blob: 5ea77be07b7409703ce721709ef35bf64e15eb69 [file] [log] [blame]
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00001//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
Anton Korobeynikov82d0a412010-01-10 12:58:08 +000015#include "TargetInfo.h"
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000016#include "ABIInfo.h"
17#include "CodeGenFunction.h"
Anders Carlsson19cc4ab2009-07-18 19:43:29 +000018#include "clang/AST/RecordLayout.h"
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000019#include "llvm/Type.h"
Chris Lattner9c254f02010-06-29 06:01:59 +000020#include "llvm/Target/TargetData.h"
Anton Korobeynikov82d0a412010-01-10 12:58:08 +000021#include "llvm/ADT/StringExtras.h"
Daniel Dunbar2c0843f2009-08-24 08:52:16 +000022#include "llvm/ADT/Triple.h"
Daniel Dunbar28df7a52009-12-03 09:13:49 +000023#include "llvm/Support/raw_ostream.h"
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000024using namespace clang;
25using namespace CodeGen;
26
John McCallaeeb7012010-05-27 06:19:26 +000027static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28 llvm::Value *Array,
29 llvm::Value *Value,
30 unsigned FirstIndex,
31 unsigned LastIndex) {
32 // Alternatively, we could emit this as a loop in the source.
33 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35 Builder.CreateStore(Value, Cell);
36 }
37}
38
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000039ABIInfo::~ABIInfo() {}
40
Chris Lattnerea044322010-07-29 02:01:43 +000041ASTContext &ABIInfo::getContext() const {
42 return CGT.getContext();
43}
44
45llvm::LLVMContext &ABIInfo::getVMContext() const {
46 return CGT.getLLVMContext();
47}
48
49const llvm::TargetData &ABIInfo::getTargetData() const {
50 return CGT.getTargetData();
51}
52
53
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000054void ABIArgInfo::dump() const {
Daniel Dunbar28df7a52009-12-03 09:13:49 +000055 llvm::raw_ostream &OS = llvm::errs();
56 OS << "(ABIArgInfo Kind=";
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000057 switch (TheKind) {
58 case Direct:
Chris Lattner800588f2010-07-29 06:26:06 +000059 OS << "Direct Type=";
60 if (const llvm::Type *Ty = getCoerceToType())
61 Ty->print(OS);
62 else
63 OS << "null";
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000064 break;
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +000065 case Extend:
Daniel Dunbar28df7a52009-12-03 09:13:49 +000066 OS << "Extend";
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +000067 break;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000068 case Ignore:
Daniel Dunbar28df7a52009-12-03 09:13:49 +000069 OS << "Ignore";
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000070 break;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000071 case Indirect:
Daniel Dunbardc6d5742010-04-21 19:10:51 +000072 OS << "Indirect Align=" << getIndirectAlign()
73 << " Byal=" << getIndirectByVal();
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000074 break;
75 case Expand:
Daniel Dunbar28df7a52009-12-03 09:13:49 +000076 OS << "Expand";
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000077 break;
78 }
Daniel Dunbar28df7a52009-12-03 09:13:49 +000079 OS << ")\n";
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000080}
81
Anton Korobeynikov82d0a412010-01-10 12:58:08 +000082TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
83
Daniel Dunbar98303b92009-09-13 08:03:58 +000084static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000085
86/// isEmptyField - Return true iff a the field is "empty", that is it
87/// is an unnamed bit-field or an (array of) empty record(s).
Daniel Dunbar98303b92009-09-13 08:03:58 +000088static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
89 bool AllowArrays) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000090 if (FD->isUnnamedBitfield())
91 return true;
92
93 QualType FT = FD->getType();
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000094
Daniel Dunbar98303b92009-09-13 08:03:58 +000095 // Constant arrays of empty records count as empty, strip them off.
96 if (AllowArrays)
97 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
98 FT = AT->getElementType();
99
Daniel Dunbar5ea68612010-05-17 16:46:00 +0000100 const RecordType *RT = FT->getAs<RecordType>();
101 if (!RT)
102 return false;
103
104 // C++ record fields are never empty, at least in the Itanium ABI.
105 //
106 // FIXME: We should use a predicate for whether this behavior is true in the
107 // current ABI.
108 if (isa<CXXRecordDecl>(RT->getDecl()))
109 return false;
110
Daniel Dunbar98303b92009-09-13 08:03:58 +0000111 return isEmptyRecord(Context, FT, AllowArrays);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000112}
113
114/// isEmptyRecord - Return true iff a structure contains only empty
115/// fields. Note that a structure with a flexible array member is not
116/// considered empty.
Daniel Dunbar98303b92009-09-13 08:03:58 +0000117static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
Ted Kremenek6217b802009-07-29 21:53:49 +0000118 const RecordType *RT = T->getAs<RecordType>();
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000119 if (!RT)
120 return 0;
121 const RecordDecl *RD = RT->getDecl();
122 if (RD->hasFlexibleArrayMember())
123 return false;
Daniel Dunbar5ea68612010-05-17 16:46:00 +0000124
125 // If this is a C++ record, check the bases first.
126 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
127 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
128 e = CXXRD->bases_end(); i != e; ++i)
129 if (!isEmptyRecord(Context, i->getType(), true))
130 return false;
131
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +0000132 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
133 i != e; ++i)
Daniel Dunbar98303b92009-09-13 08:03:58 +0000134 if (!isEmptyField(Context, *i, AllowArrays))
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000135 return false;
136 return true;
137}
138
Anders Carlsson0a8f8472009-09-16 15:53:40 +0000139/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
140/// a non-trivial destructor or a non-trivial copy constructor.
141static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
142 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
143 if (!RD)
144 return false;
145
146 return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
147}
148
149/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
150/// a record type with either a non-trivial destructor or a non-trivial copy
151/// constructor.
152static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
153 const RecordType *RT = T->getAs<RecordType>();
154 if (!RT)
155 return false;
156
157 return hasNonTrivialDestructorOrCopyConstructor(RT);
158}
159
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000160/// isSingleElementStruct - Determine if a structure is a "single
161/// element struct", i.e. it has exactly one non-empty field or
162/// exactly one field which is itself a single element
163/// struct. Structures with flexible array members are never
164/// considered single element structs.
165///
166/// \return The field declaration for the single non-empty field, if
167/// it exists.
168static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
169 const RecordType *RT = T->getAsStructureType();
170 if (!RT)
171 return 0;
172
173 const RecordDecl *RD = RT->getDecl();
174 if (RD->hasFlexibleArrayMember())
175 return 0;
176
177 const Type *Found = 0;
Daniel Dunbar9430d5a2010-05-11 21:15:36 +0000178
179 // If this is a C++ record, check the bases first.
180 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
181 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
182 e = CXXRD->bases_end(); i != e; ++i) {
Daniel Dunbar9430d5a2010-05-11 21:15:36 +0000183 // Ignore empty records.
Daniel Dunbar5ea68612010-05-17 16:46:00 +0000184 if (isEmptyRecord(Context, i->getType(), true))
Daniel Dunbar9430d5a2010-05-11 21:15:36 +0000185 continue;
186
187 // If we already found an element then this isn't a single-element struct.
188 if (Found)
189 return 0;
190
191 // If this is non-empty and not a single element struct, the composite
192 // cannot be a single element struct.
193 Found = isSingleElementStruct(i->getType(), Context);
194 if (!Found)
195 return 0;
196 }
197 }
198
199 // Check for single element.
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +0000200 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
201 i != e; ++i) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000202 const FieldDecl *FD = *i;
203 QualType FT = FD->getType();
204
205 // Ignore empty fields.
Daniel Dunbar98303b92009-09-13 08:03:58 +0000206 if (isEmptyField(Context, FD, true))
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000207 continue;
208
209 // If we already found an element then this isn't a single-element
210 // struct.
211 if (Found)
212 return 0;
213
214 // Treat single element arrays as the element.
215 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
216 if (AT->getSize().getZExtValue() != 1)
217 break;
218 FT = AT->getElementType();
219 }
220
221 if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
222 Found = FT.getTypePtr();
223 } else {
224 Found = isSingleElementStruct(FT, Context);
225 if (!Found)
226 return 0;
227 }
228 }
229
230 return Found;
231}
232
233static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
Daniel Dunbara1842d32010-05-14 03:40:53 +0000234 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
Daniel Dunbar55e59e12009-09-24 05:12:36 +0000235 !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
236 !Ty->isBlockPointerType())
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000237 return false;
238
239 uint64_t Size = Context.getTypeSize(Ty);
240 return Size == 32 || Size == 64;
241}
242
Daniel Dunbar53012f42009-11-09 01:33:53 +0000243/// canExpandIndirectArgument - Test whether an argument type which is to be
244/// passed indirectly (on the stack) would have the equivalent layout if it was
245/// expanded into separate arguments. If so, we prefer to do the latter to avoid
246/// inhibiting optimizations.
247///
248// FIXME: This predicate is missing many cases, currently it just follows
249// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
250// should probably make this smarter, or better yet make the LLVM backend
251// capable of handling it.
252static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
253 // We can only expand structure types.
254 const RecordType *RT = Ty->getAs<RecordType>();
255 if (!RT)
256 return false;
257
258 // We can only expand (C) structures.
259 //
260 // FIXME: This needs to be generalized to handle classes as well.
261 const RecordDecl *RD = RT->getDecl();
262 if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
263 return false;
264
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +0000265 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
266 i != e; ++i) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000267 const FieldDecl *FD = *i;
268
269 if (!is32Or64BitBasicType(FD->getType(), Context))
270 return false;
271
272 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
273 // how to expand them yet, and the predicate for telling if a bitfield still
274 // counts as "basic" is more complicated than what we were doing previously.
275 if (FD->isBitField())
276 return false;
277 }
278
279 return true;
280}
281
282namespace {
283/// DefaultABIInfo - The default implementation for ABI specific
284/// details. This implementation provides information which results in
285/// self-consistent and sensible LLVM IR generation, but does not
286/// conform to any particular ABI.
287class DefaultABIInfo : public ABIInfo {
Chris Lattnerea044322010-07-29 02:01:43 +0000288public:
289 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
290
Chris Lattnera3c109b2010-07-29 02:16:43 +0000291 ABIArgInfo classifyReturnType(QualType RetTy) const;
292 ABIArgInfo classifyArgumentType(QualType RetTy) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000293
Chris Lattneree5dcd02010-07-29 02:31:05 +0000294 virtual void computeInfo(CGFunctionInfo &FI) const {
Chris Lattnera3c109b2010-07-29 02:16:43 +0000295 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000296 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
297 it != ie; ++it)
Chris Lattnera3c109b2010-07-29 02:16:43 +0000298 it->info = classifyArgumentType(it->type);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000299 }
300
301 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
302 CodeGenFunction &CGF) const;
303};
304
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000305class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
306public:
Chris Lattnerea044322010-07-29 02:01:43 +0000307 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
308 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000309};
310
311llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
312 CodeGenFunction &CGF) const {
313 return 0;
314}
315
Chris Lattnera3c109b2010-07-29 02:16:43 +0000316ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
Chris Lattnera14db752010-03-11 18:19:55 +0000317 if (CodeGenFunction::hasAggregateLLVMType(Ty))
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000318 return ABIArgInfo::getIndirect(0);
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000319
Chris Lattnera14db752010-03-11 18:19:55 +0000320 // Treat an enum type as its underlying type.
321 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
322 Ty = EnumTy->getDecl()->getIntegerType();
Douglas Gregoraa74a1e2010-02-02 20:10:50 +0000323
Chris Lattnera14db752010-03-11 18:19:55 +0000324 return (Ty->isPromotableIntegerType() ?
325 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000326}
327
Chris Lattnerdce5ad02010-06-28 20:05:43 +0000328//===----------------------------------------------------------------------===//
329// X86-32 ABI Implementation
330//===----------------------------------------------------------------------===//
331
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000332/// X86_32ABIInfo - The X86-32 ABI information.
333class X86_32ABIInfo : public ABIInfo {
David Chisnall1e4249c2009-08-17 23:08:21 +0000334 bool IsDarwinVectorABI;
335 bool IsSmallStructInRegABI;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000336
337 static bool isRegisterSize(unsigned Size) {
338 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
339 }
340
341 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
342
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000343 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
344 /// such that the argument will be passed in memory.
Chris Lattnera3c109b2010-07-29 02:16:43 +0000345 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000346
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000347public:
Chris Lattnerea044322010-07-29 02:01:43 +0000348
Chris Lattnera3c109b2010-07-29 02:16:43 +0000349 ABIArgInfo classifyReturnType(QualType RetTy) const;
350 ABIArgInfo classifyArgumentType(QualType RetTy) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000351
Chris Lattneree5dcd02010-07-29 02:31:05 +0000352 virtual void computeInfo(CGFunctionInfo &FI) const {
Chris Lattnera3c109b2010-07-29 02:16:43 +0000353 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000354 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
355 it != ie; ++it)
Chris Lattnera3c109b2010-07-29 02:16:43 +0000356 it->info = classifyArgumentType(it->type);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000357 }
358
359 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
360 CodeGenFunction &CGF) const;
361
Chris Lattnerea044322010-07-29 02:01:43 +0000362 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
363 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000364};
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000365
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000366class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
367public:
Chris Lattnerea044322010-07-29 02:01:43 +0000368 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
369 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
Charles Davis74f72932010-02-13 15:54:06 +0000370
371 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
372 CodeGen::CodeGenModule &CGM) const;
John McCall6374c332010-03-06 00:35:14 +0000373
374 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
375 // Darwin uses different dwarf register numbers for EH.
376 if (CGM.isTargetDarwin()) return 5;
377
378 return 4;
379 }
380
381 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
382 llvm::Value *Address) const;
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000383};
384
385}
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000386
387/// shouldReturnTypeInRegister - Determine if the given type should be
388/// passed in a register (for the Darwin ABI).
389bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
390 ASTContext &Context) {
391 uint64_t Size = Context.getTypeSize(Ty);
392
393 // Type must be register sized.
394 if (!isRegisterSize(Size))
395 return false;
396
397 if (Ty->isVectorType()) {
398 // 64- and 128- bit vectors inside structures are not returned in
399 // registers.
400 if (Size == 64 || Size == 128)
401 return false;
402
403 return true;
404 }
405
Daniel Dunbar77115232010-05-15 00:00:30 +0000406 // If this is a builtin, pointer, enum, complex type, member pointer, or
407 // member function pointer it is ok.
Daniel Dunbara1842d32010-05-14 03:40:53 +0000408 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
Daniel Dunbar55e59e12009-09-24 05:12:36 +0000409 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
Daniel Dunbar77115232010-05-15 00:00:30 +0000410 Ty->isBlockPointerType() || Ty->isMemberPointerType())
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000411 return true;
412
413 // Arrays are treated like records.
414 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
415 return shouldReturnTypeInRegister(AT->getElementType(), Context);
416
417 // Otherwise, it must be a record type.
Ted Kremenek6217b802009-07-29 21:53:49 +0000418 const RecordType *RT = Ty->getAs<RecordType>();
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000419 if (!RT) return false;
420
Anders Carlssona8874232010-01-27 03:25:19 +0000421 // FIXME: Traverse bases here too.
422
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000423 // Structure types are passed in register if all fields would be
424 // passed in a register.
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +0000425 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
426 e = RT->getDecl()->field_end(); i != e; ++i) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000427 const FieldDecl *FD = *i;
428
429 // Empty fields are ignored.
Daniel Dunbar98303b92009-09-13 08:03:58 +0000430 if (isEmptyField(Context, FD, true))
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000431 continue;
432
433 // Check fields recursively.
434 if (!shouldReturnTypeInRegister(FD->getType(), Context))
435 return false;
436 }
437
438 return true;
439}
440
Chris Lattnera3c109b2010-07-29 02:16:43 +0000441ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
442 if (RetTy->isVoidType())
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000443 return ABIArgInfo::getIgnore();
Chris Lattnera3c109b2010-07-29 02:16:43 +0000444
445 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000446 // On Darwin, some vectors are returned in registers.
David Chisnall1e4249c2009-08-17 23:08:21 +0000447 if (IsDarwinVectorABI) {
Chris Lattnera3c109b2010-07-29 02:16:43 +0000448 uint64_t Size = getContext().getTypeSize(RetTy);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000449
450 // 128-bit vectors are a special case; they are returned in
451 // registers and we need to make sure to pick a type the LLVM
452 // backend will like.
453 if (Size == 128)
Chris Lattner800588f2010-07-29 06:26:06 +0000454 return ABIArgInfo::getDirect(llvm::VectorType::get(
Chris Lattnera3c109b2010-07-29 02:16:43 +0000455 llvm::Type::getInt64Ty(getVMContext()), 2));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000456
457 // Always return in register if it fits in a general purpose
458 // register, or if it is 64 bits and has a single element.
459 if ((Size == 8 || Size == 16 || Size == 32) ||
460 (Size == 64 && VT->getNumElements() == 1))
Chris Lattner800588f2010-07-29 06:26:06 +0000461 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
Chris Lattnera3c109b2010-07-29 02:16:43 +0000462 Size));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000463
464 return ABIArgInfo::getIndirect(0);
465 }
466
467 return ABIArgInfo::getDirect();
Chris Lattnera3c109b2010-07-29 02:16:43 +0000468 }
469
470 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
Anders Carlssona8874232010-01-27 03:25:19 +0000471 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
Anders Carlsson40092972009-10-20 22:07:59 +0000472 // Structures with either a non-trivial destructor or a non-trivial
473 // copy constructor are always indirect.
474 if (hasNonTrivialDestructorOrCopyConstructor(RT))
475 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
476
477 // Structures with flexible arrays are always indirect.
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000478 if (RT->getDecl()->hasFlexibleArrayMember())
479 return ABIArgInfo::getIndirect(0);
Anders Carlsson40092972009-10-20 22:07:59 +0000480 }
481
David Chisnall1e4249c2009-08-17 23:08:21 +0000482 // If specified, structs and unions are always indirect.
483 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000484 return ABIArgInfo::getIndirect(0);
485
486 // Classify "single element" structs as their element type.
Chris Lattnera3c109b2010-07-29 02:16:43 +0000487 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
John McCall183700f2009-09-21 23:43:11 +0000488 if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000489 if (BT->isIntegerType()) {
490 // We need to use the size of the structure, padding
491 // bit-fields can adjust that to be larger than the single
492 // element type.
Chris Lattnera3c109b2010-07-29 02:16:43 +0000493 uint64_t Size = getContext().getTypeSize(RetTy);
Chris Lattner800588f2010-07-29 06:26:06 +0000494 return ABIArgInfo::getDirect(
Chris Lattnera3c109b2010-07-29 02:16:43 +0000495 llvm::IntegerType::get(getVMContext(), (unsigned)Size));
496 }
497
498 if (BT->getKind() == BuiltinType::Float) {
499 assert(getContext().getTypeSize(RetTy) ==
500 getContext().getTypeSize(SeltTy) &&
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000501 "Unexpect single element structure size!");
Chris Lattner800588f2010-07-29 06:26:06 +0000502 return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
Chris Lattnera3c109b2010-07-29 02:16:43 +0000503 }
504
505 if (BT->getKind() == BuiltinType::Double) {
506 assert(getContext().getTypeSize(RetTy) ==
507 getContext().getTypeSize(SeltTy) &&
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000508 "Unexpect single element structure size!");
Chris Lattner800588f2010-07-29 06:26:06 +0000509 return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000510 }
511 } else if (SeltTy->isPointerType()) {
512 // FIXME: It would be really nice if this could come out as the proper
513 // pointer type.
Chris Lattnera3c109b2010-07-29 02:16:43 +0000514 const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
Chris Lattner800588f2010-07-29 06:26:06 +0000515 return ABIArgInfo::getDirect(PtrTy);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000516 } else if (SeltTy->isVectorType()) {
517 // 64- and 128-bit vectors are never returned in a
518 // register when inside a structure.
Chris Lattnera3c109b2010-07-29 02:16:43 +0000519 uint64_t Size = getContext().getTypeSize(RetTy);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000520 if (Size == 64 || Size == 128)
521 return ABIArgInfo::getIndirect(0);
522
Chris Lattnera3c109b2010-07-29 02:16:43 +0000523 return classifyReturnType(QualType(SeltTy, 0));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000524 }
525 }
526
527 // Small structures which are register sized are generally returned
528 // in a register.
Chris Lattnera3c109b2010-07-29 02:16:43 +0000529 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
530 uint64_t Size = getContext().getTypeSize(RetTy);
Chris Lattner800588f2010-07-29 06:26:06 +0000531 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000532 }
533
534 return ABIArgInfo::getIndirect(0);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000535 }
Chris Lattnera3c109b2010-07-29 02:16:43 +0000536
537 // Treat an enum type as its underlying type.
538 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
539 RetTy = EnumTy->getDecl()->getIntegerType();
540
541 return (RetTy->isPromotableIntegerType() ?
542 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000543}
544
Chris Lattnera3c109b2010-07-29 02:16:43 +0000545ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
Daniel Dunbar46c54fb2010-04-21 19:49:55 +0000546 if (!ByVal)
547 return ABIArgInfo::getIndirect(0, false);
548
549 // Compute the byval alignment. We trust the back-end to honor the
550 // minimum ABI alignment for byval, to make cleaner IR.
551 const unsigned MinABIAlign = 4;
Chris Lattnera3c109b2010-07-29 02:16:43 +0000552 unsigned Align = getContext().getTypeAlign(Ty) / 8;
Daniel Dunbar46c54fb2010-04-21 19:49:55 +0000553 if (Align > MinABIAlign)
554 return ABIArgInfo::getIndirect(Align);
555 return ABIArgInfo::getIndirect(0);
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000556}
557
Chris Lattnera3c109b2010-07-29 02:16:43 +0000558ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000559 // FIXME: Set alignment on indirect arguments.
560 if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
561 // Structures with flexible arrays are always indirect.
Anders Carlssona8874232010-01-27 03:25:19 +0000562 if (const RecordType *RT = Ty->getAs<RecordType>()) {
563 // Structures with either a non-trivial destructor or a non-trivial
564 // copy constructor are always indirect.
565 if (hasNonTrivialDestructorOrCopyConstructor(RT))
Chris Lattnera3c109b2010-07-29 02:16:43 +0000566 return getIndirectResult(Ty, /*ByVal=*/false);
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000567
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000568 if (RT->getDecl()->hasFlexibleArrayMember())
Chris Lattnera3c109b2010-07-29 02:16:43 +0000569 return getIndirectResult(Ty);
Anders Carlssona8874232010-01-27 03:25:19 +0000570 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000571
572 // Ignore empty structs.
Chris Lattnera3c109b2010-07-29 02:16:43 +0000573 if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000574 return ABIArgInfo::getIgnore();
575
Daniel Dunbar53012f42009-11-09 01:33:53 +0000576 // Expand small (<= 128-bit) record types when we know that the stack layout
577 // of those arguments will match the struct. This is important because the
578 // LLVM backend isn't smart enough to remove byval, which inhibits many
579 // optimizations.
Chris Lattnera3c109b2010-07-29 02:16:43 +0000580 if (getContext().getTypeSize(Ty) <= 4*32 &&
581 canExpandIndirectArgument(Ty, getContext()))
Daniel Dunbar53012f42009-11-09 01:33:53 +0000582 return ABIArgInfo::getExpand();
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000583
Chris Lattnera3c109b2010-07-29 02:16:43 +0000584 return getIndirectResult(Ty);
585 }
586
587 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
588 Ty = EnumTy->getDecl()->getIntegerType();
Douglas Gregoraa74a1e2010-02-02 20:10:50 +0000589
Chris Lattnera3c109b2010-07-29 02:16:43 +0000590 return (Ty->isPromotableIntegerType() ?
591 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000592}
593
594llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
595 CodeGenFunction &CGF) const {
Benjamin Kramer3c0ef8c2009-10-13 10:07:13 +0000596 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
Owen Anderson96e0fc72009-07-29 22:16:19 +0000597 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000598
599 CGBuilderTy &Builder = CGF.Builder;
600 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
601 "ap");
602 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
603 llvm::Type *PTy =
Owen Anderson96e0fc72009-07-29 22:16:19 +0000604 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000605 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
606
607 uint64_t Offset =
608 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
609 llvm::Value *NextAddr =
Chris Lattner77b89b82010-06-27 07:15:29 +0000610 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000611 "ap.next");
612 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
613
614 return AddrTyped;
615}
616
Charles Davis74f72932010-02-13 15:54:06 +0000617void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
618 llvm::GlobalValue *GV,
619 CodeGen::CodeGenModule &CGM) const {
620 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
621 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
622 // Get the LLVM function.
623 llvm::Function *Fn = cast<llvm::Function>(GV);
624
625 // Now add the 'alignstack' attribute with a value of 16.
626 Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
627 }
628 }
629}
630
John McCall6374c332010-03-06 00:35:14 +0000631bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
632 CodeGen::CodeGenFunction &CGF,
633 llvm::Value *Address) const {
634 CodeGen::CGBuilderTy &Builder = CGF.Builder;
635 llvm::LLVMContext &Context = CGF.getLLVMContext();
636
637 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
638 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
639
640 // 0-7 are the eight integer registers; the order is different
641 // on Darwin (for EH), but the range is the same.
642 // 8 is %eip.
John McCallaeeb7012010-05-27 06:19:26 +0000643 AssignToArrayRange(Builder, Address, Four8, 0, 8);
John McCall6374c332010-03-06 00:35:14 +0000644
645 if (CGF.CGM.isTargetDarwin()) {
646 // 12-16 are st(0..4). Not sure why we stop at 4.
647 // These have size 16, which is sizeof(long double) on
648 // platforms with 8-byte alignment for that type.
649 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
John McCallaeeb7012010-05-27 06:19:26 +0000650 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
John McCall6374c332010-03-06 00:35:14 +0000651
652 } else {
653 // 9 is %eflags, which doesn't get a size on Darwin for some
654 // reason.
655 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
656
657 // 11-16 are st(0..5). Not sure why we stop at 5.
658 // These have size 12, which is sizeof(long double) on
659 // platforms with 4-byte alignment for that type.
660 llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
John McCallaeeb7012010-05-27 06:19:26 +0000661 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
662 }
John McCall6374c332010-03-06 00:35:14 +0000663
664 return false;
665}
666
Chris Lattnerdce5ad02010-06-28 20:05:43 +0000667//===----------------------------------------------------------------------===//
668// X86-64 ABI Implementation
669//===----------------------------------------------------------------------===//
670
671
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000672namespace {
673/// X86_64ABIInfo - The X86_64 ABI information.
674class X86_64ABIInfo : public ABIInfo {
675 enum Class {
676 Integer = 0,
677 SSE,
678 SSEUp,
679 X87,
680 X87Up,
681 ComplexX87,
682 NoClass,
683 Memory
684 };
685
686 /// merge - Implement the X86_64 ABI merging algorithm.
687 ///
688 /// Merge an accumulating classification \arg Accum with a field
689 /// classification \arg Field.
690 ///
691 /// \param Accum - The accumulating classification. This should
692 /// always be either NoClass or the result of a previous merge
693 /// call. In addition, this should never be Memory (the caller
694 /// should just return Memory for the aggregate).
Chris Lattner1090a9b2010-06-28 21:43:59 +0000695 static Class merge(Class Accum, Class Field);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000696
697 /// classify - Determine the x86_64 register classes in which the
698 /// given type T should be passed.
699 ///
700 /// \param Lo - The classification for the parts of the type
701 /// residing in the low word of the containing object.
702 ///
703 /// \param Hi - The classification for the parts of the type
704 /// residing in the high word of the containing object.
705 ///
706 /// \param OffsetBase - The bit offset of this type in the
707 /// containing object. Some parameters are classified different
708 /// depending on whether they straddle an eightbyte boundary.
709 ///
710 /// If a word is unused its result will be NoClass; if a type should
711 /// be passed in Memory then at least the classification of \arg Lo
712 /// will be Memory.
713 ///
714 /// The \arg Lo class will be NoClass iff the argument is ignored.
715 ///
716 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
717 /// also be ComplexX87.
Chris Lattner9c254f02010-06-29 06:01:59 +0000718 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000719
Chris Lattner0f408f52010-07-29 04:56:46 +0000720 const llvm::Type *Get16ByteVectorType(QualType Ty) const;
Chris Lattner603519d2010-07-29 17:49:08 +0000721 const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
Chris Lattnerf47c9442010-07-29 18:13:09 +0000722 unsigned IROffset, QualType SourceTy,
723 unsigned SourceOffset) const;
Chris Lattner0d2656d2010-07-29 17:40:35 +0000724 const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
725 unsigned IROffset, QualType SourceTy,
726 unsigned SourceOffset) const;
Chris Lattner44f0fd22010-07-29 02:20:19 +0000727
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000728 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
Daniel Dunbar46c54fb2010-04-21 19:49:55 +0000729 /// such that the argument will be returned in memory.
Chris Lattner9c254f02010-06-29 06:01:59 +0000730 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
Daniel Dunbar46c54fb2010-04-21 19:49:55 +0000731
732 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000733 /// such that the argument will be passed in memory.
Chris Lattner9c254f02010-06-29 06:01:59 +0000734 ABIArgInfo getIndirectResult(QualType Ty) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000735
Chris Lattnera3c109b2010-07-29 02:16:43 +0000736 ABIArgInfo classifyReturnType(QualType RetTy) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000737
Chris Lattner5868ca22010-07-29 04:41:05 +0000738 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &neededInt,
739 unsigned &neededSSE) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000740
741public:
Chris Lattnerea044322010-07-29 02:01:43 +0000742 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
Chris Lattner9c254f02010-06-29 06:01:59 +0000743
Chris Lattneree5dcd02010-07-29 02:31:05 +0000744 virtual void computeInfo(CGFunctionInfo &FI) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000745
746 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
747 CodeGenFunction &CGF) const;
748};
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000749
750class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
751public:
Chris Lattnerea044322010-07-29 02:01:43 +0000752 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
753 : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
John McCall6374c332010-03-06 00:35:14 +0000754
755 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
756 return 7;
757 }
758
759 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
760 llvm::Value *Address) const {
761 CodeGen::CGBuilderTy &Builder = CGF.Builder;
762 llvm::LLVMContext &Context = CGF.getLLVMContext();
763
764 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
765 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
766
John McCallaeeb7012010-05-27 06:19:26 +0000767 // 0-15 are the 16 integer registers.
768 // 16 is %rip.
769 AssignToArrayRange(Builder, Address, Eight8, 0, 16);
John McCall6374c332010-03-06 00:35:14 +0000770
771 return false;
772 }
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000773};
774
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000775}
776
Chris Lattner1090a9b2010-06-28 21:43:59 +0000777X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000778 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
779 // classified recursively so that always two fields are
780 // considered. The resulting class is calculated according to
781 // the classes of the fields in the eightbyte:
782 //
783 // (a) If both classes are equal, this is the resulting class.
784 //
785 // (b) If one of the classes is NO_CLASS, the resulting class is
786 // the other class.
787 //
788 // (c) If one of the classes is MEMORY, the result is the MEMORY
789 // class.
790 //
791 // (d) If one of the classes is INTEGER, the result is the
792 // INTEGER.
793 //
794 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
795 // MEMORY is used as class.
796 //
797 // (f) Otherwise class SSE is used.
798
799 // Accum should never be memory (we should have returned) or
800 // ComplexX87 (because this cannot be passed in a structure).
801 assert((Accum != Memory && Accum != ComplexX87) &&
802 "Invalid accumulated classification during merge.");
803 if (Accum == Field || Field == NoClass)
804 return Accum;
Chris Lattner1090a9b2010-06-28 21:43:59 +0000805 if (Field == Memory)
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000806 return Memory;
Chris Lattner1090a9b2010-06-28 21:43:59 +0000807 if (Accum == NoClass)
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000808 return Field;
Chris Lattner1090a9b2010-06-28 21:43:59 +0000809 if (Accum == Integer || Field == Integer)
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000810 return Integer;
Chris Lattner1090a9b2010-06-28 21:43:59 +0000811 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
812 Accum == X87 || Accum == X87Up)
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000813 return Memory;
Chris Lattner1090a9b2010-06-28 21:43:59 +0000814 return SSE;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000815}
816
Chris Lattnerbcaedae2010-06-30 19:14:05 +0000817void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000818 Class &Lo, Class &Hi) const {
819 // FIXME: This code can be simplified by introducing a simple value class for
820 // Class pairs with appropriate constructor methods for the various
821 // situations.
822
823 // FIXME: Some of the split computations are wrong; unaligned vectors
824 // shouldn't be passed in registers for example, so there is no chance they
825 // can straddle an eightbyte. Verify & simplify.
826
827 Lo = Hi = NoClass;
828
829 Class &Current = OffsetBase < 64 ? Lo : Hi;
830 Current = Memory;
831
John McCall183700f2009-09-21 23:43:11 +0000832 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000833 BuiltinType::Kind k = BT->getKind();
834
835 if (k == BuiltinType::Void) {
836 Current = NoClass;
837 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
838 Lo = Integer;
839 Hi = Integer;
840 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
841 Current = Integer;
842 } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
843 Current = SSE;
844 } else if (k == BuiltinType::LongDouble) {
845 Lo = X87;
846 Hi = X87Up;
847 }
848 // FIXME: _Decimal32 and _Decimal64 are SSE.
849 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
Chris Lattner1090a9b2010-06-28 21:43:59 +0000850 return;
851 }
852
853 if (const EnumType *ET = Ty->getAs<EnumType>()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000854 // Classify the underlying integer type.
Chris Lattner9c254f02010-06-29 06:01:59 +0000855 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
Chris Lattner1090a9b2010-06-28 21:43:59 +0000856 return;
857 }
858
859 if (Ty->hasPointerRepresentation()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000860 Current = Integer;
Chris Lattner1090a9b2010-06-28 21:43:59 +0000861 return;
862 }
863
864 if (Ty->isMemberPointerType()) {
Daniel Dunbar67d438d2010-05-15 00:00:37 +0000865 if (Ty->isMemberFunctionPointerType())
866 Lo = Hi = Integer;
867 else
868 Current = Integer;
Chris Lattner1090a9b2010-06-28 21:43:59 +0000869 return;
870 }
871
872 if (const VectorType *VT = Ty->getAs<VectorType>()) {
Chris Lattnerea044322010-07-29 02:01:43 +0000873 uint64_t Size = getContext().getTypeSize(VT);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000874 if (Size == 32) {
875 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
876 // float> as integer.
877 Current = Integer;
878
879 // If this type crosses an eightbyte boundary, it should be
880 // split.
881 uint64_t EB_Real = (OffsetBase) / 64;
882 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
883 if (EB_Real != EB_Imag)
884 Hi = Lo;
885 } else if (Size == 64) {
886 // gcc passes <1 x double> in memory. :(
887 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
888 return;
889
890 // gcc passes <1 x long long> as INTEGER.
891 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
892 Current = Integer;
893 else
894 Current = SSE;
895
896 // If this type crosses an eightbyte boundary, it should be
897 // split.
898 if (OffsetBase && OffsetBase != 64)
899 Hi = Lo;
900 } else if (Size == 128) {
901 Lo = SSE;
902 Hi = SSEUp;
903 }
Chris Lattner1090a9b2010-06-28 21:43:59 +0000904 return;
905 }
906
907 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
Chris Lattnerea044322010-07-29 02:01:43 +0000908 QualType ET = getContext().getCanonicalType(CT->getElementType());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000909
Chris Lattnerea044322010-07-29 02:01:43 +0000910 uint64_t Size = getContext().getTypeSize(Ty);
Douglas Gregor2ade35e2010-06-16 00:17:44 +0000911 if (ET->isIntegralOrEnumerationType()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000912 if (Size <= 64)
913 Current = Integer;
914 else if (Size <= 128)
915 Lo = Hi = Integer;
Chris Lattnerea044322010-07-29 02:01:43 +0000916 } else if (ET == getContext().FloatTy)
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000917 Current = SSE;
Chris Lattnerea044322010-07-29 02:01:43 +0000918 else if (ET == getContext().DoubleTy)
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000919 Lo = Hi = SSE;
Chris Lattnerea044322010-07-29 02:01:43 +0000920 else if (ET == getContext().LongDoubleTy)
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000921 Current = ComplexX87;
922
923 // If this complex type crosses an eightbyte boundary then it
924 // should be split.
925 uint64_t EB_Real = (OffsetBase) / 64;
Chris Lattnerea044322010-07-29 02:01:43 +0000926 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000927 if (Hi == NoClass && EB_Real != EB_Imag)
928 Hi = Lo;
Chris Lattner1090a9b2010-06-28 21:43:59 +0000929
930 return;
931 }
932
Chris Lattnerea044322010-07-29 02:01:43 +0000933 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000934 // Arrays are treated like structures.
935
Chris Lattnerea044322010-07-29 02:01:43 +0000936 uint64_t Size = getContext().getTypeSize(Ty);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000937
938 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
939 // than two eightbytes, ..., it has class MEMORY.
940 if (Size > 128)
941 return;
942
943 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
944 // fields, it has class MEMORY.
945 //
946 // Only need to check alignment of array base.
Chris Lattnerea044322010-07-29 02:01:43 +0000947 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000948 return;
949
950 // Otherwise implement simplified merge. We could be smarter about
951 // this, but it isn't worth it and would be harder to verify.
952 Current = NoClass;
Chris Lattnerea044322010-07-29 02:01:43 +0000953 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000954 uint64_t ArraySize = AT->getSize().getZExtValue();
955 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
956 Class FieldLo, FieldHi;
Chris Lattner9c254f02010-06-29 06:01:59 +0000957 classify(AT->getElementType(), Offset, FieldLo, FieldHi);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000958 Lo = merge(Lo, FieldLo);
959 Hi = merge(Hi, FieldHi);
960 if (Lo == Memory || Hi == Memory)
961 break;
962 }
963
964 // Do post merger cleanup (see below). Only case we worry about is Memory.
965 if (Hi == Memory)
966 Lo = Memory;
967 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
Chris Lattner1090a9b2010-06-28 21:43:59 +0000968 return;
969 }
970
971 if (const RecordType *RT = Ty->getAs<RecordType>()) {
Chris Lattnerea044322010-07-29 02:01:43 +0000972 uint64_t Size = getContext().getTypeSize(Ty);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000973
974 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
975 // than two eightbytes, ..., it has class MEMORY.
976 if (Size > 128)
977 return;
978
Anders Carlsson0a8f8472009-09-16 15:53:40 +0000979 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
980 // copy constructor or a non-trivial destructor, it is passed by invisible
981 // reference.
982 if (hasNonTrivialDestructorOrCopyConstructor(RT))
983 return;
Daniel Dunbarce9f4232009-11-22 23:01:23 +0000984
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000985 const RecordDecl *RD = RT->getDecl();
986
987 // Assume variable sized types are passed in memory.
988 if (RD->hasFlexibleArrayMember())
989 return;
990
Chris Lattnerea044322010-07-29 02:01:43 +0000991 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000992
993 // Reset Lo class, this will be recomputed.
994 Current = NoClass;
Daniel Dunbarce9f4232009-11-22 23:01:23 +0000995
996 // If this is a C++ record, classify the bases first.
997 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
998 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
999 e = CXXRD->bases_end(); i != e; ++i) {
1000 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1001 "Unexpected base class!");
1002 const CXXRecordDecl *Base =
1003 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1004
1005 // Classify this field.
1006 //
1007 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1008 // single eightbyte, each is classified separately. Each eightbyte gets
1009 // initialized to class NO_CLASS.
1010 Class FieldLo, FieldHi;
1011 uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
Chris Lattner9c254f02010-06-29 06:01:59 +00001012 classify(i->getType(), Offset, FieldLo, FieldHi);
Daniel Dunbarce9f4232009-11-22 23:01:23 +00001013 Lo = merge(Lo, FieldLo);
1014 Hi = merge(Hi, FieldHi);
1015 if (Lo == Memory || Hi == Memory)
1016 break;
1017 }
1018 }
1019
1020 // Classify the fields one at a time, merging the results.
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001021 unsigned idx = 0;
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +00001022 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1023 i != e; ++i, ++idx) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001024 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1025 bool BitField = i->isBitField();
1026
1027 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1028 // fields, it has class MEMORY.
1029 //
1030 // Note, skip this test for bit-fields, see below.
Chris Lattnerea044322010-07-29 02:01:43 +00001031 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001032 Lo = Memory;
1033 return;
1034 }
1035
1036 // Classify this field.
1037 //
1038 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1039 // exceeds a single eightbyte, each is classified
1040 // separately. Each eightbyte gets initialized to class
1041 // NO_CLASS.
1042 Class FieldLo, FieldHi;
1043
1044 // Bit-fields require special handling, they do not force the
1045 // structure to be passed in memory even if unaligned, and
1046 // therefore they can straddle an eightbyte.
1047 if (BitField) {
1048 // Ignore padding bit-fields.
1049 if (i->isUnnamedBitfield())
1050 continue;
1051
1052 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
Chris Lattnerea044322010-07-29 02:01:43 +00001053 uint64_t Size =
1054 i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001055
1056 uint64_t EB_Lo = Offset / 64;
1057 uint64_t EB_Hi = (Offset + Size - 1) / 64;
1058 FieldLo = FieldHi = NoClass;
1059 if (EB_Lo) {
1060 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1061 FieldLo = NoClass;
1062 FieldHi = Integer;
1063 } else {
1064 FieldLo = Integer;
1065 FieldHi = EB_Hi ? Integer : NoClass;
1066 }
1067 } else
Chris Lattner9c254f02010-06-29 06:01:59 +00001068 classify(i->getType(), Offset, FieldLo, FieldHi);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001069 Lo = merge(Lo, FieldLo);
1070 Hi = merge(Hi, FieldHi);
1071 if (Lo == Memory || Hi == Memory)
1072 break;
1073 }
1074
1075 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1076 //
1077 // (a) If one of the classes is MEMORY, the whole argument is
1078 // passed in memory.
1079 //
1080 // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1081
1082 // The first of these conditions is guaranteed by how we implement
1083 // the merge (just bail).
1084 //
1085 // The second condition occurs in the case of unions; for example
1086 // union { _Complex double; unsigned; }.
1087 if (Hi == Memory)
1088 Lo = Memory;
1089 if (Hi == SSEUp && Lo != SSE)
1090 Hi = SSE;
1091 }
1092}
1093
Chris Lattner9c254f02010-06-29 06:01:59 +00001094ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
Daniel Dunbar46c54fb2010-04-21 19:49:55 +00001095 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1096 // place naturally.
1097 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1098 // Treat an enum type as its underlying type.
1099 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1100 Ty = EnumTy->getDecl()->getIntegerType();
1101
1102 return (Ty->isPromotableIntegerType() ?
1103 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1104 }
1105
1106 return ABIArgInfo::getIndirect(0);
1107}
1108
Chris Lattner9c254f02010-06-29 06:01:59 +00001109ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001110 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1111 // place naturally.
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00001112 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1113 // Treat an enum type as its underlying type.
1114 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1115 Ty = EnumTy->getDecl()->getIntegerType();
1116
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +00001117 return (Ty->isPromotableIntegerType() ?
1118 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00001119 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001120
Daniel Dunbar46c54fb2010-04-21 19:49:55 +00001121 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1122 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
Anders Carlsson0a8f8472009-09-16 15:53:40 +00001123
Daniel Dunbar46c54fb2010-04-21 19:49:55 +00001124 // Compute the byval alignment. We trust the back-end to honor the
1125 // minimum ABI alignment for byval, to make cleaner IR.
1126 const unsigned MinABIAlign = 8;
Chris Lattnerea044322010-07-29 02:01:43 +00001127 unsigned Align = getContext().getTypeAlign(Ty) / 8;
Daniel Dunbar46c54fb2010-04-21 19:49:55 +00001128 if (Align > MinABIAlign)
1129 return ABIArgInfo::getIndirect(Align);
1130 return ABIArgInfo::getIndirect(0);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001131}
1132
Chris Lattner0f408f52010-07-29 04:56:46 +00001133/// Get16ByteVectorType - The ABI specifies that a value should be passed in an
1134/// full vector XMM register. Pick an LLVM IR type that will be passed as a
1135/// vector register.
1136const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
Chris Lattner15842bd2010-07-29 05:02:29 +00001137 const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1138
1139 // Wrapper structs that just contain vectors are passed just like vectors,
1140 // strip them off if present.
1141 const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1142 while (STy && STy->getNumElements() == 1) {
1143 IRType = STy->getElementType(0);
1144 STy = dyn_cast<llvm::StructType>(IRType);
1145 }
1146
Chris Lattner0f408f52010-07-29 04:56:46 +00001147 // If the preferred type is a 16-byte vector, prefer to pass it.
Chris Lattner15842bd2010-07-29 05:02:29 +00001148 if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
Chris Lattner0f408f52010-07-29 04:56:46 +00001149 const llvm::Type *EltTy = VT->getElementType();
1150 if (VT->getBitWidth() == 128 &&
1151 (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1152 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1153 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1154 EltTy->isIntegerTy(128)))
1155 return VT;
1156 }
1157
1158 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1159}
1160
Chris Lattnere2962be2010-07-29 07:30:00 +00001161/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1162/// is known to either be off the end of the specified type or being in
1163/// alignment padding. The user type specified is known to be at most 128 bits
1164/// in size, and have passed through X86_64ABIInfo::classify with a successful
1165/// classification that put one of the two halves in the INTEGER class.
1166///
1167/// It is conservatively correct to return false.
1168static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1169 unsigned EndBit, ASTContext &Context) {
1170 // If the bytes being queried are off the end of the type, there is no user
1171 // data hiding here. This handles analysis of builtins, vectors and other
1172 // types that don't contain interesting padding.
1173 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1174 if (TySize <= StartBit)
1175 return true;
1176
Chris Lattner021c3a32010-07-29 07:43:55 +00001177 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1178 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1179 unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1180
1181 // Check each element to see if the element overlaps with the queried range.
1182 for (unsigned i = 0; i != NumElts; ++i) {
1183 // If the element is after the span we care about, then we're done..
1184 unsigned EltOffset = i*EltSize;
1185 if (EltOffset >= EndBit) break;
1186
1187 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1188 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1189 EndBit-EltOffset, Context))
1190 return false;
1191 }
1192 // If it overlaps no elements, then it is safe to process as padding.
1193 return true;
1194 }
Chris Lattnere2962be2010-07-29 07:30:00 +00001195
1196 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1197 const RecordDecl *RD = RT->getDecl();
1198 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1199
1200 // If this is a C++ record, check the bases first.
1201 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1202 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1203 e = CXXRD->bases_end(); i != e; ++i) {
1204 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1205 "Unexpected base class!");
1206 const CXXRecordDecl *Base =
1207 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1208
1209 // If the base is after the span we care about, ignore it.
1210 unsigned BaseOffset = (unsigned)Layout.getBaseClassOffset(Base);
1211 if (BaseOffset >= EndBit) continue;
1212
1213 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1214 if (!BitsContainNoUserData(i->getType(), BaseStart,
1215 EndBit-BaseOffset, Context))
1216 return false;
1217 }
1218 }
1219
1220 // Verify that no field has data that overlaps the region of interest. Yes
1221 // this could be sped up a lot by being smarter about queried fields,
1222 // however we're only looking at structs up to 16 bytes, so we don't care
1223 // much.
1224 unsigned idx = 0;
1225 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1226 i != e; ++i, ++idx) {
1227 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1228
1229 // If we found a field after the region we care about, then we're done.
1230 if (FieldOffset >= EndBit) break;
1231
1232 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1233 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1234 Context))
1235 return false;
1236 }
1237
1238 // If nothing in this record overlapped the area of interest, then we're
1239 // clean.
1240 return true;
1241 }
1242
1243 return false;
1244}
1245
Chris Lattner0b362002010-07-29 18:39:32 +00001246/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1247/// float member at the specified offset. For example, {int,{float}} has a
1248/// float at offset 4. It is conservatively correct for this routine to return
1249/// false.
1250static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
1251 const llvm::TargetData &TD) {
1252 // Base case if we find a float.
1253 if (IROffset == 0 && IRType->isFloatTy())
1254 return true;
1255
1256 // If this is a struct, recurse into the field at the specified offset.
1257 if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1258 const llvm::StructLayout *SL = TD.getStructLayout(STy);
1259 unsigned Elt = SL->getElementContainingOffset(IROffset);
1260 IROffset -= SL->getElementOffset(Elt);
1261 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1262 }
1263
1264 // If this is an array, recurse into the field at the specified offset.
1265 if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1266 const llvm::Type *EltTy = ATy->getElementType();
1267 unsigned EltSize = TD.getTypeAllocSize(EltTy);
1268 IROffset -= IROffset/EltSize*EltSize;
1269 return ContainsFloatAtOffset(EltTy, IROffset, TD);
1270 }
1271
1272 return false;
1273}
1274
Chris Lattnerf47c9442010-07-29 18:13:09 +00001275
1276/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1277/// low 8 bytes of an XMM register, corresponding to the SSE class.
1278const llvm::Type *X86_64ABIInfo::
1279GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1280 QualType SourceTy, unsigned SourceOffset) const {
Chris Lattnercba8d312010-07-29 18:19:50 +00001281 // The only three choices we have are either double, <2 x float>, or float. We
Chris Lattnerf47c9442010-07-29 18:13:09 +00001282 // pass as float if the last 4 bytes is just padding. This happens for
1283 // structs that contain 3 floats.
1284 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1285 SourceOffset*8+64, getContext()))
1286 return llvm::Type::getFloatTy(getVMContext());
1287
Chris Lattner0b362002010-07-29 18:39:32 +00001288 // We want to pass as <2 x float> if the LLVM IR type contains a float at
1289 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
1290 // case.
1291 if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1292 ContainsFloatAtOffset(IRType, IROffset+4, getTargetData())) {
1293 // FIXME: <2 x float> doesn't pass as one XMM register yet. Don't enable
1294 // this code until it does.
1295 //return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1296
1297 }
Chris Lattnerf47c9442010-07-29 18:13:09 +00001298
1299 return llvm::Type::getDoubleTy(getVMContext());
1300}
1301
1302
Chris Lattner0d2656d2010-07-29 17:40:35 +00001303/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1304/// an 8-byte GPR. This means that we either have a scalar or we are talking
1305/// about the high or low part of an up-to-16-byte struct. This routine picks
1306/// the best LLVM IR type to represent this, which may be i64 or may be anything
Chris Lattner49382de2010-07-28 22:44:07 +00001307/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1308/// etc).
1309///
1310/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1311/// the source type. IROffset is an offset in bytes into the LLVM IR type that
1312/// the 8-byte value references. PrefType may be null.
1313///
1314/// SourceTy is the source level type for the entire argument. SourceOffset is
1315/// an offset into this that we're processing (which is always either 0 or 8).
1316///
Chris Lattner44f0fd22010-07-29 02:20:19 +00001317const llvm::Type *X86_64ABIInfo::
Chris Lattner0d2656d2010-07-29 17:40:35 +00001318GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1319 QualType SourceTy, unsigned SourceOffset) const {
Chris Lattnere2962be2010-07-29 07:30:00 +00001320 // If we're dealing with an un-offset LLVM IR type, then it means that we're
1321 // returning an 8-byte unit starting with it. See if we can safely use it.
1322 if (IROffset == 0) {
1323 // Pointers and int64's always fill the 8-byte unit.
1324 if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1325 return IRType;
Chris Lattner49382de2010-07-28 22:44:07 +00001326
Chris Lattnere2962be2010-07-29 07:30:00 +00001327 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1328 // goodness in the source type is just tail padding. This is allowed to
1329 // kick in for struct {double,int} on the int, but not on
1330 // struct{double,int,int} because we wouldn't return the second int. We
1331 // have to do this analysis on the source type because we can't depend on
1332 // unions being lowered a specific way etc.
1333 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1334 IRType->isIntegerTy(32)) {
1335 unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1336
1337 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1338 SourceOffset*8+64, getContext()))
1339 return IRType;
1340 }
1341 }
Chris Lattner49382de2010-07-28 22:44:07 +00001342
Chris Lattnerfe12d1e2010-07-29 04:51:12 +00001343 if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
Chris Lattner49382de2010-07-28 22:44:07 +00001344 // If this is a struct, recurse into the field at the specified offset.
Chris Lattner44f0fd22010-07-29 02:20:19 +00001345 const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
Chris Lattner49382de2010-07-28 22:44:07 +00001346 if (IROffset < SL->getSizeInBytes()) {
1347 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1348 IROffset -= SL->getElementOffset(FieldIdx);
1349
Chris Lattner0d2656d2010-07-29 17:40:35 +00001350 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1351 SourceTy, SourceOffset);
Chris Lattner49382de2010-07-28 22:44:07 +00001352 }
1353 }
Chris Lattner9c254f02010-06-29 06:01:59 +00001354
Chris Lattner021c3a32010-07-29 07:43:55 +00001355 if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1356 const llvm::Type *EltTy = ATy->getElementType();
1357 unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1358 unsigned EltOffset = IROffset/EltSize*EltSize;
Chris Lattner0d2656d2010-07-29 17:40:35 +00001359 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1360 SourceOffset);
Chris Lattner021c3a32010-07-29 07:43:55 +00001361 }
1362
Chris Lattner49382de2010-07-28 22:44:07 +00001363 // Okay, we don't have any better idea of what to pass, so we pass this in an
1364 // integer register that isn't too big to fit the rest of the struct.
Chris Lattner9e45a3d2010-07-29 17:34:39 +00001365 unsigned TySizeInBytes =
1366 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
Chris Lattner49382de2010-07-28 22:44:07 +00001367
Chris Lattner9e45a3d2010-07-29 17:34:39 +00001368 assert(TySizeInBytes != SourceOffset && "Empty field?");
1369
Chris Lattner49382de2010-07-28 22:44:07 +00001370 // It is always safe to classify this as an integer type up to i64 that
1371 // isn't larger than the structure.
Chris Lattner9e45a3d2010-07-29 17:34:39 +00001372 return llvm::IntegerType::get(getVMContext(),
1373 std::min(TySizeInBytes-SourceOffset, 8U)*8);
Chris Lattner9c254f02010-06-29 06:01:59 +00001374}
1375
Chris Lattner519f68c2010-07-28 23:06:14 +00001376ABIArgInfo X86_64ABIInfo::
Chris Lattnera3c109b2010-07-29 02:16:43 +00001377classifyReturnType(QualType RetTy) const {
Chris Lattner519f68c2010-07-28 23:06:14 +00001378 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1379 // classification algorithm.
1380 X86_64ABIInfo::Class Lo, Hi;
1381 classify(RetTy, 0, Lo, Hi);
1382
1383 // Check some invariants.
1384 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
Chris Lattner519f68c2010-07-28 23:06:14 +00001385 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1386
1387 const llvm::Type *ResType = 0;
1388 switch (Lo) {
1389 case NoClass:
Chris Lattner117e3f42010-07-30 04:02:24 +00001390 if (Hi == NoClass)
1391 return ABIArgInfo::getIgnore();
1392 // If the low part is just padding, it takes no register, leave ResType
1393 // null.
1394 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1395 "Unknown missing lo part");
1396 break;
Chris Lattner519f68c2010-07-28 23:06:14 +00001397
1398 case SSEUp:
1399 case X87Up:
1400 assert(0 && "Invalid classification for lo word.");
1401
1402 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1403 // hidden argument.
1404 case Memory:
1405 return getIndirectReturnResult(RetTy);
1406
1407 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1408 // available register of the sequence %rax, %rdx is used.
1409 case Integer:
Chris Lattner0d2656d2010-07-29 17:40:35 +00001410 ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
1411 RetTy, 0);
Chris Lattnereb518b42010-07-29 21:42:50 +00001412
1413 // If we have a sign or zero extended integer, make sure to return Extend
1414 // so that the parameter gets the right LLVM IR attributes.
1415 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1416 // Treat an enum type as its underlying type.
1417 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1418 RetTy = EnumTy->getDecl()->getIntegerType();
1419
1420 if (RetTy->isIntegralOrEnumerationType() &&
1421 RetTy->isPromotableIntegerType())
1422 return ABIArgInfo::getExtend();
1423 }
Chris Lattner519f68c2010-07-28 23:06:14 +00001424 break;
1425
1426 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1427 // available SSE register of the sequence %xmm0, %xmm1 is used.
1428 case SSE:
Chris Lattnerf47c9442010-07-29 18:13:09 +00001429 ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
Chris Lattner0b30c672010-07-28 23:12:33 +00001430 break;
Chris Lattner519f68c2010-07-28 23:06:14 +00001431
1432 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1433 // returned on the X87 stack in %st0 as 80-bit x87 number.
1434 case X87:
Chris Lattnerea044322010-07-29 02:01:43 +00001435 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
Chris Lattner0b30c672010-07-28 23:12:33 +00001436 break;
Chris Lattner519f68c2010-07-28 23:06:14 +00001437
1438 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1439 // part of the value is returned in %st0 and the imaginary part in
1440 // %st1.
1441 case ComplexX87:
1442 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
Chris Lattnera3c109b2010-07-29 02:16:43 +00001443 ResType = llvm::StructType::get(getVMContext(),
Chris Lattnerea044322010-07-29 02:01:43 +00001444 llvm::Type::getX86_FP80Ty(getVMContext()),
1445 llvm::Type::getX86_FP80Ty(getVMContext()),
Chris Lattner519f68c2010-07-28 23:06:14 +00001446 NULL);
1447 break;
1448 }
1449
1450 switch (Hi) {
1451 // Memory was handled previously and X87 should
1452 // never occur as a hi class.
1453 case Memory:
1454 case X87:
1455 assert(0 && "Invalid classification for hi word.");
1456
1457 case ComplexX87: // Previously handled.
Chris Lattner0b30c672010-07-28 23:12:33 +00001458 case NoClass:
1459 break;
Chris Lattner519f68c2010-07-28 23:06:14 +00001460
1461 case Integer: {
Chris Lattnerfe12d1e2010-07-29 04:51:12 +00001462 const llvm::Type *HiType =
Chris Lattner0d2656d2010-07-29 17:40:35 +00001463 GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
Chris Lattner117e3f42010-07-30 04:02:24 +00001464 if (Lo == NoClass) // Return HiType at offset 8 in memory.
1465 return ABIArgInfo::getDirect(HiType, 8);
1466
Chris Lattnera3c109b2010-07-29 02:16:43 +00001467 ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
Chris Lattner519f68c2010-07-28 23:06:14 +00001468 break;
1469 }
Chris Lattner603519d2010-07-29 17:49:08 +00001470 case SSE: {
1471 const llvm::Type *HiType =
Chris Lattnerf47c9442010-07-29 18:13:09 +00001472 GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
Chris Lattner117e3f42010-07-30 04:02:24 +00001473 if (Lo == NoClass) // Return HiType at offset 8 in memory.
1474 return ABIArgInfo::getDirect(HiType, 8);
1475
Chris Lattner603519d2010-07-29 17:49:08 +00001476 ResType = llvm::StructType::get(getVMContext(), ResType, HiType,NULL);
Chris Lattner519f68c2010-07-28 23:06:14 +00001477 break;
Chris Lattner603519d2010-07-29 17:49:08 +00001478 }
Chris Lattner519f68c2010-07-28 23:06:14 +00001479
1480 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1481 // is passed in the upper half of the last used SSE register.
1482 //
1483 // SSEUP should always be preceeded by SSE, just widen.
1484 case SSEUp:
1485 assert(Lo == SSE && "Unexpected SSEUp classification.");
Chris Lattner0f408f52010-07-29 04:56:46 +00001486 ResType = Get16ByteVectorType(RetTy);
Chris Lattner519f68c2010-07-28 23:06:14 +00001487 break;
1488
1489 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1490 // returned together with the previous X87 value in %st0.
1491 case X87Up:
1492 // If X87Up is preceeded by X87, we don't need to do
1493 // anything. However, in some cases with unions it may not be
1494 // preceeded by X87. In such situations we follow gcc and pass the
1495 // extra bits in an SSE reg.
Chris Lattner603519d2010-07-29 17:49:08 +00001496 if (Lo != X87) {
1497 const llvm::Type *HiType =
Chris Lattnerf47c9442010-07-29 18:13:09 +00001498 GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
Chris Lattner117e3f42010-07-30 04:02:24 +00001499 if (Lo == NoClass) // Return HiType at offset 8 in memory.
1500 return ABIArgInfo::getDirect(HiType, 8);
1501
Chris Lattner603519d2010-07-29 17:49:08 +00001502 ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
1503 }
Chris Lattner519f68c2010-07-28 23:06:14 +00001504 break;
1505 }
1506
Chris Lattnereb518b42010-07-29 21:42:50 +00001507 return ABIArgInfo::getDirect(ResType);
Chris Lattner519f68c2010-07-28 23:06:14 +00001508}
1509
Chris Lattnera3c109b2010-07-29 02:16:43 +00001510ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
Chris Lattner5868ca22010-07-29 04:41:05 +00001511 unsigned &neededSSE) const {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001512 X86_64ABIInfo::Class Lo, Hi;
Chris Lattner9c254f02010-06-29 06:01:59 +00001513 classify(Ty, 0, Lo, Hi);
Chris Lattner5868ca22010-07-29 04:41:05 +00001514
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001515 // Check some invariants.
1516 // FIXME: Enforce these by construction.
1517 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001518 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1519
1520 neededInt = 0;
1521 neededSSE = 0;
1522 const llvm::Type *ResType = 0;
1523 switch (Lo) {
1524 case NoClass:
Chris Lattner117e3f42010-07-30 04:02:24 +00001525 if (Hi == NoClass)
1526 return ABIArgInfo::getIgnore();
1527 // If the low part is just padding, it takes no register, leave ResType
1528 // null.
1529 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1530 "Unknown missing lo part");
1531 break;
1532
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001533 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1534 // on the stack.
1535 case Memory:
1536
1537 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1538 // COMPLEX_X87, it is passed in memory.
1539 case X87:
1540 case ComplexX87:
Chris Lattner9c254f02010-06-29 06:01:59 +00001541 return getIndirectResult(Ty);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001542
1543 case SSEUp:
1544 case X87Up:
1545 assert(0 && "Invalid classification for lo word.");
1546
1547 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1548 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1549 // and %r9 is used.
1550 case Integer:
Chris Lattner9c254f02010-06-29 06:01:59 +00001551 ++neededInt;
Chris Lattner5868ca22010-07-29 04:41:05 +00001552
Chris Lattner49382de2010-07-28 22:44:07 +00001553 // Pick an 8-byte type based on the preferred type.
Chris Lattner0d2656d2010-07-29 17:40:35 +00001554 ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
Chris Lattnereb518b42010-07-29 21:42:50 +00001555
1556 // If we have a sign or zero extended integer, make sure to return Extend
1557 // so that the parameter gets the right LLVM IR attributes.
1558 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1559 // Treat an enum type as its underlying type.
1560 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1561 Ty = EnumTy->getDecl()->getIntegerType();
1562
1563 if (Ty->isIntegralOrEnumerationType() &&
1564 Ty->isPromotableIntegerType())
1565 return ABIArgInfo::getExtend();
1566 }
1567
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001568 break;
1569
1570 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1571 // available SSE register is used, the registers are taken in the
1572 // order from %xmm0 to %xmm7.
1573 case SSE:
1574 ++neededSSE;
Chris Lattnerf47c9442010-07-29 18:13:09 +00001575 ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001576 break;
1577 }
1578
1579 switch (Hi) {
1580 // Memory was handled previously, ComplexX87 and X87 should
1581 // never occur as hi classes, and X87Up must be preceed by X87,
1582 // which is passed in memory.
1583 case Memory:
1584 case X87:
1585 case ComplexX87:
1586 assert(0 && "Invalid classification for hi word.");
1587 break;
1588
1589 case NoClass: break;
Chris Lattner9c254f02010-06-29 06:01:59 +00001590
1591 case Integer: {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001592 ++neededInt;
Chris Lattner49382de2010-07-28 22:44:07 +00001593 // Pick an 8-byte type based on the preferred type.
Chris Lattnerfe12d1e2010-07-29 04:51:12 +00001594 const llvm::Type *HiType =
Chris Lattner0d2656d2010-07-29 17:40:35 +00001595 GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
Chris Lattner117e3f42010-07-30 04:02:24 +00001596
1597 if (Lo == NoClass) // Pass HiType at offset 8 in memory.
1598 return ABIArgInfo::getDirect(HiType, 8);
1599
Chris Lattnera3c109b2010-07-29 02:16:43 +00001600 ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001601 break;
Chris Lattner9c254f02010-06-29 06:01:59 +00001602 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001603
1604 // X87Up generally doesn't occur here (long double is passed in
1605 // memory), except in situations involving unions.
1606 case X87Up:
Chris Lattner603519d2010-07-29 17:49:08 +00001607 case SSE: {
1608 const llvm::Type *HiType =
Chris Lattnerf47c9442010-07-29 18:13:09 +00001609 GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
Chris Lattner117e3f42010-07-30 04:02:24 +00001610
1611 if (Lo == NoClass) // Pass HiType at offset 8 in memory.
1612 return ABIArgInfo::getDirect(HiType, 8);
1613
Chris Lattner603519d2010-07-29 17:49:08 +00001614 ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001615 ++neededSSE;
1616 break;
Chris Lattner603519d2010-07-29 17:49:08 +00001617 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001618
1619 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1620 // eightbyte is passed in the upper half of the last used SSE
Chris Lattnerab5722e2010-07-28 23:47:21 +00001621 // register. This only happens when 128-bit vectors are passed.
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001622 case SSEUp:
Chris Lattnerab5722e2010-07-28 23:47:21 +00001623 assert(Lo == SSE && "Unexpected SSEUp classification");
Chris Lattner0f408f52010-07-29 04:56:46 +00001624 ResType = Get16ByteVectorType(Ty);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001625 break;
1626 }
1627
Chris Lattnereb518b42010-07-29 21:42:50 +00001628 return ABIArgInfo::getDirect(ResType);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001629}
1630
Chris Lattneree5dcd02010-07-29 02:31:05 +00001631void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
Chris Lattner5868ca22010-07-29 04:41:05 +00001632
Chris Lattnera3c109b2010-07-29 02:16:43 +00001633 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001634
1635 // Keep track of the number of assigned registers.
1636 unsigned freeIntRegs = 6, freeSSERegs = 8;
1637
1638 // If the return value is indirect, then the hidden argument is consuming one
1639 // integer register.
1640 if (FI.getReturnInfo().isIndirect())
1641 --freeIntRegs;
1642
1643 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1644 // get assigned (in left-to-right order) for passing as follows...
1645 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1646 it != ie; ++it) {
1647 unsigned neededInt, neededSSE;
Chris Lattner5868ca22010-07-29 04:41:05 +00001648 it->info = classifyArgumentType(it->type, neededInt, neededSSE);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001649
1650 // AMD64-ABI 3.2.3p3: If there are no registers available for any
1651 // eightbyte of an argument, the whole argument is passed on the
1652 // stack. If registers have already been assigned for some
1653 // eightbytes of such an argument, the assignments get reverted.
1654 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1655 freeIntRegs -= neededInt;
1656 freeSSERegs -= neededSSE;
1657 } else {
Chris Lattner9c254f02010-06-29 06:01:59 +00001658 it->info = getIndirectResult(it->type);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001659 }
1660 }
1661}
1662
1663static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1664 QualType Ty,
1665 CodeGenFunction &CGF) {
1666 llvm::Value *overflow_arg_area_p =
1667 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1668 llvm::Value *overflow_arg_area =
1669 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1670
1671 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1672 // byte boundary if alignment needed by type exceeds 8 byte boundary.
1673 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1674 if (Align > 8) {
1675 // Note that we follow the ABI & gcc here, even though the type
1676 // could in theory have an alignment greater than 16. This case
1677 // shouldn't ever matter in practice.
1678
1679 // overflow_arg_area = (overflow_arg_area + 15) & ~15;
Owen Anderson0032b272009-08-13 21:57:51 +00001680 llvm::Value *Offset =
Chris Lattner77b89b82010-06-27 07:15:29 +00001681 llvm::ConstantInt::get(CGF.Int32Ty, 15);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001682 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1683 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
Chris Lattner77b89b82010-06-27 07:15:29 +00001684 CGF.Int64Ty);
1685 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001686 overflow_arg_area =
1687 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1688 overflow_arg_area->getType(),
1689 "overflow_arg_area.align");
1690 }
1691
1692 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1693 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1694 llvm::Value *Res =
1695 CGF.Builder.CreateBitCast(overflow_arg_area,
Owen Anderson96e0fc72009-07-29 22:16:19 +00001696 llvm::PointerType::getUnqual(LTy));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001697
1698 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1699 // l->overflow_arg_area + sizeof(type).
1700 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1701 // an 8 byte boundary.
1702
1703 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
Owen Anderson0032b272009-08-13 21:57:51 +00001704 llvm::Value *Offset =
Chris Lattner77b89b82010-06-27 07:15:29 +00001705 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001706 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1707 "overflow_arg_area.next");
1708 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1709
1710 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1711 return Res;
1712}
1713
1714llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1715 CodeGenFunction &CGF) const {
Owen Andersona1cf15f2009-07-14 23:10:40 +00001716 llvm::LLVMContext &VMContext = CGF.getLLVMContext();
Mike Stump1eb44332009-09-09 15:08:12 +00001717
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001718 // Assume that va_list type is correct; should be pointer to LLVM type:
1719 // struct {
1720 // i32 gp_offset;
1721 // i32 fp_offset;
1722 // i8* overflow_arg_area;
1723 // i8* reg_save_area;
1724 // };
1725 unsigned neededInt, neededSSE;
Chris Lattnera14db752010-03-11 18:19:55 +00001726
1727 Ty = CGF.getContext().getCanonicalType(Ty);
Chris Lattner5868ca22010-07-29 04:41:05 +00001728 ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001729
1730 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1731 // in the registers. If not go to step 7.
1732 if (!neededInt && !neededSSE)
1733 return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1734
1735 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1736 // general purpose registers needed to pass type and num_fp to hold
1737 // the number of floating point registers needed.
1738
1739 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1740 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1741 // l->fp_offset > 304 - num_fp * 16 go to step 7.
1742 //
1743 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1744 // register save space).
1745
1746 llvm::Value *InRegs = 0;
1747 llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1748 llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1749 if (neededInt) {
1750 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1751 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
Chris Lattner1090a9b2010-06-28 21:43:59 +00001752 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
1753 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001754 }
1755
1756 if (neededSSE) {
1757 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1758 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1759 llvm::Value *FitsInFP =
Chris Lattner1090a9b2010-06-28 21:43:59 +00001760 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
1761 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001762 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1763 }
1764
1765 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1766 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1767 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1768 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1769
1770 // Emit code to load the value if it was passed in registers.
1771
1772 CGF.EmitBlock(InRegBlock);
1773
1774 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1775 // an offset of l->gp_offset and/or l->fp_offset. This may require
1776 // copying to a temporary location in case the parameter is passed
1777 // in different register classes or requires an alignment greater
1778 // than 8 for general purpose registers and 16 for XMM registers.
1779 //
1780 // FIXME: This really results in shameful code when we end up needing to
1781 // collect arguments from different places; often what should result in a
1782 // simple assembling of a structure from scattered addresses has many more
1783 // loads than necessary. Can we clean this up?
1784 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1785 llvm::Value *RegAddr =
1786 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1787 "reg_save_area");
1788 if (neededInt && neededSSE) {
1789 // FIXME: Cleanup.
Chris Lattner800588f2010-07-29 06:26:06 +00001790 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001791 const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1792 llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1793 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1794 const llvm::Type *TyLo = ST->getElementType(0);
1795 const llvm::Type *TyHi = ST->getElementType(1);
Duncan Sandsf177d9d2010-02-15 16:14:01 +00001796 assert((TyLo->isFloatingPointTy() ^ TyHi->isFloatingPointTy()) &&
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001797 "Unexpected ABI info for mixed regs");
Owen Anderson96e0fc72009-07-29 22:16:19 +00001798 const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1799 const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001800 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1801 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
Duncan Sandsf177d9d2010-02-15 16:14:01 +00001802 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
1803 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001804 llvm::Value *V =
1805 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1806 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1807 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1808 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1809
Owen Andersona1cf15f2009-07-14 23:10:40 +00001810 RegAddr = CGF.Builder.CreateBitCast(Tmp,
Owen Anderson96e0fc72009-07-29 22:16:19 +00001811 llvm::PointerType::getUnqual(LTy));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001812 } else if (neededInt) {
1813 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1814 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
Owen Anderson96e0fc72009-07-29 22:16:19 +00001815 llvm::PointerType::getUnqual(LTy));
Chris Lattnerdce5ad02010-06-28 20:05:43 +00001816 } else if (neededSSE == 1) {
1817 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1818 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1819 llvm::PointerType::getUnqual(LTy));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001820 } else {
Chris Lattnerdce5ad02010-06-28 20:05:43 +00001821 assert(neededSSE == 2 && "Invalid number of needed registers!");
1822 // SSE registers are spaced 16 bytes apart in the register save
1823 // area, we need to collect the two eightbytes together.
1824 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
Chris Lattner1090a9b2010-06-28 21:43:59 +00001825 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
Chris Lattnerdce5ad02010-06-28 20:05:43 +00001826 const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
1827 const llvm::Type *DblPtrTy =
1828 llvm::PointerType::getUnqual(DoubleTy);
1829 const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
1830 DoubleTy, NULL);
1831 llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1832 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1833 DblPtrTy));
1834 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1835 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1836 DblPtrTy));
1837 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1838 RegAddr = CGF.Builder.CreateBitCast(Tmp,
1839 llvm::PointerType::getUnqual(LTy));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001840 }
1841
1842 // AMD64-ABI 3.5.7p5: Step 5. Set:
1843 // l->gp_offset = l->gp_offset + num_gp * 8
1844 // l->fp_offset = l->fp_offset + num_fp * 16.
1845 if (neededInt) {
Chris Lattner77b89b82010-06-27 07:15:29 +00001846 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001847 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1848 gp_offset_p);
1849 }
1850 if (neededSSE) {
Chris Lattner77b89b82010-06-27 07:15:29 +00001851 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001852 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1853 fp_offset_p);
1854 }
1855 CGF.EmitBranch(ContBlock);
1856
1857 // Emit code to load the value if it was passed in memory.
1858
1859 CGF.EmitBlock(InMemBlock);
1860 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1861
1862 // Return the appropriate result.
1863
1864 CGF.EmitBlock(ContBlock);
1865 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1866 "vaarg.addr");
1867 ResAddr->reserveOperandSpace(2);
1868 ResAddr->addIncoming(RegAddr, InRegBlock);
1869 ResAddr->addIncoming(MemAddr, InMemBlock);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001870 return ResAddr;
1871}
1872
Chris Lattnerdce5ad02010-06-28 20:05:43 +00001873
1874
1875//===----------------------------------------------------------------------===//
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001876// PIC16 ABI Implementation
Chris Lattnerdce5ad02010-06-28 20:05:43 +00001877//===----------------------------------------------------------------------===//
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001878
1879namespace {
1880
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001881class PIC16ABIInfo : public ABIInfo {
Chris Lattnerea044322010-07-29 02:01:43 +00001882public:
1883 PIC16ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
1884
Chris Lattnera3c109b2010-07-29 02:16:43 +00001885 ABIArgInfo classifyReturnType(QualType RetTy) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001886
Chris Lattnera3c109b2010-07-29 02:16:43 +00001887 ABIArgInfo classifyArgumentType(QualType RetTy) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001888
Chris Lattneree5dcd02010-07-29 02:31:05 +00001889 virtual void computeInfo(CGFunctionInfo &FI) const {
Chris Lattnera3c109b2010-07-29 02:16:43 +00001890 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001891 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1892 it != ie; ++it)
Chris Lattnera3c109b2010-07-29 02:16:43 +00001893 it->info = classifyArgumentType(it->type);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001894 }
1895
1896 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1897 CodeGenFunction &CGF) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001898};
1899
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00001900class PIC16TargetCodeGenInfo : public TargetCodeGenInfo {
1901public:
Chris Lattnerea044322010-07-29 02:01:43 +00001902 PIC16TargetCodeGenInfo(CodeGenTypes &CGT)
1903 : TargetCodeGenInfo(new PIC16ABIInfo(CGT)) {}
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00001904};
1905
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001906}
1907
Chris Lattnera3c109b2010-07-29 02:16:43 +00001908ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy) const {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001909 if (RetTy->isVoidType()) {
1910 return ABIArgInfo::getIgnore();
1911 } else {
1912 return ABIArgInfo::getDirect();
1913 }
1914}
1915
Chris Lattnera3c109b2010-07-29 02:16:43 +00001916ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty) const {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001917 return ABIArgInfo::getDirect();
1918}
1919
1920llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
Chris Lattner77b89b82010-06-27 07:15:29 +00001921 CodeGenFunction &CGF) const {
Chris Lattner52d9ae32010-04-06 17:29:22 +00001922 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
Sanjiv Guptaa446ecd2010-02-17 02:25:52 +00001923 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1924
1925 CGBuilderTy &Builder = CGF.Builder;
1926 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1927 "ap");
1928 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1929 llvm::Type *PTy =
1930 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1931 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1932
1933 uint64_t Offset = CGF.getContext().getTypeSize(Ty) / 8;
1934
1935 llvm::Value *NextAddr =
1936 Builder.CreateGEP(Addr, llvm::ConstantInt::get(
1937 llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
1938 "ap.next");
1939 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1940
1941 return AddrTyped;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001942}
1943
Sanjiv Guptaa446ecd2010-02-17 02:25:52 +00001944
John McCallec853ba2010-03-11 00:10:12 +00001945// PowerPC-32
1946
1947namespace {
1948class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
1949public:
Chris Lattnerea044322010-07-29 02:01:43 +00001950 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
1951
John McCallec853ba2010-03-11 00:10:12 +00001952 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1953 // This is recovered from gcc output.
1954 return 1; // r1 is the dedicated stack pointer
1955 }
1956
1957 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1958 llvm::Value *Address) const;
1959};
1960
1961}
1962
1963bool
1964PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1965 llvm::Value *Address) const {
1966 // This is calculated from the LLVM and GCC tables and verified
1967 // against gcc output. AFAIK all ABIs use the same encoding.
1968
1969 CodeGen::CGBuilderTy &Builder = CGF.Builder;
1970 llvm::LLVMContext &Context = CGF.getLLVMContext();
1971
1972 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
1973 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
1974 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
1975 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
1976
1977 // 0-31: r0-31, the 4-byte general-purpose registers
John McCallaeeb7012010-05-27 06:19:26 +00001978 AssignToArrayRange(Builder, Address, Four8, 0, 31);
John McCallec853ba2010-03-11 00:10:12 +00001979
1980 // 32-63: fp0-31, the 8-byte floating-point registers
John McCallaeeb7012010-05-27 06:19:26 +00001981 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
John McCallec853ba2010-03-11 00:10:12 +00001982
1983 // 64-76 are various 4-byte special-purpose registers:
1984 // 64: mq
1985 // 65: lr
1986 // 66: ctr
1987 // 67: ap
1988 // 68-75 cr0-7
1989 // 76: xer
John McCallaeeb7012010-05-27 06:19:26 +00001990 AssignToArrayRange(Builder, Address, Four8, 64, 76);
John McCallec853ba2010-03-11 00:10:12 +00001991
1992 // 77-108: v0-31, the 16-byte vector registers
John McCallaeeb7012010-05-27 06:19:26 +00001993 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
John McCallec853ba2010-03-11 00:10:12 +00001994
1995 // 109: vrsave
1996 // 110: vscr
1997 // 111: spe_acc
1998 // 112: spefscr
1999 // 113: sfp
John McCallaeeb7012010-05-27 06:19:26 +00002000 AssignToArrayRange(Builder, Address, Four8, 109, 113);
John McCallec853ba2010-03-11 00:10:12 +00002001
2002 return false;
2003}
2004
2005
Chris Lattnerdce5ad02010-06-28 20:05:43 +00002006//===----------------------------------------------------------------------===//
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002007// ARM ABI Implementation
Chris Lattnerdce5ad02010-06-28 20:05:43 +00002008//===----------------------------------------------------------------------===//
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002009
2010namespace {
2011
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002012class ARMABIInfo : public ABIInfo {
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00002013public:
2014 enum ABIKind {
2015 APCS = 0,
2016 AAPCS = 1,
2017 AAPCS_VFP
2018 };
2019
2020private:
2021 ABIKind Kind;
2022
2023public:
Chris Lattnerea044322010-07-29 02:01:43 +00002024 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00002025
2026private:
2027 ABIKind getABIKind() const { return Kind; }
2028
Chris Lattnera3c109b2010-07-29 02:16:43 +00002029 ABIArgInfo classifyReturnType(QualType RetTy) const;
2030 ABIArgInfo classifyArgumentType(QualType RetTy) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002031
Chris Lattneree5dcd02010-07-29 02:31:05 +00002032 virtual void computeInfo(CGFunctionInfo &FI) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002033
2034 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2035 CodeGenFunction &CGF) const;
2036};
2037
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002038class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2039public:
Chris Lattnerea044322010-07-29 02:01:43 +00002040 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2041 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
John McCall6374c332010-03-06 00:35:14 +00002042
2043 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2044 return 13;
2045 }
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002046};
2047
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002048}
2049
Chris Lattneree5dcd02010-07-29 02:31:05 +00002050void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
Chris Lattnera3c109b2010-07-29 02:16:43 +00002051 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002052 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
Chris Lattnera3c109b2010-07-29 02:16:43 +00002053 it != ie; ++it)
2054 it->info = classifyArgumentType(it->type);
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00002055
Chris Lattnera3c109b2010-07-29 02:16:43 +00002056 const llvm::Triple &Triple(getContext().Target.getTriple());
Rafael Espindola25117ab2010-06-16 16:13:39 +00002057 llvm::CallingConv::ID DefaultCC;
Rafael Espindola1ed1a592010-06-16 19:01:17 +00002058 if (Triple.getEnvironmentName() == "gnueabi" ||
2059 Triple.getEnvironmentName() == "eabi")
Rafael Espindola25117ab2010-06-16 16:13:39 +00002060 DefaultCC = llvm::CallingConv::ARM_AAPCS;
Rafael Espindola1ed1a592010-06-16 19:01:17 +00002061 else
2062 DefaultCC = llvm::CallingConv::ARM_APCS;
Rafael Espindola25117ab2010-06-16 16:13:39 +00002063
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00002064 switch (getABIKind()) {
2065 case APCS:
Rafael Espindola25117ab2010-06-16 16:13:39 +00002066 if (DefaultCC != llvm::CallingConv::ARM_APCS)
2067 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00002068 break;
2069
2070 case AAPCS:
Rafael Espindola25117ab2010-06-16 16:13:39 +00002071 if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2072 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00002073 break;
2074
2075 case AAPCS_VFP:
2076 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2077 break;
2078 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002079}
2080
Chris Lattnera3c109b2010-07-29 02:16:43 +00002081ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00002082 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
2083 // Treat an enum type as its underlying type.
2084 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2085 Ty = EnumTy->getDecl()->getIntegerType();
2086
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +00002087 return (Ty->isPromotableIntegerType() ?
2088 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00002089 }
Daniel Dunbar98303b92009-09-13 08:03:58 +00002090
Daniel Dunbar42025572009-09-14 21:54:03 +00002091 // Ignore empty records.
Chris Lattnera3c109b2010-07-29 02:16:43 +00002092 if (isEmptyRecord(getContext(), Ty, true))
Daniel Dunbar42025572009-09-14 21:54:03 +00002093 return ABIArgInfo::getIgnore();
2094
Rafael Espindola0eb1d972010-06-08 02:42:08 +00002095 // Structures with either a non-trivial destructor or a non-trivial
2096 // copy constructor are always indirect.
2097 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2098 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2099
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002100 // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2101 // backend doesn't support byval.
2102 // FIXME: This doesn't handle alignment > 64 bits.
2103 const llvm::Type* ElemTy;
2104 unsigned SizeRegs;
Chris Lattnera3c109b2010-07-29 02:16:43 +00002105 if (getContext().getTypeAlign(Ty) > 32) {
2106 ElemTy = llvm::Type::getInt64Ty(getVMContext());
2107 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002108 } else {
Chris Lattnera3c109b2010-07-29 02:16:43 +00002109 ElemTy = llvm::Type::getInt32Ty(getVMContext());
2110 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002111 }
2112 std::vector<const llvm::Type*> LLVMFields;
Owen Anderson96e0fc72009-07-29 22:16:19 +00002113 LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
Chris Lattnera3c109b2010-07-29 02:16:43 +00002114 const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
2115 true);
Chris Lattner800588f2010-07-29 06:26:06 +00002116 return ABIArgInfo::getDirect(STy);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002117}
2118
Chris Lattnera3c109b2010-07-29 02:16:43 +00002119static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
Daniel Dunbar98303b92009-09-13 08:03:58 +00002120 llvm::LLVMContext &VMContext) {
2121 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2122 // is called integer-like if its size is less than or equal to one word, and
2123 // the offset of each of its addressable sub-fields is zero.
2124
2125 uint64_t Size = Context.getTypeSize(Ty);
2126
2127 // Check that the type fits in a word.
2128 if (Size > 32)
2129 return false;
2130
2131 // FIXME: Handle vector types!
2132 if (Ty->isVectorType())
2133 return false;
2134
Daniel Dunbarb0d58192009-09-14 02:20:34 +00002135 // Float types are never treated as "integer like".
2136 if (Ty->isRealFloatingType())
2137 return false;
2138
Daniel Dunbar98303b92009-09-13 08:03:58 +00002139 // If this is a builtin or pointer type then it is ok.
John McCall183700f2009-09-21 23:43:11 +00002140 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
Daniel Dunbar98303b92009-09-13 08:03:58 +00002141 return true;
2142
Daniel Dunbar45815812010-02-01 23:31:26 +00002143 // Small complex integer types are "integer like".
2144 if (const ComplexType *CT = Ty->getAs<ComplexType>())
2145 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
Daniel Dunbar98303b92009-09-13 08:03:58 +00002146
2147 // Single element and zero sized arrays should be allowed, by the definition
2148 // above, but they are not.
2149
2150 // Otherwise, it must be a record type.
2151 const RecordType *RT = Ty->getAs<RecordType>();
2152 if (!RT) return false;
2153
2154 // Ignore records with flexible arrays.
2155 const RecordDecl *RD = RT->getDecl();
2156 if (RD->hasFlexibleArrayMember())
2157 return false;
2158
2159 // Check that all sub-fields are at offset 0, and are themselves "integer
2160 // like".
2161 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2162
2163 bool HadField = false;
2164 unsigned idx = 0;
2165 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2166 i != e; ++i, ++idx) {
2167 const FieldDecl *FD = *i;
2168
Daniel Dunbar679855a2010-01-29 03:22:29 +00002169 // Bit-fields are not addressable, we only need to verify they are "integer
2170 // like". We still have to disallow a subsequent non-bitfield, for example:
2171 // struct { int : 0; int x }
2172 // is non-integer like according to gcc.
2173 if (FD->isBitField()) {
2174 if (!RD->isUnion())
2175 HadField = true;
Daniel Dunbar98303b92009-09-13 08:03:58 +00002176
Daniel Dunbar679855a2010-01-29 03:22:29 +00002177 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2178 return false;
Daniel Dunbar98303b92009-09-13 08:03:58 +00002179
Daniel Dunbar679855a2010-01-29 03:22:29 +00002180 continue;
Daniel Dunbar98303b92009-09-13 08:03:58 +00002181 }
2182
Daniel Dunbar679855a2010-01-29 03:22:29 +00002183 // Check if this field is at offset 0.
2184 if (Layout.getFieldOffset(idx) != 0)
2185 return false;
2186
Daniel Dunbar98303b92009-09-13 08:03:58 +00002187 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2188 return false;
2189
Daniel Dunbar679855a2010-01-29 03:22:29 +00002190 // Only allow at most one field in a structure. This doesn't match the
2191 // wording above, but follows gcc in situations with a field following an
2192 // empty structure.
Daniel Dunbar98303b92009-09-13 08:03:58 +00002193 if (!RD->isUnion()) {
2194 if (HadField)
2195 return false;
2196
2197 HadField = true;
2198 }
2199 }
2200
2201 return true;
2202}
2203
Chris Lattnera3c109b2010-07-29 02:16:43 +00002204ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
Daniel Dunbar98303b92009-09-13 08:03:58 +00002205 if (RetTy->isVoidType())
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002206 return ABIArgInfo::getIgnore();
Daniel Dunbar98303b92009-09-13 08:03:58 +00002207
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00002208 if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2209 // Treat an enum type as its underlying type.
2210 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2211 RetTy = EnumTy->getDecl()->getIntegerType();
2212
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +00002213 return (RetTy->isPromotableIntegerType() ?
2214 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00002215 }
Daniel Dunbar98303b92009-09-13 08:03:58 +00002216
Rafael Espindola0eb1d972010-06-08 02:42:08 +00002217 // Structures with either a non-trivial destructor or a non-trivial
2218 // copy constructor are always indirect.
2219 if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2220 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2221
Daniel Dunbar98303b92009-09-13 08:03:58 +00002222 // Are we following APCS?
2223 if (getABIKind() == APCS) {
Chris Lattnera3c109b2010-07-29 02:16:43 +00002224 if (isEmptyRecord(getContext(), RetTy, false))
Daniel Dunbar98303b92009-09-13 08:03:58 +00002225 return ABIArgInfo::getIgnore();
2226
Daniel Dunbar4cc753f2010-02-01 23:31:19 +00002227 // Complex types are all returned as packed integers.
2228 //
2229 // FIXME: Consider using 2 x vector types if the back end handles them
2230 // correctly.
2231 if (RetTy->isAnyComplexType())
Chris Lattner800588f2010-07-29 06:26:06 +00002232 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
Chris Lattnera3c109b2010-07-29 02:16:43 +00002233 getContext().getTypeSize(RetTy)));
Daniel Dunbar4cc753f2010-02-01 23:31:19 +00002234
Daniel Dunbar98303b92009-09-13 08:03:58 +00002235 // Integer like structures are returned in r0.
Chris Lattnera3c109b2010-07-29 02:16:43 +00002236 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
Daniel Dunbar98303b92009-09-13 08:03:58 +00002237 // Return in the smallest viable integer type.
Chris Lattnera3c109b2010-07-29 02:16:43 +00002238 uint64_t Size = getContext().getTypeSize(RetTy);
Daniel Dunbar98303b92009-09-13 08:03:58 +00002239 if (Size <= 8)
Chris Lattner800588f2010-07-29 06:26:06 +00002240 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
Daniel Dunbar98303b92009-09-13 08:03:58 +00002241 if (Size <= 16)
Chris Lattner800588f2010-07-29 06:26:06 +00002242 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2243 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
Daniel Dunbar98303b92009-09-13 08:03:58 +00002244 }
2245
2246 // Otherwise return in memory.
2247 return ABIArgInfo::getIndirect(0);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002248 }
Daniel Dunbar98303b92009-09-13 08:03:58 +00002249
2250 // Otherwise this is an AAPCS variant.
2251
Chris Lattnera3c109b2010-07-29 02:16:43 +00002252 if (isEmptyRecord(getContext(), RetTy, true))
Daniel Dunbar16a08082009-09-14 00:56:55 +00002253 return ABIArgInfo::getIgnore();
2254
Daniel Dunbar98303b92009-09-13 08:03:58 +00002255 // Aggregates <= 4 bytes are returned in r0; other aggregates
2256 // are returned indirectly.
Chris Lattnera3c109b2010-07-29 02:16:43 +00002257 uint64_t Size = getContext().getTypeSize(RetTy);
Daniel Dunbar16a08082009-09-14 00:56:55 +00002258 if (Size <= 32) {
2259 // Return in the smallest viable integer type.
2260 if (Size <= 8)
Chris Lattner800588f2010-07-29 06:26:06 +00002261 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
Daniel Dunbar16a08082009-09-14 00:56:55 +00002262 if (Size <= 16)
Chris Lattner800588f2010-07-29 06:26:06 +00002263 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2264 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
Daniel Dunbar16a08082009-09-14 00:56:55 +00002265 }
2266
Daniel Dunbar98303b92009-09-13 08:03:58 +00002267 return ABIArgInfo::getIndirect(0);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002268}
2269
2270llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
Chris Lattner77b89b82010-06-27 07:15:29 +00002271 CodeGenFunction &CGF) const {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002272 // FIXME: Need to handle alignment
Benjamin Kramer3c0ef8c2009-10-13 10:07:13 +00002273 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
Owen Anderson96e0fc72009-07-29 22:16:19 +00002274 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002275
2276 CGBuilderTy &Builder = CGF.Builder;
2277 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2278 "ap");
2279 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2280 llvm::Type *PTy =
Owen Anderson96e0fc72009-07-29 22:16:19 +00002281 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002282 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2283
2284 uint64_t Offset =
2285 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2286 llvm::Value *NextAddr =
Chris Lattner77b89b82010-06-27 07:15:29 +00002287 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002288 "ap.next");
2289 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2290
2291 return AddrTyped;
2292}
2293
Chris Lattnera3c109b2010-07-29 02:16:43 +00002294ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
2295 if (RetTy->isVoidType())
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002296 return ABIArgInfo::getIgnore();
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00002297
Chris Lattnera3c109b2010-07-29 02:16:43 +00002298 if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2299 return ABIArgInfo::getIndirect(0);
2300
2301 // Treat an enum type as its underlying type.
2302 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2303 RetTy = EnumTy->getDecl()->getIntegerType();
2304
2305 return (RetTy->isPromotableIntegerType() ?
2306 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002307}
2308
Chris Lattnerdce5ad02010-06-28 20:05:43 +00002309//===----------------------------------------------------------------------===//
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002310// SystemZ ABI Implementation
Chris Lattnerdce5ad02010-06-28 20:05:43 +00002311//===----------------------------------------------------------------------===//
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002312
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002313namespace {
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002314
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002315class SystemZABIInfo : public ABIInfo {
Chris Lattnerea044322010-07-29 02:01:43 +00002316public:
2317 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2318
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002319 bool isPromotableIntegerType(QualType Ty) const;
2320
Chris Lattnera3c109b2010-07-29 02:16:43 +00002321 ABIArgInfo classifyReturnType(QualType RetTy) const;
2322 ABIArgInfo classifyArgumentType(QualType RetTy) const;
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002323
Chris Lattneree5dcd02010-07-29 02:31:05 +00002324 virtual void computeInfo(CGFunctionInfo &FI) const {
Chris Lattnera3c109b2010-07-29 02:16:43 +00002325 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002326 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2327 it != ie; ++it)
Chris Lattnera3c109b2010-07-29 02:16:43 +00002328 it->info = classifyArgumentType(it->type);
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002329 }
2330
2331 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2332 CodeGenFunction &CGF) const;
2333};
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002334
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002335class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2336public:
Chris Lattnerea044322010-07-29 02:01:43 +00002337 SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2338 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002339};
2340
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002341}
2342
2343bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2344 // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
John McCall183700f2009-09-21 23:43:11 +00002345 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002346 switch (BT->getKind()) {
2347 case BuiltinType::Bool:
2348 case BuiltinType::Char_S:
2349 case BuiltinType::Char_U:
2350 case BuiltinType::SChar:
2351 case BuiltinType::UChar:
2352 case BuiltinType::Short:
2353 case BuiltinType::UShort:
2354 case BuiltinType::Int:
2355 case BuiltinType::UInt:
2356 return true;
2357 default:
2358 return false;
2359 }
2360 return false;
2361}
2362
2363llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2364 CodeGenFunction &CGF) const {
2365 // FIXME: Implement
2366 return 0;
2367}
2368
2369
Chris Lattnera3c109b2010-07-29 02:16:43 +00002370ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2371 if (RetTy->isVoidType())
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002372 return ABIArgInfo::getIgnore();
Chris Lattnera3c109b2010-07-29 02:16:43 +00002373 if (CodeGenFunction::hasAggregateLLVMType(RetTy))
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002374 return ABIArgInfo::getIndirect(0);
Chris Lattnera3c109b2010-07-29 02:16:43 +00002375
2376 return (isPromotableIntegerType(RetTy) ?
2377 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002378}
2379
Chris Lattnera3c109b2010-07-29 02:16:43 +00002380ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2381 if (CodeGenFunction::hasAggregateLLVMType(Ty))
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002382 return ABIArgInfo::getIndirect(0);
Chris Lattnera3c109b2010-07-29 02:16:43 +00002383
2384 return (isPromotableIntegerType(Ty) ?
2385 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002386}
2387
Chris Lattnerdce5ad02010-06-28 20:05:43 +00002388//===----------------------------------------------------------------------===//
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002389// MSP430 ABI Implementation
Chris Lattnerdce5ad02010-06-28 20:05:43 +00002390//===----------------------------------------------------------------------===//
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002391
2392namespace {
2393
2394class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2395public:
Chris Lattnerea044322010-07-29 02:01:43 +00002396 MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2397 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002398 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2399 CodeGen::CodeGenModule &M) const;
2400};
2401
2402}
2403
2404void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2405 llvm::GlobalValue *GV,
2406 CodeGen::CodeGenModule &M) const {
2407 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2408 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2409 // Handle 'interrupt' attribute:
2410 llvm::Function *F = cast<llvm::Function>(GV);
2411
2412 // Step 1: Set ISR calling convention.
2413 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2414
2415 // Step 2: Add attributes goodness.
2416 F->addFnAttr(llvm::Attribute::NoInline);
2417
2418 // Step 3: Emit ISR vector alias.
2419 unsigned Num = attr->getNumber() + 0xffe0;
2420 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2421 "vector_" +
2422 llvm::LowercaseString(llvm::utohexstr(Num)),
2423 GV, &M.getModule());
2424 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002425 }
2426}
2427
Chris Lattnerdce5ad02010-06-28 20:05:43 +00002428//===----------------------------------------------------------------------===//
John McCallaeeb7012010-05-27 06:19:26 +00002429// MIPS ABI Implementation. This works for both little-endian and
2430// big-endian variants.
Chris Lattnerdce5ad02010-06-28 20:05:43 +00002431//===----------------------------------------------------------------------===//
2432
John McCallaeeb7012010-05-27 06:19:26 +00002433namespace {
2434class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2435public:
Chris Lattnerea044322010-07-29 02:01:43 +00002436 MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
2437 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
John McCallaeeb7012010-05-27 06:19:26 +00002438
2439 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2440 return 29;
2441 }
2442
2443 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2444 llvm::Value *Address) const;
2445};
2446}
2447
2448bool
2449MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2450 llvm::Value *Address) const {
2451 // This information comes from gcc's implementation, which seems to
2452 // as canonical as it gets.
2453
2454 CodeGen::CGBuilderTy &Builder = CGF.Builder;
2455 llvm::LLVMContext &Context = CGF.getLLVMContext();
2456
2457 // Everything on MIPS is 4 bytes. Double-precision FP registers
2458 // are aliased to pairs of single-precision FP registers.
2459 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2460 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2461
2462 // 0-31 are the general purpose registers, $0 - $31.
2463 // 32-63 are the floating-point registers, $f0 - $f31.
2464 // 64 and 65 are the multiply/divide registers, $hi and $lo.
2465 // 66 is the (notional, I think) register for signal-handler return.
2466 AssignToArrayRange(Builder, Address, Four8, 0, 65);
2467
2468 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2469 // They are one bit wide and ignored here.
2470
2471 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2472 // (coprocessor 1 is the FP unit)
2473 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2474 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2475 // 176-181 are the DSP accumulator registers.
2476 AssignToArrayRange(Builder, Address, Four8, 80, 181);
2477
2478 return false;
2479}
2480
2481
Chris Lattnerea044322010-07-29 02:01:43 +00002482const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002483 if (TheTargetCodeGenInfo)
2484 return *TheTargetCodeGenInfo;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002485
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002486 // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2487 // free it.
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002488
Chris Lattner9c254f02010-06-29 06:01:59 +00002489 const llvm::Triple &Triple = getContext().Target.getTriple();
Daniel Dunbar1752ee42009-08-24 09:10:05 +00002490 switch (Triple.getArch()) {
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002491 default:
Chris Lattnerea044322010-07-29 02:01:43 +00002492 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002493
John McCallaeeb7012010-05-27 06:19:26 +00002494 case llvm::Triple::mips:
2495 case llvm::Triple::mipsel:
Chris Lattnerea044322010-07-29 02:01:43 +00002496 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
John McCallaeeb7012010-05-27 06:19:26 +00002497
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002498 case llvm::Triple::arm:
2499 case llvm::Triple::thumb:
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00002500 // FIXME: We want to know the float calling convention as well.
Daniel Dunbar018ba5a2009-09-14 00:35:03 +00002501 if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002502 return *(TheTargetCodeGenInfo =
Chris Lattnerea044322010-07-29 02:01:43 +00002503 new ARMTargetCodeGenInfo(Types, ARMABIInfo::APCS));
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00002504
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002505 return *(TheTargetCodeGenInfo =
Chris Lattnerea044322010-07-29 02:01:43 +00002506 new ARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS));
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002507
2508 case llvm::Triple::pic16:
Chris Lattnerea044322010-07-29 02:01:43 +00002509 return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo(Types));
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002510
John McCallec853ba2010-03-11 00:10:12 +00002511 case llvm::Triple::ppc:
Chris Lattnerea044322010-07-29 02:01:43 +00002512 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
John McCallec853ba2010-03-11 00:10:12 +00002513
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002514 case llvm::Triple::systemz:
Chris Lattnerea044322010-07-29 02:01:43 +00002515 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002516
2517 case llvm::Triple::msp430:
Chris Lattnerea044322010-07-29 02:01:43 +00002518 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002519
Daniel Dunbar1752ee42009-08-24 09:10:05 +00002520 case llvm::Triple::x86:
Daniel Dunbar1752ee42009-08-24 09:10:05 +00002521 switch (Triple.getOS()) {
Edward O'Callaghan7ee68bd2009-10-20 17:22:50 +00002522 case llvm::Triple::Darwin:
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002523 return *(TheTargetCodeGenInfo =
Chris Lattnerea044322010-07-29 02:01:43 +00002524 new X86_32TargetCodeGenInfo(Types, true, true));
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002525 case llvm::Triple::Cygwin:
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002526 case llvm::Triple::MinGW32:
2527 case llvm::Triple::MinGW64:
Edward O'Callaghan727e2682009-10-21 11:58:24 +00002528 case llvm::Triple::AuroraUX:
2529 case llvm::Triple::DragonFly:
David Chisnall75c135a2009-09-03 01:48:05 +00002530 case llvm::Triple::FreeBSD:
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002531 case llvm::Triple::OpenBSD:
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002532 return *(TheTargetCodeGenInfo =
Chris Lattnerea044322010-07-29 02:01:43 +00002533 new X86_32TargetCodeGenInfo(Types, false, true));
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002534
2535 default:
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002536 return *(TheTargetCodeGenInfo =
Chris Lattnerea044322010-07-29 02:01:43 +00002537 new X86_32TargetCodeGenInfo(Types, false, false));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002538 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002539
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002540 case llvm::Triple::x86_64:
Chris Lattnerea044322010-07-29 02:01:43 +00002541 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002542 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002543}