blob: 1ddbccb7e9061015fdfa07f88742f8a525d783d0 [file] [log] [blame]
Chris Lattner4b009652007-07-25 00:24:17 +00001//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/Expr.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/Lex/LiteralSupport.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/SmallString.h"
Chris Lattner2e64c072007-08-10 20:18:51 +000025#include "llvm/ADT/StringExtras.h"
Chris Lattner4b009652007-07-25 00:24:17 +000026using namespace clang;
27
28/// ParseStringLiteral - The specified tokens were lexed as pasted string
29/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
30/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
31/// multiple tokens. However, the common case is that StringToks points to one
32/// string.
33///
34Action::ExprResult
35Sema::ParseStringLiteral(const Token *StringToks, unsigned NumStringToks) {
36 assert(NumStringToks && "Must have at least one string!");
37
38 StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
39 if (Literal.hadError)
40 return ExprResult(true);
41
42 llvm::SmallVector<SourceLocation, 4> StringTokLocs;
43 for (unsigned i = 0; i != NumStringToks; ++i)
44 StringTokLocs.push_back(StringToks[i].getLocation());
45
46 // FIXME: handle wchar_t
47 QualType t = Context.getPointerType(Context.CharTy);
48
49 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
50 return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
51 Literal.AnyWide, t, StringToks[0].getLocation(),
52 StringToks[NumStringToks-1].getLocation());
53}
54
55
56/// ParseIdentifierExpr - The parser read an identifier in expression context,
57/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
58/// identifier is used in an function call context.
59Sema::ExprResult Sema::ParseIdentifierExpr(Scope *S, SourceLocation Loc,
60 IdentifierInfo &II,
61 bool HasTrailingLParen) {
62 // Could be enum-constant or decl.
63 Decl *D = LookupScopedDecl(&II, Decl::IDNS_Ordinary, Loc, S);
64 if (D == 0) {
65 // Otherwise, this could be an implicitly declared function reference (legal
66 // in C90, extension in C99).
67 if (HasTrailingLParen &&
68 // Not in C++.
69 !getLangOptions().CPlusPlus)
70 D = ImplicitlyDefineFunction(Loc, II, S);
71 else {
72 // If this name wasn't predeclared and if this is not a function call,
73 // diagnose the problem.
74 return Diag(Loc, diag::err_undeclared_var_use, II.getName());
75 }
76 }
Steve Naroff91b03f72007-08-28 03:03:08 +000077 if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
Steve Naroffcae537d2007-08-28 18:45:29 +000078 // Only create DeclRefExpr's for valid Decl's.
Steve Naroffd1ad6ae2007-08-28 20:14:24 +000079 if (VD->isInvalidDecl())
Steve Naroff91b03f72007-08-28 03:03:08 +000080 return true;
Chris Lattner4b009652007-07-25 00:24:17 +000081 return new DeclRefExpr(VD, VD->getType(), Loc);
Steve Naroff91b03f72007-08-28 03:03:08 +000082 }
Chris Lattner4b009652007-07-25 00:24:17 +000083 if (isa<TypedefDecl>(D))
84 return Diag(Loc, diag::err_unexpected_typedef, II.getName());
85
86 assert(0 && "Invalid decl");
87 abort();
88}
89
90Sema::ExprResult Sema::ParsePreDefinedExpr(SourceLocation Loc,
91 tok::TokenKind Kind) {
92 PreDefinedExpr::IdentType IT;
93
94 switch (Kind) {
95 default:
96 assert(0 && "Unknown simple primary expr!");
97 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
98 IT = PreDefinedExpr::Func;
99 break;
100 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
101 IT = PreDefinedExpr::Function;
102 break;
103 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
104 IT = PreDefinedExpr::PrettyFunction;
105 break;
106 }
107
108 // Pre-defined identifiers are always of type char *.
109 return new PreDefinedExpr(Loc, Context.getPointerType(Context.CharTy), IT);
110}
111
112Sema::ExprResult Sema::ParseCharacterConstant(const Token &Tok) {
113 llvm::SmallString<16> CharBuffer;
114 CharBuffer.resize(Tok.getLength());
115 const char *ThisTokBegin = &CharBuffer[0];
116 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
117
118 CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
119 Tok.getLocation(), PP);
120 if (Literal.hadError())
121 return ExprResult(true);
122 return new CharacterLiteral(Literal.getValue(), Context.IntTy,
123 Tok.getLocation());
124}
125
126Action::ExprResult Sema::ParseNumericConstant(const Token &Tok) {
127 // fast path for a single digit (which is quite common). A single digit
128 // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
129 if (Tok.getLength() == 1) {
130 const char *t = PP.getSourceManager().getCharacterData(Tok.getLocation());
131
132 unsigned IntSize = Context.getTypeSize(Context.IntTy, Tok.getLocation());
133 return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *t-'0'),
134 Context.IntTy,
135 Tok.getLocation()));
136 }
137 llvm::SmallString<512> IntegerBuffer;
138 IntegerBuffer.resize(Tok.getLength());
139 const char *ThisTokBegin = &IntegerBuffer[0];
140
141 // Get the spelling of the token, which eliminates trigraphs, etc.
142 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
143 NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
144 Tok.getLocation(), PP);
145 if (Literal.hadError)
146 return ExprResult(true);
147
Chris Lattner1de66eb2007-08-26 03:42:43 +0000148 Expr *Res;
149
150 if (Literal.isFloatingLiteral()) {
151 // FIXME: handle float values > 32 (including compute the real type...).
152 QualType Ty = Literal.isFloat ? Context.FloatTy : Context.DoubleTy;
153 Res = new FloatingLiteral(Literal.GetFloatValue(), Ty, Tok.getLocation());
154 } else if (!Literal.isIntegerLiteral()) {
155 return ExprResult(true);
156 } else {
Chris Lattner4b009652007-07-25 00:24:17 +0000157 QualType t;
158
Neil Booth7421e9c2007-08-29 22:00:19 +0000159 // long long is a C99 feature.
160 if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
Neil Booth9bd47082007-08-29 22:13:52 +0000161 Literal.isLongLong)
Neil Booth7421e9c2007-08-29 22:00:19 +0000162 Diag(Tok.getLocation(), diag::ext_longlong);
163
Chris Lattner4b009652007-07-25 00:24:17 +0000164 // Get the value in the widest-possible width.
165 llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(Tok.getLocation()), 0);
166
167 if (Literal.GetIntegerValue(ResultVal)) {
168 // If this value didn't fit into uintmax_t, warn and force to ull.
169 Diag(Tok.getLocation(), diag::warn_integer_too_large);
170 t = Context.UnsignedLongLongTy;
171 assert(Context.getTypeSize(t, Tok.getLocation()) ==
172 ResultVal.getBitWidth() && "long long is not intmax_t?");
173 } else {
174 // If this value fits into a ULL, try to figure out what else it fits into
175 // according to the rules of C99 6.4.4.1p5.
176
177 // Octal, Hexadecimal, and integers with a U suffix are allowed to
178 // be an unsigned int.
179 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
180
181 // Check from smallest to largest, picking the smallest type we can.
Chris Lattner98540b62007-08-23 21:58:08 +0000182 if (!Literal.isLong && !Literal.isLongLong) {
183 // Are int/unsigned possibilities?
Chris Lattner4b009652007-07-25 00:24:17 +0000184 unsigned IntSize = Context.getTypeSize(Context.IntTy,Tok.getLocation());
185 // Does it fit in a unsigned int?
186 if (ResultVal.isIntN(IntSize)) {
187 // Does it fit in a signed int?
188 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
189 t = Context.IntTy;
190 else if (AllowUnsigned)
191 t = Context.UnsignedIntTy;
192 }
193
194 if (!t.isNull())
195 ResultVal.trunc(IntSize);
196 }
197
198 // Are long/unsigned long possibilities?
199 if (t.isNull() && !Literal.isLongLong) {
200 unsigned LongSize = Context.getTypeSize(Context.LongTy,
201 Tok.getLocation());
202
203 // Does it fit in a unsigned long?
204 if (ResultVal.isIntN(LongSize)) {
205 // Does it fit in a signed long?
206 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
207 t = Context.LongTy;
208 else if (AllowUnsigned)
209 t = Context.UnsignedLongTy;
210 }
211 if (!t.isNull())
212 ResultVal.trunc(LongSize);
213 }
214
215 // Finally, check long long if needed.
216 if (t.isNull()) {
217 unsigned LongLongSize =
218 Context.getTypeSize(Context.LongLongTy, Tok.getLocation());
219
220 // Does it fit in a unsigned long long?
221 if (ResultVal.isIntN(LongLongSize)) {
222 // Does it fit in a signed long long?
223 if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
224 t = Context.LongLongTy;
225 else if (AllowUnsigned)
226 t = Context.UnsignedLongLongTy;
227 }
228 }
229
230 // If we still couldn't decide a type, we probably have something that
231 // does not fit in a signed long long, but has no U suffix.
232 if (t.isNull()) {
233 Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
234 t = Context.UnsignedLongLongTy;
235 }
236 }
237
Chris Lattner1de66eb2007-08-26 03:42:43 +0000238 Res = new IntegerLiteral(ResultVal, t, Tok.getLocation());
Chris Lattner4b009652007-07-25 00:24:17 +0000239 }
Chris Lattner1de66eb2007-08-26 03:42:43 +0000240
241 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
242 if (Literal.isImaginary)
243 Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
244
245 return Res;
Chris Lattner4b009652007-07-25 00:24:17 +0000246}
247
248Action::ExprResult Sema::ParseParenExpr(SourceLocation L, SourceLocation R,
249 ExprTy *Val) {
250 Expr *e = (Expr *)Val;
251 assert((e != 0) && "ParseParenExpr() missing expr");
252 return new ParenExpr(L, R, e);
253}
254
255/// The UsualUnaryConversions() function is *not* called by this routine.
256/// See C99 6.3.2.1p[2-4] for more details.
257QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
258 SourceLocation OpLoc, bool isSizeof) {
259 // C99 6.5.3.4p1:
260 if (isa<FunctionType>(exprType) && isSizeof)
261 // alignof(function) is allowed.
262 Diag(OpLoc, diag::ext_sizeof_function_type);
263 else if (exprType->isVoidType())
264 Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
265 else if (exprType->isIncompleteType()) {
266 Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
267 diag::err_alignof_incomplete_type,
268 exprType.getAsString());
269 return QualType(); // error
270 }
271 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
272 return Context.getSizeType();
273}
274
275Action::ExprResult Sema::
276ParseSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
277 SourceLocation LPLoc, TypeTy *Ty,
278 SourceLocation RPLoc) {
279 // If error parsing type, ignore.
280 if (Ty == 0) return true;
281
282 // Verify that this is a valid expression.
283 QualType ArgTy = QualType::getFromOpaquePtr(Ty);
284
285 QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
286
287 if (resultType.isNull())
288 return true;
289 return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
290}
291
Chris Lattner5110ad52007-08-24 21:41:10 +0000292QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
Chris Lattner03931a72007-08-24 21:16:53 +0000293 DefaultFunctionArrayConversion(V);
294
Chris Lattnera16e42d2007-08-26 05:39:26 +0000295 // These operators return the element type of a complex type.
Chris Lattner03931a72007-08-24 21:16:53 +0000296 if (const ComplexType *CT = V->getType()->getAsComplexType())
297 return CT->getElementType();
Chris Lattnera16e42d2007-08-26 05:39:26 +0000298
299 // Otherwise they pass through real integer and floating point types here.
300 if (V->getType()->isArithmeticType())
301 return V->getType();
302
303 // Reject anything else.
304 Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
305 return QualType();
Chris Lattner03931a72007-08-24 21:16:53 +0000306}
307
308
Chris Lattner4b009652007-07-25 00:24:17 +0000309
310Action::ExprResult Sema::ParsePostfixUnaryOp(SourceLocation OpLoc,
311 tok::TokenKind Kind,
312 ExprTy *Input) {
313 UnaryOperator::Opcode Opc;
314 switch (Kind) {
315 default: assert(0 && "Unknown unary op!");
316 case tok::plusplus: Opc = UnaryOperator::PostInc; break;
317 case tok::minusminus: Opc = UnaryOperator::PostDec; break;
318 }
319 QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
320 if (result.isNull())
321 return true;
322 return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
323}
324
325Action::ExprResult Sema::
326ParseArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
327 ExprTy *Idx, SourceLocation RLoc) {
328 Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
329
330 // Perform default conversions.
331 DefaultFunctionArrayConversion(LHSExp);
332 DefaultFunctionArrayConversion(RHSExp);
333
334 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
335
336 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
337 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
338 // in the subscript position. As a result, we need to derive the array base
339 // and index from the expression types.
340 Expr *BaseExpr, *IndexExpr;
341 QualType ResultType;
Chris Lattner7931f4a2007-07-31 16:53:04 +0000342 if (const PointerType *PTy = LHSTy->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000343 BaseExpr = LHSExp;
344 IndexExpr = RHSExp;
345 // FIXME: need to deal with const...
346 ResultType = PTy->getPointeeType();
Chris Lattner7931f4a2007-07-31 16:53:04 +0000347 } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000348 // Handle the uncommon case of "123[Ptr]".
349 BaseExpr = RHSExp;
350 IndexExpr = LHSExp;
351 // FIXME: need to deal with const...
352 ResultType = PTy->getPointeeType();
Chris Lattnere35a1042007-07-31 19:29:30 +0000353 } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
354 BaseExpr = LHSExp; // vectors: V[123]
Chris Lattner4b009652007-07-25 00:24:17 +0000355 IndexExpr = RHSExp;
Steve Naroff89345522007-08-03 22:40:33 +0000356
357 // Component access limited to variables (reject vec4.rg[1]).
358 if (!isa<DeclRefExpr>(BaseExpr))
359 return Diag(LLoc, diag::err_ocuvector_component_access,
360 SourceRange(LLoc, RLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000361 // FIXME: need to deal with const...
362 ResultType = VTy->getElementType();
363 } else {
364 return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
365 RHSExp->getSourceRange());
366 }
367 // C99 6.5.2.1p1
368 if (!IndexExpr->getType()->isIntegerType())
369 return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
370 IndexExpr->getSourceRange());
371
372 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice,
373 // the following check catches trying to index a pointer to a function (e.g.
374 // void (*)(int)). Functions are not objects in C99.
375 if (!ResultType->isObjectType())
376 return Diag(BaseExpr->getLocStart(),
377 diag::err_typecheck_subscript_not_object,
378 BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
379
380 return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
381}
382
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000383QualType Sema::
384CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc,
385 IdentifierInfo &CompName, SourceLocation CompLoc) {
Chris Lattnere35a1042007-07-31 19:29:30 +0000386 const OCUVectorType *vecType = baseType->getAsOCUVectorType();
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000387
388 // The vector accessor can't exceed the number of elements.
389 const char *compStr = CompName.getName();
390 if (strlen(compStr) > vecType->getNumElements()) {
391 Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
392 baseType.getAsString(), SourceRange(CompLoc));
393 return QualType();
394 }
395 // The component names must come from the same set.
Chris Lattner9096b792007-08-02 22:33:49 +0000396 if (vecType->getPointAccessorIdx(*compStr) != -1) {
397 do
398 compStr++;
399 while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
400 } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
401 do
402 compStr++;
403 while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
404 } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
405 do
406 compStr++;
407 while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
408 }
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000409
410 if (*compStr) {
411 // We didn't get to the end of the string. This means the component names
412 // didn't come from the same set *or* we encountered an illegal name.
413 Diag(OpLoc, diag::err_ocuvector_component_name_illegal,
414 std::string(compStr,compStr+1), SourceRange(CompLoc));
415 return QualType();
416 }
417 // Each component accessor can't exceed the vector type.
418 compStr = CompName.getName();
419 while (*compStr) {
420 if (vecType->isAccessorWithinNumElements(*compStr))
421 compStr++;
422 else
423 break;
424 }
425 if (*compStr) {
426 // We didn't get to the end of the string. This means a component accessor
427 // exceeds the number of elements in the vector.
428 Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
429 baseType.getAsString(), SourceRange(CompLoc));
430 return QualType();
431 }
432 // The component accessor looks fine - now we need to compute the actual type.
433 // The vector type is implied by the component accessor. For example,
434 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
435 unsigned CompSize = strlen(CompName.getName());
436 if (CompSize == 1)
437 return vecType->getElementType();
Steve Naroff82113e32007-07-29 16:33:31 +0000438
439 QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize);
440 // Now look up the TypeDefDecl from the vector type. Without this,
441 // diagostics look bad. We want OCU vector types to appear built-in.
442 for (unsigned i = 0, e = OCUVectorDecls.size(); i != e; ++i) {
443 if (OCUVectorDecls[i]->getUnderlyingType() == VT)
444 return Context.getTypedefType(OCUVectorDecls[i]);
445 }
446 return VT; // should never get here (a typedef type should always be found).
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000447}
448
Chris Lattner4b009652007-07-25 00:24:17 +0000449Action::ExprResult Sema::
450ParseMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
451 tok::TokenKind OpKind, SourceLocation MemberLoc,
452 IdentifierInfo &Member) {
Steve Naroff2cb66382007-07-26 03:11:44 +0000453 Expr *BaseExpr = static_cast<Expr *>(Base);
454 assert(BaseExpr && "no record expression");
Chris Lattner4b009652007-07-25 00:24:17 +0000455
Steve Naroff2cb66382007-07-26 03:11:44 +0000456 QualType BaseType = BaseExpr->getType();
457 assert(!BaseType.isNull() && "no type for member expression");
Chris Lattner4b009652007-07-25 00:24:17 +0000458
Chris Lattner4b009652007-07-25 00:24:17 +0000459 if (OpKind == tok::arrow) {
Chris Lattner7931f4a2007-07-31 16:53:04 +0000460 if (const PointerType *PT = BaseType->getAsPointerType())
Steve Naroff2cb66382007-07-26 03:11:44 +0000461 BaseType = PT->getPointeeType();
462 else
463 return Diag(OpLoc, diag::err_typecheck_member_reference_arrow,
464 SourceRange(MemberLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000465 }
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000466 // The base type is either a record or an OCUVectorType.
Chris Lattnere35a1042007-07-31 19:29:30 +0000467 if (const RecordType *RTy = BaseType->getAsRecordType()) {
Steve Naroff2cb66382007-07-26 03:11:44 +0000468 RecordDecl *RDecl = RTy->getDecl();
469 if (RTy->isIncompleteType())
470 return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
471 BaseExpr->getSourceRange());
472 // The record definition is complete, now make sure the member is valid.
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000473 FieldDecl *MemberDecl = RDecl->getMember(&Member);
474 if (!MemberDecl)
Steve Naroff2cb66382007-07-26 03:11:44 +0000475 return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(),
476 SourceRange(MemberLoc));
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000477 return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl, MemberLoc);
478 } else if (BaseType->isOCUVectorType() && OpKind == tok::period) {
Steve Naroff89345522007-08-03 22:40:33 +0000479 // Component access limited to variables (reject vec4.rg.g).
480 if (!isa<DeclRefExpr>(BaseExpr))
481 return Diag(OpLoc, diag::err_ocuvector_component_access,
482 SourceRange(MemberLoc));
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000483 QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc);
484 if (ret.isNull())
485 return true;
Chris Lattnera0d03a72007-08-03 17:31:20 +0000486 return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
Steve Naroff2cb66382007-07-26 03:11:44 +0000487 } else
488 return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion,
489 SourceRange(MemberLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000490}
491
492/// ParseCallExpr - Handle a call to Fn with the specified array of arguments.
493/// This provides the location of the left/right parens and a list of comma
494/// locations.
495Action::ExprResult Sema::
496ParseCallExpr(ExprTy *fn, SourceLocation LParenLoc,
497 ExprTy **args, unsigned NumArgsInCall,
498 SourceLocation *CommaLocs, SourceLocation RParenLoc) {
499 Expr *Fn = static_cast<Expr *>(fn);
500 Expr **Args = reinterpret_cast<Expr**>(args);
501 assert(Fn && "no function call expression");
502
503 UsualUnaryConversions(Fn);
504 QualType funcType = Fn->getType();
505
506 // C99 6.5.2.2p1 - "The expression that denotes the called function shall have
507 // type pointer to function".
Chris Lattner71225142007-07-31 21:27:01 +0000508 const PointerType *PT = funcType->getAsPointerType();
Chris Lattner4b009652007-07-25 00:24:17 +0000509 if (PT == 0)
510 return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
511 SourceRange(Fn->getLocStart(), RParenLoc));
512
Chris Lattner71225142007-07-31 21:27:01 +0000513 const FunctionType *funcT = PT->getPointeeType()->getAsFunctionType();
Chris Lattner4b009652007-07-25 00:24:17 +0000514 if (funcT == 0)
515 return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
516 SourceRange(Fn->getLocStart(), RParenLoc));
517
518 // If a prototype isn't declared, the parser implicitly defines a func decl
519 QualType resultType = funcT->getResultType();
520
521 if (const FunctionTypeProto *proto = dyn_cast<FunctionTypeProto>(funcT)) {
522 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
523 // assignment, to the types of the corresponding parameter, ...
524
525 unsigned NumArgsInProto = proto->getNumArgs();
526 unsigned NumArgsToCheck = NumArgsInCall;
527
528 if (NumArgsInCall < NumArgsInProto)
529 Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
530 Fn->getSourceRange());
531 else if (NumArgsInCall > NumArgsInProto) {
532 if (!proto->isVariadic()) {
533 Diag(Args[NumArgsInProto]->getLocStart(),
534 diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
535 SourceRange(Args[NumArgsInProto]->getLocStart(),
536 Args[NumArgsInCall-1]->getLocEnd()));
537 }
538 NumArgsToCheck = NumArgsInProto;
539 }
540 // Continue to check argument types (even if we have too few/many args).
541 for (unsigned i = 0; i < NumArgsToCheck; i++) {
542 Expr *argExpr = Args[i];
543 assert(argExpr && "ParseCallExpr(): missing argument expression");
544
545 QualType lhsType = proto->getArgType(i);
546 QualType rhsType = argExpr->getType();
547
Steve Naroff75644062007-07-25 20:45:33 +0000548 // If necessary, apply function/array conversion. C99 6.7.5.3p[7,8].
Chris Lattnere35a1042007-07-31 19:29:30 +0000549 if (const ArrayType *ary = lhsType->getAsArrayType())
Chris Lattner4b009652007-07-25 00:24:17 +0000550 lhsType = Context.getPointerType(ary->getElementType());
Steve Naroff75644062007-07-25 20:45:33 +0000551 else if (lhsType->isFunctionType())
Chris Lattner4b009652007-07-25 00:24:17 +0000552 lhsType = Context.getPointerType(lhsType);
553
554 AssignmentCheckResult result = CheckSingleAssignmentConstraints(lhsType,
555 argExpr);
Steve Naroff0f32f432007-08-24 22:33:52 +0000556 if (Args[i] != argExpr) // The expression was converted.
557 Args[i] = argExpr; // Make sure we store the converted expression.
Chris Lattner4b009652007-07-25 00:24:17 +0000558 SourceLocation l = argExpr->getLocStart();
559
560 // decode the result (notice that AST's are still created for extensions).
561 switch (result) {
562 case Compatible:
563 break;
564 case PointerFromInt:
565 // check for null pointer constant (C99 6.3.2.3p3)
566 if (!argExpr->isNullPointerConstant(Context)) {
567 Diag(l, diag::ext_typecheck_passing_pointer_int,
568 lhsType.getAsString(), rhsType.getAsString(),
569 Fn->getSourceRange(), argExpr->getSourceRange());
570 }
571 break;
572 case IntFromPointer:
573 Diag(l, diag::ext_typecheck_passing_pointer_int,
574 lhsType.getAsString(), rhsType.getAsString(),
575 Fn->getSourceRange(), argExpr->getSourceRange());
576 break;
577 case IncompatiblePointer:
578 Diag(l, diag::ext_typecheck_passing_incompatible_pointer,
579 rhsType.getAsString(), lhsType.getAsString(),
580 Fn->getSourceRange(), argExpr->getSourceRange());
581 break;
582 case CompatiblePointerDiscardsQualifiers:
583 Diag(l, diag::ext_typecheck_passing_discards_qualifiers,
584 rhsType.getAsString(), lhsType.getAsString(),
585 Fn->getSourceRange(), argExpr->getSourceRange());
586 break;
587 case Incompatible:
588 return Diag(l, diag::err_typecheck_passing_incompatible,
589 rhsType.getAsString(), lhsType.getAsString(),
590 Fn->getSourceRange(), argExpr->getSourceRange());
591 }
592 }
Steve Naroffdb65e052007-08-28 23:30:39 +0000593 if (NumArgsInCall > NumArgsInProto && proto->isVariadic()) {
594 // Promote the arguments (C99 6.5.2.2p7).
595 for (unsigned i = NumArgsInProto; i < NumArgsInCall; i++) {
596 Expr *argExpr = Args[i];
597 assert(argExpr && "ParseCallExpr(): missing argument expression");
598
599 DefaultArgumentPromotion(argExpr);
600 if (Args[i] != argExpr) // The expression was converted.
601 Args[i] = argExpr; // Make sure we store the converted expression.
602 }
603 } else if (NumArgsInCall != NumArgsInProto && !proto->isVariadic()) {
604 // Even if the types checked, bail if the number of arguments don't match.
Chris Lattner4b009652007-07-25 00:24:17 +0000605 return true;
Steve Naroffdb65e052007-08-28 23:30:39 +0000606 }
607 } else if (isa<FunctionTypeNoProto>(funcT)) {
608 // Promote the arguments (C99 6.5.2.2p6).
609 for (unsigned i = 0; i < NumArgsInCall; i++) {
610 Expr *argExpr = Args[i];
611 assert(argExpr && "ParseCallExpr(): missing argument expression");
612
613 DefaultArgumentPromotion(argExpr);
614 if (Args[i] != argExpr) // The expression was converted.
615 Args[i] = argExpr; // Make sure we store the converted expression.
616 }
Chris Lattner4b009652007-07-25 00:24:17 +0000617 }
Chris Lattner2e64c072007-08-10 20:18:51 +0000618 // Do special checking on direct calls to functions.
619 if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
620 if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
621 if (FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl()))
Anders Carlsson3e9b43b2007-08-17 15:44:17 +0000622 if (CheckFunctionCall(Fn, LParenLoc, RParenLoc, FDecl, Args, NumArgsInCall))
Anders Carlssone7e7aa22007-08-17 05:31:46 +0000623 return true;
Chris Lattner2e64c072007-08-10 20:18:51 +0000624
Chris Lattner4b009652007-07-25 00:24:17 +0000625 return new CallExpr(Fn, Args, NumArgsInCall, resultType, RParenLoc);
626}
627
628Action::ExprResult Sema::
629ParseCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
630 SourceLocation RParenLoc, ExprTy *InitExpr) {
631 assert((Ty != 0) && "ParseCompoundLiteral(): missing type");
632 QualType literalType = QualType::getFromOpaquePtr(Ty);
633 // FIXME: put back this assert when initializers are worked out.
634 //assert((InitExpr != 0) && "ParseCompoundLiteral(): missing expression");
635 Expr *literalExpr = static_cast<Expr*>(InitExpr);
636
637 // FIXME: add semantic analysis (C99 6.5.2.5).
638 return new CompoundLiteralExpr(literalType, literalExpr);
639}
640
641Action::ExprResult Sema::
642ParseInitList(SourceLocation LParenLoc, ExprTy **InitList, unsigned NumInit,
643 SourceLocation RParenLoc) {
644 // FIXME: add semantic analysis (C99 6.7.8). This involves
645 // knowledge of the object being intialized. As a result, the code for
646 // doing the semantic analysis will likely be located elsewhere (i.e. in
647 // consumers of InitListExpr (e.g. ParseDeclarator, ParseCompoundLiteral).
648 return false; // FIXME instantiate an InitListExpr.
649}
650
651Action::ExprResult Sema::
652ParseCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
653 SourceLocation RParenLoc, ExprTy *Op) {
654 assert((Ty != 0) && (Op != 0) && "ParseCastExpr(): missing type or expr");
655
656 Expr *castExpr = static_cast<Expr*>(Op);
657 QualType castType = QualType::getFromOpaquePtr(Ty);
658
659 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
660 // type needs to be scalar.
661 if (!castType->isScalarType() && !castType->isVoidType()) {
662 return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
663 castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
664 }
665 if (!castExpr->getType()->isScalarType()) {
666 return Diag(castExpr->getLocStart(),
667 diag::err_typecheck_expect_scalar_operand,
668 castExpr->getType().getAsString(), castExpr->getSourceRange());
669 }
670 return new CastExpr(castType, castExpr, LParenLoc);
671}
672
673inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
674 Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
675 UsualUnaryConversions(cond);
676 UsualUnaryConversions(lex);
677 UsualUnaryConversions(rex);
678 QualType condT = cond->getType();
679 QualType lexT = lex->getType();
680 QualType rexT = rex->getType();
681
682 // first, check the condition.
683 if (!condT->isScalarType()) { // C99 6.5.15p2
684 Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
685 condT.getAsString());
686 return QualType();
687 }
688 // now check the two expressions.
689 if (lexT->isArithmeticType() && rexT->isArithmeticType()) { // C99 6.5.15p3,5
690 UsualArithmeticConversions(lex, rex);
691 return lex->getType();
692 }
Chris Lattner71225142007-07-31 21:27:01 +0000693 if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3
694 if (const RecordType *RHSRT = rexT->getAsRecordType()) {
695
696 if (LHSRT->getDecl()->getIdentifier() ==RHSRT->getDecl()->getIdentifier())
697 return lexT;
698
Chris Lattner4b009652007-07-25 00:24:17 +0000699 Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
700 lexT.getAsString(), rexT.getAsString(),
701 lex->getSourceRange(), rex->getSourceRange());
702 return QualType();
703 }
704 }
705 // C99 6.5.15p3
706 if (lexT->isPointerType() && rex->isNullPointerConstant(Context))
707 return lexT;
708 if (rexT->isPointerType() && lex->isNullPointerConstant(Context))
709 return rexT;
710
Chris Lattner71225142007-07-31 21:27:01 +0000711 if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
712 if (const PointerType *RHSPT = rexT->getAsPointerType()) {
713 // get the "pointed to" types
714 QualType lhptee = LHSPT->getPointeeType();
715 QualType rhptee = RHSPT->getPointeeType();
Chris Lattner4b009652007-07-25 00:24:17 +0000716
Chris Lattner71225142007-07-31 21:27:01 +0000717 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
718 if (lhptee->isVoidType() &&
719 (rhptee->isObjectType() || rhptee->isIncompleteType()))
720 return lexT;
721 if (rhptee->isVoidType() &&
722 (lhptee->isObjectType() || lhptee->isIncompleteType()))
723 return rexT;
Chris Lattner4b009652007-07-25 00:24:17 +0000724
Chris Lattner71225142007-07-31 21:27:01 +0000725 if (!Type::typesAreCompatible(lhptee.getUnqualifiedType(),
726 rhptee.getUnqualifiedType())) {
727 Diag(questionLoc, diag::ext_typecheck_cond_incompatible_pointers,
728 lexT.getAsString(), rexT.getAsString(),
729 lex->getSourceRange(), rex->getSourceRange());
730 return lexT; // FIXME: this is an _ext - is this return o.k?
731 }
732 // The pointer types are compatible.
733 // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
734 // differently qualified versions of compatible types, the result type is a
735 // pointer to an appropriately qualified version of the *composite* type.
736 return lexT; // FIXME: Need to return the composite type.
Chris Lattner4b009652007-07-25 00:24:17 +0000737 }
Chris Lattner4b009652007-07-25 00:24:17 +0000738 }
Chris Lattner71225142007-07-31 21:27:01 +0000739
Chris Lattner4b009652007-07-25 00:24:17 +0000740 if (lexT->isVoidType() && rexT->isVoidType()) // C99 6.5.15p3
741 return lexT;
742
743 Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
744 lexT.getAsString(), rexT.getAsString(),
745 lex->getSourceRange(), rex->getSourceRange());
746 return QualType();
747}
748
749/// ParseConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
750/// in the case of a the GNU conditional expr extension.
751Action::ExprResult Sema::ParseConditionalOp(SourceLocation QuestionLoc,
752 SourceLocation ColonLoc,
753 ExprTy *Cond, ExprTy *LHS,
754 ExprTy *RHS) {
755 Expr *CondExpr = (Expr *) Cond;
756 Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
757 QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
758 RHSExpr, QuestionLoc);
759 if (result.isNull())
760 return true;
761 return new ConditionalOperator(CondExpr, LHSExpr, RHSExpr, result);
762}
763
764// promoteExprToType - a helper function to ensure we create exactly one
765// ImplicitCastExpr. As a convenience (to the caller), we return the type.
766static void promoteExprToType(Expr *&expr, QualType type) {
767 if (ImplicitCastExpr *impCast = dyn_cast<ImplicitCastExpr>(expr))
768 impCast->setType(type);
769 else
770 expr = new ImplicitCastExpr(type, expr);
771 return;
772}
773
Steve Naroffdb65e052007-08-28 23:30:39 +0000774/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
775/// do not have a prototype. Integer promotions are performed on each
776/// argument, and arguments that have type float are promoted to double.
777void Sema::DefaultArgumentPromotion(Expr *&expr) {
778 QualType t = expr->getType();
779 assert(!t.isNull() && "DefaultArgumentPromotion - missing type");
780
781 if (t->isPromotableIntegerType()) // C99 6.3.1.1p2
782 promoteExprToType(expr, Context.IntTy);
783 if (t == Context.FloatTy)
784 promoteExprToType(expr, Context.DoubleTy);
785}
786
Chris Lattner4b009652007-07-25 00:24:17 +0000787/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
788void Sema::DefaultFunctionArrayConversion(Expr *&e) {
789 QualType t = e->getType();
790 assert(!t.isNull() && "DefaultFunctionArrayConversion - missing type");
791
Chris Lattnerf0c4a0a2007-07-31 16:56:34 +0000792 if (const ReferenceType *ref = t->getAsReferenceType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000793 promoteExprToType(e, ref->getReferenceeType()); // C++ [expr]
794 t = e->getType();
795 }
796 if (t->isFunctionType())
797 promoteExprToType(e, Context.getPointerType(t));
Chris Lattnere35a1042007-07-31 19:29:30 +0000798 else if (const ArrayType *ary = t->getAsArrayType())
Chris Lattner4b009652007-07-25 00:24:17 +0000799 promoteExprToType(e, Context.getPointerType(ary->getElementType()));
800}
801
802/// UsualUnaryConversion - Performs various conversions that are common to most
803/// operators (C99 6.3). The conversions of array and function types are
804/// sometimes surpressed. For example, the array->pointer conversion doesn't
805/// apply if the array is an argument to the sizeof or address (&) operators.
806/// In these instances, this routine should *not* be called.
807void Sema::UsualUnaryConversions(Expr *&expr) {
808 QualType t = expr->getType();
809 assert(!t.isNull() && "UsualUnaryConversions - missing type");
810
Chris Lattnerf0c4a0a2007-07-31 16:56:34 +0000811 if (const ReferenceType *ref = t->getAsReferenceType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000812 promoteExprToType(expr, ref->getReferenceeType()); // C++ [expr]
813 t = expr->getType();
814 }
815 if (t->isPromotableIntegerType()) // C99 6.3.1.1p2
816 promoteExprToType(expr, Context.IntTy);
817 else
818 DefaultFunctionArrayConversion(expr);
819}
820
821/// UsualArithmeticConversions - Performs various conversions that are common to
822/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
823/// routine returns the first non-arithmetic type found. The client is
824/// responsible for emitting appropriate error diagnostics.
Steve Naroff8f708362007-08-24 19:07:16 +0000825QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
826 bool isCompAssign) {
Steve Naroffb2f9f552007-08-25 19:54:59 +0000827 if (!isCompAssign) {
828 UsualUnaryConversions(lhsExpr);
829 UsualUnaryConversions(rhsExpr);
830 }
Chris Lattner4b009652007-07-25 00:24:17 +0000831 QualType lhs = lhsExpr->getType();
832 QualType rhs = rhsExpr->getType();
833
834 // If both types are identical, no conversion is needed.
835 if (lhs == rhs)
Steve Naroff8f708362007-08-24 19:07:16 +0000836 return lhs;
Chris Lattner4b009652007-07-25 00:24:17 +0000837
838 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
839 // The caller can deal with this (e.g. pointer + int).
840 if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
Steve Naroff8f708362007-08-24 19:07:16 +0000841 return lhs;
Chris Lattner4b009652007-07-25 00:24:17 +0000842
843 // At this point, we have two different arithmetic types.
844
845 // Handle complex types first (C99 6.3.1.8p1).
846 if (lhs->isComplexType() || rhs->isComplexType()) {
847 // if we have an integer operand, the result is the complex type.
848 if (rhs->isIntegerType()) { // convert the rhs to the lhs complex type.
Steve Naroff8f708362007-08-24 19:07:16 +0000849 if (!isCompAssign) promoteExprToType(rhsExpr, lhs);
850 return lhs;
Chris Lattner4b009652007-07-25 00:24:17 +0000851 }
852 if (lhs->isIntegerType()) { // convert the lhs to the rhs complex type.
Steve Naroff8f708362007-08-24 19:07:16 +0000853 if (!isCompAssign) promoteExprToType(lhsExpr, rhs);
854 return rhs;
Chris Lattner4b009652007-07-25 00:24:17 +0000855 }
Steve Naroff3cf497f2007-08-27 01:27:54 +0000856 // This handles complex/complex, complex/float, or float/complex.
857 // When both operands are complex, the shorter operand is converted to the
858 // type of the longer, and that is the type of the result. This corresponds
859 // to what is done when combining two real floating-point operands.
860 // The fun begins when size promotion occur across type domains.
861 // From H&S 6.3.4: When one operand is complex and the other is a real
862 // floating-point type, the less precise type is converted, within it's
863 // real or complex domain, to the precision of the other type. For example,
864 // when combining a "long double" with a "double _Complex", the
865 // "double _Complex" is promoted to "long double _Complex".
Steve Naroff45fc9822007-08-27 15:30:22 +0000866 int result = Context.compareFloatingType(lhs, rhs);
867
868 if (result > 0) { // The left side is bigger, convert rhs.
Steve Naroff3b565d62007-08-27 21:32:55 +0000869 rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
870 if (!isCompAssign)
871 promoteExprToType(rhsExpr, rhs);
872 } else if (result < 0) { // The right side is bigger, convert lhs.
873 lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
874 if (!isCompAssign)
875 promoteExprToType(lhsExpr, lhs);
876 }
877 // At this point, lhs and rhs have the same rank/size. Now, make sure the
878 // domains match. This is a requirement for our implementation, C99
879 // does not require this promotion.
880 if (lhs != rhs) { // Domains don't match, we have complex/float mix.
881 if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
Steve Naroff3b6157f2007-08-27 21:43:43 +0000882 if (!isCompAssign)
883 promoteExprToType(lhsExpr, rhs);
884 return rhs;
Steve Naroff3b565d62007-08-27 21:32:55 +0000885 } else { // handle "_Complex double, double".
Steve Naroff3b6157f2007-08-27 21:43:43 +0000886 if (!isCompAssign)
887 promoteExprToType(rhsExpr, lhs);
888 return lhs;
Steve Naroff3b565d62007-08-27 21:32:55 +0000889 }
Chris Lattner4b009652007-07-25 00:24:17 +0000890 }
Steve Naroff3b6157f2007-08-27 21:43:43 +0000891 return lhs; // The domain/size match exactly.
Chris Lattner4b009652007-07-25 00:24:17 +0000892 }
893 // Now handle "real" floating types (i.e. float, double, long double).
894 if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
895 // if we have an integer operand, the result is the real floating type.
896 if (rhs->isIntegerType()) { // convert rhs to the lhs floating point type.
Steve Naroff8f708362007-08-24 19:07:16 +0000897 if (!isCompAssign) promoteExprToType(rhsExpr, lhs);
898 return lhs;
Chris Lattner4b009652007-07-25 00:24:17 +0000899 }
900 if (lhs->isIntegerType()) { // convert lhs to the rhs floating point type.
Steve Naroff8f708362007-08-24 19:07:16 +0000901 if (!isCompAssign) promoteExprToType(lhsExpr, rhs);
902 return rhs;
Chris Lattner4b009652007-07-25 00:24:17 +0000903 }
904 // We have two real floating types, float/complex combos were handled above.
905 // Convert the smaller operand to the bigger result.
Steve Naroff45fc9822007-08-27 15:30:22 +0000906 int result = Context.compareFloatingType(lhs, rhs);
907
908 if (result > 0) { // convert the rhs
Steve Naroff8f708362007-08-24 19:07:16 +0000909 if (!isCompAssign) promoteExprToType(rhsExpr, lhs);
910 return lhs;
Chris Lattner4b009652007-07-25 00:24:17 +0000911 }
Steve Naroff45fc9822007-08-27 15:30:22 +0000912 if (result < 0) { // convert the lhs
913 if (!isCompAssign) promoteExprToType(lhsExpr, rhs); // convert the lhs
914 return rhs;
915 }
916 assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
Chris Lattner4b009652007-07-25 00:24:17 +0000917 }
918 // Finally, we have two differing integer types.
919 if (Context.maxIntegerType(lhs, rhs) == lhs) { // convert the rhs
Steve Naroff8f708362007-08-24 19:07:16 +0000920 if (!isCompAssign) promoteExprToType(rhsExpr, lhs);
921 return lhs;
Chris Lattner4b009652007-07-25 00:24:17 +0000922 }
Steve Naroff8f708362007-08-24 19:07:16 +0000923 if (!isCompAssign) promoteExprToType(lhsExpr, rhs); // convert the lhs
924 return rhs;
Chris Lattner4b009652007-07-25 00:24:17 +0000925}
926
927// CheckPointerTypesForAssignment - This is a very tricky routine (despite
928// being closely modeled after the C99 spec:-). The odd characteristic of this
929// routine is it effectively iqnores the qualifiers on the top level pointee.
930// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
931// FIXME: add a couple examples in this comment.
932Sema::AssignmentCheckResult
933Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
934 QualType lhptee, rhptee;
935
936 // get the "pointed to" type (ignoring qualifiers at the top level)
Chris Lattner71225142007-07-31 21:27:01 +0000937 lhptee = lhsType->getAsPointerType()->getPointeeType();
938 rhptee = rhsType->getAsPointerType()->getPointeeType();
Chris Lattner4b009652007-07-25 00:24:17 +0000939
940 // make sure we operate on the canonical type
941 lhptee = lhptee.getCanonicalType();
942 rhptee = rhptee.getCanonicalType();
943
944 AssignmentCheckResult r = Compatible;
945
946 // C99 6.5.16.1p1: This following citation is common to constraints
947 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
948 // qualifiers of the type *pointed to* by the right;
949 if ((lhptee.getQualifiers() & rhptee.getQualifiers()) !=
950 rhptee.getQualifiers())
951 r = CompatiblePointerDiscardsQualifiers;
952
953 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
954 // incomplete type and the other is a pointer to a qualified or unqualified
955 // version of void...
956 if (lhptee.getUnqualifiedType()->isVoidType() &&
957 (rhptee->isObjectType() || rhptee->isIncompleteType()))
958 ;
959 else if (rhptee.getUnqualifiedType()->isVoidType() &&
960 (lhptee->isObjectType() || lhptee->isIncompleteType()))
961 ;
962 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
963 // unqualified versions of compatible types, ...
964 else if (!Type::typesAreCompatible(lhptee.getUnqualifiedType(),
965 rhptee.getUnqualifiedType()))
966 r = IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
967 return r;
968}
969
970/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
971/// has code to accommodate several GCC extensions when type checking
972/// pointers. Here are some objectionable examples that GCC considers warnings:
973///
974/// int a, *pint;
975/// short *pshort;
976/// struct foo *pfoo;
977///
978/// pint = pshort; // warning: assignment from incompatible pointer type
979/// a = pint; // warning: assignment makes integer from pointer without a cast
980/// pint = a; // warning: assignment makes pointer from integer without a cast
981/// pint = pfoo; // warning: assignment from incompatible pointer type
982///
983/// As a result, the code for dealing with pointers is more complex than the
984/// C99 spec dictates.
985/// Note: the warning above turn into errors when -pedantic-errors is enabled.
986///
987Sema::AssignmentCheckResult
988Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
989 if (lhsType == rhsType) // common case, fast path...
990 return Compatible;
991
992 if (lhsType->isArithmeticType() && rhsType->isArithmeticType()) {
993 if (lhsType->isVectorType() || rhsType->isVectorType()) {
994 if (lhsType.getCanonicalType() != rhsType.getCanonicalType())
995 return Incompatible;
996 }
997 return Compatible;
998 } else if (lhsType->isPointerType()) {
999 if (rhsType->isIntegerType())
1000 return PointerFromInt;
1001
1002 if (rhsType->isPointerType())
1003 return CheckPointerTypesForAssignment(lhsType, rhsType);
1004 } else if (rhsType->isPointerType()) {
1005 // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1006 if ((lhsType->isIntegerType()) && (lhsType != Context.BoolTy))
1007 return IntFromPointer;
1008
1009 if (lhsType->isPointerType())
1010 return CheckPointerTypesForAssignment(lhsType, rhsType);
1011 } else if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1012 if (Type::tagTypesAreCompatible(lhsType, rhsType))
1013 return Compatible;
1014 } else if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1015 if (Type::referenceTypesAreCompatible(lhsType, rhsType))
1016 return Compatible;
1017 }
1018 return Incompatible;
1019}
1020
1021Sema::AssignmentCheckResult
1022Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1023 // This check seems unnatural, however it is necessary to insure the proper
1024 // conversion of functions/arrays. If the conversion were done for all
1025 // DeclExpr's (created by ParseIdentifierExpr), it would mess up the unary
1026 // expressions that surpress this implicit conversion (&, sizeof).
1027 DefaultFunctionArrayConversion(rExpr);
Steve Naroff0f32f432007-08-24 22:33:52 +00001028
1029 Sema::AssignmentCheckResult result;
Chris Lattner4b009652007-07-25 00:24:17 +00001030
Steve Naroff0f32f432007-08-24 22:33:52 +00001031 result = CheckAssignmentConstraints(lhsType, rExpr->getType());
1032
1033 // C99 6.5.16.1p2: The value of the right operand is converted to the
1034 // type of the assignment expression.
1035 if (rExpr->getType() != lhsType)
1036 promoteExprToType(rExpr, lhsType);
1037 return result;
Chris Lattner4b009652007-07-25 00:24:17 +00001038}
1039
1040Sema::AssignmentCheckResult
1041Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1042 return CheckAssignmentConstraints(lhsType, rhsType);
1043}
1044
1045inline void Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1046 Diag(loc, diag::err_typecheck_invalid_operands,
1047 lex->getType().getAsString(), rex->getType().getAsString(),
1048 lex->getSourceRange(), rex->getSourceRange());
1049}
1050
1051inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1052 Expr *&rex) {
1053 QualType lhsType = lex->getType(), rhsType = rex->getType();
1054
1055 // make sure the vector types are identical.
1056 if (lhsType == rhsType)
1057 return lhsType;
1058 // You cannot convert between vector values of different size.
1059 Diag(loc, diag::err_typecheck_vector_not_convertable,
1060 lex->getType().getAsString(), rex->getType().getAsString(),
1061 lex->getSourceRange(), rex->getSourceRange());
1062 return QualType();
1063}
1064
1065inline QualType Sema::CheckMultiplyDivideOperands(
Steve Naroff8f708362007-08-24 19:07:16 +00001066 Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
Chris Lattner4b009652007-07-25 00:24:17 +00001067{
1068 QualType lhsType = lex->getType(), rhsType = rex->getType();
1069
1070 if (lhsType->isVectorType() || rhsType->isVectorType())
1071 return CheckVectorOperands(loc, lex, rex);
1072
Steve Naroff8f708362007-08-24 19:07:16 +00001073 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
Chris Lattner4b009652007-07-25 00:24:17 +00001074
Chris Lattner4b009652007-07-25 00:24:17 +00001075 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
Steve Naroff8f708362007-08-24 19:07:16 +00001076 return compType;
Chris Lattner4b009652007-07-25 00:24:17 +00001077 InvalidOperands(loc, lex, rex);
1078 return QualType();
1079}
1080
1081inline QualType Sema::CheckRemainderOperands(
Steve Naroff8f708362007-08-24 19:07:16 +00001082 Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
Chris Lattner4b009652007-07-25 00:24:17 +00001083{
1084 QualType lhsType = lex->getType(), rhsType = rex->getType();
1085
Steve Naroff8f708362007-08-24 19:07:16 +00001086 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
Chris Lattner4b009652007-07-25 00:24:17 +00001087
Chris Lattner4b009652007-07-25 00:24:17 +00001088 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
Steve Naroff8f708362007-08-24 19:07:16 +00001089 return compType;
Chris Lattner4b009652007-07-25 00:24:17 +00001090 InvalidOperands(loc, lex, rex);
1091 return QualType();
1092}
1093
1094inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
Steve Naroff8f708362007-08-24 19:07:16 +00001095 Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
Chris Lattner4b009652007-07-25 00:24:17 +00001096{
1097 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1098 return CheckVectorOperands(loc, lex, rex);
1099
Steve Naroff8f708362007-08-24 19:07:16 +00001100 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
Chris Lattner4b009652007-07-25 00:24:17 +00001101
1102 // handle the common case first (both operands are arithmetic).
1103 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
Steve Naroff8f708362007-08-24 19:07:16 +00001104 return compType;
Chris Lattner4b009652007-07-25 00:24:17 +00001105
1106 if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
1107 return lex->getType();
1108 if (lex->getType()->isIntegerType() && rex->getType()->isPointerType())
1109 return rex->getType();
1110 InvalidOperands(loc, lex, rex);
1111 return QualType();
1112}
1113
1114inline QualType Sema::CheckSubtractionOperands( // C99 6.5.6
Steve Naroff8f708362007-08-24 19:07:16 +00001115 Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
Chris Lattner4b009652007-07-25 00:24:17 +00001116{
1117 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1118 return CheckVectorOperands(loc, lex, rex);
1119
Steve Naroff8f708362007-08-24 19:07:16 +00001120 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
Chris Lattner4b009652007-07-25 00:24:17 +00001121
1122 // handle the common case first (both operands are arithmetic).
1123 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
Steve Naroff8f708362007-08-24 19:07:16 +00001124 return compType;
Chris Lattner4b009652007-07-25 00:24:17 +00001125
1126 if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
Steve Naroff8f708362007-08-24 19:07:16 +00001127 return compType;
Chris Lattner4b009652007-07-25 00:24:17 +00001128 if (lex->getType()->isPointerType() && rex->getType()->isPointerType())
1129 return Context.getPointerDiffType();
1130 InvalidOperands(loc, lex, rex);
1131 return QualType();
1132}
1133
1134inline QualType Sema::CheckShiftOperands( // C99 6.5.7
Steve Naroff8f708362007-08-24 19:07:16 +00001135 Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
Chris Lattner4b009652007-07-25 00:24:17 +00001136{
1137 // FIXME: Shifts don't perform usual arithmetic conversions. This is wrong
1138 // for int << longlong -> the result type should be int, not long long.
Steve Naroff8f708362007-08-24 19:07:16 +00001139 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
Chris Lattner4b009652007-07-25 00:24:17 +00001140
1141 // handle the common case first (both operands are arithmetic).
1142 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
Steve Naroff8f708362007-08-24 19:07:16 +00001143 return compType;
Chris Lattner4b009652007-07-25 00:24:17 +00001144 InvalidOperands(loc, lex, rex);
1145 return QualType();
1146}
1147
Chris Lattner254f3bc2007-08-26 01:18:55 +00001148inline QualType Sema::CheckCompareOperands( // C99 6.5.8
1149 Expr *&lex, Expr *&rex, SourceLocation loc, bool isRelational)
Chris Lattner4b009652007-07-25 00:24:17 +00001150{
Chris Lattner254f3bc2007-08-26 01:18:55 +00001151 // C99 6.5.8p3 / C99 6.5.9p4
Steve Naroffecc4fa12007-08-10 18:26:40 +00001152 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1153 UsualArithmeticConversions(lex, rex);
1154 else {
1155 UsualUnaryConversions(lex);
1156 UsualUnaryConversions(rex);
1157 }
Chris Lattner4b009652007-07-25 00:24:17 +00001158 QualType lType = lex->getType();
1159 QualType rType = rex->getType();
1160
Chris Lattner254f3bc2007-08-26 01:18:55 +00001161 if (isRelational) {
1162 if (lType->isRealType() && rType->isRealType())
1163 return Context.IntTy;
1164 } else {
Chris Lattnerbd3cc222007-08-30 06:10:41 +00001165 if (lType->isFloatingType() && rType->isFloatingType())
Ted Kremenekec761af2007-08-29 18:06:12 +00001166 Diag(loc, diag::warn_floatingpoint_eq);
1167
Chris Lattner254f3bc2007-08-26 01:18:55 +00001168 if (lType->isArithmeticType() && rType->isArithmeticType())
1169 return Context.IntTy;
1170 }
Chris Lattner4b009652007-07-25 00:24:17 +00001171
Chris Lattner22be8422007-08-26 01:10:14 +00001172 bool LHSIsNull = lex->isNullPointerConstant(Context);
1173 bool RHSIsNull = rex->isNullPointerConstant(Context);
1174
Chris Lattner254f3bc2007-08-26 01:18:55 +00001175 // All of the following pointer related warnings are GCC extensions, except
1176 // when handling null pointer constants. One day, we can consider making them
1177 // errors (when -pedantic-errors is enabled).
Steve Naroffc33c0602007-08-27 04:08:11 +00001178 if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
Chris Lattner22be8422007-08-26 01:10:14 +00001179 if (!LHSIsNull && !RHSIsNull &&
Steve Naroffc33c0602007-08-27 04:08:11 +00001180 !Type::pointerTypesAreCompatible(lType.getUnqualifiedType(),
1181 rType.getUnqualifiedType())) {
Steve Naroff4462cb02007-08-16 21:48:38 +00001182 Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
1183 lType.getAsString(), rType.getAsString(),
1184 lex->getSourceRange(), rex->getSourceRange());
Chris Lattner4b009652007-07-25 00:24:17 +00001185 }
Chris Lattner22be8422007-08-26 01:10:14 +00001186 promoteExprToType(rex, lType); // promote the pointer to pointer
Steve Naroff4462cb02007-08-16 21:48:38 +00001187 return Context.IntTy;
1188 }
1189 if (lType->isPointerType() && rType->isIntegerType()) {
Chris Lattner22be8422007-08-26 01:10:14 +00001190 if (!RHSIsNull)
Steve Naroff4462cb02007-08-16 21:48:38 +00001191 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1192 lType.getAsString(), rType.getAsString(),
1193 lex->getSourceRange(), rex->getSourceRange());
Chris Lattner22be8422007-08-26 01:10:14 +00001194 promoteExprToType(rex, lType); // promote the integer to pointer
Steve Naroff4462cb02007-08-16 21:48:38 +00001195 return Context.IntTy;
1196 }
1197 if (lType->isIntegerType() && rType->isPointerType()) {
Chris Lattner22be8422007-08-26 01:10:14 +00001198 if (!LHSIsNull)
Steve Naroff4462cb02007-08-16 21:48:38 +00001199 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1200 lType.getAsString(), rType.getAsString(),
1201 lex->getSourceRange(), rex->getSourceRange());
Chris Lattner22be8422007-08-26 01:10:14 +00001202 promoteExprToType(lex, rType); // promote the integer to pointer
Steve Naroff4462cb02007-08-16 21:48:38 +00001203 return Context.IntTy;
Chris Lattner4b009652007-07-25 00:24:17 +00001204 }
1205 InvalidOperands(loc, lex, rex);
1206 return QualType();
1207}
1208
Chris Lattner4b009652007-07-25 00:24:17 +00001209inline QualType Sema::CheckBitwiseOperands(
Steve Naroff8f708362007-08-24 19:07:16 +00001210 Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
Chris Lattner4b009652007-07-25 00:24:17 +00001211{
1212 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1213 return CheckVectorOperands(loc, lex, rex);
1214
Steve Naroff8f708362007-08-24 19:07:16 +00001215 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
Chris Lattner4b009652007-07-25 00:24:17 +00001216
1217 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
Steve Naroff8f708362007-08-24 19:07:16 +00001218 return compType;
Chris Lattner4b009652007-07-25 00:24:17 +00001219 InvalidOperands(loc, lex, rex);
1220 return QualType();
1221}
1222
1223inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
1224 Expr *&lex, Expr *&rex, SourceLocation loc)
1225{
1226 UsualUnaryConversions(lex);
1227 UsualUnaryConversions(rex);
1228
1229 if (lex->getType()->isScalarType() || rex->getType()->isScalarType())
1230 return Context.IntTy;
1231 InvalidOperands(loc, lex, rex);
1232 return QualType();
1233}
1234
1235inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
Steve Naroff0f32f432007-08-24 22:33:52 +00001236 Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
Chris Lattner4b009652007-07-25 00:24:17 +00001237{
1238 QualType lhsType = lex->getType();
1239 QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
1240 bool hadError = false;
1241 Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
1242
1243 switch (mlval) { // C99 6.5.16p2
1244 case Expr::MLV_Valid:
1245 break;
1246 case Expr::MLV_ConstQualified:
1247 Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
1248 hadError = true;
1249 break;
1250 case Expr::MLV_ArrayType:
1251 Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
1252 lhsType.getAsString(), lex->getSourceRange());
1253 return QualType();
1254 case Expr::MLV_NotObjectType:
1255 Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
1256 lhsType.getAsString(), lex->getSourceRange());
1257 return QualType();
1258 case Expr::MLV_InvalidExpression:
1259 Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
1260 lex->getSourceRange());
1261 return QualType();
1262 case Expr::MLV_IncompleteType:
1263 case Expr::MLV_IncompleteVoidType:
1264 Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
1265 lhsType.getAsString(), lex->getSourceRange());
1266 return QualType();
Steve Naroffba67f692007-07-30 03:29:09 +00001267 case Expr::MLV_DuplicateVectorComponents:
1268 Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
1269 lex->getSourceRange());
1270 return QualType();
Chris Lattner4b009652007-07-25 00:24:17 +00001271 }
1272 AssignmentCheckResult result;
1273
1274 if (compoundType.isNull())
1275 result = CheckSingleAssignmentConstraints(lhsType, rex);
1276 else
1277 result = CheckCompoundAssignmentConstraints(lhsType, rhsType);
Steve Naroff7cbb1462007-07-31 12:34:36 +00001278
Chris Lattner4b009652007-07-25 00:24:17 +00001279 // decode the result (notice that extensions still return a type).
1280 switch (result) {
1281 case Compatible:
1282 break;
1283 case Incompatible:
1284 Diag(loc, diag::err_typecheck_assign_incompatible,
1285 lhsType.getAsString(), rhsType.getAsString(),
1286 lex->getSourceRange(), rex->getSourceRange());
1287 hadError = true;
1288 break;
1289 case PointerFromInt:
1290 // check for null pointer constant (C99 6.3.2.3p3)
1291 if (compoundType.isNull() && !rex->isNullPointerConstant(Context)) {
1292 Diag(loc, diag::ext_typecheck_assign_pointer_int,
1293 lhsType.getAsString(), rhsType.getAsString(),
1294 lex->getSourceRange(), rex->getSourceRange());
1295 }
1296 break;
1297 case IntFromPointer:
1298 Diag(loc, diag::ext_typecheck_assign_pointer_int,
1299 lhsType.getAsString(), rhsType.getAsString(),
1300 lex->getSourceRange(), rex->getSourceRange());
1301 break;
1302 case IncompatiblePointer:
1303 Diag(loc, diag::ext_typecheck_assign_incompatible_pointer,
1304 lhsType.getAsString(), rhsType.getAsString(),
1305 lex->getSourceRange(), rex->getSourceRange());
1306 break;
1307 case CompatiblePointerDiscardsQualifiers:
1308 Diag(loc, diag::ext_typecheck_assign_discards_qualifiers,
1309 lhsType.getAsString(), rhsType.getAsString(),
1310 lex->getSourceRange(), rex->getSourceRange());
1311 break;
1312 }
1313 // C99 6.5.16p3: The type of an assignment expression is the type of the
1314 // left operand unless the left operand has qualified type, in which case
1315 // it is the unqualified version of the type of the left operand.
1316 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
1317 // is converted to the type of the assignment expression (above).
1318 // C++ 5.17p1: the type of the assignment expression is that of its left oprdu.
1319 return hadError ? QualType() : lhsType.getUnqualifiedType();
1320}
1321
1322inline QualType Sema::CheckCommaOperands( // C99 6.5.17
1323 Expr *&lex, Expr *&rex, SourceLocation loc) {
1324 UsualUnaryConversions(rex);
1325 return rex->getType();
1326}
1327
1328/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
1329/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
1330QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
1331 QualType resType = op->getType();
1332 assert(!resType.isNull() && "no type for increment/decrement expression");
1333
Steve Naroffd30e1932007-08-24 17:20:07 +00001334 // C99 6.5.2.4p1: We allow complex as a GCC extension.
Chris Lattner4b009652007-07-25 00:24:17 +00001335 if (const PointerType *pt = dyn_cast<PointerType>(resType)) {
1336 if (!pt->getPointeeType()->isObjectType()) { // C99 6.5.2.4p2, 6.5.6p2
1337 Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
1338 resType.getAsString(), op->getSourceRange());
1339 return QualType();
1340 }
Steve Naroffd30e1932007-08-24 17:20:07 +00001341 } else if (!resType->isRealType()) {
1342 if (resType->isComplexType())
1343 // C99 does not support ++/-- on complex types.
1344 Diag(OpLoc, diag::ext_integer_increment_complex,
1345 resType.getAsString(), op->getSourceRange());
1346 else {
1347 Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
1348 resType.getAsString(), op->getSourceRange());
1349 return QualType();
1350 }
Chris Lattner4b009652007-07-25 00:24:17 +00001351 }
Steve Naroff6acc0f42007-08-23 21:37:33 +00001352 // At this point, we know we have a real, complex or pointer type.
1353 // Now make sure the operand is a modifiable lvalue.
Chris Lattner4b009652007-07-25 00:24:17 +00001354 Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
1355 if (mlval != Expr::MLV_Valid) {
1356 // FIXME: emit a more precise diagnostic...
1357 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
1358 op->getSourceRange());
1359 return QualType();
1360 }
1361 return resType;
1362}
1363
1364/// getPrimaryDeclaration - Helper function for CheckAddressOfOperand().
1365/// This routine allows us to typecheck complex/recursive expressions
1366/// where the declaration is needed for type checking. Here are some
1367/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
1368static Decl *getPrimaryDeclaration(Expr *e) {
1369 switch (e->getStmtClass()) {
1370 case Stmt::DeclRefExprClass:
1371 return cast<DeclRefExpr>(e)->getDecl();
1372 case Stmt::MemberExprClass:
1373 return getPrimaryDeclaration(cast<MemberExpr>(e)->getBase());
1374 case Stmt::ArraySubscriptExprClass:
1375 return getPrimaryDeclaration(cast<ArraySubscriptExpr>(e)->getBase());
1376 case Stmt::CallExprClass:
1377 return getPrimaryDeclaration(cast<CallExpr>(e)->getCallee());
1378 case Stmt::UnaryOperatorClass:
1379 return getPrimaryDeclaration(cast<UnaryOperator>(e)->getSubExpr());
1380 case Stmt::ParenExprClass:
1381 return getPrimaryDeclaration(cast<ParenExpr>(e)->getSubExpr());
1382 default:
1383 return 0;
1384 }
1385}
1386
1387/// CheckAddressOfOperand - The operand of & must be either a function
1388/// designator or an lvalue designating an object. If it is an lvalue, the
1389/// object cannot be declared with storage class register or be a bit field.
1390/// Note: The usual conversions are *not* applied to the operand of the &
1391/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
1392QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
1393 Decl *dcl = getPrimaryDeclaration(op);
1394 Expr::isLvalueResult lval = op->isLvalue();
1395
1396 if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
1397 if (dcl && isa<FunctionDecl>(dcl)) // allow function designators
1398 ;
1399 else { // FIXME: emit more specific diag...
1400 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
1401 op->getSourceRange());
1402 return QualType();
1403 }
1404 } else if (dcl) {
1405 // We have an lvalue with a decl. Make sure the decl is not declared
1406 // with the register storage-class specifier.
1407 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
1408 if (vd->getStorageClass() == VarDecl::Register) {
1409 Diag(OpLoc, diag::err_typecheck_address_of_register,
1410 op->getSourceRange());
1411 return QualType();
1412 }
1413 } else
1414 assert(0 && "Unknown/unexpected decl type");
1415
1416 // FIXME: add check for bitfields!
1417 }
1418 // If the operand has type "type", the result has type "pointer to type".
1419 return Context.getPointerType(op->getType());
1420}
1421
1422QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
1423 UsualUnaryConversions(op);
1424 QualType qType = op->getType();
1425
Chris Lattner7931f4a2007-07-31 16:53:04 +00001426 if (const PointerType *PT = qType->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +00001427 QualType ptype = PT->getPointeeType();
1428 // C99 6.5.3.2p4. "if it points to an object,...".
1429 if (ptype->isIncompleteType()) { // An incomplete type is not an object
1430 // GCC compat: special case 'void *' (treat as warning).
1431 if (ptype->isVoidType()) {
1432 Diag(OpLoc, diag::ext_typecheck_deref_ptr_to_void,
1433 qType.getAsString(), op->getSourceRange());
1434 } else {
1435 Diag(OpLoc, diag::err_typecheck_deref_incomplete_type,
1436 ptype.getAsString(), op->getSourceRange());
1437 return QualType();
1438 }
1439 }
1440 return ptype;
1441 }
1442 Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
1443 qType.getAsString(), op->getSourceRange());
1444 return QualType();
1445}
1446
1447static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
1448 tok::TokenKind Kind) {
1449 BinaryOperator::Opcode Opc;
1450 switch (Kind) {
1451 default: assert(0 && "Unknown binop!");
1452 case tok::star: Opc = BinaryOperator::Mul; break;
1453 case tok::slash: Opc = BinaryOperator::Div; break;
1454 case tok::percent: Opc = BinaryOperator::Rem; break;
1455 case tok::plus: Opc = BinaryOperator::Add; break;
1456 case tok::minus: Opc = BinaryOperator::Sub; break;
1457 case tok::lessless: Opc = BinaryOperator::Shl; break;
1458 case tok::greatergreater: Opc = BinaryOperator::Shr; break;
1459 case tok::lessequal: Opc = BinaryOperator::LE; break;
1460 case tok::less: Opc = BinaryOperator::LT; break;
1461 case tok::greaterequal: Opc = BinaryOperator::GE; break;
1462 case tok::greater: Opc = BinaryOperator::GT; break;
1463 case tok::exclaimequal: Opc = BinaryOperator::NE; break;
1464 case tok::equalequal: Opc = BinaryOperator::EQ; break;
1465 case tok::amp: Opc = BinaryOperator::And; break;
1466 case tok::caret: Opc = BinaryOperator::Xor; break;
1467 case tok::pipe: Opc = BinaryOperator::Or; break;
1468 case tok::ampamp: Opc = BinaryOperator::LAnd; break;
1469 case tok::pipepipe: Opc = BinaryOperator::LOr; break;
1470 case tok::equal: Opc = BinaryOperator::Assign; break;
1471 case tok::starequal: Opc = BinaryOperator::MulAssign; break;
1472 case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
1473 case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
1474 case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
1475 case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
1476 case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
1477 case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
1478 case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
1479 case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
1480 case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
1481 case tok::comma: Opc = BinaryOperator::Comma; break;
1482 }
1483 return Opc;
1484}
1485
1486static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
1487 tok::TokenKind Kind) {
1488 UnaryOperator::Opcode Opc;
1489 switch (Kind) {
1490 default: assert(0 && "Unknown unary op!");
1491 case tok::plusplus: Opc = UnaryOperator::PreInc; break;
1492 case tok::minusminus: Opc = UnaryOperator::PreDec; break;
1493 case tok::amp: Opc = UnaryOperator::AddrOf; break;
1494 case tok::star: Opc = UnaryOperator::Deref; break;
1495 case tok::plus: Opc = UnaryOperator::Plus; break;
1496 case tok::minus: Opc = UnaryOperator::Minus; break;
1497 case tok::tilde: Opc = UnaryOperator::Not; break;
1498 case tok::exclaim: Opc = UnaryOperator::LNot; break;
1499 case tok::kw_sizeof: Opc = UnaryOperator::SizeOf; break;
1500 case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
1501 case tok::kw___real: Opc = UnaryOperator::Real; break;
1502 case tok::kw___imag: Opc = UnaryOperator::Imag; break;
1503 case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
1504 }
1505 return Opc;
1506}
1507
1508// Binary Operators. 'Tok' is the token for the operator.
1509Action::ExprResult Sema::ParseBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
1510 ExprTy *LHS, ExprTy *RHS) {
1511 BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
1512 Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
1513
1514 assert((lhs != 0) && "ParseBinOp(): missing left expression");
1515 assert((rhs != 0) && "ParseBinOp(): missing right expression");
1516
1517 QualType ResultTy; // Result type of the binary operator.
1518 QualType CompTy; // Computation type for compound assignments (e.g. '+=')
1519
1520 switch (Opc) {
1521 default:
1522 assert(0 && "Unknown binary expr!");
1523 case BinaryOperator::Assign:
1524 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
1525 break;
1526 case BinaryOperator::Mul:
1527 case BinaryOperator::Div:
1528 ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
1529 break;
1530 case BinaryOperator::Rem:
1531 ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
1532 break;
1533 case BinaryOperator::Add:
1534 ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
1535 break;
1536 case BinaryOperator::Sub:
1537 ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
1538 break;
1539 case BinaryOperator::Shl:
1540 case BinaryOperator::Shr:
1541 ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
1542 break;
1543 case BinaryOperator::LE:
1544 case BinaryOperator::LT:
1545 case BinaryOperator::GE:
1546 case BinaryOperator::GT:
Chris Lattner254f3bc2007-08-26 01:18:55 +00001547 ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
Chris Lattner4b009652007-07-25 00:24:17 +00001548 break;
1549 case BinaryOperator::EQ:
1550 case BinaryOperator::NE:
Chris Lattner254f3bc2007-08-26 01:18:55 +00001551 ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
Chris Lattner4b009652007-07-25 00:24:17 +00001552 break;
1553 case BinaryOperator::And:
1554 case BinaryOperator::Xor:
1555 case BinaryOperator::Or:
1556 ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
1557 break;
1558 case BinaryOperator::LAnd:
1559 case BinaryOperator::LOr:
1560 ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
1561 break;
1562 case BinaryOperator::MulAssign:
1563 case BinaryOperator::DivAssign:
Steve Naroff8f708362007-08-24 19:07:16 +00001564 CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
Chris Lattner4b009652007-07-25 00:24:17 +00001565 if (!CompTy.isNull())
1566 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1567 break;
1568 case BinaryOperator::RemAssign:
Steve Naroff8f708362007-08-24 19:07:16 +00001569 CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
Chris Lattner4b009652007-07-25 00:24:17 +00001570 if (!CompTy.isNull())
1571 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1572 break;
1573 case BinaryOperator::AddAssign:
Steve Naroff8f708362007-08-24 19:07:16 +00001574 CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
Chris Lattner4b009652007-07-25 00:24:17 +00001575 if (!CompTy.isNull())
1576 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1577 break;
1578 case BinaryOperator::SubAssign:
Steve Naroff8f708362007-08-24 19:07:16 +00001579 CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
Chris Lattner4b009652007-07-25 00:24:17 +00001580 if (!CompTy.isNull())
1581 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1582 break;
1583 case BinaryOperator::ShlAssign:
1584 case BinaryOperator::ShrAssign:
Steve Naroff8f708362007-08-24 19:07:16 +00001585 CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
Chris Lattner4b009652007-07-25 00:24:17 +00001586 if (!CompTy.isNull())
1587 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1588 break;
1589 case BinaryOperator::AndAssign:
1590 case BinaryOperator::XorAssign:
1591 case BinaryOperator::OrAssign:
Steve Naroff8f708362007-08-24 19:07:16 +00001592 CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
Chris Lattner4b009652007-07-25 00:24:17 +00001593 if (!CompTy.isNull())
1594 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1595 break;
1596 case BinaryOperator::Comma:
1597 ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
1598 break;
1599 }
1600 if (ResultTy.isNull())
1601 return true;
1602 if (CompTy.isNull())
Chris Lattnerf420df12007-08-28 18:36:55 +00001603 return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
Chris Lattner4b009652007-07-25 00:24:17 +00001604 else
Chris Lattnerf420df12007-08-28 18:36:55 +00001605 return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
Chris Lattner4b009652007-07-25 00:24:17 +00001606}
1607
1608// Unary Operators. 'Tok' is the token for the operator.
1609Action::ExprResult Sema::ParseUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
1610 ExprTy *input) {
1611 Expr *Input = (Expr*)input;
1612 UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
1613 QualType resultType;
1614 switch (Opc) {
1615 default:
1616 assert(0 && "Unimplemented unary expr!");
1617 case UnaryOperator::PreInc:
1618 case UnaryOperator::PreDec:
1619 resultType = CheckIncrementDecrementOperand(Input, OpLoc);
1620 break;
1621 case UnaryOperator::AddrOf:
1622 resultType = CheckAddressOfOperand(Input, OpLoc);
1623 break;
1624 case UnaryOperator::Deref:
1625 resultType = CheckIndirectionOperand(Input, OpLoc);
1626 break;
1627 case UnaryOperator::Plus:
1628 case UnaryOperator::Minus:
1629 UsualUnaryConversions(Input);
1630 resultType = Input->getType();
1631 if (!resultType->isArithmeticType()) // C99 6.5.3.3p1
1632 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1633 resultType.getAsString());
1634 break;
1635 case UnaryOperator::Not: // bitwise complement
1636 UsualUnaryConversions(Input);
1637 resultType = Input->getType();
Steve Naroffd30e1932007-08-24 17:20:07 +00001638 // C99 6.5.3.3p1. We allow complex as a GCC extension.
1639 if (!resultType->isIntegerType()) {
1640 if (resultType->isComplexType())
1641 // C99 does not support '~' for complex conjugation.
1642 Diag(OpLoc, diag::ext_integer_complement_complex,
1643 resultType.getAsString());
1644 else
1645 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1646 resultType.getAsString());
1647 }
Chris Lattner4b009652007-07-25 00:24:17 +00001648 break;
1649 case UnaryOperator::LNot: // logical negation
1650 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
1651 DefaultFunctionArrayConversion(Input);
1652 resultType = Input->getType();
1653 if (!resultType->isScalarType()) // C99 6.5.3.3p1
1654 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1655 resultType.getAsString());
1656 // LNot always has type int. C99 6.5.3.3p5.
1657 resultType = Context.IntTy;
1658 break;
1659 case UnaryOperator::SizeOf:
1660 resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
1661 break;
1662 case UnaryOperator::AlignOf:
1663 resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
1664 break;
Chris Lattner03931a72007-08-24 21:16:53 +00001665 case UnaryOperator::Real:
Chris Lattner03931a72007-08-24 21:16:53 +00001666 case UnaryOperator::Imag:
Chris Lattner5110ad52007-08-24 21:41:10 +00001667 resultType = CheckRealImagOperand(Input, OpLoc);
Chris Lattner03931a72007-08-24 21:16:53 +00001668 break;
Chris Lattner4b009652007-07-25 00:24:17 +00001669 case UnaryOperator::Extension:
Chris Lattner4b009652007-07-25 00:24:17 +00001670 resultType = Input->getType();
1671 break;
1672 }
1673 if (resultType.isNull())
1674 return true;
1675 return new UnaryOperator(Input, Opc, resultType, OpLoc);
1676}
1677
1678/// ParseAddrLabel - Parse the GNU address of label extension: "&&foo".
1679Sema::ExprResult Sema::ParseAddrLabel(SourceLocation OpLoc,
1680 SourceLocation LabLoc,
1681 IdentifierInfo *LabelII) {
1682 // Look up the record for this label identifier.
1683 LabelStmt *&LabelDecl = LabelMap[LabelII];
1684
1685 // If we haven't seen this label yet, create a forward reference.
1686 if (LabelDecl == 0)
1687 LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
1688
1689 // Create the AST node. The address of a label always has type 'void*'.
Chris Lattnera0d03a72007-08-03 17:31:20 +00001690 return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
1691 Context.getPointerType(Context.VoidTy));
Chris Lattner4b009652007-07-25 00:24:17 +00001692}
1693
1694Sema::ExprResult Sema::ParseStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
1695 SourceLocation RPLoc) { // "({..})"
1696 Stmt *SubStmt = static_cast<Stmt*>(substmt);
1697 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
1698 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
1699
1700 // FIXME: there are a variety of strange constraints to enforce here, for
1701 // example, it is not possible to goto into a stmt expression apparently.
1702 // More semantic analysis is needed.
1703
1704 // FIXME: the last statement in the compount stmt has its value used. We
1705 // should not warn about it being unused.
1706
1707 // If there are sub stmts in the compound stmt, take the type of the last one
1708 // as the type of the stmtexpr.
1709 QualType Ty = Context.VoidTy;
1710
1711 if (!Compound->body_empty())
1712 if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
1713 Ty = LastExpr->getType();
1714
1715 return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
1716}
Steve Naroff63bad2d2007-08-01 22:05:33 +00001717
Steve Naroff5b528922007-08-01 23:45:51 +00001718Sema::ExprResult Sema::ParseTypesCompatibleExpr(SourceLocation BuiltinLoc,
Steve Naroff63bad2d2007-08-01 22:05:33 +00001719 TypeTy *arg1, TypeTy *arg2,
1720 SourceLocation RPLoc) {
1721 QualType argT1 = QualType::getFromOpaquePtr(arg1);
1722 QualType argT2 = QualType::getFromOpaquePtr(arg2);
1723
1724 assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
1725
Steve Naroff5b528922007-08-01 23:45:51 +00001726 return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2, RPLoc);
Steve Naroff63bad2d2007-08-01 22:05:33 +00001727}
1728
Steve Naroff93c53012007-08-03 21:21:27 +00001729Sema::ExprResult Sema::ParseChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
1730 ExprTy *expr1, ExprTy *expr2,
1731 SourceLocation RPLoc) {
1732 Expr *CondExpr = static_cast<Expr*>(cond);
1733 Expr *LHSExpr = static_cast<Expr*>(expr1);
1734 Expr *RHSExpr = static_cast<Expr*>(expr2);
1735
1736 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
1737
1738 // The conditional expression is required to be a constant expression.
1739 llvm::APSInt condEval(32);
1740 SourceLocation ExpLoc;
1741 if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
1742 return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
1743 CondExpr->getSourceRange());
1744
1745 // If the condition is > zero, then the AST type is the same as the LSHExpr.
1746 QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
1747 RHSExpr->getType();
1748 return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
1749}
1750
Anders Carlssona66cad42007-08-21 17:43:55 +00001751// TODO: Move this to SemaObjC.cpp
Anders Carlsson8be1d402007-08-22 15:14:15 +00001752Sema::ExprResult Sema::ParseObjCStringLiteral(ExprTy *string) {
Anders Carlssona66cad42007-08-21 17:43:55 +00001753 StringLiteral* S = static_cast<StringLiteral *>(string);
1754
1755 if (CheckBuiltinCFStringArgument(S))
1756 return true;
1757
1758 QualType t = Context.getCFConstantStringType();
1759 t = t.getQualifiedType(QualType::Const);
1760 t = Context.getPointerType(t);
1761
1762 return new ObjCStringLiteral(S, t);
1763}
Anders Carlsson8be1d402007-08-22 15:14:15 +00001764
1765Sema::ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
1766 SourceLocation LParenLoc,
1767 TypeTy *Ty,
1768 SourceLocation RParenLoc) {
1769 QualType EncodedType = QualType::getFromOpaquePtr(Ty);
1770
1771 QualType t = Context.getPointerType(Context.CharTy);
1772 return new ObjCEncodeExpr(t, EncodedType, AtLoc, RParenLoc);
1773}