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
664 using llvm::APSInt;
665 FieldDecl *MemberDecl = MemRef->getMemberDecl();
666 APSInt BitWidth;
667 if (MemberDecl->isBitField() &&
668 FromType->isIntegralType() && !FromType->isEnumeralType() &&
669 From->isIntegerConstantExpr(BitWidth, Context)) {
670 APSInt ToSize(Context.getTypeSize(ToType));
671
672 // Are we promoting to an int from a bitfield that fits in an int?
673 if (BitWidth < ToSize ||
Sebastian Redl07779722008-10-31 14:43:28 +0000674 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000675 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000676 }
677
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000678 // Are we promoting to an unsigned int from an unsigned bitfield
679 // that fits into an unsigned int?
Sebastian Redl07779722008-10-31 14:43:28 +0000680 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000681 return To->getKind() == BuiltinType::UInt;
Sebastian Redl07779722008-10-31 14:43:28 +0000682 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000683
684 return false;
685 }
686 }
687
688 // An rvalue of type bool can be converted to an rvalue of type int,
689 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000690 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000691 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000692 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000693
694 return false;
695}
696
697/// IsFloatingPointPromotion - Determines whether the conversion from
698/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
699/// returns true and sets PromotedType to the promoted type.
700bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
701{
702 /// An rvalue of type float can be converted to an rvalue of type
703 /// double. (C++ 4.6p1).
704 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
705 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
706 if (FromBuiltin->getKind() == BuiltinType::Float &&
707 ToBuiltin->getKind() == BuiltinType::Double)
708 return true;
709
710 return false;
711}
712
Douglas Gregorcb7de522008-11-26 23:31:11 +0000713/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
714/// the pointer type FromPtr to a pointer to type ToPointee, with the
715/// same type qualifiers as FromPtr has on its pointee type. ToType,
716/// if non-empty, will be a pointer to ToType that may or may not have
717/// the right set of qualifiers on its pointee.
718static QualType
719BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
720 QualType ToPointee, QualType ToType,
721 ASTContext &Context) {
722 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
723 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
724 unsigned Quals = CanonFromPointee.getCVRQualifiers();
725
726 // Exact qualifier match -> return the pointer type we're converting to.
727 if (CanonToPointee.getCVRQualifiers() == Quals) {
728 // ToType is exactly what we need. Return it.
729 if (ToType.getTypePtr())
730 return ToType;
731
732 // Build a pointer to ToPointee. It has the right qualifiers
733 // already.
734 return Context.getPointerType(ToPointee);
735 }
736
737 // Just build a canonical type that has the right qualifiers.
738 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
739}
740
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000741/// IsPointerConversion - Determines whether the conversion of the
742/// expression From, which has the (possibly adjusted) type FromType,
743/// can be converted to the type ToType via a pointer conversion (C++
744/// 4.10). If so, returns true and places the converted type (that
745/// might differ from ToType in its cv-qualifiers at some level) into
746/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000747///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000748/// This routine also supports conversions to and from block pointers
749/// and conversions with Objective-C's 'id', 'id<protocols...>', and
750/// pointers to interfaces. FIXME: Once we've determined the
751/// appropriate overloading rules for Objective-C, we may want to
752/// split the Objective-C checks into a different routine; however,
753/// GCC seems to consider all of these conversions to be pointer
754/// conversions, so for now they live here.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000755bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
756 QualType& ConvertedType)
757{
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000758 // Blocks: Block pointers can be converted to void*.
759 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
760 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
761 ConvertedType = ToType;
762 return true;
763 }
764 // Blocks: A null pointer constant can be converted to a block
765 // pointer type.
766 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
767 ConvertedType = ToType;
768 return true;
769 }
770
Douglas Gregor7ca09762008-11-27 01:19:21 +0000771 // Conversions with Objective-C's id<...>.
772 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
773 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
774 ConvertedType = ToType;
775 return true;
776 }
777
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000778 const PointerType* ToTypePtr = ToType->getAsPointerType();
779 if (!ToTypePtr)
780 return false;
781
782 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
783 if (From->isNullPointerConstant(Context)) {
784 ConvertedType = ToType;
785 return true;
786 }
Sebastian Redl07779722008-10-31 14:43:28 +0000787
Douglas Gregorcb7de522008-11-26 23:31:11 +0000788 // Beyond this point, both types need to be pointers.
789 const PointerType *FromTypePtr = FromType->getAsPointerType();
790 if (!FromTypePtr)
791 return false;
792
793 QualType FromPointeeType = FromTypePtr->getPointeeType();
794 QualType ToPointeeType = ToTypePtr->getPointeeType();
795
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000796 // An rvalue of type "pointer to cv T," where T is an object type,
797 // can be converted to an rvalue of type "pointer to cv void" (C++
798 // 4.10p2).
Douglas Gregorcb7de522008-11-26 23:31:11 +0000799 if (FromPointeeType->isIncompleteOrObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000800 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
801 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000802 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000803 return true;
804 }
805
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000806 // C++ [conv.ptr]p3:
807 //
808 // An rvalue of type "pointer to cv D," where D is a class type,
809 // can be converted to an rvalue of type "pointer to cv B," where
810 // B is a base class (clause 10) of D. If B is an inaccessible
811 // (clause 11) or ambiguous (10.2) base class of D, a program that
812 // necessitates this conversion is ill-formed. The result of the
813 // conversion is a pointer to the base class sub-object of the
814 // derived class object. The null pointer value is converted to
815 // the null pointer value of the destination type.
816 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000817 // Note that we do not check for ambiguity or inaccessibility
818 // here. That is handled by CheckPointerConversion.
Douglas Gregorcb7de522008-11-26 23:31:11 +0000819 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
820 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000821 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
822 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000823 ToType, Context);
824 return true;
825 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000826
Douglas Gregorcb7de522008-11-26 23:31:11 +0000827 // Objective C++: We're able to convert from a pointer to an
828 // interface to a pointer to a different interface.
829 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
830 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
831 if (FromIface && ToIface &&
832 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000833 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
834 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000835 ToType, Context);
836 return true;
837 }
838
839 // Objective C++: We're able to convert between "id" and a pointer
840 // to any interface (in both directions).
841 if ((FromIface && Context.isObjCIdType(ToPointeeType))
842 || (ToIface && Context.isObjCIdType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000843 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
844 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000845 ToType, Context);
846 return true;
847 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000848
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000849 return false;
850}
851
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000852/// CheckPointerConversion - Check the pointer conversion from the
853/// expression From to the type ToType. This routine checks for
854/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
855/// conversions for which IsPointerConversion has already returned
856/// true. It returns true and produces a diagnostic if there was an
857/// error, or returns false otherwise.
858bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
859 QualType FromType = From->getType();
860
861 if (const PointerType *FromPtrType = FromType->getAsPointerType())
862 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Sebastian Redl07779722008-10-31 14:43:28 +0000863 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
864 /*DetectVirtual=*/false);
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000865 QualType FromPointeeType = FromPtrType->getPointeeType(),
866 ToPointeeType = ToPtrType->getPointeeType();
867 if (FromPointeeType->isRecordType() &&
868 ToPointeeType->isRecordType()) {
869 // We must have a derived-to-base conversion. Check an
870 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +0000871 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
872 From->getExprLoc(),
873 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000874 }
875 }
876
877 return false;
878}
879
Douglas Gregor98cd5992008-10-21 23:43:52 +0000880/// IsQualificationConversion - Determines whether the conversion from
881/// an rvalue of type FromType to ToType is a qualification conversion
882/// (C++ 4.4).
883bool
884Sema::IsQualificationConversion(QualType FromType, QualType ToType)
885{
886 FromType = Context.getCanonicalType(FromType);
887 ToType = Context.getCanonicalType(ToType);
888
889 // If FromType and ToType are the same type, this is not a
890 // qualification conversion.
891 if (FromType == ToType)
892 return false;
893
894 // (C++ 4.4p4):
895 // A conversion can add cv-qualifiers at levels other than the first
896 // in multi-level pointers, subject to the following rules: [...]
897 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +0000898 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +0000899 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +0000900 // Within each iteration of the loop, we check the qualifiers to
901 // determine if this still looks like a qualification
902 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +0000903 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +0000904 // until there are no more pointers or pointers-to-members left to
905 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +0000906 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +0000907
908 // -- for every j > 0, if const is in cv 1,j then const is in cv
909 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +0000910 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +0000911 return false;
Douglas Gregor57373262008-10-22 14:17:15 +0000912
Douglas Gregor98cd5992008-10-21 23:43:52 +0000913 // -- if the cv 1,j and cv 2,j are different, then const is in
914 // every cv for 0 < k < j.
915 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +0000916 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +0000917 return false;
Douglas Gregor57373262008-10-22 14:17:15 +0000918
Douglas Gregor98cd5992008-10-21 23:43:52 +0000919 // Keep track of whether all prior cv-qualifiers in the "to" type
920 // include const.
921 PreviousToQualsIncludeConst
922 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +0000923 }
Douglas Gregor98cd5992008-10-21 23:43:52 +0000924
925 // We are left with FromType and ToType being the pointee types
926 // after unwrapping the original FromType and ToType the same number
927 // of types. If we unwrapped any pointers, and if FromType and
928 // ToType have the same unqualified type (since we checked
929 // qualifiers above), then this is a qualification conversion.
930 return UnwrappedAnyPointer &&
931 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
932}
933
Douglas Gregor60d62c22008-10-31 16:23:19 +0000934/// IsUserDefinedConversion - Determines whether there is a
935/// user-defined conversion sequence (C++ [over.ics.user]) that
936/// converts expression From to the type ToType. If such a conversion
937/// exists, User will contain the user-defined conversion sequence
938/// that performs such a conversion and this routine will return
939/// true. Otherwise, this routine returns false and User is
940/// unspecified.
941bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
942 UserDefinedConversionSequence& User)
943{
944 OverloadCandidateSet CandidateSet;
945 if (const CXXRecordType *ToRecordType
946 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
947 // C++ [over.match.ctor]p1:
948 // When objects of class type are direct-initialized (8.5), or
949 // copy-initialized from an expression of the same or a
950 // derived class type (8.5), overload resolution selects the
951 // constructor. [...] For copy-initialization, the candidate
952 // functions are all the converting constructors (12.3.1) of
953 // that class. The argument list is the expression-list within
954 // the parentheses of the initializer.
955 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
Douglas Gregor9e7d9de2008-12-15 21:24:18 +0000956 DeclarationName ConstructorName
957 = Context.DeclarationNames.getCXXConstructorName(
958 Context.getCanonicalType(ToType));
959 DeclContext::lookup_result Lookup
960 = ToRecordDecl->lookup(Context, ConstructorName);
961 if (Lookup.first == Lookup.second)
962 /* No constructors. FIXME: Implicit copy constructor? */;
963 else if (OverloadedFunctionDecl *Constructors
964 = dyn_cast<OverloadedFunctionDecl>(*Lookup.first)) {
965 for (OverloadedFunctionDecl::function_const_iterator func
966 = Constructors->function_begin();
967 func != Constructors->function_end(); ++func) {
968 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
969 if (Constructor->isConvertingConstructor())
970 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
971 /*SuppressUserConversions=*/true);
972 }
973 } else if (CXXConstructorDecl *Constructor
974 = dyn_cast<CXXConstructorDecl>(*Lookup.first)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000975 if (Constructor->isConvertingConstructor())
Douglas Gregor225c41e2008-11-03 19:09:14 +0000976 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
977 /*SuppressUserConversions=*/true);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000978 }
979 }
980
Douglas Gregorf1991ea2008-11-07 22:36:19 +0000981 if (const CXXRecordType *FromRecordType
982 = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
983 // Add all of the conversion functions as candidates.
984 // FIXME: Look for conversions in base classes!
985 CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
986 OverloadedFunctionDecl *Conversions
987 = FromRecordDecl->getConversionFunctions();
988 for (OverloadedFunctionDecl::function_iterator Func
989 = Conversions->function_begin();
990 Func != Conversions->function_end(); ++Func) {
991 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
992 AddConversionCandidate(Conv, From, ToType, CandidateSet);
993 }
994 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000995
996 OverloadCandidateSet::iterator Best;
997 switch (BestViableFunction(CandidateSet, Best)) {
998 case OR_Success:
999 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001000 if (CXXConstructorDecl *Constructor
1001 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1002 // C++ [over.ics.user]p1:
1003 // If the user-defined conversion is specified by a
1004 // constructor (12.3.1), the initial standard conversion
1005 // sequence converts the source type to the type required by
1006 // the argument of the constructor.
1007 //
1008 // FIXME: What about ellipsis conversions?
1009 QualType ThisType = Constructor->getThisType(Context);
1010 User.Before = Best->Conversions[0].Standard;
1011 User.ConversionFunction = Constructor;
1012 User.After.setAsIdentityConversion();
1013 User.After.FromTypePtr
1014 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1015 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1016 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001017 } else if (CXXConversionDecl *Conversion
1018 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1019 // C++ [over.ics.user]p1:
1020 //
1021 // [...] If the user-defined conversion is specified by a
1022 // conversion function (12.3.2), the initial standard
1023 // conversion sequence converts the source type to the
1024 // implicit object parameter of the conversion function.
1025 User.Before = Best->Conversions[0].Standard;
1026 User.ConversionFunction = Conversion;
1027
1028 // C++ [over.ics.user]p2:
1029 // The second standard conversion sequence converts the
1030 // result of the user-defined conversion to the target type
1031 // for the sequence. Since an implicit conversion sequence
1032 // is an initialization, the special rules for
1033 // initialization by user-defined conversion apply when
1034 // selecting the best user-defined conversion for a
1035 // user-defined conversion sequence (see 13.3.3 and
1036 // 13.3.3.1).
1037 User.After = Best->FinalConversion;
1038 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001039 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001040 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001041 return false;
1042 }
1043
1044 case OR_No_Viable_Function:
1045 // No conversion here! We're done.
1046 return false;
1047
1048 case OR_Ambiguous:
1049 // FIXME: See C++ [over.best.ics]p10 for the handling of
1050 // ambiguous conversion sequences.
1051 return false;
1052 }
1053
1054 return false;
1055}
1056
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001057/// CompareImplicitConversionSequences - Compare two implicit
1058/// conversion sequences to determine whether one is better than the
1059/// other or if they are indistinguishable (C++ 13.3.3.2).
1060ImplicitConversionSequence::CompareKind
1061Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1062 const ImplicitConversionSequence& ICS2)
1063{
1064 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1065 // conversion sequences (as defined in 13.3.3.1)
1066 // -- a standard conversion sequence (13.3.3.1.1) is a better
1067 // conversion sequence than a user-defined conversion sequence or
1068 // an ellipsis conversion sequence, and
1069 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1070 // conversion sequence than an ellipsis conversion sequence
1071 // (13.3.3.1.3).
1072 //
1073 if (ICS1.ConversionKind < ICS2.ConversionKind)
1074 return ImplicitConversionSequence::Better;
1075 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1076 return ImplicitConversionSequence::Worse;
1077
1078 // Two implicit conversion sequences of the same form are
1079 // indistinguishable conversion sequences unless one of the
1080 // following rules apply: (C++ 13.3.3.2p3):
1081 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1082 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1083 else if (ICS1.ConversionKind ==
1084 ImplicitConversionSequence::UserDefinedConversion) {
1085 // User-defined conversion sequence U1 is a better conversion
1086 // sequence than another user-defined conversion sequence U2 if
1087 // they contain the same user-defined conversion function or
1088 // constructor and if the second standard conversion sequence of
1089 // U1 is better than the second standard conversion sequence of
1090 // U2 (C++ 13.3.3.2p3).
1091 if (ICS1.UserDefined.ConversionFunction ==
1092 ICS2.UserDefined.ConversionFunction)
1093 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1094 ICS2.UserDefined.After);
1095 }
1096
1097 return ImplicitConversionSequence::Indistinguishable;
1098}
1099
1100/// CompareStandardConversionSequences - Compare two standard
1101/// conversion sequences to determine whether one is better than the
1102/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1103ImplicitConversionSequence::CompareKind
1104Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1105 const StandardConversionSequence& SCS2)
1106{
1107 // Standard conversion sequence S1 is a better conversion sequence
1108 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1109
1110 // -- S1 is a proper subsequence of S2 (comparing the conversion
1111 // sequences in the canonical form defined by 13.3.3.1.1,
1112 // excluding any Lvalue Transformation; the identity conversion
1113 // sequence is considered to be a subsequence of any
1114 // non-identity conversion sequence) or, if not that,
1115 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1116 // Neither is a proper subsequence of the other. Do nothing.
1117 ;
1118 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1119 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1120 (SCS1.Second == ICK_Identity &&
1121 SCS1.Third == ICK_Identity))
1122 // SCS1 is a proper subsequence of SCS2.
1123 return ImplicitConversionSequence::Better;
1124 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1125 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1126 (SCS2.Second == ICK_Identity &&
1127 SCS2.Third == ICK_Identity))
1128 // SCS2 is a proper subsequence of SCS1.
1129 return ImplicitConversionSequence::Worse;
1130
1131 // -- the rank of S1 is better than the rank of S2 (by the rules
1132 // defined below), or, if not that,
1133 ImplicitConversionRank Rank1 = SCS1.getRank();
1134 ImplicitConversionRank Rank2 = SCS2.getRank();
1135 if (Rank1 < Rank2)
1136 return ImplicitConversionSequence::Better;
1137 else if (Rank2 < Rank1)
1138 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001139
Douglas Gregor57373262008-10-22 14:17:15 +00001140 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1141 // are indistinguishable unless one of the following rules
1142 // applies:
1143
1144 // A conversion that is not a conversion of a pointer, or
1145 // pointer to member, to bool is better than another conversion
1146 // that is such a conversion.
1147 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1148 return SCS2.isPointerConversionToBool()
1149 ? ImplicitConversionSequence::Better
1150 : ImplicitConversionSequence::Worse;
1151
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001152 // C++ [over.ics.rank]p4b2:
1153 //
1154 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001155 // conversion of B* to A* is better than conversion of B* to
1156 // void*, and conversion of A* to void* is better than conversion
1157 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001158 bool SCS1ConvertsToVoid
1159 = SCS1.isPointerConversionToVoidPointer(Context);
1160 bool SCS2ConvertsToVoid
1161 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001162 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1163 // Exactly one of the conversion sequences is a conversion to
1164 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001165 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1166 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001167 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1168 // Neither conversion sequence converts to a void pointer; compare
1169 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001170 if (ImplicitConversionSequence::CompareKind DerivedCK
1171 = CompareDerivedToBaseConversions(SCS1, SCS2))
1172 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001173 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1174 // Both conversion sequences are conversions to void
1175 // pointers. Compare the source types to determine if there's an
1176 // inheritance relationship in their sources.
1177 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1178 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1179
1180 // Adjust the types we're converting from via the array-to-pointer
1181 // conversion, if we need to.
1182 if (SCS1.First == ICK_Array_To_Pointer)
1183 FromType1 = Context.getArrayDecayedType(FromType1);
1184 if (SCS2.First == ICK_Array_To_Pointer)
1185 FromType2 = Context.getArrayDecayedType(FromType2);
1186
1187 QualType FromPointee1
1188 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1189 QualType FromPointee2
1190 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1191
1192 if (IsDerivedFrom(FromPointee2, FromPointee1))
1193 return ImplicitConversionSequence::Better;
1194 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1195 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001196
1197 // Objective-C++: If one interface is more specific than the
1198 // other, it is the better one.
1199 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1200 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1201 if (FromIface1 && FromIface1) {
1202 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1203 return ImplicitConversionSequence::Better;
1204 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1205 return ImplicitConversionSequence::Worse;
1206 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001207 }
Douglas Gregor57373262008-10-22 14:17:15 +00001208
1209 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1210 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001211 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001212 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001213 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001214
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001215 // C++ [over.ics.rank]p3b4:
1216 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1217 // which the references refer are the same type except for
1218 // top-level cv-qualifiers, and the type to which the reference
1219 // initialized by S2 refers is more cv-qualified than the type
1220 // to which the reference initialized by S1 refers.
1221 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1222 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1223 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1224 T1 = Context.getCanonicalType(T1);
1225 T2 = Context.getCanonicalType(T2);
1226 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1227 if (T2.isMoreQualifiedThan(T1))
1228 return ImplicitConversionSequence::Better;
1229 else if (T1.isMoreQualifiedThan(T2))
1230 return ImplicitConversionSequence::Worse;
1231 }
1232 }
Douglas Gregor57373262008-10-22 14:17:15 +00001233
1234 return ImplicitConversionSequence::Indistinguishable;
1235}
1236
1237/// CompareQualificationConversions - Compares two standard conversion
1238/// sequences to determine whether they can be ranked based on their
1239/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1240ImplicitConversionSequence::CompareKind
1241Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1242 const StandardConversionSequence& SCS2)
1243{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001244 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001245 // -- S1 and S2 differ only in their qualification conversion and
1246 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1247 // cv-qualification signature of type T1 is a proper subset of
1248 // the cv-qualification signature of type T2, and S1 is not the
1249 // deprecated string literal array-to-pointer conversion (4.2).
1250 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1251 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1252 return ImplicitConversionSequence::Indistinguishable;
1253
1254 // FIXME: the example in the standard doesn't use a qualification
1255 // conversion (!)
1256 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1257 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1258 T1 = Context.getCanonicalType(T1);
1259 T2 = Context.getCanonicalType(T2);
1260
1261 // If the types are the same, we won't learn anything by unwrapped
1262 // them.
1263 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1264 return ImplicitConversionSequence::Indistinguishable;
1265
1266 ImplicitConversionSequence::CompareKind Result
1267 = ImplicitConversionSequence::Indistinguishable;
1268 while (UnwrapSimilarPointerTypes(T1, T2)) {
1269 // Within each iteration of the loop, we check the qualifiers to
1270 // determine if this still looks like a qualification
1271 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001272 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001273 // until there are no more pointers or pointers-to-members left
1274 // to unwrap. This essentially mimics what
1275 // IsQualificationConversion does, but here we're checking for a
1276 // strict subset of qualifiers.
1277 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1278 // The qualifiers are the same, so this doesn't tell us anything
1279 // about how the sequences rank.
1280 ;
1281 else if (T2.isMoreQualifiedThan(T1)) {
1282 // T1 has fewer qualifiers, so it could be the better sequence.
1283 if (Result == ImplicitConversionSequence::Worse)
1284 // Neither has qualifiers that are a subset of the other's
1285 // qualifiers.
1286 return ImplicitConversionSequence::Indistinguishable;
1287
1288 Result = ImplicitConversionSequence::Better;
1289 } else if (T1.isMoreQualifiedThan(T2)) {
1290 // T2 has fewer qualifiers, so it could be the better sequence.
1291 if (Result == ImplicitConversionSequence::Better)
1292 // Neither has qualifiers that are a subset of the other's
1293 // qualifiers.
1294 return ImplicitConversionSequence::Indistinguishable;
1295
1296 Result = ImplicitConversionSequence::Worse;
1297 } else {
1298 // Qualifiers are disjoint.
1299 return ImplicitConversionSequence::Indistinguishable;
1300 }
1301
1302 // If the types after this point are equivalent, we're done.
1303 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1304 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001305 }
1306
Douglas Gregor57373262008-10-22 14:17:15 +00001307 // Check that the winning standard conversion sequence isn't using
1308 // the deprecated string literal array to pointer conversion.
1309 switch (Result) {
1310 case ImplicitConversionSequence::Better:
1311 if (SCS1.Deprecated)
1312 Result = ImplicitConversionSequence::Indistinguishable;
1313 break;
1314
1315 case ImplicitConversionSequence::Indistinguishable:
1316 break;
1317
1318 case ImplicitConversionSequence::Worse:
1319 if (SCS2.Deprecated)
1320 Result = ImplicitConversionSequence::Indistinguishable;
1321 break;
1322 }
1323
1324 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001325}
1326
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001327/// CompareDerivedToBaseConversions - Compares two standard conversion
1328/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001329/// various kinds of derived-to-base conversions (C++
1330/// [over.ics.rank]p4b3). As part of these checks, we also look at
1331/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001332ImplicitConversionSequence::CompareKind
1333Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1334 const StandardConversionSequence& SCS2) {
1335 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1336 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1337 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1338 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1339
1340 // Adjust the types we're converting from via the array-to-pointer
1341 // conversion, if we need to.
1342 if (SCS1.First == ICK_Array_To_Pointer)
1343 FromType1 = Context.getArrayDecayedType(FromType1);
1344 if (SCS2.First == ICK_Array_To_Pointer)
1345 FromType2 = Context.getArrayDecayedType(FromType2);
1346
1347 // Canonicalize all of the types.
1348 FromType1 = Context.getCanonicalType(FromType1);
1349 ToType1 = Context.getCanonicalType(ToType1);
1350 FromType2 = Context.getCanonicalType(FromType2);
1351 ToType2 = Context.getCanonicalType(ToType2);
1352
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001353 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001354 //
1355 // If class B is derived directly or indirectly from class A and
1356 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001357 //
1358 // For Objective-C, we let A, B, and C also be Objective-C
1359 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001360
1361 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001362 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001363 SCS2.Second == ICK_Pointer_Conversion &&
1364 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1365 FromType1->isPointerType() && FromType2->isPointerType() &&
1366 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001367 QualType FromPointee1
1368 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1369 QualType ToPointee1
1370 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1371 QualType FromPointee2
1372 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1373 QualType ToPointee2
1374 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001375
1376 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1377 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1378 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1379 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1380
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001381 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001382 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1383 if (IsDerivedFrom(ToPointee1, ToPointee2))
1384 return ImplicitConversionSequence::Better;
1385 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1386 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001387
1388 if (ToIface1 && ToIface2) {
1389 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1390 return ImplicitConversionSequence::Better;
1391 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1392 return ImplicitConversionSequence::Worse;
1393 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001394 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001395
1396 // -- conversion of B* to A* is better than conversion of C* to A*,
1397 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1398 if (IsDerivedFrom(FromPointee2, FromPointee1))
1399 return ImplicitConversionSequence::Better;
1400 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1401 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001402
1403 if (FromIface1 && FromIface2) {
1404 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1405 return ImplicitConversionSequence::Better;
1406 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1407 return ImplicitConversionSequence::Worse;
1408 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001409 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001410 }
1411
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001412 // Compare based on reference bindings.
1413 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1414 SCS1.Second == ICK_Derived_To_Base) {
1415 // -- binding of an expression of type C to a reference of type
1416 // B& is better than binding an expression of type C to a
1417 // reference of type A&,
1418 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1419 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1420 if (IsDerivedFrom(ToType1, ToType2))
1421 return ImplicitConversionSequence::Better;
1422 else if (IsDerivedFrom(ToType2, ToType1))
1423 return ImplicitConversionSequence::Worse;
1424 }
1425
Douglas Gregor225c41e2008-11-03 19:09:14 +00001426 // -- binding of an expression of type B to a reference of type
1427 // A& is better than binding an expression of type C to a
1428 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001429 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1430 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1431 if (IsDerivedFrom(FromType2, FromType1))
1432 return ImplicitConversionSequence::Better;
1433 else if (IsDerivedFrom(FromType1, FromType2))
1434 return ImplicitConversionSequence::Worse;
1435 }
1436 }
1437
1438
1439 // FIXME: conversion of A::* to B::* is better than conversion of
1440 // A::* to C::*,
1441
1442 // FIXME: conversion of B::* to C::* is better than conversion of
1443 // A::* to C::*, and
1444
Douglas Gregor225c41e2008-11-03 19:09:14 +00001445 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1446 SCS1.Second == ICK_Derived_To_Base) {
1447 // -- conversion of C to B is better than conversion of C to A,
1448 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1449 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1450 if (IsDerivedFrom(ToType1, ToType2))
1451 return ImplicitConversionSequence::Better;
1452 else if (IsDerivedFrom(ToType2, ToType1))
1453 return ImplicitConversionSequence::Worse;
1454 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001455
Douglas Gregor225c41e2008-11-03 19:09:14 +00001456 // -- conversion of B to A is better than conversion of C to A.
1457 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1458 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1459 if (IsDerivedFrom(FromType2, FromType1))
1460 return ImplicitConversionSequence::Better;
1461 else if (IsDerivedFrom(FromType1, FromType2))
1462 return ImplicitConversionSequence::Worse;
1463 }
1464 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001465
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001466 return ImplicitConversionSequence::Indistinguishable;
1467}
1468
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001469/// TryCopyInitialization - Try to copy-initialize a value of type
1470/// ToType from the expression From. Return the implicit conversion
1471/// sequence required to pass this argument, which may be a bad
1472/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001473/// a parameter of this type). If @p SuppressUserConversions, then we
1474/// do not permit any user-defined conversion sequences.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001475ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001476Sema::TryCopyInitialization(Expr *From, QualType ToType,
1477 bool SuppressUserConversions) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001478 if (!getLangOptions().CPlusPlus) {
Douglas Gregor60d62c22008-10-31 16:23:19 +00001479 // In C, copy initialization is the same as performing an assignment.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001480 AssignConvertType ConvTy =
1481 CheckSingleAssignmentConstraints(ToType, From);
1482 ImplicitConversionSequence ICS;
1483 if (getLangOptions().NoExtensions? ConvTy != Compatible
1484 : ConvTy == Incompatible)
1485 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1486 else
1487 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1488 return ICS;
1489 } else if (ToType->isReferenceType()) {
1490 ImplicitConversionSequence ICS;
Douglas Gregor225c41e2008-11-03 19:09:14 +00001491 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001492 return ICS;
1493 } else {
Douglas Gregor225c41e2008-11-03 19:09:14 +00001494 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001495 }
1496}
1497
1498/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1499/// type ToType. Returns true (and emits a diagnostic) if there was
1500/// an error, returns false if the initialization succeeded.
1501bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1502 const char* Flavor) {
1503 if (!getLangOptions().CPlusPlus) {
1504 // In C, argument passing is the same as performing an assignment.
1505 QualType FromType = From->getType();
1506 AssignConvertType ConvTy =
1507 CheckSingleAssignmentConstraints(ToType, From);
1508
1509 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1510 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001511 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001512
1513 if (ToType->isReferenceType())
1514 return CheckReferenceInit(From, ToType);
1515
1516 if (!PerformImplicitConversion(From, ToType))
1517 return false;
1518
1519 return Diag(From->getSourceRange().getBegin(),
1520 diag::err_typecheck_convert_incompatible)
1521 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001522}
1523
Douglas Gregor96176b32008-11-18 23:14:02 +00001524/// TryObjectArgumentInitialization - Try to initialize the object
1525/// parameter of the given member function (@c Method) from the
1526/// expression @p From.
1527ImplicitConversionSequence
1528Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1529 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1530 unsigned MethodQuals = Method->getTypeQualifiers();
1531 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1532
1533 // Set up the conversion sequence as a "bad" conversion, to allow us
1534 // to exit early.
1535 ImplicitConversionSequence ICS;
1536 ICS.Standard.setAsIdentityConversion();
1537 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1538
1539 // We need to have an object of class type.
1540 QualType FromType = From->getType();
1541 if (!FromType->isRecordType())
1542 return ICS;
1543
1544 // The implicit object parmeter is has the type "reference to cv X",
1545 // where X is the class of which the function is a member
1546 // (C++ [over.match.funcs]p4). However, when finding an implicit
1547 // conversion sequence for the argument, we are not allowed to
1548 // create temporaries or perform user-defined conversions
1549 // (C++ [over.match.funcs]p5). We perform a simplified version of
1550 // reference binding here, that allows class rvalues to bind to
1551 // non-constant references.
1552
1553 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1554 // with the implicit object parameter (C++ [over.match.funcs]p5).
1555 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1556 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1557 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1558 return ICS;
1559
1560 // Check that we have either the same type or a derived type. It
1561 // affects the conversion rank.
1562 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1563 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1564 ICS.Standard.Second = ICK_Identity;
1565 else if (IsDerivedFrom(FromType, ClassType))
1566 ICS.Standard.Second = ICK_Derived_To_Base;
1567 else
1568 return ICS;
1569
1570 // Success. Mark this as a reference binding.
1571 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1572 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1573 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1574 ICS.Standard.ReferenceBinding = true;
1575 ICS.Standard.DirectBinding = true;
1576 return ICS;
1577}
1578
1579/// PerformObjectArgumentInitialization - Perform initialization of
1580/// the implicit object parameter for the given Method with the given
1581/// expression.
1582bool
1583Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1584 QualType ImplicitParamType
1585 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1586 ImplicitConversionSequence ICS
1587 = TryObjectArgumentInitialization(From, Method);
1588 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1589 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001590 diag::err_implicit_object_parameter_init)
Chris Lattnerd1625842008-11-24 06:25:27 +00001591 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001592
1593 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1594 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1595 From->getSourceRange().getBegin(),
1596 From->getSourceRange()))
1597 return true;
1598
1599 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1600 return false;
1601}
1602
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001603/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00001604/// candidate functions, using the given function call arguments. If
1605/// @p SuppressUserConversions, then don't allow user-defined
1606/// conversions via constructors or conversion operators.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001607void
1608Sema::AddOverloadCandidate(FunctionDecl *Function,
1609 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00001610 OverloadCandidateSet& CandidateSet,
1611 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001612{
1613 const FunctionTypeProto* Proto
1614 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1615 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001616 assert(!isa<CXXConversionDecl>(Function) &&
1617 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001618
1619 // Add this candidate
1620 CandidateSet.push_back(OverloadCandidate());
1621 OverloadCandidate& Candidate = CandidateSet.back();
1622 Candidate.Function = Function;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001623 Candidate.IsSurrogate = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001624
1625 unsigned NumArgsInProto = Proto->getNumArgs();
1626
1627 // (C++ 13.3.2p2): A candidate function having fewer than m
1628 // parameters is viable only if it has an ellipsis in its parameter
1629 // list (8.3.5).
1630 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1631 Candidate.Viable = false;
1632 return;
1633 }
1634
1635 // (C++ 13.3.2p2): A candidate function having more than m parameters
1636 // is viable only if the (m+1)st parameter has a default argument
1637 // (8.3.6). For the purposes of overload resolution, the
1638 // parameter list is truncated on the right, so that there are
1639 // exactly m parameters.
1640 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1641 if (NumArgs < MinRequiredArgs) {
1642 // Not enough arguments.
1643 Candidate.Viable = false;
1644 return;
1645 }
1646
1647 // Determine the implicit conversion sequences for each of the
1648 // arguments.
1649 Candidate.Viable = true;
1650 Candidate.Conversions.resize(NumArgs);
1651 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1652 if (ArgIdx < NumArgsInProto) {
1653 // (C++ 13.3.2p3): for F to be a viable function, there shall
1654 // exist for each argument an implicit conversion sequence
1655 // (13.3.3.1) that converts that argument to the corresponding
1656 // parameter of F.
1657 QualType ParamType = Proto->getArgType(ArgIdx);
1658 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00001659 = TryCopyInitialization(Args[ArgIdx], ParamType,
1660 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001661 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00001662 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001663 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001664 break;
1665 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001666 } else {
1667 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1668 // argument for which there is no corresponding parameter is
1669 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1670 Candidate.Conversions[ArgIdx].ConversionKind
1671 = ImplicitConversionSequence::EllipsisConversion;
1672 }
1673 }
1674}
1675
Douglas Gregor96176b32008-11-18 23:14:02 +00001676/// AddMethodCandidate - Adds the given C++ member function to the set
1677/// of candidate functions, using the given function call arguments
1678/// and the object argument (@c Object). For example, in a call
1679/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1680/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1681/// allow user-defined conversions via constructors or conversion
1682/// operators.
1683void
1684Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1685 Expr **Args, unsigned NumArgs,
1686 OverloadCandidateSet& CandidateSet,
1687 bool SuppressUserConversions)
1688{
1689 const FunctionTypeProto* Proto
1690 = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1691 assert(Proto && "Methods without a prototype cannot be overloaded");
1692 assert(!isa<CXXConversionDecl>(Method) &&
1693 "Use AddConversionCandidate for conversion functions");
1694
1695 // Add this candidate
1696 CandidateSet.push_back(OverloadCandidate());
1697 OverloadCandidate& Candidate = CandidateSet.back();
1698 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001699 Candidate.IsSurrogate = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001700
1701 unsigned NumArgsInProto = Proto->getNumArgs();
1702
1703 // (C++ 13.3.2p2): A candidate function having fewer than m
1704 // parameters is viable only if it has an ellipsis in its parameter
1705 // list (8.3.5).
1706 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1707 Candidate.Viable = false;
1708 return;
1709 }
1710
1711 // (C++ 13.3.2p2): A candidate function having more than m parameters
1712 // is viable only if the (m+1)st parameter has a default argument
1713 // (8.3.6). For the purposes of overload resolution, the
1714 // parameter list is truncated on the right, so that there are
1715 // exactly m parameters.
1716 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
1717 if (NumArgs < MinRequiredArgs) {
1718 // Not enough arguments.
1719 Candidate.Viable = false;
1720 return;
1721 }
1722
1723 Candidate.Viable = true;
1724 Candidate.Conversions.resize(NumArgs + 1);
1725
1726 // Determine the implicit conversion sequence for the object
1727 // parameter.
1728 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
1729 if (Candidate.Conversions[0].ConversionKind
1730 == ImplicitConversionSequence::BadConversion) {
1731 Candidate.Viable = false;
1732 return;
1733 }
1734
1735 // Determine the implicit conversion sequences for each of the
1736 // arguments.
1737 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1738 if (ArgIdx < NumArgsInProto) {
1739 // (C++ 13.3.2p3): for F to be a viable function, there shall
1740 // exist for each argument an implicit conversion sequence
1741 // (13.3.3.1) that converts that argument to the corresponding
1742 // parameter of F.
1743 QualType ParamType = Proto->getArgType(ArgIdx);
1744 Candidate.Conversions[ArgIdx + 1]
1745 = TryCopyInitialization(Args[ArgIdx], ParamType,
1746 SuppressUserConversions);
1747 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1748 == ImplicitConversionSequence::BadConversion) {
1749 Candidate.Viable = false;
1750 break;
1751 }
1752 } else {
1753 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1754 // argument for which there is no corresponding parameter is
1755 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1756 Candidate.Conversions[ArgIdx + 1].ConversionKind
1757 = ImplicitConversionSequence::EllipsisConversion;
1758 }
1759 }
1760}
1761
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001762/// AddConversionCandidate - Add a C++ conversion function as a
1763/// candidate in the candidate set (C++ [over.match.conv],
1764/// C++ [over.match.copy]). From is the expression we're converting from,
1765/// and ToType is the type that we're eventually trying to convert to
1766/// (which may or may not be the same type as the type that the
1767/// conversion function produces).
1768void
1769Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1770 Expr *From, QualType ToType,
1771 OverloadCandidateSet& CandidateSet) {
1772 // Add this candidate
1773 CandidateSet.push_back(OverloadCandidate());
1774 OverloadCandidate& Candidate = CandidateSet.back();
1775 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001776 Candidate.IsSurrogate = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001777 Candidate.FinalConversion.setAsIdentityConversion();
1778 Candidate.FinalConversion.FromTypePtr
1779 = Conversion->getConversionType().getAsOpaquePtr();
1780 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1781
Douglas Gregor96176b32008-11-18 23:14:02 +00001782 // Determine the implicit conversion sequence for the implicit
1783 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001784 Candidate.Viable = true;
1785 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00001786 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001787
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001788 if (Candidate.Conversions[0].ConversionKind
1789 == ImplicitConversionSequence::BadConversion) {
1790 Candidate.Viable = false;
1791 return;
1792 }
1793
1794 // To determine what the conversion from the result of calling the
1795 // conversion function to the type we're eventually trying to
1796 // convert to (ToType), we need to synthesize a call to the
1797 // conversion function and attempt copy initialization from it. This
1798 // makes sure that we get the right semantics with respect to
1799 // lvalues/rvalues and the type. Fortunately, we can allocate this
1800 // call on the stack and we don't need its arguments to be
1801 // well-formed.
1802 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1803 SourceLocation());
1804 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00001805 &ConversionRef, false);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001806 CallExpr Call(&ConversionFn, 0, 0,
1807 Conversion->getConversionType().getNonReferenceType(),
1808 SourceLocation());
1809 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1810 switch (ICS.ConversionKind) {
1811 case ImplicitConversionSequence::StandardConversion:
1812 Candidate.FinalConversion = ICS.Standard;
1813 break;
1814
1815 case ImplicitConversionSequence::BadConversion:
1816 Candidate.Viable = false;
1817 break;
1818
1819 default:
1820 assert(false &&
1821 "Can only end up with a standard conversion sequence or failure");
1822 }
1823}
1824
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001825/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
1826/// converts the given @c Object to a function pointer via the
1827/// conversion function @c Conversion, and then attempts to call it
1828/// with the given arguments (C++ [over.call.object]p2-4). Proto is
1829/// the type of function that we'll eventually be calling.
1830void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
1831 const FunctionTypeProto *Proto,
1832 Expr *Object, Expr **Args, unsigned NumArgs,
1833 OverloadCandidateSet& CandidateSet) {
1834 CandidateSet.push_back(OverloadCandidate());
1835 OverloadCandidate& Candidate = CandidateSet.back();
1836 Candidate.Function = 0;
1837 Candidate.Surrogate = Conversion;
1838 Candidate.Viable = true;
1839 Candidate.IsSurrogate = true;
1840 Candidate.Conversions.resize(NumArgs + 1);
1841
1842 // Determine the implicit conversion sequence for the implicit
1843 // object parameter.
1844 ImplicitConversionSequence ObjectInit
1845 = TryObjectArgumentInitialization(Object, Conversion);
1846 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
1847 Candidate.Viable = false;
1848 return;
1849 }
1850
1851 // The first conversion is actually a user-defined conversion whose
1852 // first conversion is ObjectInit's standard conversion (which is
1853 // effectively a reference binding). Record it as such.
1854 Candidate.Conversions[0].ConversionKind
1855 = ImplicitConversionSequence::UserDefinedConversion;
1856 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
1857 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
1858 Candidate.Conversions[0].UserDefined.After
1859 = Candidate.Conversions[0].UserDefined.Before;
1860 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
1861
1862 // Find the
1863 unsigned NumArgsInProto = Proto->getNumArgs();
1864
1865 // (C++ 13.3.2p2): A candidate function having fewer than m
1866 // parameters is viable only if it has an ellipsis in its parameter
1867 // list (8.3.5).
1868 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1869 Candidate.Viable = false;
1870 return;
1871 }
1872
1873 // Function types don't have any default arguments, so just check if
1874 // we have enough arguments.
1875 if (NumArgs < NumArgsInProto) {
1876 // Not enough arguments.
1877 Candidate.Viable = false;
1878 return;
1879 }
1880
1881 // Determine the implicit conversion sequences for each of the
1882 // arguments.
1883 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1884 if (ArgIdx < NumArgsInProto) {
1885 // (C++ 13.3.2p3): for F to be a viable function, there shall
1886 // exist for each argument an implicit conversion sequence
1887 // (13.3.3.1) that converts that argument to the corresponding
1888 // parameter of F.
1889 QualType ParamType = Proto->getArgType(ArgIdx);
1890 Candidate.Conversions[ArgIdx + 1]
1891 = TryCopyInitialization(Args[ArgIdx], ParamType,
1892 /*SuppressUserConversions=*/false);
1893 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1894 == ImplicitConversionSequence::BadConversion) {
1895 Candidate.Viable = false;
1896 break;
1897 }
1898 } else {
1899 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1900 // argument for which there is no corresponding parameter is
1901 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1902 Candidate.Conversions[ArgIdx + 1].ConversionKind
1903 = ImplicitConversionSequence::EllipsisConversion;
1904 }
1905 }
1906}
1907
Douglas Gregor447b69e2008-11-19 03:25:36 +00001908/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1909/// an acceptable non-member overloaded operator for a call whose
1910/// arguments have types T1 (and, if non-empty, T2). This routine
1911/// implements the check in C++ [over.match.oper]p3b2 concerning
1912/// enumeration types.
1913static bool
1914IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1915 QualType T1, QualType T2,
1916 ASTContext &Context) {
1917 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1918 return true;
1919
1920 const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
1921 if (Proto->getNumArgs() < 1)
1922 return false;
1923
1924 if (T1->isEnumeralType()) {
1925 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1926 if (Context.getCanonicalType(T1).getUnqualifiedType()
1927 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1928 return true;
1929 }
1930
1931 if (Proto->getNumArgs() < 2)
1932 return false;
1933
1934 if (!T2.isNull() && T2->isEnumeralType()) {
1935 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1936 if (Context.getCanonicalType(T2).getUnqualifiedType()
1937 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1938 return true;
1939 }
1940
1941 return false;
1942}
1943
Douglas Gregor96176b32008-11-18 23:14:02 +00001944/// AddOperatorCandidates - Add the overloaded operator candidates for
1945/// the operator Op that was used in an operator expression such as "x
1946/// Op y". S is the scope in which the expression occurred (used for
1947/// name lookup of the operator), Args/NumArgs provides the operator
1948/// arguments, and CandidateSet will store the added overload
1949/// candidates. (C++ [over.match.oper]).
1950void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
1951 Expr **Args, unsigned NumArgs,
1952 OverloadCandidateSet& CandidateSet) {
1953 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1954
1955 // C++ [over.match.oper]p3:
1956 // For a unary operator @ with an operand of a type whose
1957 // cv-unqualified version is T1, and for a binary operator @ with
1958 // a left operand of a type whose cv-unqualified version is T1 and
1959 // a right operand of a type whose cv-unqualified version is T2,
1960 // three sets of candidate functions, designated member
1961 // candidates, non-member candidates and built-in candidates, are
1962 // constructed as follows:
1963 QualType T1 = Args[0]->getType();
1964 QualType T2;
1965 if (NumArgs > 1)
1966 T2 = Args[1]->getType();
1967
1968 // -- If T1 is a class type, the set of member candidates is the
1969 // result of the qualified lookup of T1::operator@
1970 // (13.3.1.1.1); otherwise, the set of member candidates is
1971 // empty.
1972 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregor44b43212008-12-11 16:49:14 +00001973 DeclContext::lookup_const_result Lookup
Douglas Gregore267ff32008-12-11 20:41:00 +00001974 = T1Rec->getDecl()->lookup(Context, OpName);
Douglas Gregor44b43212008-12-11 16:49:14 +00001975 NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
Douglas Gregor96176b32008-11-18 23:14:02 +00001976 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
1977 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1978 /*SuppressUserConversions=*/false);
1979 else if (OverloadedFunctionDecl *Ovl
1980 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
1981 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
1982 FEnd = Ovl->function_end();
1983 F != FEnd; ++F) {
1984 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
1985 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1986 /*SuppressUserConversions=*/false);
1987 }
1988 }
1989 }
1990
1991 // -- The set of non-member candidates is the result of the
1992 // unqualified lookup of operator@ in the context of the
1993 // expression according to the usual rules for name lookup in
1994 // unqualified function calls (3.4.2) except that all member
1995 // functions are ignored. However, if no operand has a class
1996 // type, only those non-member functions in the lookup set
1997 // that have a first parameter of type T1 or “reference to
1998 // (possibly cv-qualified) T1”, when T1 is an enumeration
1999 // type, or (if there is a right operand) a second parameter
2000 // of type T2 or “reference to (possibly cv-qualified) T2”,
2001 // when T2 is an enumeration type, are candidate functions.
2002 {
2003 NamedDecl *NonMemberOps = 0;
2004 for (IdentifierResolver::iterator I
2005 = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/);
2006 I != IdResolver.end(); ++I) {
2007 // We don't need to check the identifier namespace, because
2008 // operator names can only be ordinary identifiers.
2009
2010 // Ignore member functions.
2011 if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
2012 if (SD->getDeclContext()->isCXXRecord())
2013 continue;
2014 }
2015
2016 // We found something with this name. We're done.
2017 NonMemberOps = *I;
2018 break;
2019 }
2020
Douglas Gregor447b69e2008-11-19 03:25:36 +00002021 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NonMemberOps)) {
2022 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2023 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2024 /*SuppressUserConversions=*/false);
2025 } else if (OverloadedFunctionDecl *Ovl
2026 = dyn_cast_or_null<OverloadedFunctionDecl>(NonMemberOps)) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002027 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2028 FEnd = Ovl->function_end();
Douglas Gregor447b69e2008-11-19 03:25:36 +00002029 F != FEnd; ++F) {
2030 if (IsAcceptableNonMemberOperatorCandidate(*F, T1, T2, Context))
2031 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2032 /*SuppressUserConversions=*/false);
2033 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002034 }
2035 }
2036
2037 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor74253732008-11-19 15:42:04 +00002038 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregor96176b32008-11-18 23:14:02 +00002039}
2040
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002041/// AddBuiltinCandidate - Add a candidate for a built-in
2042/// operator. ResultTy and ParamTys are the result and parameter types
2043/// of the built-in candidate, respectively. Args and NumArgs are the
2044/// arguments being passed to the candidate.
2045void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2046 Expr **Args, unsigned NumArgs,
2047 OverloadCandidateSet& CandidateSet) {
2048 // Add this candidate
2049 CandidateSet.push_back(OverloadCandidate());
2050 OverloadCandidate& Candidate = CandidateSet.back();
2051 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002052 Candidate.IsSurrogate = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002053 Candidate.BuiltinTypes.ResultTy = ResultTy;
2054 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2055 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2056
2057 // Determine the implicit conversion sequences for each of the
2058 // arguments.
2059 Candidate.Viable = true;
2060 Candidate.Conversions.resize(NumArgs);
2061 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2062 Candidate.Conversions[ArgIdx]
2063 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
2064 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002065 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002066 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002067 break;
2068 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002069 }
2070}
2071
2072/// BuiltinCandidateTypeSet - A set of types that will be used for the
2073/// candidate operator functions for built-in operators (C++
2074/// [over.built]). The types are separated into pointer types and
2075/// enumeration types.
2076class BuiltinCandidateTypeSet {
2077 /// TypeSet - A set of types.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002078 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002079
2080 /// PointerTypes - The set of pointer types that will be used in the
2081 /// built-in candidates.
2082 TypeSet PointerTypes;
2083
2084 /// EnumerationTypes - The set of enumeration types that will be
2085 /// used in the built-in candidates.
2086 TypeSet EnumerationTypes;
2087
2088 /// Context - The AST context in which we will build the type sets.
2089 ASTContext &Context;
2090
2091 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2092
2093public:
2094 /// iterator - Iterates through the types that are part of the set.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002095 class iterator {
2096 TypeSet::iterator Base;
2097
2098 public:
2099 typedef QualType value_type;
2100 typedef QualType reference;
2101 typedef QualType pointer;
2102 typedef std::ptrdiff_t difference_type;
2103 typedef std::input_iterator_tag iterator_category;
2104
2105 iterator(TypeSet::iterator B) : Base(B) { }
2106
2107 iterator& operator++() {
2108 ++Base;
2109 return *this;
2110 }
2111
2112 iterator operator++(int) {
2113 iterator tmp(*this);
2114 ++(*this);
2115 return tmp;
2116 }
2117
2118 reference operator*() const {
2119 return QualType::getFromOpaquePtr(*Base);
2120 }
2121
2122 pointer operator->() const {
2123 return **this;
2124 }
2125
2126 friend bool operator==(iterator LHS, iterator RHS) {
2127 return LHS.Base == RHS.Base;
2128 }
2129
2130 friend bool operator!=(iterator LHS, iterator RHS) {
2131 return LHS.Base != RHS.Base;
2132 }
2133 };
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002134
2135 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2136
2137 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);
2138
2139 /// pointer_begin - First pointer type found;
2140 iterator pointer_begin() { return PointerTypes.begin(); }
2141
2142 /// pointer_end - Last pointer type found;
2143 iterator pointer_end() { return PointerTypes.end(); }
2144
2145 /// enumeration_begin - First enumeration type found;
2146 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2147
2148 /// enumeration_end - Last enumeration type found;
2149 iterator enumeration_end() { return EnumerationTypes.end(); }
2150};
2151
2152/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2153/// the set of pointer types along with any more-qualified variants of
2154/// that type. For example, if @p Ty is "int const *", this routine
2155/// will add "int const *", "int const volatile *", "int const
2156/// restrict *", and "int const volatile restrict *" to the set of
2157/// pointer types. Returns true if the add of @p Ty itself succeeded,
2158/// false otherwise.
2159bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2160 // Insert this type.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002161 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002162 return false;
2163
2164 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2165 QualType PointeeTy = PointerTy->getPointeeType();
2166 // FIXME: Optimize this so that we don't keep trying to add the same types.
2167
2168 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2169 // with all pointer conversions that don't cast away constness?
2170 if (!PointeeTy.isConstQualified())
2171 AddWithMoreQualifiedTypeVariants
2172 (Context.getPointerType(PointeeTy.withConst()));
2173 if (!PointeeTy.isVolatileQualified())
2174 AddWithMoreQualifiedTypeVariants
2175 (Context.getPointerType(PointeeTy.withVolatile()));
2176 if (!PointeeTy.isRestrictQualified())
2177 AddWithMoreQualifiedTypeVariants
2178 (Context.getPointerType(PointeeTy.withRestrict()));
2179 }
2180
2181 return true;
2182}
2183
2184/// AddTypesConvertedFrom - Add each of the types to which the type @p
2185/// Ty can be implicit converted to the given set of @p Types. We're
2186/// primarily interested in pointer types, enumeration types,
2187void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2188 bool AllowUserConversions) {
2189 // Only deal with canonical types.
2190 Ty = Context.getCanonicalType(Ty);
2191
2192 // Look through reference types; they aren't part of the type of an
2193 // expression for the purposes of conversions.
2194 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2195 Ty = RefTy->getPointeeType();
2196
2197 // We don't care about qualifiers on the type.
2198 Ty = Ty.getUnqualifiedType();
2199
2200 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2201 QualType PointeeTy = PointerTy->getPointeeType();
2202
2203 // Insert our type, and its more-qualified variants, into the set
2204 // of types.
2205 if (!AddWithMoreQualifiedTypeVariants(Ty))
2206 return;
2207
2208 // Add 'cv void*' to our set of types.
2209 if (!Ty->isVoidType()) {
2210 QualType QualVoid
2211 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2212 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2213 }
2214
2215 // If this is a pointer to a class type, add pointers to its bases
2216 // (with the same level of cv-qualification as the original
2217 // derived class, of course).
2218 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2219 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2220 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2221 Base != ClassDecl->bases_end(); ++Base) {
2222 QualType BaseTy = Context.getCanonicalType(Base->getType());
2223 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2224
2225 // Add the pointer type, recursively, so that we get all of
2226 // the indirect base classes, too.
2227 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
2228 }
2229 }
2230 } else if (Ty->isEnumeralType()) {
Douglas Gregorbf3af052008-11-13 20:12:29 +00002231 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002232 } else if (AllowUserConversions) {
2233 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2234 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2235 // FIXME: Visit conversion functions in the base classes, too.
2236 OverloadedFunctionDecl *Conversions
2237 = ClassDecl->getConversionFunctions();
2238 for (OverloadedFunctionDecl::function_iterator Func
2239 = Conversions->function_begin();
2240 Func != Conversions->function_end(); ++Func) {
2241 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2242 AddTypesConvertedFrom(Conv->getConversionType(), false);
2243 }
2244 }
2245 }
2246}
2247
Douglas Gregor74253732008-11-19 15:42:04 +00002248/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2249/// operator overloads to the candidate set (C++ [over.built]), based
2250/// on the operator @p Op and the arguments given. For example, if the
2251/// operator is a binary '+', this routine might add "int
2252/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002253void
Douglas Gregor74253732008-11-19 15:42:04 +00002254Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2255 Expr **Args, unsigned NumArgs,
2256 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002257 // The set of "promoted arithmetic types", which are the arithmetic
2258 // types are that preserved by promotion (C++ [over.built]p2). Note
2259 // that the first few of these types are the promoted integral
2260 // types; these types need to be first.
2261 // FIXME: What about complex?
2262 const unsigned FirstIntegralType = 0;
2263 const unsigned LastIntegralType = 13;
2264 const unsigned FirstPromotedIntegralType = 7,
2265 LastPromotedIntegralType = 13;
2266 const unsigned FirstPromotedArithmeticType = 7,
2267 LastPromotedArithmeticType = 16;
2268 const unsigned NumArithmeticTypes = 16;
2269 QualType ArithmeticTypes[NumArithmeticTypes] = {
2270 Context.BoolTy, Context.CharTy, Context.WCharTy,
2271 Context.SignedCharTy, Context.ShortTy,
2272 Context.UnsignedCharTy, Context.UnsignedShortTy,
2273 Context.IntTy, Context.LongTy, Context.LongLongTy,
2274 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2275 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2276 };
2277
2278 // Find all of the types that the arguments can convert to, but only
2279 // if the operator we're looking at has built-in operator candidates
2280 // that make use of these types.
2281 BuiltinCandidateTypeSet CandidateTypes(Context);
2282 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2283 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002284 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002285 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002286 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2287 (Op == OO_Star && NumArgs == 1)) {
2288 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002289 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
2290 }
2291
2292 bool isComparison = false;
2293 switch (Op) {
2294 case OO_None:
2295 case NUM_OVERLOADED_OPERATORS:
2296 assert(false && "Expected an overloaded operator");
2297 break;
2298
Douglas Gregor74253732008-11-19 15:42:04 +00002299 case OO_Star: // '*' is either unary or binary
2300 if (NumArgs == 1)
2301 goto UnaryStar;
2302 else
2303 goto BinaryStar;
2304 break;
2305
2306 case OO_Plus: // '+' is either unary or binary
2307 if (NumArgs == 1)
2308 goto UnaryPlus;
2309 else
2310 goto BinaryPlus;
2311 break;
2312
2313 case OO_Minus: // '-' is either unary or binary
2314 if (NumArgs == 1)
2315 goto UnaryMinus;
2316 else
2317 goto BinaryMinus;
2318 break;
2319
2320 case OO_Amp: // '&' is either unary or binary
2321 if (NumArgs == 1)
2322 goto UnaryAmp;
2323 else
2324 goto BinaryAmp;
2325
2326 case OO_PlusPlus:
2327 case OO_MinusMinus:
2328 // C++ [over.built]p3:
2329 //
2330 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2331 // is either volatile or empty, there exist candidate operator
2332 // functions of the form
2333 //
2334 // VQ T& operator++(VQ T&);
2335 // T operator++(VQ T&, int);
2336 //
2337 // C++ [over.built]p4:
2338 //
2339 // For every pair (T, VQ), where T is an arithmetic type other
2340 // than bool, and VQ is either volatile or empty, there exist
2341 // candidate operator functions of the form
2342 //
2343 // VQ T& operator--(VQ T&);
2344 // T operator--(VQ T&, int);
2345 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2346 Arith < NumArithmeticTypes; ++Arith) {
2347 QualType ArithTy = ArithmeticTypes[Arith];
2348 QualType ParamTypes[2]
2349 = { Context.getReferenceType(ArithTy), Context.IntTy };
2350
2351 // Non-volatile version.
2352 if (NumArgs == 1)
2353 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2354 else
2355 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2356
2357 // Volatile version
2358 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2359 if (NumArgs == 1)
2360 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2361 else
2362 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2363 }
2364
2365 // C++ [over.built]p5:
2366 //
2367 // For every pair (T, VQ), where T is a cv-qualified or
2368 // cv-unqualified object type, and VQ is either volatile or
2369 // empty, there exist candidate operator functions of the form
2370 //
2371 // T*VQ& operator++(T*VQ&);
2372 // T*VQ& operator--(T*VQ&);
2373 // T* operator++(T*VQ&, int);
2374 // T* operator--(T*VQ&, int);
2375 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2376 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2377 // Skip pointer types that aren't pointers to object types.
Douglas Gregorcb7de522008-11-26 23:31:11 +00002378 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002379 continue;
2380
2381 QualType ParamTypes[2] = {
2382 Context.getReferenceType(*Ptr), Context.IntTy
2383 };
2384
2385 // Without volatile
2386 if (NumArgs == 1)
2387 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2388 else
2389 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2390
2391 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2392 // With volatile
2393 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2394 if (NumArgs == 1)
2395 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2396 else
2397 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2398 }
2399 }
2400 break;
2401
2402 UnaryStar:
2403 // C++ [over.built]p6:
2404 // For every cv-qualified or cv-unqualified object type T, there
2405 // exist candidate operator functions of the form
2406 //
2407 // T& operator*(T*);
2408 //
2409 // C++ [over.built]p7:
2410 // For every function type T, there exist candidate operator
2411 // functions of the form
2412 // T& operator*(T*);
2413 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2414 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2415 QualType ParamTy = *Ptr;
2416 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2417 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2418 &ParamTy, Args, 1, CandidateSet);
2419 }
2420 break;
2421
2422 UnaryPlus:
2423 // C++ [over.built]p8:
2424 // For every type T, there exist candidate operator functions of
2425 // the form
2426 //
2427 // T* operator+(T*);
2428 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2429 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2430 QualType ParamTy = *Ptr;
2431 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2432 }
2433
2434 // Fall through
2435
2436 UnaryMinus:
2437 // C++ [over.built]p9:
2438 // For every promoted arithmetic type T, there exist candidate
2439 // operator functions of the form
2440 //
2441 // T operator+(T);
2442 // T operator-(T);
2443 for (unsigned Arith = FirstPromotedArithmeticType;
2444 Arith < LastPromotedArithmeticType; ++Arith) {
2445 QualType ArithTy = ArithmeticTypes[Arith];
2446 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2447 }
2448 break;
2449
2450 case OO_Tilde:
2451 // C++ [over.built]p10:
2452 // For every promoted integral type T, there exist candidate
2453 // operator functions of the form
2454 //
2455 // T operator~(T);
2456 for (unsigned Int = FirstPromotedIntegralType;
2457 Int < LastPromotedIntegralType; ++Int) {
2458 QualType IntTy = ArithmeticTypes[Int];
2459 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2460 }
2461 break;
2462
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002463 case OO_New:
2464 case OO_Delete:
2465 case OO_Array_New:
2466 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002467 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002468 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002469 break;
2470
2471 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002472 UnaryAmp:
2473 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002474 // C++ [over.match.oper]p3:
2475 // -- For the operator ',', the unary operator '&', or the
2476 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002477 break;
2478
2479 case OO_Less:
2480 case OO_Greater:
2481 case OO_LessEqual:
2482 case OO_GreaterEqual:
2483 case OO_EqualEqual:
2484 case OO_ExclaimEqual:
2485 // C++ [over.built]p15:
2486 //
2487 // For every pointer or enumeration type T, there exist
2488 // candidate operator functions of the form
2489 //
2490 // bool operator<(T, T);
2491 // bool operator>(T, T);
2492 // bool operator<=(T, T);
2493 // bool operator>=(T, T);
2494 // bool operator==(T, T);
2495 // bool operator!=(T, T);
2496 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2497 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2498 QualType ParamTypes[2] = { *Ptr, *Ptr };
2499 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2500 }
2501 for (BuiltinCandidateTypeSet::iterator Enum
2502 = CandidateTypes.enumeration_begin();
2503 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2504 QualType ParamTypes[2] = { *Enum, *Enum };
2505 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2506 }
2507
2508 // Fall through.
2509 isComparison = true;
2510
Douglas Gregor74253732008-11-19 15:42:04 +00002511 BinaryPlus:
2512 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002513 if (!isComparison) {
2514 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2515
2516 // C++ [over.built]p13:
2517 //
2518 // For every cv-qualified or cv-unqualified object type T
2519 // there exist candidate operator functions of the form
2520 //
2521 // T* operator+(T*, ptrdiff_t);
2522 // T& operator[](T*, ptrdiff_t); [BELOW]
2523 // T* operator-(T*, ptrdiff_t);
2524 // T* operator+(ptrdiff_t, T*);
2525 // T& operator[](ptrdiff_t, T*); [BELOW]
2526 //
2527 // C++ [over.built]p14:
2528 //
2529 // For every T, where T is a pointer to object type, there
2530 // exist candidate operator functions of the form
2531 //
2532 // ptrdiff_t operator-(T, T);
2533 for (BuiltinCandidateTypeSet::iterator Ptr
2534 = CandidateTypes.pointer_begin();
2535 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2536 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2537
2538 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2539 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2540
2541 if (Op == OO_Plus) {
2542 // T* operator+(ptrdiff_t, T*);
2543 ParamTypes[0] = ParamTypes[1];
2544 ParamTypes[1] = *Ptr;
2545 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2546 } else {
2547 // ptrdiff_t operator-(T, T);
2548 ParamTypes[1] = *Ptr;
2549 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2550 Args, 2, CandidateSet);
2551 }
2552 }
2553 }
2554 // Fall through
2555
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002556 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002557 BinaryStar:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002558 // C++ [over.built]p12:
2559 //
2560 // For every pair of promoted arithmetic types L and R, there
2561 // exist candidate operator functions of the form
2562 //
2563 // LR operator*(L, R);
2564 // LR operator/(L, R);
2565 // LR operator+(L, R);
2566 // LR operator-(L, R);
2567 // bool operator<(L, R);
2568 // bool operator>(L, R);
2569 // bool operator<=(L, R);
2570 // bool operator>=(L, R);
2571 // bool operator==(L, R);
2572 // bool operator!=(L, R);
2573 //
2574 // where LR is the result of the usual arithmetic conversions
2575 // between types L and R.
2576 for (unsigned Left = FirstPromotedArithmeticType;
2577 Left < LastPromotedArithmeticType; ++Left) {
2578 for (unsigned Right = FirstPromotedArithmeticType;
2579 Right < LastPromotedArithmeticType; ++Right) {
2580 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2581 QualType Result
2582 = isComparison? Context.BoolTy
2583 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2584 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2585 }
2586 }
2587 break;
2588
2589 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00002590 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002591 case OO_Caret:
2592 case OO_Pipe:
2593 case OO_LessLess:
2594 case OO_GreaterGreater:
2595 // C++ [over.built]p17:
2596 //
2597 // For every pair of promoted integral types L and R, there
2598 // exist candidate operator functions of the form
2599 //
2600 // LR operator%(L, R);
2601 // LR operator&(L, R);
2602 // LR operator^(L, R);
2603 // LR operator|(L, R);
2604 // L operator<<(L, R);
2605 // L operator>>(L, R);
2606 //
2607 // where LR is the result of the usual arithmetic conversions
2608 // between types L and R.
2609 for (unsigned Left = FirstPromotedIntegralType;
2610 Left < LastPromotedIntegralType; ++Left) {
2611 for (unsigned Right = FirstPromotedIntegralType;
2612 Right < LastPromotedIntegralType; ++Right) {
2613 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2614 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2615 ? LandR[0]
2616 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2617 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2618 }
2619 }
2620 break;
2621
2622 case OO_Equal:
2623 // C++ [over.built]p20:
2624 //
2625 // For every pair (T, VQ), where T is an enumeration or
2626 // (FIXME:) pointer to member type and VQ is either volatile or
2627 // empty, there exist candidate operator functions of the form
2628 //
2629 // VQ T& operator=(VQ T&, T);
2630 for (BuiltinCandidateTypeSet::iterator Enum
2631 = CandidateTypes.enumeration_begin();
2632 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2633 QualType ParamTypes[2];
2634
2635 // T& operator=(T&, T)
2636 ParamTypes[0] = Context.getReferenceType(*Enum);
2637 ParamTypes[1] = *Enum;
2638 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2639
Douglas Gregor74253732008-11-19 15:42:04 +00002640 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2641 // volatile T& operator=(volatile T&, T)
2642 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2643 ParamTypes[1] = *Enum;
2644 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2645 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002646 }
2647 // Fall through.
2648
2649 case OO_PlusEqual:
2650 case OO_MinusEqual:
2651 // C++ [over.built]p19:
2652 //
2653 // For every pair (T, VQ), where T is any type and VQ is either
2654 // volatile or empty, there exist candidate operator functions
2655 // of the form
2656 //
2657 // T*VQ& operator=(T*VQ&, T*);
2658 //
2659 // C++ [over.built]p21:
2660 //
2661 // For every pair (T, VQ), where T is a cv-qualified or
2662 // cv-unqualified object type and VQ is either volatile or
2663 // empty, there exist candidate operator functions of the form
2664 //
2665 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
2666 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
2667 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2668 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2669 QualType ParamTypes[2];
2670 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2671
2672 // non-volatile version
2673 ParamTypes[0] = Context.getReferenceType(*Ptr);
2674 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2675
Douglas Gregor74253732008-11-19 15:42:04 +00002676 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2677 // volatile version
2678 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2679 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2680 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002681 }
2682 // Fall through.
2683
2684 case OO_StarEqual:
2685 case OO_SlashEqual:
2686 // C++ [over.built]p18:
2687 //
2688 // For every triple (L, VQ, R), where L is an arithmetic type,
2689 // VQ is either volatile or empty, and R is a promoted
2690 // arithmetic type, there exist candidate operator functions of
2691 // the form
2692 //
2693 // VQ L& operator=(VQ L&, R);
2694 // VQ L& operator*=(VQ L&, R);
2695 // VQ L& operator/=(VQ L&, R);
2696 // VQ L& operator+=(VQ L&, R);
2697 // VQ L& operator-=(VQ L&, R);
2698 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
2699 for (unsigned Right = FirstPromotedArithmeticType;
2700 Right < LastPromotedArithmeticType; ++Right) {
2701 QualType ParamTypes[2];
2702 ParamTypes[1] = ArithmeticTypes[Right];
2703
2704 // Add this built-in operator as a candidate (VQ is empty).
2705 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2706 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2707
2708 // Add this built-in operator as a candidate (VQ is 'volatile').
2709 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
2710 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2711 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2712 }
2713 }
2714 break;
2715
2716 case OO_PercentEqual:
2717 case OO_LessLessEqual:
2718 case OO_GreaterGreaterEqual:
2719 case OO_AmpEqual:
2720 case OO_CaretEqual:
2721 case OO_PipeEqual:
2722 // C++ [over.built]p22:
2723 //
2724 // For every triple (L, VQ, R), where L is an integral type, VQ
2725 // is either volatile or empty, and R is a promoted integral
2726 // type, there exist candidate operator functions of the form
2727 //
2728 // VQ L& operator%=(VQ L&, R);
2729 // VQ L& operator<<=(VQ L&, R);
2730 // VQ L& operator>>=(VQ L&, R);
2731 // VQ L& operator&=(VQ L&, R);
2732 // VQ L& operator^=(VQ L&, R);
2733 // VQ L& operator|=(VQ L&, R);
2734 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
2735 for (unsigned Right = FirstPromotedIntegralType;
2736 Right < LastPromotedIntegralType; ++Right) {
2737 QualType ParamTypes[2];
2738 ParamTypes[1] = ArithmeticTypes[Right];
2739
2740 // Add this built-in operator as a candidate (VQ is empty).
2741 // FIXME: We should be caching these declarations somewhere,
2742 // rather than re-building them every time.
2743 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2744 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2745
2746 // Add this built-in operator as a candidate (VQ is 'volatile').
2747 ParamTypes[0] = ArithmeticTypes[Left];
2748 ParamTypes[0].addVolatile();
2749 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2750 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2751 }
2752 }
2753 break;
2754
Douglas Gregor74253732008-11-19 15:42:04 +00002755 case OO_Exclaim: {
2756 // C++ [over.operator]p23:
2757 //
2758 // There also exist candidate operator functions of the form
2759 //
2760 // bool operator!(bool);
2761 // bool operator&&(bool, bool); [BELOW]
2762 // bool operator||(bool, bool); [BELOW]
2763 QualType ParamTy = Context.BoolTy;
2764 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2765 break;
2766 }
2767
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002768 case OO_AmpAmp:
2769 case OO_PipePipe: {
2770 // C++ [over.operator]p23:
2771 //
2772 // There also exist candidate operator functions of the form
2773 //
Douglas Gregor74253732008-11-19 15:42:04 +00002774 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002775 // bool operator&&(bool, bool);
2776 // bool operator||(bool, bool);
2777 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
2778 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2779 break;
2780 }
2781
2782 case OO_Subscript:
2783 // C++ [over.built]p13:
2784 //
2785 // For every cv-qualified or cv-unqualified object type T there
2786 // exist candidate operator functions of the form
2787 //
2788 // T* operator+(T*, ptrdiff_t); [ABOVE]
2789 // T& operator[](T*, ptrdiff_t);
2790 // T* operator-(T*, ptrdiff_t); [ABOVE]
2791 // T* operator+(ptrdiff_t, T*); [ABOVE]
2792 // T& operator[](ptrdiff_t, T*);
2793 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2794 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2795 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2796 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
2797 QualType ResultTy = Context.getReferenceType(PointeeType);
2798
2799 // T& operator[](T*, ptrdiff_t)
2800 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2801
2802 // T& operator[](ptrdiff_t, T*);
2803 ParamTypes[0] = ParamTypes[1];
2804 ParamTypes[1] = *Ptr;
2805 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2806 }
2807 break;
2808
2809 case OO_ArrowStar:
2810 // FIXME: No support for pointer-to-members yet.
2811 break;
2812 }
2813}
2814
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002815/// AddOverloadCandidates - Add all of the function overloads in Ovl
2816/// to the candidate set.
2817void
Douglas Gregor18fe5682008-11-03 20:45:27 +00002818Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002819 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00002820 OverloadCandidateSet& CandidateSet,
2821 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002822{
Douglas Gregor18fe5682008-11-03 20:45:27 +00002823 for (OverloadedFunctionDecl::function_const_iterator Func
2824 = Ovl->function_begin();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002825 Func != Ovl->function_end(); ++Func)
Douglas Gregor225c41e2008-11-03 19:09:14 +00002826 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
2827 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002828}
2829
2830/// isBetterOverloadCandidate - Determines whether the first overload
2831/// candidate is a better candidate than the second (C++ 13.3.3p1).
2832bool
2833Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
2834 const OverloadCandidate& Cand2)
2835{
2836 // Define viable functions to be better candidates than non-viable
2837 // functions.
2838 if (!Cand2.Viable)
2839 return Cand1.Viable;
2840 else if (!Cand1.Viable)
2841 return false;
2842
2843 // FIXME: Deal with the implicit object parameter for static member
2844 // functions. (C++ 13.3.3p1).
2845
2846 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
2847 // function than another viable function F2 if for all arguments i,
2848 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
2849 // then...
2850 unsigned NumArgs = Cand1.Conversions.size();
2851 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
2852 bool HasBetterConversion = false;
2853 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2854 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
2855 Cand2.Conversions[ArgIdx])) {
2856 case ImplicitConversionSequence::Better:
2857 // Cand1 has a better conversion sequence.
2858 HasBetterConversion = true;
2859 break;
2860
2861 case ImplicitConversionSequence::Worse:
2862 // Cand1 can't be better than Cand2.
2863 return false;
2864
2865 case ImplicitConversionSequence::Indistinguishable:
2866 // Do nothing.
2867 break;
2868 }
2869 }
2870
2871 if (HasBetterConversion)
2872 return true;
2873
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002874 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
2875 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002876
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002877 // C++ [over.match.best]p1b4:
2878 //
2879 // -- the context is an initialization by user-defined conversion
2880 // (see 8.5, 13.3.1.5) and the standard conversion sequence
2881 // from the return type of F1 to the destination type (i.e.,
2882 // the type of the entity being initialized) is a better
2883 // conversion sequence than the standard conversion sequence
2884 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00002885 if (Cand1.Function && Cand2.Function &&
2886 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002887 isa<CXXConversionDecl>(Cand2.Function)) {
2888 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
2889 Cand2.FinalConversion)) {
2890 case ImplicitConversionSequence::Better:
2891 // Cand1 has a better conversion sequence.
2892 return true;
2893
2894 case ImplicitConversionSequence::Worse:
2895 // Cand1 can't be better than Cand2.
2896 return false;
2897
2898 case ImplicitConversionSequence::Indistinguishable:
2899 // Do nothing
2900 break;
2901 }
2902 }
2903
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002904 return false;
2905}
2906
2907/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
2908/// within an overload candidate set. If overloading is successful,
2909/// the result will be OR_Success and Best will be set to point to the
2910/// best viable function within the candidate set. Otherwise, one of
2911/// several kinds of errors will be returned; see
2912/// Sema::OverloadingResult.
2913Sema::OverloadingResult
2914Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
2915 OverloadCandidateSet::iterator& Best)
2916{
2917 // Find the best viable function.
2918 Best = CandidateSet.end();
2919 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2920 Cand != CandidateSet.end(); ++Cand) {
2921 if (Cand->Viable) {
2922 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
2923 Best = Cand;
2924 }
2925 }
2926
2927 // If we didn't find any viable functions, abort.
2928 if (Best == CandidateSet.end())
2929 return OR_No_Viable_Function;
2930
2931 // Make sure that this function is better than every other viable
2932 // function. If not, we have an ambiguity.
2933 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2934 Cand != CandidateSet.end(); ++Cand) {
2935 if (Cand->Viable &&
2936 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002937 !isBetterOverloadCandidate(*Best, *Cand)) {
2938 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002939 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002940 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002941 }
2942
2943 // Best is the best viable function.
2944 return OR_Success;
2945}
2946
2947/// PrintOverloadCandidates - When overload resolution fails, prints
2948/// diagnostic messages containing the candidates in the candidate
2949/// set. If OnlyViable is true, only viable candidates will be printed.
2950void
2951Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
2952 bool OnlyViable)
2953{
2954 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
2955 LastCand = CandidateSet.end();
2956 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002957 if (Cand->Viable || !OnlyViable) {
2958 if (Cand->Function) {
2959 // Normal function
2960 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002961 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00002962 // Desugar the type of the surrogate down to a function type,
2963 // retaining as many typedefs as possible while still showing
2964 // the function type (and, therefore, its parameter types).
2965 QualType FnType = Cand->Surrogate->getConversionType();
2966 bool isReference = false;
2967 bool isPointer = false;
2968 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
2969 FnType = FnTypeRef->getPointeeType();
2970 isReference = true;
2971 }
2972 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
2973 FnType = FnTypePtr->getPointeeType();
2974 isPointer = true;
2975 }
2976 // Desugar down to a function type.
2977 FnType = QualType(FnType->getAsFunctionType(), 0);
2978 // Reconstruct the pointer/reference as appropriate.
2979 if (isPointer) FnType = Context.getPointerType(FnType);
2980 if (isReference) FnType = Context.getReferenceType(FnType);
2981
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002982 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00002983 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002984 } else {
2985 // FIXME: We need to get the identifier in here
2986 // FIXME: Do we want the error message to point at the
2987 // operator? (built-ins won't have a location)
2988 QualType FnType
2989 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
2990 Cand->BuiltinTypes.ParamTypes,
2991 Cand->Conversions.size(),
2992 false, 0);
2993
Chris Lattnerd1625842008-11-24 06:25:27 +00002994 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002995 }
2996 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002997 }
2998}
2999
Douglas Gregor904eed32008-11-10 20:40:00 +00003000/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3001/// an overloaded function (C++ [over.over]), where @p From is an
3002/// expression with overloaded function type and @p ToType is the type
3003/// we're trying to resolve to. For example:
3004///
3005/// @code
3006/// int f(double);
3007/// int f(int);
3008///
3009/// int (*pfd)(double) = f; // selects f(double)
3010/// @endcode
3011///
3012/// This routine returns the resulting FunctionDecl if it could be
3013/// resolved, and NULL otherwise. When @p Complain is true, this
3014/// routine will emit diagnostics if there is an error.
3015FunctionDecl *
3016Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3017 bool Complain) {
3018 QualType FunctionType = ToType;
3019 if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3020 FunctionType = ToTypePtr->getPointeeType();
3021
3022 // We only look at pointers or references to functions.
3023 if (!FunctionType->isFunctionType())
3024 return 0;
3025
3026 // Find the actual overloaded function declaration.
3027 OverloadedFunctionDecl *Ovl = 0;
3028
3029 // C++ [over.over]p1:
3030 // [...] [Note: any redundant set of parentheses surrounding the
3031 // overloaded function name is ignored (5.1). ]
3032 Expr *OvlExpr = From->IgnoreParens();
3033
3034 // C++ [over.over]p1:
3035 // [...] The overloaded function name can be preceded by the &
3036 // operator.
3037 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3038 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3039 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3040 }
3041
3042 // Try to dig out the overloaded function.
3043 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3044 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3045
3046 // If there's no overloaded function declaration, we're done.
3047 if (!Ovl)
3048 return 0;
3049
3050 // Look through all of the overloaded functions, searching for one
3051 // whose type matches exactly.
3052 // FIXME: When templates or using declarations come along, we'll actually
3053 // have to deal with duplicates, partial ordering, etc. For now, we
3054 // can just do a simple search.
3055 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3056 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3057 Fun != Ovl->function_end(); ++Fun) {
3058 // C++ [over.over]p3:
3059 // Non-member functions and static member functions match
3060 // targets of type “pointer-to-function”or
3061 // “reference-to-function.”
3062 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3063 if (!Method->isStatic())
3064 continue;
3065
3066 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3067 return *Fun;
3068 }
3069
3070 return 0;
3071}
3072
Douglas Gregorf6b89692008-11-26 05:54:23 +00003073/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3074/// (which eventually refers to the set of overloaded functions in
3075/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3076/// function call down to a specific function. If overload resolution
Douglas Gregor0a396682008-11-26 06:01:48 +00003077/// succeeds, returns the function declaration produced by overload
3078/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003079/// arguments and Fn, and returns NULL.
Douglas Gregor0a396682008-11-26 06:01:48 +00003080FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3081 SourceLocation LParenLoc,
3082 Expr **Args, unsigned NumArgs,
3083 SourceLocation *CommaLocs,
3084 SourceLocation RParenLoc) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003085 OverloadCandidateSet CandidateSet;
3086 AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3087 OverloadCandidateSet::iterator Best;
3088 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003089 case OR_Success:
3090 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003091
3092 case OR_No_Viable_Function:
3093 Diag(Fn->getSourceRange().getBegin(),
3094 diag::err_ovl_no_viable_function_in_call)
3095 << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3096 << Fn->getSourceRange();
3097 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3098 break;
3099
3100 case OR_Ambiguous:
3101 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3102 << Ovl->getDeclName() << Fn->getSourceRange();
3103 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3104 break;
3105 }
3106
3107 // Overload resolution failed. Destroy all of the subexpressions and
3108 // return NULL.
3109 Fn->Destroy(Context);
3110 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3111 Args[Arg]->Destroy(Context);
3112 return 0;
3113}
3114
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003115/// BuildCallToObjectOfClassType - Build a call to an object of class
3116/// type (C++ [over.call.object]), which can end up invoking an
3117/// overloaded function call operator (@c operator()) or performing a
3118/// user-defined conversion on the object argument.
3119Action::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00003120Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3121 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003122 Expr **Args, unsigned NumArgs,
3123 SourceLocation *CommaLocs,
3124 SourceLocation RParenLoc) {
3125 assert(Object->getType()->isRecordType() && "Requires object type argument");
3126 const RecordType *Record = Object->getType()->getAsRecordType();
3127
3128 // C++ [over.call.object]p1:
3129 // If the primary-expression E in the function call syntax
3130 // evaluates to a class object of type “cv T”, then the set of
3131 // candidate functions includes at least the function call
3132 // operators of T. The function call operators of T are obtained by
3133 // ordinary lookup of the name operator() in the context of
3134 // (E).operator().
3135 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00003136 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
3137 DeclContext::lookup_const_result Lookup
Douglas Gregore267ff32008-12-11 20:41:00 +00003138 = Record->getDecl()->lookup(Context, OpName);
Douglas Gregor44b43212008-12-11 16:49:14 +00003139 NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003140 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3141 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3142 /*SuppressUserConversions=*/false);
3143 else if (OverloadedFunctionDecl *Ovl
3144 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3145 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3146 FEnd = Ovl->function_end();
3147 F != FEnd; ++F) {
3148 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3149 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3150 /*SuppressUserConversions=*/false);
3151 }
3152 }
3153
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003154 // C++ [over.call.object]p2:
3155 // In addition, for each conversion function declared in T of the
3156 // form
3157 //
3158 // operator conversion-type-id () cv-qualifier;
3159 //
3160 // where cv-qualifier is the same cv-qualification as, or a
3161 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00003162 // denotes the type "pointer to function of (P1,...,Pn) returning
3163 // R", or the type "reference to pointer to function of
3164 // (P1,...,Pn) returning R", or the type "reference to function
3165 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003166 // is also considered as a candidate function. Similarly,
3167 // surrogate call functions are added to the set of candidate
3168 // functions for each conversion function declared in an
3169 // accessible base class provided the function is not hidden
3170 // within T by another intervening declaration.
3171 //
3172 // FIXME: Look in base classes for more conversion operators!
3173 OverloadedFunctionDecl *Conversions
3174 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00003175 for (OverloadedFunctionDecl::function_iterator
3176 Func = Conversions->function_begin(),
3177 FuncEnd = Conversions->function_end();
3178 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003179 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3180
3181 // Strip the reference type (if any) and then the pointer type (if
3182 // any) to get down to what might be a function type.
3183 QualType ConvType = Conv->getConversionType().getNonReferenceType();
3184 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3185 ConvType = ConvPtrType->getPointeeType();
3186
3187 if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3188 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3189 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003190
3191 // Perform overload resolution.
3192 OverloadCandidateSet::iterator Best;
3193 switch (BestViableFunction(CandidateSet, Best)) {
3194 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003195 // Overload resolution succeeded; we'll build the appropriate call
3196 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003197 break;
3198
3199 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00003200 Diag(Object->getSourceRange().getBegin(),
3201 diag::err_ovl_no_viable_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003202 << Object->getType() << (unsigned)CandidateSet.size()
Sebastian Redle4c452c2008-11-22 13:44:36 +00003203 << Object->getSourceRange();
3204 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003205 break;
3206
3207 case OR_Ambiguous:
3208 Diag(Object->getSourceRange().getBegin(),
3209 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003210 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003211 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3212 break;
3213 }
3214
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003215 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003216 // We had an error; delete all of the subexpressions and return
3217 // the error.
3218 delete Object;
3219 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3220 delete Args[ArgIdx];
3221 return true;
3222 }
3223
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003224 if (Best->Function == 0) {
3225 // Since there is no function declaration, this is one of the
3226 // surrogate candidates. Dig out the conversion function.
3227 CXXConversionDecl *Conv
3228 = cast<CXXConversionDecl>(
3229 Best->Conversions[0].UserDefined.ConversionFunction);
3230
3231 // We selected one of the surrogate functions that converts the
3232 // object parameter to a function pointer. Perform the conversion
3233 // on the object argument, then let ActOnCallExpr finish the job.
3234 // FIXME: Represent the user-defined conversion in the AST!
3235 ImpCastExprToType(Object,
3236 Conv->getConversionType().getNonReferenceType(),
3237 Conv->getConversionType()->isReferenceType());
Douglas Gregor5c37de72008-12-06 00:22:45 +00003238 return ActOnCallExpr(S, (ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003239 CommaLocs, RParenLoc);
3240 }
3241
3242 // We found an overloaded operator(). Build a CXXOperatorCallExpr
3243 // that calls this method, using Object for the implicit object
3244 // parameter and passing along the remaining arguments.
3245 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003246 const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3247
3248 unsigned NumArgsInProto = Proto->getNumArgs();
3249 unsigned NumArgsToCheck = NumArgs;
3250
3251 // Build the full argument list for the method call (the
3252 // implicit object parameter is placed at the beginning of the
3253 // list).
3254 Expr **MethodArgs;
3255 if (NumArgs < NumArgsInProto) {
3256 NumArgsToCheck = NumArgsInProto;
3257 MethodArgs = new Expr*[NumArgsInProto + 1];
3258 } else {
3259 MethodArgs = new Expr*[NumArgs + 1];
3260 }
3261 MethodArgs[0] = Object;
3262 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3263 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3264
3265 Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3266 SourceLocation());
3267 UsualUnaryConversions(NewFn);
3268
3269 // Once we've built TheCall, all of the expressions are properly
3270 // owned.
3271 QualType ResultTy = Method->getResultType().getNonReferenceType();
3272 llvm::OwningPtr<CXXOperatorCallExpr>
3273 TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3274 ResultTy, RParenLoc));
3275 delete [] MethodArgs;
3276
3277 // Initialize the implicit object parameter.
3278 if (!PerformObjectArgumentInitialization(Object, Method))
3279 return true;
3280 TheCall->setArg(0, Object);
3281
3282 // Check the argument types.
3283 for (unsigned i = 0; i != NumArgsToCheck; i++) {
3284 QualType ProtoArgType = Proto->getArgType(i);
3285
3286 Expr *Arg;
3287 if (i < NumArgs)
3288 Arg = Args[i];
3289 else
3290 Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
3291 QualType ArgType = Arg->getType();
3292
3293 // Pass the argument.
3294 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3295 return true;
3296
3297 TheCall->setArg(i + 1, Arg);
3298 }
3299
3300 // If this is a variadic call, handle args passed through "...".
3301 if (Proto->isVariadic()) {
3302 // Promote the arguments (C99 6.5.2.2p7).
3303 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3304 Expr *Arg = Args[i];
3305 DefaultArgumentPromotion(Arg);
3306 TheCall->setArg(i + 1, Arg);
3307 }
3308 }
3309
3310 return CheckFunctionCall(Method, TheCall.take());
3311}
3312
Douglas Gregor8ba10742008-11-20 16:27:02 +00003313/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3314/// (if one exists), where @c Base is an expression of class type and
3315/// @c Member is the name of the member we're trying to find.
3316Action::ExprResult
3317Sema::BuildOverloadedArrowExpr(Expr *Base, SourceLocation OpLoc,
3318 SourceLocation MemberLoc,
3319 IdentifierInfo &Member) {
3320 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3321
3322 // C++ [over.ref]p1:
3323 //
3324 // [...] An expression x->m is interpreted as (x.operator->())->m
3325 // for a class object x of type T if T::operator->() exists and if
3326 // the operator is selected as the best match function by the
3327 // overload resolution mechanism (13.3).
3328 // FIXME: look in base classes.
3329 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3330 OverloadCandidateSet CandidateSet;
3331 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregor44b43212008-12-11 16:49:14 +00003332 DeclContext::lookup_const_result Lookup
Douglas Gregore267ff32008-12-11 20:41:00 +00003333 = BaseRecord->getDecl()->lookup(Context, OpName);
Douglas Gregor44b43212008-12-11 16:49:14 +00003334 NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
Douglas Gregor8ba10742008-11-20 16:27:02 +00003335 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3336 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3337 /*SuppressUserConversions=*/false);
3338 else if (OverloadedFunctionDecl *Ovl
3339 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3340 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3341 FEnd = Ovl->function_end();
3342 F != FEnd; ++F) {
3343 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3344 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3345 /*SuppressUserConversions=*/false);
3346 }
3347 }
3348
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003349 llvm::OwningPtr<Expr> BasePtr(Base);
3350
Douglas Gregor8ba10742008-11-20 16:27:02 +00003351 // Perform overload resolution.
3352 OverloadCandidateSet::iterator Best;
3353 switch (BestViableFunction(CandidateSet, Best)) {
3354 case OR_Success:
3355 // Overload resolution succeeded; we'll build the call below.
3356 break;
3357
3358 case OR_No_Viable_Function:
3359 if (CandidateSet.empty())
3360 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00003361 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003362 else
3363 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Sebastian Redle4c452c2008-11-22 13:44:36 +00003364 << "operator->" << (unsigned)CandidateSet.size()
3365 << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003366 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003367 return true;
3368
3369 case OR_Ambiguous:
3370 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00003371 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003372 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003373 return true;
3374 }
3375
3376 // Convert the object parameter.
3377 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003378 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00003379 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003380
3381 // No concerns about early exits now.
3382 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003383
3384 // Build the operator call.
3385 Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3386 UsualUnaryConversions(FnExpr);
3387 Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3388 Method->getResultType().getNonReferenceType(),
3389 OpLoc);
3390 return ActOnMemberReferenceExpr(Base, OpLoc, tok::arrow, MemberLoc, Member);
3391}
3392
Douglas Gregor904eed32008-11-10 20:40:00 +00003393/// FixOverloadedFunctionReference - E is an expression that refers to
3394/// a C++ overloaded function (possibly with some parentheses and
3395/// perhaps a '&' around it). We have resolved the overloaded function
3396/// to the function declaration Fn, so patch up the expression E to
3397/// refer (possibly indirectly) to Fn.
3398void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3399 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3400 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3401 E->setType(PE->getSubExpr()->getType());
3402 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3403 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3404 "Can only take the address of an overloaded function");
3405 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3406 E->setType(Context.getPointerType(E->getType()));
3407 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3408 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3409 "Expected overloaded function");
3410 DR->setDecl(Fn);
3411 E->setType(Fn->getType());
3412 } else {
3413 assert(false && "Invalid reference to overloaded function");
3414 }
3415}
3416
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003417} // end namespace clang