blob: 972e4e984c63558f4b2deef887b6b9f41eb954e4 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng98c073b2009-02-17 00:13:06 +000069#include "llvm/Analysis/Dominators.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000072#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073#include "llvm/Transforms/Scalar.h"
74#include "llvm/Support/CFG.h"
75#include "llvm/Support/CommandLine.h"
76#include "llvm/Support/Compiler.h"
77#include "llvm/Support/ConstantRange.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000078#include "llvm/Support/GetElementPtrTypeIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000079#include "llvm/Support/InstIterator.h"
80#include "llvm/Support/ManagedStatic.h"
81#include "llvm/Support/MathExtras.h"
82#include "llvm/Support/Streams.h"
83#include "llvm/ADT/Statistic.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000084#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085#include <ostream>
86#include <algorithm>
87#include <cmath>
88using namespace llvm;
89
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman089efff2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
102 "symbolically execute a constant derived loop"),
103 cl::init(100));
104
Dan Gohman089efff2008-05-13 00:00:25 +0000105static RegisterPass<ScalarEvolution>
106R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107char ScalarEvolution::ID = 0;
108
109//===----------------------------------------------------------------------===//
110// SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
116SCEV::~SCEV() {}
117void SCEV::dump() const {
118 print(cerr);
Nick Lewycky41153462009-01-16 17:07:22 +0000119 cerr << '\n';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120}
121
Dan Gohman7b560c42008-06-18 16:23:07 +0000122bool SCEV::isZero() const {
123 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
124 return SC->getValue()->isZero();
125 return false;
126}
127
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000128
129SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
130
131bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
132 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
133 return false;
134}
135
136const Type *SCEVCouldNotCompute::getType() const {
137 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
138 return 0;
139}
140
141bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
142 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
143 return false;
144}
145
146SCEVHandle SCEVCouldNotCompute::
147replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000148 const SCEVHandle &Conc,
149 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000150 return this;
151}
152
153void SCEVCouldNotCompute::print(std::ostream &OS) const {
154 OS << "***COULDNOTCOMPUTE***";
155}
156
157bool SCEVCouldNotCompute::classof(const SCEV *S) {
158 return S->getSCEVType() == scCouldNotCompute;
159}
160
161
162// SCEVConstants - Only allow the creation of one SCEVConstant for any
163// particular value. Don't use a SCEVHandle here, or else the object will
164// never be deleted!
165static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
166
167
168SCEVConstant::~SCEVConstant() {
169 SCEVConstants->erase(V);
170}
171
Dan Gohman89f85052007-10-22 18:31:58 +0000172SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000173 SCEVConstant *&R = (*SCEVConstants)[V];
174 if (R == 0) R = new SCEVConstant(V);
175 return R;
176}
177
Dan Gohman89f85052007-10-22 18:31:58 +0000178SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
179 return getConstant(ConstantInt::get(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000180}
181
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000182const Type *SCEVConstant::getType() const { return V->getType(); }
183
184void SCEVConstant::print(std::ostream &OS) const {
185 WriteAsOperand(OS, V, false);
186}
187
188// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
189// particular input. Don't use a SCEVHandle here, or else the object will
190// never be deleted!
191static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
192 SCEVTruncateExpr*> > SCEVTruncates;
193
194SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
195 : SCEV(scTruncate), Op(op), Ty(ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000196 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
197 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198 "Cannot truncate non-integer value!");
Dan Gohman01c2ee72009-04-16 03:18:22 +0000199 assert((!Op->getType()->isInteger() || !Ty->isInteger() ||
200 Op->getType()->getPrimitiveSizeInBits() >
201 Ty->getPrimitiveSizeInBits()) &&
202 "This is not a truncating conversion!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203}
204
205SCEVTruncateExpr::~SCEVTruncateExpr() {
206 SCEVTruncates->erase(std::make_pair(Op, Ty));
207}
208
Evan Cheng98c073b2009-02-17 00:13:06 +0000209bool SCEVTruncateExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->dominates(BB, DT);
211}
212
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213void SCEVTruncateExpr::print(std::ostream &OS) const {
214 OS << "(truncate " << *Op << " to " << *Ty << ")";
215}
216
217// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
218// particular input. Don't use a SCEVHandle here, or else the object will never
219// be deleted!
220static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
221 SCEVZeroExtendExpr*> > SCEVZeroExtends;
222
223SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
224 : SCEV(scZeroExtend), Op(op), Ty(ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000225 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
226 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000227 "Cannot zero extend non-integer value!");
228 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
229 && "This is not an extending conversion!");
230}
231
232SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
233 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
234}
235
Evan Cheng98c073b2009-02-17 00:13:06 +0000236bool SCEVZeroExtendExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
237 return Op->dominates(BB, DT);
238}
239
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240void SCEVZeroExtendExpr::print(std::ostream &OS) const {
241 OS << "(zeroextend " << *Op << " to " << *Ty << ")";
242}
243
244// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
245// particular input. Don't use a SCEVHandle here, or else the object will never
246// be deleted!
247static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
248 SCEVSignExtendExpr*> > SCEVSignExtends;
249
250SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
251 : SCEV(scSignExtend), Op(op), Ty(ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000252 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
253 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000254 "Cannot sign extend non-integer value!");
255 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
256 && "This is not an extending conversion!");
257}
258
259SCEVSignExtendExpr::~SCEVSignExtendExpr() {
260 SCEVSignExtends->erase(std::make_pair(Op, Ty));
261}
262
Evan Cheng98c073b2009-02-17 00:13:06 +0000263bool SCEVSignExtendExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
264 return Op->dominates(BB, DT);
265}
266
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267void SCEVSignExtendExpr::print(std::ostream &OS) const {
268 OS << "(signextend " << *Op << " to " << *Ty << ")";
269}
270
271// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
272// particular input. Don't use a SCEVHandle here, or else the object will never
273// be deleted!
274static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
275 SCEVCommutativeExpr*> > SCEVCommExprs;
276
277SCEVCommutativeExpr::~SCEVCommutativeExpr() {
278 SCEVCommExprs->erase(std::make_pair(getSCEVType(),
279 std::vector<SCEV*>(Operands.begin(),
280 Operands.end())));
281}
282
283void SCEVCommutativeExpr::print(std::ostream &OS) const {
284 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
285 const char *OpStr = getOperationStr();
286 OS << "(" << *Operands[0];
287 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
288 OS << OpStr << *Operands[i];
289 OS << ")";
290}
291
292SCEVHandle SCEVCommutativeExpr::
293replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000294 const SCEVHandle &Conc,
295 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000296 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000297 SCEVHandle H =
298 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000299 if (H != getOperand(i)) {
300 std::vector<SCEVHandle> NewOps;
301 NewOps.reserve(getNumOperands());
302 for (unsigned j = 0; j != i; ++j)
303 NewOps.push_back(getOperand(j));
304 NewOps.push_back(H);
305 for (++i; i != e; ++i)
306 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000307 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308
309 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000310 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000311 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000312 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000313 else if (isa<SCEVSMaxExpr>(this))
314 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000315 else if (isa<SCEVUMaxExpr>(this))
316 return SE.getUMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000317 else
318 assert(0 && "Unknown commutative expr!");
319 }
320 }
321 return this;
322}
323
Evan Cheng98c073b2009-02-17 00:13:06 +0000324bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
325 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
326 if (!getOperand(i)->dominates(BB, DT))
327 return false;
328 }
329 return true;
330}
331
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000332
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000333// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000334// input. Don't use a SCEVHandle here, or else the object will never be
335// deleted!
336static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000337 SCEVUDivExpr*> > SCEVUDivs;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000339SCEVUDivExpr::~SCEVUDivExpr() {
340 SCEVUDivs->erase(std::make_pair(LHS, RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000341}
342
Evan Cheng98c073b2009-02-17 00:13:06 +0000343bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
344 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
345}
346
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000347void SCEVUDivExpr::print(std::ostream &OS) const {
348 OS << "(" << *LHS << " /u " << *RHS << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349}
350
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000351const Type *SCEVUDivExpr::getType() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000352 return LHS->getType();
353}
354
355// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
356// particular input. Don't use a SCEVHandle here, or else the object will never
357// be deleted!
358static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
359 SCEVAddRecExpr*> > SCEVAddRecExprs;
360
361SCEVAddRecExpr::~SCEVAddRecExpr() {
362 SCEVAddRecExprs->erase(std::make_pair(L,
363 std::vector<SCEV*>(Operands.begin(),
364 Operands.end())));
365}
366
Evan Cheng98c073b2009-02-17 00:13:06 +0000367bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
368 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
369 if (!getOperand(i)->dominates(BB, DT))
370 return false;
371 }
372 return true;
373}
374
375
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376SCEVHandle SCEVAddRecExpr::
377replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000378 const SCEVHandle &Conc,
379 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000380 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000381 SCEVHandle H =
382 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000383 if (H != getOperand(i)) {
384 std::vector<SCEVHandle> NewOps;
385 NewOps.reserve(getNumOperands());
386 for (unsigned j = 0; j != i; ++j)
387 NewOps.push_back(getOperand(j));
388 NewOps.push_back(H);
389 for (++i; i != e; ++i)
390 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000391 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000392
Dan Gohman89f85052007-10-22 18:31:58 +0000393 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000394 }
395 }
396 return this;
397}
398
399
400bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
401 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
402 // contain L and if the start is invariant.
403 return !QueryLoop->contains(L->getHeader()) &&
404 getOperand(0)->isLoopInvariant(QueryLoop);
405}
406
407
408void SCEVAddRecExpr::print(std::ostream &OS) const {
409 OS << "{" << *Operands[0];
410 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
411 OS << ",+," << *Operands[i];
412 OS << "}<" << L->getHeader()->getName() + ">";
413}
414
415// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
416// value. Don't use a SCEVHandle here, or else the object will never be
417// deleted!
418static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
419
420SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
421
422bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
423 // All non-instruction values are loop invariant. All instructions are loop
424 // invariant if they are not contained in the specified loop.
425 if (Instruction *I = dyn_cast<Instruction>(V))
426 return !L->contains(I->getParent());
427 return true;
428}
429
Evan Cheng98c073b2009-02-17 00:13:06 +0000430bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
431 if (Instruction *I = dyn_cast<Instruction>(getValue()))
432 return DT->dominates(I->getParent(), BB);
433 return true;
434}
435
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000436const Type *SCEVUnknown::getType() const {
437 return V->getType();
438}
439
440void SCEVUnknown::print(std::ostream &OS) const {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000441 if (isa<PointerType>(V->getType()))
442 OS << "(ptrtoint " << *V->getType() << " ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000443 WriteAsOperand(OS, V, false);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000444 if (isa<PointerType>(V->getType()))
445 OS << " to iPTR)";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000446}
447
448//===----------------------------------------------------------------------===//
449// SCEV Utilities
450//===----------------------------------------------------------------------===//
451
452namespace {
453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454 /// than the complexity of the RHS. This comparator is used to canonicalize
455 /// expressions.
456 struct VISIBILITY_HIDDEN SCEVComplexityCompare {
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000457 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000458 return LHS->getSCEVType() < RHS->getSCEVType();
459 }
460 };
461}
462
463/// GroupByComplexity - Given a list of SCEV objects, order them by their
464/// complexity, and group objects of the same complexity together by value.
465/// When this routine is finished, we know that any duplicates in the vector are
466/// consecutive and that complexity is monotonically increasing.
467///
468/// Note that we go take special precautions to ensure that we get determinstic
469/// results from this routine. In other words, we don't want the results of
470/// this to depend on where the addresses of various SCEV objects happened to
471/// land in memory.
472///
473static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
474 if (Ops.size() < 2) return; // Noop
475 if (Ops.size() == 2) {
476 // This is the common case, which also happens to be trivially simple.
477 // Special case it.
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000478 if (SCEVComplexityCompare()(Ops[1], Ops[0]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000479 std::swap(Ops[0], Ops[1]);
480 return;
481 }
482
483 // Do the rough sort by complexity.
484 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
485
486 // Now that we are sorted by complexity, group elements of the same
487 // complexity. Note that this is, at worst, N^2, but the vector is likely to
488 // be extremely short in practice. Note that we take this approach because we
489 // do not want to depend on the addresses of the objects we are grouping.
490 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
491 SCEV *S = Ops[i];
492 unsigned Complexity = S->getSCEVType();
493
494 // If there are any objects of the same complexity and same value as this
495 // one, group them.
496 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
497 if (Ops[j] == S) { // Found a duplicate.
498 // Move it to immediately after i'th element.
499 std::swap(Ops[i+1], Ops[j]);
500 ++i; // no need to rescan it.
501 if (i == e-2) return; // Done!
502 }
503 }
504 }
505}
506
507
508
509//===----------------------------------------------------------------------===//
510// Simple SCEV method implementations
511//===----------------------------------------------------------------------===//
512
Eli Friedman7489ec92008-08-04 23:49:06 +0000513/// BinomialCoefficient - Compute BC(It, K). The result has width W.
514// Assume, K > 0.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000515static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
Eli Friedman7489ec92008-08-04 23:49:06 +0000516 ScalarEvolution &SE,
Dan Gohman01c2ee72009-04-16 03:18:22 +0000517 const Type* ResultTy) {
Eli Friedman7489ec92008-08-04 23:49:06 +0000518 // Handle the simplest case efficiently.
519 if (K == 1)
520 return SE.getTruncateOrZeroExtend(It, ResultTy);
521
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000522 // We are using the following formula for BC(It, K):
523 //
524 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
525 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000526 // Suppose, W is the bitwidth of the return value. We must be prepared for
527 // overflow. Hence, we must assure that the result of our computation is
528 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
529 // safe in modular arithmetic.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000530 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000531 // However, this code doesn't use exactly that formula; the formula it uses
532 // is something like the following, where T is the number of factors of 2 in
533 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
534 // exponentiation:
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000535 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000536 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000537 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000538 // This formula is trivially equivalent to the previous formula. However,
539 // this formula can be implemented much more efficiently. The trick is that
540 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
541 // arithmetic. To do exact division in modular arithmetic, all we have
542 // to do is multiply by the inverse. Therefore, this step can be done at
543 // width W.
544 //
545 // The next issue is how to safely do the division by 2^T. The way this
546 // is done is by doing the multiplication step at a width of at least W + T
547 // bits. This way, the bottom W+T bits of the product are accurate. Then,
548 // when we perform the division by 2^T (which is equivalent to a right shift
549 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
550 // truncated out after the division by 2^T.
551 //
552 // In comparison to just directly using the first formula, this technique
553 // is much more efficient; using the first formula requires W * K bits,
554 // but this formula less than W + K bits. Also, the first formula requires
555 // a division step, whereas this formula only requires multiplies and shifts.
556 //
557 // It doesn't matter whether the subtraction step is done in the calculation
558 // width or the input iteration count's width; if the subtraction overflows,
559 // the result must be zero anyway. We prefer here to do it in the width of
560 // the induction variable because it helps a lot for certain cases; CodeGen
561 // isn't smart enough to ignore the overflow, which leads to much less
562 // efficient code if the width of the subtraction is wider than the native
563 // register width.
564 //
565 // (It's possible to not widen at all by pulling out factors of 2 before
566 // the multiplication; for example, K=2 can be calculated as
567 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
568 // extra arithmetic, so it's not an obvious win, and it gets
569 // much more complicated for K > 3.)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000570
Eli Friedman7489ec92008-08-04 23:49:06 +0000571 // Protection from insane SCEVs; this bound is conservative,
572 // but it probably doesn't matter.
573 if (K > 1000)
574 return new SCEVCouldNotCompute();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000575
Dan Gohman01c2ee72009-04-16 03:18:22 +0000576 unsigned W = SE.getTargetData().getTypeSizeInBits(ResultTy);
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000577
Eli Friedman7489ec92008-08-04 23:49:06 +0000578 // Calculate K! / 2^T and T; we divide out the factors of two before
579 // multiplying for calculating K! / 2^T to avoid overflow.
580 // Other overflow doesn't matter because we only care about the bottom
581 // W bits of the result.
582 APInt OddFactorial(W, 1);
583 unsigned T = 1;
584 for (unsigned i = 3; i <= K; ++i) {
585 APInt Mult(W, i);
586 unsigned TwoFactors = Mult.countTrailingZeros();
587 T += TwoFactors;
588 Mult = Mult.lshr(TwoFactors);
589 OddFactorial *= Mult;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000590 }
Nick Lewyckydbaa60a2008-06-13 04:38:55 +0000591
Eli Friedman7489ec92008-08-04 23:49:06 +0000592 // We need at least W + T bits for the multiplication step
nicholas9e3e5fd2009-01-25 08:16:27 +0000593 unsigned CalculationBits = W + T;
Eli Friedman7489ec92008-08-04 23:49:06 +0000594
595 // Calcuate 2^T, at width T+W.
596 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
597
598 // Calculate the multiplicative inverse of K! / 2^T;
599 // this multiplication factor will perform the exact division by
600 // K! / 2^T.
601 APInt Mod = APInt::getSignedMinValue(W+1);
602 APInt MultiplyFactor = OddFactorial.zext(W+1);
603 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
604 MultiplyFactor = MultiplyFactor.trunc(W);
605
606 // Calculate the product, at width T+W
607 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
608 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
609 for (unsigned i = 1; i != K; ++i) {
610 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
611 Dividend = SE.getMulExpr(Dividend,
612 SE.getTruncateOrZeroExtend(S, CalculationTy));
613 }
614
615 // Divide by 2^T
616 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
617
618 // Truncate the result, and divide by K! / 2^T.
619
620 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
621 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000622}
623
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000624/// evaluateAtIteration - Return the value of this chain of recurrences at
625/// the specified iteration number. We can evaluate this recurrence by
626/// multiplying each element in the chain by the binomial coefficient
627/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
628///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000629/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000630///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000631/// where BC(It, k) stands for binomial coefficient.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000632///
Dan Gohman89f85052007-10-22 18:31:58 +0000633SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
634 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000635 SCEVHandle Result = getStart();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000636 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000637 // The computation is correct in the face of overflow provided that the
638 // multiplication is performed _after_ the evaluation of the binomial
639 // coefficient.
Dan Gohman01c2ee72009-04-16 03:18:22 +0000640 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckyb6218e02008-10-13 03:58:02 +0000641 if (isa<SCEVCouldNotCompute>(Coeff))
642 return Coeff;
643
644 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000645 }
646 return Result;
647}
648
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000649//===----------------------------------------------------------------------===//
650// SCEV Expression folder implementations
651//===----------------------------------------------------------------------===//
652
Dan Gohman89f85052007-10-22 18:31:58 +0000653SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000654 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000655 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000656 ConstantExpr::getTrunc(SC->getValue(), Ty));
657
658 // If the input value is a chrec scev made out of constants, truncate
659 // all of the constants.
660 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
661 std::vector<SCEVHandle> Operands;
662 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
663 // FIXME: This should allow truncation of other expression types!
664 if (isa<SCEVConstant>(AddRec->getOperand(i)))
Dan Gohman89f85052007-10-22 18:31:58 +0000665 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000666 else
667 break;
668 if (Operands.size() == AddRec->getNumOperands())
Dan Gohman89f85052007-10-22 18:31:58 +0000669 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000670 }
671
672 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
673 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
674 return Result;
675}
676
Dan Gohman89f85052007-10-22 18:31:58 +0000677SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000678 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
679 const Type *IntTy = Ty;
680 if (isa<PointerType>(IntTy)) IntTy = getTargetData().getIntPtrType();
681 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
682 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
683 return getUnknown(C);
684 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000685
686 // FIXME: If the input value is a chrec scev, and we can prove that the value
687 // did not overflow the old, smaller, value, we can zero extend all of the
688 // operands (often constants). This would allow analysis of something like
689 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
690
691 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
692 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
693 return Result;
694}
695
Dan Gohman89f85052007-10-22 18:31:58 +0000696SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000697 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
698 const Type *IntTy = Ty;
699 if (isa<PointerType>(IntTy)) IntTy = getTargetData().getIntPtrType();
700 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
701 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
702 return getUnknown(C);
703 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704
705 // FIXME: If the input value is a chrec scev, and we can prove that the value
706 // did not overflow the old, smaller, value, we can sign extend all of the
707 // operands (often constants). This would allow analysis of something like
708 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
709
710 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
711 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
712 return Result;
713}
714
715// get - Get a canonical add expression, or something simpler if possible.
Dan Gohman89f85052007-10-22 18:31:58 +0000716SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000717 assert(!Ops.empty() && "Cannot get empty add!");
718 if (Ops.size() == 1) return Ops[0];
719
720 // Sort by complexity, this groups all similar expression types together.
721 GroupByComplexity(Ops);
722
723 // If there are any constants, fold them together.
724 unsigned Idx = 0;
725 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
726 ++Idx;
727 assert(Idx < Ops.size());
728 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
729 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000730 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
731 RHSC->getValue()->getValue());
732 Ops[0] = getConstant(Fold);
733 Ops.erase(Ops.begin()+1); // Erase the folded element
734 if (Ops.size() == 1) return Ops[0];
735 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000736 }
737
738 // If we are left with a constant zero being added, strip it off.
739 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
740 Ops.erase(Ops.begin());
741 --Idx;
742 }
743 }
744
745 if (Ops.size() == 1) return Ops[0];
746
747 // Okay, check to see if the same value occurs in the operand list twice. If
748 // so, merge them together into an multiply expression. Since we sorted the
749 // list, these values are required to be adjacent.
750 const Type *Ty = Ops[0]->getType();
751 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
752 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
753 // Found a match, merge the two values into a multiply, and add any
754 // remaining values to the result.
Dan Gohman89f85052007-10-22 18:31:58 +0000755 SCEVHandle Two = getIntegerSCEV(2, Ty);
756 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757 if (Ops.size() == 2)
758 return Mul;
759 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
760 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +0000761 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000762 }
763
764 // Now we know the first non-constant operand. Skip past any cast SCEVs.
765 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
766 ++Idx;
767
768 // If there are add operands they would be next.
769 if (Idx < Ops.size()) {
770 bool DeletedAdd = false;
771 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
772 // If we have an add, expand the add operands onto the end of the operands
773 // list.
774 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
775 Ops.erase(Ops.begin()+Idx);
776 DeletedAdd = true;
777 }
778
779 // If we deleted at least one add, we added operands to the end of the list,
780 // and they are not necessarily sorted. Recurse to resort and resimplify
781 // any operands we just aquired.
782 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +0000783 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000784 }
785
786 // Skip over the add expression until we get to a multiply.
787 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
788 ++Idx;
789
790 // If we are adding something to a multiply expression, make sure the
791 // something is not already an operand of the multiply. If so, merge it into
792 // the multiply.
793 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
794 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
795 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
796 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
797 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
798 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
799 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
800 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
801 if (Mul->getNumOperands() != 2) {
802 // If the multiply has more than two operands, we must get the
803 // Y*Z term.
804 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
805 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000806 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000807 }
Dan Gohman89f85052007-10-22 18:31:58 +0000808 SCEVHandle One = getIntegerSCEV(1, Ty);
809 SCEVHandle AddOne = getAddExpr(InnerMul, One);
810 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000811 if (Ops.size() == 2) return OuterMul;
812 if (AddOp < Idx) {
813 Ops.erase(Ops.begin()+AddOp);
814 Ops.erase(Ops.begin()+Idx-1);
815 } else {
816 Ops.erase(Ops.begin()+Idx);
817 Ops.erase(Ops.begin()+AddOp-1);
818 }
819 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +0000820 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000821 }
822
823 // Check this multiply against other multiplies being added together.
824 for (unsigned OtherMulIdx = Idx+1;
825 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
826 ++OtherMulIdx) {
827 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
828 // If MulOp occurs in OtherMul, we can fold the two multiplies
829 // together.
830 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
831 OMulOp != e; ++OMulOp)
832 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
833 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
834 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
835 if (Mul->getNumOperands() != 2) {
836 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
837 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000838 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000839 }
840 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
841 if (OtherMul->getNumOperands() != 2) {
842 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
843 OtherMul->op_end());
844 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000845 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000846 }
Dan Gohman89f85052007-10-22 18:31:58 +0000847 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
848 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000849 if (Ops.size() == 2) return OuterMul;
850 Ops.erase(Ops.begin()+Idx);
851 Ops.erase(Ops.begin()+OtherMulIdx-1);
852 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +0000853 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000854 }
855 }
856 }
857 }
858
859 // If there are any add recurrences in the operands list, see if any other
860 // added values are loop invariant. If so, we can fold them into the
861 // recurrence.
862 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
863 ++Idx;
864
865 // Scan over all recurrences, trying to fold loop invariants into them.
866 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
867 // Scan all of the other operands to this add and add them to the vector if
868 // they are loop invariant w.r.t. the recurrence.
869 std::vector<SCEVHandle> LIOps;
870 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
871 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
872 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
873 LIOps.push_back(Ops[i]);
874 Ops.erase(Ops.begin()+i);
875 --i; --e;
876 }
877
878 // If we found some loop invariants, fold them into the recurrence.
879 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +0000880 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000881 LIOps.push_back(AddRec->getStart());
882
883 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +0000884 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000885
Dan Gohman89f85052007-10-22 18:31:58 +0000886 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000887 // If all of the other operands were loop invariant, we are done.
888 if (Ops.size() == 1) return NewRec;
889
890 // Otherwise, add the folded AddRec by the non-liv parts.
891 for (unsigned i = 0;; ++i)
892 if (Ops[i] == AddRec) {
893 Ops[i] = NewRec;
894 break;
895 }
Dan Gohman89f85052007-10-22 18:31:58 +0000896 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000897 }
898
899 // Okay, if there weren't any loop invariants to be folded, check to see if
900 // there are multiple AddRec's with the same loop induction variable being
901 // added together. If so, we can fold them.
902 for (unsigned OtherIdx = Idx+1;
903 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
904 if (OtherIdx != Idx) {
905 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
906 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
907 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
908 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
909 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
910 if (i >= NewOps.size()) {
911 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
912 OtherAddRec->op_end());
913 break;
914 }
Dan Gohman89f85052007-10-22 18:31:58 +0000915 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000916 }
Dan Gohman89f85052007-10-22 18:31:58 +0000917 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000918
919 if (Ops.size() == 2) return NewAddRec;
920
921 Ops.erase(Ops.begin()+Idx);
922 Ops.erase(Ops.begin()+OtherIdx-1);
923 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +0000924 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000925 }
926 }
927
928 // Otherwise couldn't fold anything into this recurrence. Move onto the
929 // next one.
930 }
931
932 // Okay, it looks like we really DO need an add expr. Check to see if we
933 // already have one, otherwise create a new one.
934 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
935 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
936 SCEVOps)];
937 if (Result == 0) Result = new SCEVAddExpr(Ops);
938 return Result;
939}
940
941
Dan Gohman89f85052007-10-22 18:31:58 +0000942SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 assert(!Ops.empty() && "Cannot get empty mul!");
944
945 // Sort by complexity, this groups all similar expression types together.
946 GroupByComplexity(Ops);
947
948 // If there are any constants, fold them together.
949 unsigned Idx = 0;
950 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
951
952 // C1*(C2+V) -> C1*C2 + C1*V
953 if (Ops.size() == 2)
954 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
955 if (Add->getNumOperands() == 2 &&
956 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +0000957 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
958 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000959
960
961 ++Idx;
962 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
963 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000964 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
965 RHSC->getValue()->getValue());
966 Ops[0] = getConstant(Fold);
967 Ops.erase(Ops.begin()+1); // Erase the folded element
968 if (Ops.size() == 1) return Ops[0];
969 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000970 }
971
972 // If we are left with a constant one being multiplied, strip it off.
973 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
974 Ops.erase(Ops.begin());
975 --Idx;
976 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
977 // If we have a multiply of zero, it will always be zero.
978 return Ops[0];
979 }
980 }
981
982 // Skip over the add expression until we get to a multiply.
983 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
984 ++Idx;
985
986 if (Ops.size() == 1)
987 return Ops[0];
988
989 // If there are mul operands inline them all into this expression.
990 if (Idx < Ops.size()) {
991 bool DeletedMul = false;
992 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
993 // If we have an mul, expand the mul operands onto the end of the operands
994 // list.
995 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
996 Ops.erase(Ops.begin()+Idx);
997 DeletedMul = true;
998 }
999
1000 // If we deleted at least one mul, we added operands to the end of the list,
1001 // and they are not necessarily sorted. Recurse to resort and resimplify
1002 // any operands we just aquired.
1003 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +00001004 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005 }
1006
1007 // If there are any add recurrences in the operands list, see if any other
1008 // added values are loop invariant. If so, we can fold them into the
1009 // recurrence.
1010 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1011 ++Idx;
1012
1013 // Scan over all recurrences, trying to fold loop invariants into them.
1014 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1015 // Scan all of the other operands to this mul and add them to the vector if
1016 // they are loop invariant w.r.t. the recurrence.
1017 std::vector<SCEVHandle> LIOps;
1018 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1019 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1020 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1021 LIOps.push_back(Ops[i]);
1022 Ops.erase(Ops.begin()+i);
1023 --i; --e;
1024 }
1025
1026 // If we found some loop invariants, fold them into the recurrence.
1027 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001028 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 std::vector<SCEVHandle> NewOps;
1030 NewOps.reserve(AddRec->getNumOperands());
1031 if (LIOps.size() == 1) {
1032 SCEV *Scale = LIOps[0];
1033 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +00001034 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 } else {
1036 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1037 std::vector<SCEVHandle> MulOps(LIOps);
1038 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001039 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001040 }
1041 }
1042
Dan Gohman89f85052007-10-22 18:31:58 +00001043 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001044
1045 // If all of the other operands were loop invariant, we are done.
1046 if (Ops.size() == 1) return NewRec;
1047
1048 // Otherwise, multiply the folded AddRec by the non-liv parts.
1049 for (unsigned i = 0;; ++i)
1050 if (Ops[i] == AddRec) {
1051 Ops[i] = NewRec;
1052 break;
1053 }
Dan Gohman89f85052007-10-22 18:31:58 +00001054 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001055 }
1056
1057 // Okay, if there weren't any loop invariants to be folded, check to see if
1058 // there are multiple AddRec's with the same loop induction variable being
1059 // multiplied together. If so, we can fold them.
1060 for (unsigned OtherIdx = Idx+1;
1061 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1062 if (OtherIdx != Idx) {
1063 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1064 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1065 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1066 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman89f85052007-10-22 18:31:58 +00001067 SCEVHandle NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001068 G->getStart());
Dan Gohman89f85052007-10-22 18:31:58 +00001069 SCEVHandle B = F->getStepRecurrence(*this);
1070 SCEVHandle D = G->getStepRecurrence(*this);
1071 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1072 getMulExpr(G, B),
1073 getMulExpr(B, D));
1074 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1075 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001076 if (Ops.size() == 2) return NewAddRec;
1077
1078 Ops.erase(Ops.begin()+Idx);
1079 Ops.erase(Ops.begin()+OtherIdx-1);
1080 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001081 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001082 }
1083 }
1084
1085 // Otherwise couldn't fold anything into this recurrence. Move onto the
1086 // next one.
1087 }
1088
1089 // Okay, it looks like we really DO need an mul expr. Check to see if we
1090 // already have one, otherwise create a new one.
1091 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1092 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1093 SCEVOps)];
1094 if (Result == 0)
1095 Result = new SCEVMulExpr(Ops);
1096 return Result;
1097}
1098
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001099SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001100 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1101 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky35b56022009-01-13 09:18:58 +00001102 return LHS; // X udiv 1 --> x
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103
1104 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1105 Constant *LHSCV = LHSC->getValue();
1106 Constant *RHSCV = RHSC->getValue();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001107 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001108 }
1109 }
1110
Nick Lewycky35b56022009-01-13 09:18:58 +00001111 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1112
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001113 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1114 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001115 return Result;
1116}
1117
1118
1119/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1120/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001121SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001122 const SCEVHandle &Step, const Loop *L) {
1123 std::vector<SCEVHandle> Operands;
1124 Operands.push_back(Start);
1125 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1126 if (StepChrec->getLoop() == L) {
1127 Operands.insert(Operands.end(), StepChrec->op_begin(),
1128 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001129 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001130 }
1131
1132 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001133 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001134}
1135
1136/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1137/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001138SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001139 const Loop *L) {
1140 if (Operands.size() == 1) return Operands[0];
1141
Dan Gohman7b560c42008-06-18 16:23:07 +00001142 if (Operands.back()->isZero()) {
1143 Operands.pop_back();
Dan Gohmanabe991f2008-09-14 17:21:12 +00001144 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohman7b560c42008-06-18 16:23:07 +00001145 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001146
Dan Gohman42936882008-08-08 18:33:12 +00001147 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1148 if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1149 const Loop* NestedLoop = NestedAR->getLoop();
1150 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1151 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1152 NestedAR->op_end());
1153 SCEVHandle NestedARHandle(NestedAR);
1154 Operands[0] = NestedAR->getStart();
1155 NestedOperands[0] = getAddRecExpr(Operands, L);
1156 return getAddRecExpr(NestedOperands, NestedLoop);
1157 }
1158 }
1159
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001160 SCEVAddRecExpr *&Result =
1161 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1162 Operands.end()))];
1163 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1164 return Result;
1165}
1166
Nick Lewycky711640a2007-11-25 22:41:31 +00001167SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1168 const SCEVHandle &RHS) {
1169 std::vector<SCEVHandle> Ops;
1170 Ops.push_back(LHS);
1171 Ops.push_back(RHS);
1172 return getSMaxExpr(Ops);
1173}
1174
1175SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1176 assert(!Ops.empty() && "Cannot get empty smax!");
1177 if (Ops.size() == 1) return Ops[0];
1178
1179 // Sort by complexity, this groups all similar expression types together.
1180 GroupByComplexity(Ops);
1181
1182 // If there are any constants, fold them together.
1183 unsigned Idx = 0;
1184 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1185 ++Idx;
1186 assert(Idx < Ops.size());
1187 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1188 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001189 ConstantInt *Fold = ConstantInt::get(
Nick Lewycky711640a2007-11-25 22:41:31 +00001190 APIntOps::smax(LHSC->getValue()->getValue(),
1191 RHSC->getValue()->getValue()));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001192 Ops[0] = getConstant(Fold);
1193 Ops.erase(Ops.begin()+1); // Erase the folded element
1194 if (Ops.size() == 1) return Ops[0];
1195 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewycky711640a2007-11-25 22:41:31 +00001196 }
1197
1198 // If we are left with a constant -inf, strip it off.
1199 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1200 Ops.erase(Ops.begin());
1201 --Idx;
1202 }
1203 }
1204
1205 if (Ops.size() == 1) return Ops[0];
1206
1207 // Find the first SMax
1208 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1209 ++Idx;
1210
1211 // Check to see if one of the operands is an SMax. If so, expand its operands
1212 // onto our operand list, and recurse to simplify.
1213 if (Idx < Ops.size()) {
1214 bool DeletedSMax = false;
1215 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1216 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1217 Ops.erase(Ops.begin()+Idx);
1218 DeletedSMax = true;
1219 }
1220
1221 if (DeletedSMax)
1222 return getSMaxExpr(Ops);
1223 }
1224
1225 // Okay, check to see if the same value occurs in the operand list twice. If
1226 // so, delete one. Since we sorted the list, these values are required to
1227 // be adjacent.
1228 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1229 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1230 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1231 --i; --e;
1232 }
1233
1234 if (Ops.size() == 1) return Ops[0];
1235
1236 assert(!Ops.empty() && "Reduced smax down to nothing!");
1237
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001238 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewycky711640a2007-11-25 22:41:31 +00001239 // already have one, otherwise create a new one.
1240 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1241 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1242 SCEVOps)];
1243 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1244 return Result;
1245}
1246
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001247SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1248 const SCEVHandle &RHS) {
1249 std::vector<SCEVHandle> Ops;
1250 Ops.push_back(LHS);
1251 Ops.push_back(RHS);
1252 return getUMaxExpr(Ops);
1253}
1254
1255SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1256 assert(!Ops.empty() && "Cannot get empty umax!");
1257 if (Ops.size() == 1) return Ops[0];
1258
1259 // Sort by complexity, this groups all similar expression types together.
1260 GroupByComplexity(Ops);
1261
1262 // If there are any constants, fold them together.
1263 unsigned Idx = 0;
1264 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1265 ++Idx;
1266 assert(Idx < Ops.size());
1267 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1268 // We found two constants, fold them together!
1269 ConstantInt *Fold = ConstantInt::get(
1270 APIntOps::umax(LHSC->getValue()->getValue(),
1271 RHSC->getValue()->getValue()));
1272 Ops[0] = getConstant(Fold);
1273 Ops.erase(Ops.begin()+1); // Erase the folded element
1274 if (Ops.size() == 1) return Ops[0];
1275 LHSC = cast<SCEVConstant>(Ops[0]);
1276 }
1277
1278 // If we are left with a constant zero, strip it off.
1279 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1280 Ops.erase(Ops.begin());
1281 --Idx;
1282 }
1283 }
1284
1285 if (Ops.size() == 1) return Ops[0];
1286
1287 // Find the first UMax
1288 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1289 ++Idx;
1290
1291 // Check to see if one of the operands is a UMax. If so, expand its operands
1292 // onto our operand list, and recurse to simplify.
1293 if (Idx < Ops.size()) {
1294 bool DeletedUMax = false;
1295 while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1296 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1297 Ops.erase(Ops.begin()+Idx);
1298 DeletedUMax = true;
1299 }
1300
1301 if (DeletedUMax)
1302 return getUMaxExpr(Ops);
1303 }
1304
1305 // Okay, check to see if the same value occurs in the operand list twice. If
1306 // so, delete one. Since we sorted the list, these values are required to
1307 // be adjacent.
1308 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1309 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1310 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1311 --i; --e;
1312 }
1313
1314 if (Ops.size() == 1) return Ops[0];
1315
1316 assert(!Ops.empty() && "Reduced umax down to nothing!");
1317
1318 // Okay, it looks like we really DO need a umax expr. Check to see if we
1319 // already have one, otherwise create a new one.
1320 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1321 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1322 SCEVOps)];
1323 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1324 return Result;
1325}
1326
Dan Gohman89f85052007-10-22 18:31:58 +00001327SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001328 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman89f85052007-10-22 18:31:58 +00001329 return getConstant(CI);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001330 if (isa<ConstantPointerNull>(V))
1331 return getIntegerSCEV(0, V->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001332 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1333 if (Result == 0) Result = new SCEVUnknown(V);
1334 return Result;
1335}
1336
1337
1338//===----------------------------------------------------------------------===//
1339// ScalarEvolutionsImpl Definition and Implementation
1340//===----------------------------------------------------------------------===//
1341//
1342/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1343/// evolution code.
1344///
1345namespace {
1346 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
Dan Gohman89f85052007-10-22 18:31:58 +00001347 /// SE - A reference to the public ScalarEvolution object.
1348 ScalarEvolution &SE;
1349
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001350 /// F - The function we are analyzing.
1351 ///
1352 Function &F;
1353
1354 /// LI - The loop information for the function we are currently analyzing.
1355 ///
1356 LoopInfo &LI;
1357
Dan Gohman01c2ee72009-04-16 03:18:22 +00001358 /// TD - The target data information for the target we are targetting.
1359 ///
1360 TargetData &TD;
1361
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001362 /// UnknownValue - This SCEV is used to represent unknown trip counts and
1363 /// things.
1364 SCEVHandle UnknownValue;
1365
1366 /// Scalars - This is a cache of the scalars we have analyzed so far.
1367 ///
1368 std::map<Value*, SCEVHandle> Scalars;
1369
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001370 /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
1371 /// this function as they are computed.
1372 std::map<const Loop*, SCEVHandle> BackedgeTakenCounts;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001373
1374 /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1375 /// the PHI instructions that we attempt to compute constant evolutions for.
1376 /// This allows us to avoid potentially expensive recomputation of these
1377 /// properties. An instruction maps to null if we are unable to compute its
1378 /// exit value.
1379 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1380
1381 public:
Dan Gohman01c2ee72009-04-16 03:18:22 +00001382 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li,
1383 TargetData &td)
1384 : SE(se), F(f), LI(li), TD(td), UnknownValue(new SCEVCouldNotCompute()) {}
1385
1386 /// getIntegerSCEV - Given an integer or FP type, create a constant for the
1387 /// specified signed integer value and return a SCEV for the constant.
1388 SCEVHandle getIntegerSCEV(int Val, const Type *Ty);
1389
1390 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1391 ///
1392 SCEVHandle getNegativeSCEV(const SCEVHandle &V);
1393
1394 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1395 ///
1396 SCEVHandle getNotSCEV(const SCEVHandle &V);
1397
1398 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1399 ///
1400 SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS);
1401
1402 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
1403 /// of the input value to the specified type. If the type must be extended,
1404 /// it is zero extended.
1405 SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty);
1406
1407 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
1408 /// of the input value to the specified type. If the type must be extended,
1409 /// it is sign extended.
1410 SCEVHandle getTruncateOrSignExtend(const SCEVHandle &V, const Type *Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001411
1412 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1413 /// expression and create a new one.
1414 SCEVHandle getSCEV(Value *V);
1415
1416 /// hasSCEV - Return true if the SCEV for this value has already been
1417 /// computed.
1418 bool hasSCEV(Value *V) const {
1419 return Scalars.count(V);
1420 }
1421
1422 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1423 /// the specified value.
1424 void setSCEV(Value *V, const SCEVHandle &H) {
1425 bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1426 assert(isNew && "This entry already existed!");
Devang Patelfc736502008-11-11 19:17:41 +00001427 isNew = false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001428 }
1429
1430
1431 /// getSCEVAtScope - Compute the value of the specified expression within
1432 /// the indicated loop (which may be null to indicate in no loop). If the
1433 /// expression cannot be evaluated, return UnknownValue itself.
1434 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1435
1436
Dan Gohmancacd2012009-02-12 22:19:27 +00001437 /// isLoopGuardedByCond - Test whether entry to the loop is protected by
1438 /// a conditional between LHS and RHS.
1439 bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
1440 SCEV *LHS, SCEV *RHS);
1441
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001442 /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
1443 /// has an analyzable loop-invariant backedge-taken count.
1444 bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001445
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001446 /// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00001447 /// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001448 /// ScalarEvolution's ability to compute a trip count, or if the loop
1449 /// is deleted.
1450 void forgetLoopBackedgeTakenCount(const Loop *L);
Dan Gohmanf3a060a2009-02-17 20:49:49 +00001451
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001452 /// getBackedgeTakenCount - If the specified loop has a predictable
1453 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
1454 /// object. The backedge-taken count is the number of times the loop header
1455 /// will be branched to from within the loop. This is one less than the
1456 /// trip count of the loop, since it doesn't count the first iteration,
1457 /// when the header is branched to from outside the loop.
1458 ///
1459 /// Note that it is not valid to call this method on a loop without a
1460 /// loop-invariant backedge-taken count (see
1461 /// hasLoopInvariantBackedgeTakenCount).
1462 ///
1463 SCEVHandle getBackedgeTakenCount(const Loop *L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001464
1465 /// deleteValueFromRecords - This method should be called by the
1466 /// client before it removes a value from the program, to make sure
1467 /// that no dangling references are left around.
1468 void deleteValueFromRecords(Value *V);
1469
Dan Gohman01c2ee72009-04-16 03:18:22 +00001470 /// getTargetData - Return the TargetData.
1471 const TargetData &getTargetData() const;
1472
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001473 private:
1474 /// createSCEV - We know that there is no SCEV for the specified value.
1475 /// Analyze the expression.
1476 SCEVHandle createSCEV(Value *V);
1477
1478 /// createNodeForPHI - Provide the special handling we need to analyze PHI
1479 /// SCEVs.
1480 SCEVHandle createNodeForPHI(PHINode *PN);
1481
1482 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1483 /// for the specified instruction and replaces any references to the
1484 /// symbolic value SymName with the specified value. This is used during
1485 /// PHI resolution.
1486 void ReplaceSymbolicValueWithConcrete(Instruction *I,
1487 const SCEVHandle &SymName,
1488 const SCEVHandle &NewVal);
1489
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001490 /// ComputeBackedgeTakenCount - Compute the number of times the specified
1491 /// loop will iterate.
1492 SCEVHandle ComputeBackedgeTakenCount(const Loop *L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001493
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001494 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
1495 /// of 'icmp op load X, cst', try to see if we can compute the trip count.
1496 SCEVHandle
1497 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
1498 Constant *RHS,
1499 const Loop *L,
1500 ICmpInst::Predicate p);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001501
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001502 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
1503 /// a constant number of times (the condition evolves only from constants),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001504 /// try to evaluate a few iterations of the loop until we get the exit
1505 /// condition gets a value of ExitWhen (true or false). If we cannot
1506 /// evaluate the trip count of the loop, return UnknownValue.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001507 SCEVHandle ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond,
1508 bool ExitWhen);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001509
1510 /// HowFarToZero - Return the number of times a backedge comparing the
1511 /// specified value to zero will execute. If not computable, return
1512 /// UnknownValue.
1513 SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1514
1515 /// HowFarToNonZero - Return the number of times a backedge checking the
1516 /// specified value for nonzero will execute. If not computable, return
1517 /// UnknownValue.
1518 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1519
1520 /// HowManyLessThans - Return the number of times a backedge containing the
1521 /// specified less-than comparison will execute. If not computable, return
Nick Lewyckyb7c28942007-08-06 19:21:00 +00001522 /// UnknownValue. isSigned specifies whether the less-than is signed.
1523 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
Nick Lewycky35b56022009-01-13 09:18:58 +00001524 bool isSigned);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001525
Dan Gohman1cddf972008-09-15 22:18:04 +00001526 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
1527 /// (which may not be an immediate predecessor) which has exactly one
1528 /// successor from which BB is reachable, or null if no such block is
1529 /// found.
1530 BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
1531
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001532 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1533 /// in the header of its containing loop, we know the loop executes a
1534 /// constant number of times, and the PHI node is just a recurrence
1535 /// involving constants, fold it.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001536 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001537 const Loop *L);
1538 };
1539}
1540
1541//===----------------------------------------------------------------------===//
1542// Basic SCEV Analysis and PHI Idiom Recognition Code
1543//
1544
1545/// deleteValueFromRecords - This method should be called by the
1546/// client before it removes an instruction from the program, to make sure
1547/// that no dangling references are left around.
1548void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
1549 SmallVector<Value *, 16> Worklist;
1550
1551 if (Scalars.erase(V)) {
1552 if (PHINode *PN = dyn_cast<PHINode>(V))
1553 ConstantEvolutionLoopExitValue.erase(PN);
1554 Worklist.push_back(V);
1555 }
1556
1557 while (!Worklist.empty()) {
1558 Value *VV = Worklist.back();
1559 Worklist.pop_back();
1560
1561 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1562 UI != UE; ++UI) {
1563 Instruction *Inst = cast<Instruction>(*UI);
1564 if (Scalars.erase(Inst)) {
1565 if (PHINode *PN = dyn_cast<PHINode>(VV))
1566 ConstantEvolutionLoopExitValue.erase(PN);
1567 Worklist.push_back(Inst);
1568 }
1569 }
1570 }
1571}
1572
Dan Gohman01c2ee72009-04-16 03:18:22 +00001573const TargetData &ScalarEvolutionsImpl::getTargetData() const {
1574 return TD;
1575}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001576
1577/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1578/// expression and create a new one.
1579SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1580 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1581
1582 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1583 if (I != Scalars.end()) return I->second;
1584 SCEVHandle S = createSCEV(V);
1585 Scalars.insert(std::make_pair(V, S));
1586 return S;
1587}
1588
Dan Gohman01c2ee72009-04-16 03:18:22 +00001589/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1590/// specified signed integer value and return a SCEV for the constant.
1591SCEVHandle ScalarEvolutionsImpl::getIntegerSCEV(int Val, const Type *Ty) {
1592 if (isa<PointerType>(Ty))
1593 Ty = TD.getIntPtrType();
1594 Constant *C;
1595 if (Val == 0)
1596 C = Constant::getNullValue(Ty);
1597 else if (Ty->isFloatingPoint())
1598 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1599 APFloat::IEEEdouble, Val));
1600 else
1601 C = ConstantInt::get(Ty, Val);
1602 return SE.getUnknown(C);
1603}
1604
1605/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1606///
1607SCEVHandle ScalarEvolutionsImpl::getNegativeSCEV(const SCEVHandle &V) {
1608 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1609 return SE.getUnknown(ConstantExpr::getNeg(VC->getValue()));
1610
1611 const Type *Ty = V->getType();
1612 if (isa<PointerType>(Ty))
1613 Ty = TD.getIntPtrType();
1614 return SE.getMulExpr(V, SE.getConstant(ConstantInt::getAllOnesValue(Ty)));
1615}
1616
1617/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1618SCEVHandle ScalarEvolutionsImpl::getNotSCEV(const SCEVHandle &V) {
1619 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1620 return SE.getUnknown(ConstantExpr::getNot(VC->getValue()));
1621
1622 const Type *Ty = V->getType();
1623 if (isa<PointerType>(Ty))
1624 Ty = TD.getIntPtrType();
1625 SCEVHandle AllOnes = SE.getConstant(ConstantInt::getAllOnesValue(Ty));
1626 return getMinusSCEV(AllOnes, V);
1627}
1628
1629/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1630///
1631SCEVHandle ScalarEvolutionsImpl::getMinusSCEV(const SCEVHandle &LHS,
1632 const SCEVHandle &RHS) {
1633 // X - Y --> X + -Y
1634 return SE.getAddExpr(LHS, SE.getNegativeSCEV(RHS));
1635}
1636
1637/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1638/// input value to the specified type. If the type must be extended, it is zero
1639/// extended.
1640SCEVHandle
1641ScalarEvolutionsImpl::getTruncateOrZeroExtend(const SCEVHandle &V,
1642 const Type *Ty) {
1643 const Type *SrcTy = V->getType();
1644 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
1645 (Ty->isInteger() || isa<PointerType>(Ty)) &&
1646 "Cannot truncate or zero extend with non-integer arguments!");
1647 if (TD.getTypeSizeInBits(SrcTy) == TD.getTypeSizeInBits(Ty))
1648 return V; // No conversion
1649 if (TD.getTypeSizeInBits(SrcTy) > TD.getTypeSizeInBits(Ty))
1650 return SE.getTruncateExpr(V, Ty);
1651 return SE.getZeroExtendExpr(V, Ty);
1652}
1653
1654/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1655/// input value to the specified type. If the type must be extended, it is sign
1656/// extended.
1657SCEVHandle
1658ScalarEvolutionsImpl::getTruncateOrSignExtend(const SCEVHandle &V,
1659 const Type *Ty) {
1660 const Type *SrcTy = V->getType();
1661 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
1662 (Ty->isInteger() || isa<PointerType>(Ty)) &&
1663 "Cannot truncate or zero extend with non-integer arguments!");
1664 if (TD.getTypeSizeInBits(SrcTy) == TD.getTypeSizeInBits(Ty))
1665 return V; // No conversion
1666 if (TD.getTypeSizeInBits(SrcTy) > TD.getTypeSizeInBits(Ty))
1667 return SE.getTruncateExpr(V, Ty);
1668 return SE.getSignExtendExpr(V, Ty);
1669}
1670
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001671/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1672/// the specified instruction and replaces any references to the symbolic value
1673/// SymName with the specified value. This is used during PHI resolution.
1674void ScalarEvolutionsImpl::
1675ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1676 const SCEVHandle &NewVal) {
1677 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1678 if (SI == Scalars.end()) return;
1679
1680 SCEVHandle NV =
Dan Gohman89f85052007-10-22 18:31:58 +00001681 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001682 if (NV == SI->second) return; // No change.
1683
1684 SI->second = NV; // Update the scalars map!
1685
1686 // Any instruction values that use this instruction might also need to be
1687 // updated!
1688 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1689 UI != E; ++UI)
1690 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1691}
1692
1693/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1694/// a loop header, making it a potential recurrence, or it doesn't.
1695///
1696SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1697 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1698 if (const Loop *L = LI.getLoopFor(PN->getParent()))
1699 if (L->getHeader() == PN->getParent()) {
1700 // If it lives in the loop header, it has two incoming values, one
1701 // from outside the loop, and one from inside.
1702 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1703 unsigned BackEdge = IncomingEdge^1;
1704
1705 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman89f85052007-10-22 18:31:58 +00001706 SCEVHandle SymbolicName = SE.getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707 assert(Scalars.find(PN) == Scalars.end() &&
1708 "PHI node already processed?");
1709 Scalars.insert(std::make_pair(PN, SymbolicName));
1710
1711 // Using this symbolic name for the PHI, analyze the value coming around
1712 // the back-edge.
1713 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1714
1715 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1716 // has a special value for the first iteration of the loop.
1717
1718 // If the value coming around the backedge is an add with the symbolic
1719 // value we just inserted, then we found a simple induction variable!
1720 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1721 // If there is a single occurrence of the symbolic value, replace it
1722 // with a recurrence.
1723 unsigned FoundIndex = Add->getNumOperands();
1724 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1725 if (Add->getOperand(i) == SymbolicName)
1726 if (FoundIndex == e) {
1727 FoundIndex = i;
1728 break;
1729 }
1730
1731 if (FoundIndex != Add->getNumOperands()) {
1732 // Create an add with everything but the specified operand.
1733 std::vector<SCEVHandle> Ops;
1734 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1735 if (i != FoundIndex)
1736 Ops.push_back(Add->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001737 SCEVHandle Accum = SE.getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001738
1739 // This is not a valid addrec if the step amount is varying each
1740 // loop iteration, but is not itself an addrec in this loop.
1741 if (Accum->isLoopInvariant(L) ||
1742 (isa<SCEVAddRecExpr>(Accum) &&
1743 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1744 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohman89f85052007-10-22 18:31:58 +00001745 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001746
1747 // Okay, for the entire analysis of this edge we assumed the PHI
1748 // to be symbolic. We now need to go back and update all of the
1749 // entries for the scalars that use the PHI (except for the PHI
1750 // itself) to use the new analyzed value instead of the "symbolic"
1751 // value.
1752 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1753 return PHISCEV;
1754 }
1755 }
1756 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1757 // Otherwise, this could be a loop like this:
1758 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1759 // In this case, j = {1,+,1} and BEValue is j.
1760 // Because the other in-value of i (0) fits the evolution of BEValue
1761 // i really is an addrec evolution.
1762 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1763 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1764
1765 // If StartVal = j.start - j.stride, we can use StartVal as the
1766 // initial step of the addrec evolution.
Dan Gohman89f85052007-10-22 18:31:58 +00001767 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0),
1768 AddRec->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001769 SCEVHandle PHISCEV =
Dan Gohman89f85052007-10-22 18:31:58 +00001770 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001771
1772 // Okay, for the entire analysis of this edge we assumed the PHI
1773 // to be symbolic. We now need to go back and update all of the
1774 // entries for the scalars that use the PHI (except for the PHI
1775 // itself) to use the new analyzed value instead of the "symbolic"
1776 // value.
1777 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1778 return PHISCEV;
1779 }
1780 }
1781 }
1782
1783 return SymbolicName;
1784 }
1785
1786 // If it's not a loop phi, we can't handle it yet.
Dan Gohman89f85052007-10-22 18:31:58 +00001787 return SE.getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001788}
1789
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001790/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1791/// guaranteed to end in (at every loop iteration). It is, at the same time,
1792/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
1793/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001794static uint32_t GetMinTrailingZeros(SCEVHandle S, const TargetData &TD) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001795 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00001796 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001797
Nick Lewycky3a8a41f2007-11-20 08:44:50 +00001798 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001799 return std::min(GetMinTrailingZeros(T->getOperand(), TD),
1800 (uint32_t)TD.getTypeSizeInBits(T->getType()));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001801
1802 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001803 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), TD);
1804 return OpRes == TD.getTypeSizeInBits(E->getOperand()->getType()) ?
1805 TD.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001806 }
1807
1808 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001809 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), TD);
1810 return OpRes == TD.getTypeSizeInBits(E->getOperand()->getType()) ?
1811 TD.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001812 }
1813
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001814 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001815 // The result is the min of all operands results.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001816 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), TD);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001817 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman01c2ee72009-04-16 03:18:22 +00001818 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), TD));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001819 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001820 }
1821
1822 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001823 // The result is the sum of all operands results.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001824 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), TD);
1825 uint32_t BitWidth = TD.getTypeSizeInBits(M->getType());
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001826 for (unsigned i = 1, e = M->getNumOperands();
1827 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman01c2ee72009-04-16 03:18:22 +00001828 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), TD),
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001829 BitWidth);
1830 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001831 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001832
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001833 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001834 // The result is the min of all operands results.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001835 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), TD);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001836 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman01c2ee72009-04-16 03:18:22 +00001837 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), TD));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001838 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001839 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001840
Nick Lewycky711640a2007-11-25 22:41:31 +00001841 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1842 // The result is the min of all operands results.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001843 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), TD);
Nick Lewycky711640a2007-11-25 22:41:31 +00001844 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman01c2ee72009-04-16 03:18:22 +00001845 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), TD));
Nick Lewycky711640a2007-11-25 22:41:31 +00001846 return MinOpRes;
1847 }
1848
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001849 if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1850 // The result is the min of all operands results.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001851 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), TD);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001852 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman01c2ee72009-04-16 03:18:22 +00001853 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), TD));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001854 return MinOpRes;
1855 }
1856
Nick Lewycky35b56022009-01-13 09:18:58 +00001857 // SCEVUDivExpr, SCEVUnknown
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001858 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001859}
1860
1861/// createSCEV - We know that there is no SCEV for the specified value.
1862/// Analyze the expression.
1863///
1864SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001865 if (!isa<IntegerType>(V->getType()) &&
1866 !isa<PointerType>(V->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00001867 return SE.getUnknown(V);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001868
Dan Gohman3996f472008-06-22 19:56:46 +00001869 unsigned Opcode = Instruction::UserOp1;
1870 if (Instruction *I = dyn_cast<Instruction>(V))
1871 Opcode = I->getOpcode();
1872 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1873 Opcode = CE->getOpcode();
1874 else
1875 return SE.getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001876
Dan Gohman3996f472008-06-22 19:56:46 +00001877 User *U = cast<User>(V);
1878 switch (Opcode) {
1879 case Instruction::Add:
1880 return SE.getAddExpr(getSCEV(U->getOperand(0)),
1881 getSCEV(U->getOperand(1)));
1882 case Instruction::Mul:
1883 return SE.getMulExpr(getSCEV(U->getOperand(0)),
1884 getSCEV(U->getOperand(1)));
1885 case Instruction::UDiv:
1886 return SE.getUDivExpr(getSCEV(U->getOperand(0)),
1887 getSCEV(U->getOperand(1)));
1888 case Instruction::Sub:
1889 return SE.getMinusSCEV(getSCEV(U->getOperand(0)),
1890 getSCEV(U->getOperand(1)));
1891 case Instruction::Or:
1892 // If the RHS of the Or is a constant, we may have something like:
1893 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
1894 // optimizations will transparently handle this case.
1895 //
1896 // In order for this transformation to be safe, the LHS must be of the
1897 // form X*(2^n) and the Or constant must be less than 2^n.
1898 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1899 SCEVHandle LHS = getSCEV(U->getOperand(0));
1900 const APInt &CIVal = CI->getValue();
Dan Gohman01c2ee72009-04-16 03:18:22 +00001901 if (GetMinTrailingZeros(LHS, TD) >=
Dan Gohman3996f472008-06-22 19:56:46 +00001902 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
1903 return SE.getAddExpr(LHS, getSCEV(U->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001904 }
Dan Gohman3996f472008-06-22 19:56:46 +00001905 break;
1906 case Instruction::Xor:
Dan Gohman3996f472008-06-22 19:56:46 +00001907 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky7fd27892008-07-07 06:15:49 +00001908 // If the RHS of the xor is a signbit, then this is just an add.
1909 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman3996f472008-06-22 19:56:46 +00001910 if (CI->getValue().isSignBit())
1911 return SE.getAddExpr(getSCEV(U->getOperand(0)),
1912 getSCEV(U->getOperand(1)));
Nick Lewycky7fd27892008-07-07 06:15:49 +00001913
1914 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman3996f472008-06-22 19:56:46 +00001915 else if (CI->isAllOnesValue())
1916 return SE.getNotSCEV(getSCEV(U->getOperand(0)));
1917 }
1918 break;
1919
1920 case Instruction::Shl:
1921 // Turn shift left of a constant amount into a multiply.
1922 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1923 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1924 Constant *X = ConstantInt::get(
1925 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1926 return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1927 }
1928 break;
1929
Nick Lewycky7fd27892008-07-07 06:15:49 +00001930 case Instruction::LShr:
Nick Lewycky35b56022009-01-13 09:18:58 +00001931 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky7fd27892008-07-07 06:15:49 +00001932 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1933 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1934 Constant *X = ConstantInt::get(
1935 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1936 return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1937 }
1938 break;
1939
Dan Gohman3996f472008-06-22 19:56:46 +00001940 case Instruction::Trunc:
1941 return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
1942
1943 case Instruction::ZExt:
1944 return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1945
1946 case Instruction::SExt:
1947 return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1948
1949 case Instruction::BitCast:
1950 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001951 if ((U->getType()->isInteger() ||
1952 isa<PointerType>(U->getType())) &&
1953 (U->getOperand(0)->getType()->isInteger() ||
1954 isa<PointerType>(U->getOperand(0)->getType())))
Dan Gohman3996f472008-06-22 19:56:46 +00001955 return getSCEV(U->getOperand(0));
1956 break;
1957
Dan Gohman01c2ee72009-04-16 03:18:22 +00001958 case Instruction::IntToPtr:
1959 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1960 TD.getIntPtrType());
1961
1962 case Instruction::PtrToInt:
1963 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1964 U->getType());
1965
1966 case Instruction::GetElementPtr: {
1967 const Type *IntPtrTy = TD.getIntPtrType();
1968 Value *Base = U->getOperand(0);
1969 SCEVHandle TotalOffset = SE.getIntegerSCEV(0, IntPtrTy);
1970 gep_type_iterator GTI = gep_type_begin(U);
1971 for (GetElementPtrInst::op_iterator I = next(U->op_begin()),
1972 E = U->op_end();
1973 I != E; ++I) {
1974 Value *Index = *I;
1975 // Compute the (potentially symbolic) offset in bytes for this index.
1976 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1977 // For a struct, add the member offset.
1978 const StructLayout &SL = *TD.getStructLayout(STy);
1979 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1980 uint64_t Offset = SL.getElementOffset(FieldNo);
1981 TotalOffset = SE.getAddExpr(TotalOffset,
1982 SE.getIntegerSCEV(Offset, IntPtrTy));
1983 } else {
1984 // For an array, add the element offset, explicitly scaled.
1985 SCEVHandle LocalOffset = getSCEV(Index);
1986 if (!isa<PointerType>(LocalOffset->getType()))
1987 // Getelementptr indicies are signed.
1988 LocalOffset = getTruncateOrSignExtend(LocalOffset,
1989 IntPtrTy);
1990 LocalOffset =
1991 SE.getMulExpr(LocalOffset,
1992 SE.getIntegerSCEV(TD.getTypePaddedSize(*GTI),
1993 IntPtrTy));
1994 TotalOffset = SE.getAddExpr(TotalOffset, LocalOffset);
1995 }
1996 }
1997 return SE.getAddExpr(getSCEV(Base), TotalOffset);
1998 }
1999
Dan Gohman3996f472008-06-22 19:56:46 +00002000 case Instruction::PHI:
2001 return createNodeForPHI(cast<PHINode>(U));
2002
2003 case Instruction::Select:
2004 // This could be a smax or umax that was lowered earlier.
2005 // Try to recover it.
2006 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2007 Value *LHS = ICI->getOperand(0);
2008 Value *RHS = ICI->getOperand(1);
2009 switch (ICI->getPredicate()) {
2010 case ICmpInst::ICMP_SLT:
2011 case ICmpInst::ICMP_SLE:
2012 std::swap(LHS, RHS);
2013 // fall through
2014 case ICmpInst::ICMP_SGT:
2015 case ICmpInst::ICMP_SGE:
2016 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2017 return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2018 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Eli Friedman8e2fd032008-07-30 04:36:32 +00002019 // ~smax(~x, ~y) == smin(x, y).
2020 return SE.getNotSCEV(SE.getSMaxExpr(
2021 SE.getNotSCEV(getSCEV(LHS)),
2022 SE.getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002023 break;
2024 case ICmpInst::ICMP_ULT:
2025 case ICmpInst::ICMP_ULE:
2026 std::swap(LHS, RHS);
2027 // fall through
2028 case ICmpInst::ICMP_UGT:
2029 case ICmpInst::ICMP_UGE:
2030 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2031 return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2032 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2033 // ~umax(~x, ~y) == umin(x, y)
2034 return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)),
2035 SE.getNotSCEV(getSCEV(RHS))));
2036 break;
2037 default:
2038 break;
2039 }
2040 }
2041
2042 default: // We cannot analyze this expression.
2043 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002044 }
2045
Dan Gohman89f85052007-10-22 18:31:58 +00002046 return SE.getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002047}
2048
2049
2050
2051//===----------------------------------------------------------------------===//
2052// Iteration Count Computation Code
2053//
2054
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002055/// getBackedgeTakenCount - If the specified loop has a predictable
2056/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2057/// object. The backedge-taken count is the number of times the loop header
2058/// will be branched to from within the loop. This is one less than the
2059/// trip count of the loop, since it doesn't count the first iteration,
2060/// when the header is branched to from outside the loop.
2061///
2062/// Note that it is not valid to call this method on a loop without a
2063/// loop-invariant backedge-taken count (see
2064/// hasLoopInvariantBackedgeTakenCount).
2065///
2066SCEVHandle ScalarEvolutionsImpl::getBackedgeTakenCount(const Loop *L) {
2067 std::map<const Loop*, SCEVHandle>::iterator I = BackedgeTakenCounts.find(L);
2068 if (I == BackedgeTakenCounts.end()) {
2069 SCEVHandle ItCount = ComputeBackedgeTakenCount(L);
2070 I = BackedgeTakenCounts.insert(std::make_pair(L, ItCount)).first;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002071 if (ItCount != UnknownValue) {
2072 assert(ItCount->isLoopInvariant(L) &&
2073 "Computed trip count isn't loop invariant for loop!");
2074 ++NumTripCountsComputed;
2075 } else if (isa<PHINode>(L->getHeader()->begin())) {
2076 // Only count loops that have phi nodes as not being computable.
2077 ++NumTripCountsNotComputed;
2078 }
2079 }
2080 return I->second;
2081}
2082
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002083/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002084/// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002085/// ScalarEvolution's ability to compute a trip count, or if the loop
2086/// is deleted.
2087void ScalarEvolutionsImpl::forgetLoopBackedgeTakenCount(const Loop *L) {
2088 BackedgeTakenCounts.erase(L);
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002089}
2090
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002091/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2092/// of the specified loop will execute.
2093SCEVHandle ScalarEvolutionsImpl::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002094 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patel02451fa2007-08-21 00:31:24 +00002095 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002096 L->getExitBlocks(ExitBlocks);
2097 if (ExitBlocks.size() != 1) return UnknownValue;
2098
2099 // Okay, there is one exit block. Try to find the condition that causes the
2100 // loop to be exited.
2101 BasicBlock *ExitBlock = ExitBlocks[0];
2102
2103 BasicBlock *ExitingBlock = 0;
2104 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2105 PI != E; ++PI)
2106 if (L->contains(*PI)) {
2107 if (ExitingBlock == 0)
2108 ExitingBlock = *PI;
2109 else
2110 return UnknownValue; // More than one block exiting!
2111 }
2112 assert(ExitingBlock && "No exits from loop, something is broken!");
2113
2114 // Okay, we've computed the exiting block. See what condition causes us to
2115 // exit.
2116 //
2117 // FIXME: we should be able to handle switch instructions (with a single exit)
2118 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2119 if (ExitBr == 0) return UnknownValue;
2120 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2121
2122 // At this point, we know we have a conditional branch that determines whether
2123 // the loop is exited. However, we don't know if the branch is executed each
2124 // time through the loop. If not, then the execution count of the branch will
2125 // not be equal to the trip count of the loop.
2126 //
2127 // Currently we check for this by checking to see if the Exit branch goes to
2128 // the loop header. If so, we know it will always execute the same number of
2129 // times as the loop. We also handle the case where the exit block *is* the
2130 // loop header. This is common for un-rotated loops. More extensive analysis
2131 // could be done to handle more cases here.
2132 if (ExitBr->getSuccessor(0) != L->getHeader() &&
2133 ExitBr->getSuccessor(1) != L->getHeader() &&
2134 ExitBr->getParent() != L->getHeader())
2135 return UnknownValue;
2136
2137 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2138
Nick Lewyckyb3d24332008-02-21 08:34:02 +00002139 // If it's not an integer comparison then compute it the hard way.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002140 // Note that ICmpInst deals with pointer comparisons too so we must check
2141 // the type of the operand.
2142 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002143 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002144 ExitBr->getSuccessor(0) == ExitBlock);
2145
2146 // If the condition was exit on true, convert the condition to exit on false
2147 ICmpInst::Predicate Cond;
2148 if (ExitBr->getSuccessor(1) == ExitBlock)
2149 Cond = ExitCond->getPredicate();
2150 else
2151 Cond = ExitCond->getInversePredicate();
2152
2153 // Handle common loops like: for (X = "string"; *X; ++X)
2154 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2155 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2156 SCEVHandle ItCnt =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002157 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002158 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2159 }
2160
2161 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2162 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2163
2164 // Try to evaluate any dependencies out of the loop.
2165 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2166 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2167 Tmp = getSCEVAtScope(RHS, L);
2168 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2169
2170 // At this point, we would like to compute how many iterations of the
2171 // loop the predicate will return true for these inputs.
Dan Gohman2d96e352008-09-16 18:52:57 +00002172 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2173 // If there is a loop-invariant, force it into the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002174 std::swap(LHS, RHS);
2175 Cond = ICmpInst::getSwappedPredicate(Cond);
2176 }
2177
2178 // FIXME: think about handling pointer comparisons! i.e.:
2179 // while (P != P+100) ++P;
2180
2181 // If we have a comparison of a chrec against a constant, try to use value
2182 // ranges to answer this query.
2183 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2184 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2185 if (AddRec->getLoop() == L) {
2186 // Form the comparison range using the constant of the correct type so
2187 // that the ConstantRange class knows to do a signed or unsigned
2188 // comparison.
2189 ConstantInt *CompVal = RHSC->getValue();
2190 const Type *RealTy = ExitCond->getOperand(0)->getType();
2191 CompVal = dyn_cast<ConstantInt>(
2192 ConstantExpr::getBitCast(CompVal, RealTy));
2193 if (CompVal) {
2194 // Form the constant range.
2195 ConstantRange CompRange(
2196 ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2197
Dan Gohman89f85052007-10-22 18:31:58 +00002198 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002199 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2200 }
2201 }
2202
2203 switch (Cond) {
2204 case ICmpInst::ICMP_NE: { // while (X != Y)
2205 // Convert to: while (X-Y != 0)
Dan Gohman89f85052007-10-22 18:31:58 +00002206 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002207 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2208 break;
2209 }
2210 case ICmpInst::ICMP_EQ: {
2211 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohman89f85052007-10-22 18:31:58 +00002212 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002213 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2214 break;
2215 }
2216 case ICmpInst::ICMP_SLT: {
Nick Lewycky35b56022009-01-13 09:18:58 +00002217 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002218 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2219 break;
2220 }
2221 case ICmpInst::ICMP_SGT: {
Eli Friedman0dcd4ed2008-07-30 00:04:08 +00002222 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
Nick Lewycky35b56022009-01-13 09:18:58 +00002223 SE.getNotSCEV(RHS), L, true);
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002224 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2225 break;
2226 }
2227 case ICmpInst::ICMP_ULT: {
Nick Lewycky35b56022009-01-13 09:18:58 +00002228 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002229 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2230 break;
2231 }
2232 case ICmpInst::ICMP_UGT: {
Dale Johannesend721b952008-04-20 16:58:57 +00002233 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
Nick Lewycky35b56022009-01-13 09:18:58 +00002234 SE.getNotSCEV(RHS), L, false);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002235 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2236 break;
2237 }
2238 default:
2239#if 0
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002240 cerr << "ComputeBackedgeTakenCount ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002241 if (ExitCond->getOperand(0)->getType()->isUnsigned())
2242 cerr << "[unsigned] ";
2243 cerr << *LHS << " "
2244 << Instruction::getOpcodeName(Instruction::ICmp)
2245 << " " << *RHS << "\n";
2246#endif
2247 break;
2248 }
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002249 return
2250 ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2251 ExitBr->getSuccessor(0) == ExitBlock);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002252}
2253
2254static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00002255EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2256 ScalarEvolution &SE) {
2257 SCEVHandle InVal = SE.getConstant(C);
2258 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002259 assert(isa<SCEVConstant>(Val) &&
2260 "Evaluation of SCEV at constant didn't fold correctly?");
2261 return cast<SCEVConstant>(Val)->getValue();
2262}
2263
2264/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2265/// and a GEP expression (missing the pointer index) indexing into it, return
2266/// the addressed element of the initializer or null if the index expression is
2267/// invalid.
2268static Constant *
2269GetAddressedElementFromGlobal(GlobalVariable *GV,
2270 const std::vector<ConstantInt*> &Indices) {
2271 Constant *Init = GV->getInitializer();
2272 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2273 uint64_t Idx = Indices[i]->getZExtValue();
2274 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2275 assert(Idx < CS->getNumOperands() && "Bad struct index!");
2276 Init = cast<Constant>(CS->getOperand(Idx));
2277 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2278 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
2279 Init = cast<Constant>(CA->getOperand(Idx));
2280 } else if (isa<ConstantAggregateZero>(Init)) {
2281 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2282 assert(Idx < STy->getNumElements() && "Bad struct index!");
2283 Init = Constant::getNullValue(STy->getElementType(Idx));
2284 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2285 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
2286 Init = Constant::getNullValue(ATy->getElementType());
2287 } else {
2288 assert(0 && "Unknown constant aggregate type!");
2289 }
2290 return 0;
2291 } else {
2292 return 0; // Unknown initializer type
2293 }
2294 }
2295 return Init;
2296}
2297
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002298/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2299/// 'icmp op load X, cst', try to see if we can compute the backedge
2300/// execution count.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002301SCEVHandle ScalarEvolutionsImpl::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002302ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2303 const Loop *L,
2304 ICmpInst::Predicate predicate) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002305 if (LI->isVolatile()) return UnknownValue;
2306
2307 // Check to see if the loaded pointer is a getelementptr of a global.
2308 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2309 if (!GEP) return UnknownValue;
2310
2311 // Make sure that it is really a constant global we are gepping, with an
2312 // initializer, and make sure the first IDX is really 0.
2313 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2314 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2315 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2316 !cast<Constant>(GEP->getOperand(1))->isNullValue())
2317 return UnknownValue;
2318
2319 // Okay, we allow one non-constant index into the GEP instruction.
2320 Value *VarIdx = 0;
2321 std::vector<ConstantInt*> Indexes;
2322 unsigned VarIdxNum = 0;
2323 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2324 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2325 Indexes.push_back(CI);
2326 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2327 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
2328 VarIdx = GEP->getOperand(i);
2329 VarIdxNum = i-2;
2330 Indexes.push_back(0);
2331 }
2332
2333 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2334 // Check to see if X is a loop variant variable value now.
2335 SCEVHandle Idx = getSCEV(VarIdx);
2336 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2337 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2338
2339 // We can only recognize very limited forms of loop index expressions, in
2340 // particular, only affine AddRec's like {C1,+,C2}.
2341 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2342 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2343 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2344 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2345 return UnknownValue;
2346
2347 unsigned MaxSteps = MaxBruteForceIterations;
2348 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2349 ConstantInt *ItCst =
2350 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohman89f85052007-10-22 18:31:58 +00002351 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002352
2353 // Form the GEP offset.
2354 Indexes[VarIdxNum] = Val;
2355
2356 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2357 if (Result == 0) break; // Cannot compute!
2358
2359 // Evaluate the condition for this iteration.
2360 Result = ConstantExpr::getICmp(predicate, Result, RHS);
2361 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
2362 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2363#if 0
2364 cerr << "\n***\n*** Computed loop count " << *ItCst
2365 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2366 << "***\n";
2367#endif
2368 ++NumArrayLenItCounts;
Dan Gohman89f85052007-10-22 18:31:58 +00002369 return SE.getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002370 }
2371 }
2372 return UnknownValue;
2373}
2374
2375
2376/// CanConstantFold - Return true if we can constant fold an instruction of the
2377/// specified type, assuming that all operands were constants.
2378static bool CanConstantFold(const Instruction *I) {
2379 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2380 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2381 return true;
2382
2383 if (const CallInst *CI = dyn_cast<CallInst>(I))
2384 if (const Function *F = CI->getCalledFunction())
Dan Gohmane6e001f2008-01-31 01:05:10 +00002385 return canConstantFoldCallTo(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002386 return false;
2387}
2388
2389/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2390/// in the loop that V is derived from. We allow arbitrary operations along the
2391/// way, but the operands of an operation must either be constants or a value
2392/// derived from a constant PHI. If this expression does not fit with these
2393/// constraints, return null.
2394static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2395 // If this is not an instruction, or if this is an instruction outside of the
2396 // loop, it can't be derived from a loop PHI.
2397 Instruction *I = dyn_cast<Instruction>(V);
2398 if (I == 0 || !L->contains(I->getParent())) return 0;
2399
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002400 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002401 if (L->getHeader() == I->getParent())
2402 return PN;
2403 else
2404 // We don't currently keep track of the control flow needed to evaluate
2405 // PHIs, so we cannot handle PHIs inside of loops.
2406 return 0;
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002407 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002408
2409 // If we won't be able to constant fold this expression even if the operands
2410 // are constants, return early.
2411 if (!CanConstantFold(I)) return 0;
2412
2413 // Otherwise, we can evaluate this instruction if all of its operands are
2414 // constant or derived from a PHI node themselves.
2415 PHINode *PHI = 0;
2416 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2417 if (!(isa<Constant>(I->getOperand(Op)) ||
2418 isa<GlobalValue>(I->getOperand(Op)))) {
2419 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2420 if (P == 0) return 0; // Not evolving from PHI
2421 if (PHI == 0)
2422 PHI = P;
2423 else if (PHI != P)
2424 return 0; // Evolving from multiple different PHIs.
2425 }
2426
2427 // This is a expression evolving from a constant PHI!
2428 return PHI;
2429}
2430
2431/// EvaluateExpression - Given an expression that passes the
2432/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2433/// in the loop has the value PHIVal. If we can't fold this expression for some
2434/// reason, return null.
2435static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2436 if (isa<PHINode>(V)) return PHIVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002437 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002438 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002439 Instruction *I = cast<Instruction>(V);
2440
2441 std::vector<Constant*> Operands;
2442 Operands.resize(I->getNumOperands());
2443
2444 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2445 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2446 if (Operands[i] == 0) return 0;
2447 }
2448
Chris Lattnerd6e56912007-12-10 22:53:04 +00002449 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2450 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2451 &Operands[0], Operands.size());
2452 else
2453 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2454 &Operands[0], Operands.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002455}
2456
2457/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2458/// in the header of its containing loop, we know the loop executes a
2459/// constant number of times, and the PHI node is just a recurrence
2460/// involving constants, fold it.
2461Constant *ScalarEvolutionsImpl::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002462getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002463 std::map<PHINode*, Constant*>::iterator I =
2464 ConstantEvolutionLoopExitValue.find(PN);
2465 if (I != ConstantEvolutionLoopExitValue.end())
2466 return I->second;
2467
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002468 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002469 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2470
2471 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2472
2473 // Since the loop is canonicalized, the PHI node must have two entries. One
2474 // entry must be a constant (coming in from outside of the loop), and the
2475 // second must be derived from the same PHI.
2476 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2477 Constant *StartCST =
2478 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2479 if (StartCST == 0)
2480 return RetVal = 0; // Must be a constant.
2481
2482 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2483 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2484 if (PN2 != PN)
2485 return RetVal = 0; // Not derived from same PHI.
2486
2487 // Execute the loop symbolically to determine the exit value.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002488 if (BEs.getActiveBits() >= 32)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002489 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2490
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002491 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002492 unsigned IterationNum = 0;
2493 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2494 if (IterationNum == NumIterations)
2495 return RetVal = PHIVal; // Got exit value!
2496
2497 // Compute the value of the PHI node for the next iteration.
2498 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2499 if (NextPHI == PHIVal)
2500 return RetVal = NextPHI; // Stopped evolving!
2501 if (NextPHI == 0)
2502 return 0; // Couldn't evaluate!
2503 PHIVal = NextPHI;
2504 }
2505}
2506
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002507/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002508/// constant number of times (the condition evolves only from constants),
2509/// try to evaluate a few iterations of the loop until we get the exit
2510/// condition gets a value of ExitWhen (true or false). If we cannot
2511/// evaluate the trip count of the loop, return UnknownValue.
2512SCEVHandle ScalarEvolutionsImpl::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002513ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002514 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2515 if (PN == 0) return UnknownValue;
2516
2517 // Since the loop is canonicalized, the PHI node must have two entries. One
2518 // entry must be a constant (coming in from outside of the loop), and the
2519 // second must be derived from the same PHI.
2520 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2521 Constant *StartCST =
2522 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2523 if (StartCST == 0) return UnknownValue; // Must be a constant.
2524
2525 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2526 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2527 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2528
2529 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2530 // the loop symbolically to determine when the condition gets a value of
2531 // "ExitWhen".
2532 unsigned IterationNum = 0;
2533 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2534 for (Constant *PHIVal = StartCST;
2535 IterationNum != MaxIterations; ++IterationNum) {
2536 ConstantInt *CondVal =
2537 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2538
2539 // Couldn't symbolically evaluate.
2540 if (!CondVal) return UnknownValue;
2541
2542 if (CondVal->getValue() == uint64_t(ExitWhen)) {
2543 ConstantEvolutionLoopExitValue[PN] = PHIVal;
2544 ++NumBruteForceTripCountsComputed;
Dan Gohman89f85052007-10-22 18:31:58 +00002545 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002546 }
2547
2548 // Compute the value of the PHI node for the next iteration.
2549 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2550 if (NextPHI == 0 || NextPHI == PHIVal)
2551 return UnknownValue; // Couldn't evaluate or not making progress...
2552 PHIVal = NextPHI;
2553 }
2554
2555 // Too many iterations were needed to evaluate.
2556 return UnknownValue;
2557}
2558
2559/// getSCEVAtScope - Compute the value of the specified expression within the
2560/// indicated loop (which may be null to indicate in no loop). If the
2561/// expression cannot be evaluated, return UnknownValue.
2562SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
2563 // FIXME: this should be turned into a virtual method on SCEV!
2564
2565 if (isa<SCEVConstant>(V)) return V;
2566
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002567 // If this instruction is evolved from a constant-evolving PHI, compute the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002568 // exit value from the loop without using SCEVs.
2569 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2570 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2571 const Loop *LI = this->LI[I->getParent()];
2572 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2573 if (PHINode *PN = dyn_cast<PHINode>(I))
2574 if (PN->getParent() == LI->getHeader()) {
2575 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002576 // to see if the loop that contains it has a known backedge-taken
2577 // count. If so, we may be able to force computation of the exit
2578 // value.
2579 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2580 if (SCEVConstant *BTCC =
2581 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002582 // Okay, we know how many times the containing loop executes. If
2583 // this is a constant evolving PHI node, get the final value at
2584 // the specified iteration number.
2585 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002586 BTCC->getValue()->getValue(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002587 LI);
Dan Gohman89f85052007-10-22 18:31:58 +00002588 if (RV) return SE.getUnknown(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002589 }
2590 }
2591
2592 // Okay, this is an expression that we cannot symbolically evaluate
2593 // into a SCEV. Check to see if it's possible to symbolically evaluate
2594 // the arguments into constants, and if so, try to constant propagate the
2595 // result. This is particularly useful for computing loop exit values.
2596 if (CanConstantFold(I)) {
2597 std::vector<Constant*> Operands;
2598 Operands.reserve(I->getNumOperands());
2599 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2600 Value *Op = I->getOperand(i);
2601 if (Constant *C = dyn_cast<Constant>(Op)) {
2602 Operands.push_back(C);
2603 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00002604 // If any of the operands is non-constant and if they are
Dan Gohman01c2ee72009-04-16 03:18:22 +00002605 // non-integer and non-pointer, don't even try to analyze them
2606 // with scev techniques.
2607 if (!isa<IntegerType>(Op->getType()) &&
2608 !isa<PointerType>(Op->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00002609 return V;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002610
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002611 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2612 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2613 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2614 Op->getType(),
2615 false));
2616 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2617 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2618 Operands.push_back(ConstantExpr::getIntegerCast(C,
2619 Op->getType(),
2620 false));
2621 else
2622 return V;
2623 } else {
2624 return V;
2625 }
2626 }
2627 }
Chris Lattnerd6e56912007-12-10 22:53:04 +00002628
2629 Constant *C;
2630 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2631 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2632 &Operands[0], Operands.size());
2633 else
2634 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2635 &Operands[0], Operands.size());
Dan Gohman89f85052007-10-22 18:31:58 +00002636 return SE.getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002637 }
2638 }
2639
2640 // This is some other type of SCEVUnknown, just return it.
2641 return V;
2642 }
2643
2644 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2645 // Avoid performing the look-up in the common case where the specified
2646 // expression has no loop-variant portions.
2647 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2648 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2649 if (OpAtScope != Comm->getOperand(i)) {
2650 if (OpAtScope == UnknownValue) return UnknownValue;
2651 // Okay, at least one of these operands is loop variant but might be
2652 // foldable. Build a new instance of the folded commutative expression.
2653 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2654 NewOps.push_back(OpAtScope);
2655
2656 for (++i; i != e; ++i) {
2657 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2658 if (OpAtScope == UnknownValue) return UnknownValue;
2659 NewOps.push_back(OpAtScope);
2660 }
2661 if (isa<SCEVAddExpr>(Comm))
Dan Gohman89f85052007-10-22 18:31:58 +00002662 return SE.getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00002663 if (isa<SCEVMulExpr>(Comm))
2664 return SE.getMulExpr(NewOps);
2665 if (isa<SCEVSMaxExpr>(Comm))
2666 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002667 if (isa<SCEVUMaxExpr>(Comm))
2668 return SE.getUMaxExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00002669 assert(0 && "Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002670 }
2671 }
2672 // If we got here, all operands are loop invariant.
2673 return Comm;
2674 }
2675
Nick Lewycky35b56022009-01-13 09:18:58 +00002676 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2677 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002678 if (LHS == UnknownValue) return LHS;
Nick Lewycky35b56022009-01-13 09:18:58 +00002679 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002680 if (RHS == UnknownValue) return RHS;
Nick Lewycky35b56022009-01-13 09:18:58 +00002681 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2682 return Div; // must be loop invariant
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00002683 return SE.getUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002684 }
2685
2686 // If this is a loop recurrence for a loop that does not contain L, then we
2687 // are dealing with the final value computed by the loop.
2688 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2689 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2690 // To evaluate this recurrence, we need to know how many times the AddRec
2691 // loop iterates. Compute this now.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002692 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2693 if (BackedgeTakenCount == UnknownValue) return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002694
Eli Friedman7489ec92008-08-04 23:49:06 +00002695 // Then, evaluate the AddRec.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002696 return AddRec->evaluateAtIteration(BackedgeTakenCount, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002697 }
2698 return UnknownValue;
2699 }
2700
2701 //assert(0 && "Unknown SCEV type!");
2702 return UnknownValue;
2703}
2704
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002705/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2706/// following equation:
2707///
2708/// A * X = B (mod N)
2709///
2710/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2711/// A and B isn't important.
2712///
2713/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2714static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2715 ScalarEvolution &SE) {
2716 uint32_t BW = A.getBitWidth();
2717 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2718 assert(A != 0 && "A must be non-zero.");
2719
2720 // 1. D = gcd(A, N)
2721 //
2722 // The gcd of A and N may have only one prime factor: 2. The number of
2723 // trailing zeros in A is its multiplicity
2724 uint32_t Mult2 = A.countTrailingZeros();
2725 // D = 2^Mult2
2726
2727 // 2. Check if B is divisible by D.
2728 //
2729 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2730 // is not less than multiplicity of this prime factor for D.
2731 if (B.countTrailingZeros() < Mult2)
2732 return new SCEVCouldNotCompute();
2733
2734 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2735 // modulo (N / D).
2736 //
2737 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
2738 // bit width during computations.
2739 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
2740 APInt Mod(BW + 1, 0);
2741 Mod.set(BW - Mult2); // Mod = N / D
2742 APInt I = AD.multiplicativeInverse(Mod);
2743
2744 // 4. Compute the minimum unsigned root of the equation:
2745 // I * (B / D) mod (N / D)
2746 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2747
2748 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2749 // bits.
2750 return SE.getConstant(Result.trunc(BW));
2751}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002752
2753/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2754/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2755/// might be the same) or two SCEVCouldNotCompute objects.
2756///
2757static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman89f85052007-10-22 18:31:58 +00002758SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002759 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2760 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2761 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2762 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2763
2764 // We currently can only solve this if the coefficients are constants.
2765 if (!LC || !MC || !NC) {
2766 SCEV *CNC = new SCEVCouldNotCompute();
2767 return std::make_pair(CNC, CNC);
2768 }
2769
2770 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2771 const APInt &L = LC->getValue()->getValue();
2772 const APInt &M = MC->getValue()->getValue();
2773 const APInt &N = NC->getValue()->getValue();
2774 APInt Two(BitWidth, 2);
2775 APInt Four(BitWidth, 4);
2776
2777 {
2778 using namespace APIntOps;
2779 const APInt& C = L;
2780 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2781 // The B coefficient is M-N/2
2782 APInt B(M);
2783 B -= sdiv(N,Two);
2784
2785 // The A coefficient is N/2
2786 APInt A(N.sdiv(Two));
2787
2788 // Compute the B^2-4ac term.
2789 APInt SqrtTerm(B);
2790 SqrtTerm *= B;
2791 SqrtTerm -= Four * (A * C);
2792
2793 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2794 // integer value or else APInt::sqrt() will assert.
2795 APInt SqrtVal(SqrtTerm.sqrt());
2796
2797 // Compute the two solutions for the quadratic formula.
2798 // The divisions must be performed as signed divisions.
2799 APInt NegB(-B);
2800 APInt TwoA( A << 1 );
Nick Lewycky35776692008-11-03 02:43:49 +00002801 if (TwoA.isMinValue()) {
2802 SCEV *CNC = new SCEVCouldNotCompute();
2803 return std::make_pair(CNC, CNC);
2804 }
2805
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002806 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2807 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2808
Dan Gohman89f85052007-10-22 18:31:58 +00002809 return std::make_pair(SE.getConstant(Solution1),
2810 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002811 } // end APIntOps namespace
2812}
2813
2814/// HowFarToZero - Return the number of times a backedge comparing the specified
2815/// value to zero will execute. If not computable, return UnknownValue
2816SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2817 // If the value is a constant
2818 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2819 // If the value is already zero, the branch will execute zero times.
2820 if (C->getValue()->isZero()) return C;
2821 return UnknownValue; // Otherwise it will loop infinitely.
2822 }
2823
2824 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2825 if (!AddRec || AddRec->getLoop() != L)
2826 return UnknownValue;
2827
2828 if (AddRec->isAffine()) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002829 // If this is an affine expression, the execution count of this branch is
2830 // the minimum unsigned root of the following equation:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002831 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002832 // Start + Step*N = 0 (mod 2^BW)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002833 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002834 // equivalent to:
2835 //
2836 // Step*N = -Start (mod 2^BW)
2837 //
2838 // where BW is the common bit width of Start and Step.
2839
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002840 // Get the initial value for the loop.
2841 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2842 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002843
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002844 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002845
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002846 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002847 // For now we handle only constant steps.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002848
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002849 // First, handle unitary steps.
2850 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
2851 return SE.getNegativeSCEV(Start); // N = -Start (as unsigned)
2852 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
2853 return Start; // N = Start (as unsigned)
2854
2855 // Then, try to solve the above equation provided that Start is constant.
2856 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
2857 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
2858 -StartC->getValue()->getValue(),SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002859 }
2860 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2861 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2862 // the quadratic equation to solve it.
Dan Gohman89f85052007-10-22 18:31:58 +00002863 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002864 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2865 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2866 if (R1) {
2867#if 0
2868 cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2869 << " sol#2: " << *R2 << "\n";
2870#endif
2871 // Pick the smallest positive root value.
2872 if (ConstantInt *CB =
2873 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2874 R1->getValue(), R2->getValue()))) {
2875 if (CB->getZExtValue() == false)
2876 std::swap(R1, R2); // R1 is the minimum root now.
2877
2878 // We can only use this value if the chrec ends up with an exact zero
2879 // value at this index. When solving for "X*X != 5", for example, we
2880 // should not accept a root of 2.
Dan Gohman89f85052007-10-22 18:31:58 +00002881 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE);
Dan Gohman7b560c42008-06-18 16:23:07 +00002882 if (Val->isZero())
2883 return R1; // We found a quadratic root!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002884 }
2885 }
2886 }
2887
2888 return UnknownValue;
2889}
2890
2891/// HowFarToNonZero - Return the number of times a backedge checking the
2892/// specified value for nonzero will execute. If not computable, return
2893/// UnknownValue
2894SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2895 // Loops that look like: while (X == 0) are very strange indeed. We don't
2896 // handle them yet except for the trivial case. This could be expanded in the
2897 // future as needed.
2898
2899 // If the value is a constant, check to see if it is known to be non-zero
2900 // already. If so, the backedge will execute zero times.
2901 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewyckyf6805182008-02-21 09:14:53 +00002902 if (!C->getValue()->isNullValue())
2903 return SE.getIntegerSCEV(0, C->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002904 return UnknownValue; // Otherwise it will loop infinitely.
2905 }
2906
2907 // We could implement others, but I really doubt anyone writes loops like
2908 // this, and if they did, they would already be constant folded.
2909 return UnknownValue;
2910}
2911
Dan Gohman1cddf972008-09-15 22:18:04 +00002912/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
2913/// (which may not be an immediate predecessor) which has exactly one
2914/// successor from which BB is reachable, or null if no such block is
2915/// found.
2916///
2917BasicBlock *
2918ScalarEvolutionsImpl::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
2919 // If the block has a unique predecessor, the predecessor must have
2920 // no other successors from which BB is reachable.
2921 if (BasicBlock *Pred = BB->getSinglePredecessor())
2922 return Pred;
2923
2924 // A loop's header is defined to be a block that dominates the loop.
2925 // If the loop has a preheader, it must be a block that has exactly
2926 // one successor that can reach BB. This is slightly more strict
2927 // than necessary, but works if critical edges are split.
2928 if (Loop *L = LI.getLoopFor(BB))
2929 return L->getLoopPreheader();
2930
2931 return 0;
2932}
2933
Dan Gohmancacd2012009-02-12 22:19:27 +00002934/// isLoopGuardedByCond - Test whether entry to the loop is protected by
Nick Lewycky1b020bf2008-07-12 07:41:32 +00002935/// a conditional between LHS and RHS.
Dan Gohmancacd2012009-02-12 22:19:27 +00002936bool ScalarEvolutionsImpl::isLoopGuardedByCond(const Loop *L,
2937 ICmpInst::Predicate Pred,
Nick Lewycky1b020bf2008-07-12 07:41:32 +00002938 SCEV *LHS, SCEV *RHS) {
2939 BasicBlock *Preheader = L->getLoopPreheader();
2940 BasicBlock *PreheaderDest = L->getHeader();
Nick Lewycky1b020bf2008-07-12 07:41:32 +00002941
Dan Gohmanab678fb2008-08-12 20:17:31 +00002942 // Starting at the preheader, climb up the predecessor chain, as long as
Dan Gohman1cddf972008-09-15 22:18:04 +00002943 // there are predecessors that can be found that have unique successors
2944 // leading to the original header.
2945 for (; Preheader;
2946 PreheaderDest = Preheader,
2947 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
Dan Gohmanab678fb2008-08-12 20:17:31 +00002948
2949 BranchInst *LoopEntryPredicate =
Nick Lewycky1b020bf2008-07-12 07:41:32 +00002950 dyn_cast<BranchInst>(Preheader->getTerminator());
Dan Gohmanab678fb2008-08-12 20:17:31 +00002951 if (!LoopEntryPredicate ||
2952 LoopEntryPredicate->isUnconditional())
2953 continue;
2954
2955 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
2956 if (!ICI) continue;
2957
2958 // Now that we found a conditional branch that dominates the loop, check to
2959 // see if it is the comparison we are looking for.
2960 Value *PreCondLHS = ICI->getOperand(0);
2961 Value *PreCondRHS = ICI->getOperand(1);
2962 ICmpInst::Predicate Cond;
2963 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2964 Cond = ICI->getPredicate();
2965 else
2966 Cond = ICI->getInversePredicate();
2967
Dan Gohmancacd2012009-02-12 22:19:27 +00002968 if (Cond == Pred)
2969 ; // An exact match.
2970 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
2971 ; // The actual condition is beyond sufficient.
2972 else
2973 // Check a few special cases.
2974 switch (Cond) {
2975 case ICmpInst::ICMP_UGT:
2976 if (Pred == ICmpInst::ICMP_ULT) {
2977 std::swap(PreCondLHS, PreCondRHS);
2978 Cond = ICmpInst::ICMP_ULT;
2979 break;
2980 }
2981 continue;
2982 case ICmpInst::ICMP_SGT:
2983 if (Pred == ICmpInst::ICMP_SLT) {
2984 std::swap(PreCondLHS, PreCondRHS);
2985 Cond = ICmpInst::ICMP_SLT;
2986 break;
2987 }
2988 continue;
2989 case ICmpInst::ICMP_NE:
2990 // Expressions like (x >u 0) are often canonicalized to (x != 0),
2991 // so check for this case by checking if the NE is comparing against
2992 // a minimum or maximum constant.
2993 if (!ICmpInst::isTrueWhenEqual(Pred))
2994 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
2995 const APInt &A = CI->getValue();
2996 switch (Pred) {
2997 case ICmpInst::ICMP_SLT:
2998 if (A.isMaxSignedValue()) break;
2999 continue;
3000 case ICmpInst::ICMP_SGT:
3001 if (A.isMinSignedValue()) break;
3002 continue;
3003 case ICmpInst::ICMP_ULT:
3004 if (A.isMaxValue()) break;
3005 continue;
3006 case ICmpInst::ICMP_UGT:
3007 if (A.isMinValue()) break;
3008 continue;
3009 default:
3010 continue;
3011 }
3012 Cond = ICmpInst::ICMP_NE;
3013 // NE is symmetric but the original comparison may not be. Swap
3014 // the operands if necessary so that they match below.
3015 if (isa<SCEVConstant>(LHS))
3016 std::swap(PreCondLHS, PreCondRHS);
3017 break;
3018 }
3019 continue;
3020 default:
3021 // We weren't able to reconcile the condition.
3022 continue;
3023 }
Dan Gohmanab678fb2008-08-12 20:17:31 +00003024
3025 if (!PreCondLHS->getType()->isInteger()) continue;
3026
3027 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3028 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3029 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3030 (LHS == SE.getNotSCEV(PreCondRHSSCEV) &&
3031 RHS == SE.getNotSCEV(PreCondLHSSCEV)))
3032 return true;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003033 }
3034
Dan Gohmanab678fb2008-08-12 20:17:31 +00003035 return false;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003036}
3037
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003038/// HowManyLessThans - Return the number of times a backedge containing the
3039/// specified less-than comparison will execute. If not computable, return
3040/// UnknownValue.
3041SCEVHandle ScalarEvolutionsImpl::
Nick Lewycky35b56022009-01-13 09:18:58 +00003042HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003043 // Only handle: "ADDREC < LoopInvariant".
3044 if (!RHS->isLoopInvariant(L)) return UnknownValue;
3045
3046 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3047 if (!AddRec || AddRec->getLoop() != L)
3048 return UnknownValue;
3049
3050 if (AddRec->isAffine()) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003051 // FORNOW: We only support unit strides.
3052 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
3053 if (AddRec->getOperand(1) != One)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003054 return UnknownValue;
3055
Nick Lewycky35b56022009-01-13 09:18:58 +00003056 // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant
3057 // m. So, we count the number of iterations in which {n,+,1} < m is true.
3058 // Note that we cannot simply return max(m-n,0) because it's not safe to
Wojciech Matyjewicz1377a542008-02-13 12:21:32 +00003059 // treat m-n as signed nor unsigned due to overflow possibility.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003060
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003061 // First, we get the value of the LHS in the first iteration: n
3062 SCEVHandle Start = AddRec->getOperand(0);
3063
Dan Gohmancacd2012009-02-12 22:19:27 +00003064 if (isLoopGuardedByCond(L,
3065 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
Nick Lewycky35b56022009-01-13 09:18:58 +00003066 SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) {
3067 // Since we know that the condition is true in order to enter the loop,
3068 // we know that it will run exactly m-n times.
3069 return SE.getMinusSCEV(RHS, Start);
3070 } else {
3071 // Then, we get the value of the LHS in the first iteration in which the
3072 // above condition doesn't hold. This equals to max(m,n).
3073 SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start)
3074 : SE.getUMaxExpr(RHS, Start);
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003075
Nick Lewycky35b56022009-01-13 09:18:58 +00003076 // Finally, we subtract these two values to get the number of times the
3077 // backedge is executed: max(m,n)-n.
3078 return SE.getMinusSCEV(End, Start);
Nick Lewycky64d1fff2008-12-16 08:30:01 +00003079 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003080 }
3081
3082 return UnknownValue;
3083}
3084
3085/// getNumIterationsInRange - Return the number of iterations of this loop that
3086/// produce values in the specified constant range. Another way of looking at
3087/// this is that it returns the first iteration number where the value is not in
3088/// the condition, thus computing the exit count. If the iteration count can't
3089/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman89f85052007-10-22 18:31:58 +00003090SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3091 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003092 if (Range.isFullSet()) // Infinite loop.
3093 return new SCEVCouldNotCompute();
3094
3095 // If the start is a non-zero constant, shift the range to simplify things.
3096 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3097 if (!SC->getValue()->isZero()) {
3098 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003099 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3100 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003101 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
3102 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00003103 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003104 // This is strange and shouldn't happen.
3105 return new SCEVCouldNotCompute();
3106 }
3107
3108 // The only time we can solve this is when we have all constant indices.
3109 // Otherwise, we cannot determine the overflow conditions.
3110 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3111 if (!isa<SCEVConstant>(getOperand(i)))
3112 return new SCEVCouldNotCompute();
3113
3114
3115 // Okay at this point we know that all elements of the chrec are constants and
3116 // that the start element is zero.
3117
3118 // First check to see if the range contains zero. If not, the first
3119 // iteration exits.
Dan Gohman01c2ee72009-04-16 03:18:22 +00003120 unsigned BitWidth = SE.getTargetData().getTypeSizeInBits(getType());
3121 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman89f85052007-10-22 18:31:58 +00003122 return SE.getConstant(ConstantInt::get(getType(),0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003123
3124 if (isAffine()) {
3125 // If this is an affine expression then we have this situation:
3126 // Solve {0,+,A} in Range === Ax in Range
3127
3128 // We know that zero is in the range. If A is positive then we know that
3129 // the upper value of the range must be the first possible exit value.
3130 // If A is negative then the lower of the range is the last possible loop
3131 // value. Also note that we already checked for a full range.
Dan Gohman01c2ee72009-04-16 03:18:22 +00003132 APInt One(BitWidth,1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003133 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3134 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3135
3136 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00003137 APInt ExitVal = (End + A).udiv(A);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003138 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3139
3140 // Evaluate at the exit value. If we really did fall out of the valid
3141 // range, then we computed our trip count, otherwise wrap around or other
3142 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00003143 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003144 if (Range.contains(Val->getValue()))
3145 return new SCEVCouldNotCompute(); // Something strange happened
3146
3147 // Ensure that the previous value is in the range. This is a sanity check.
3148 assert(Range.contains(
3149 EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003150 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003151 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00003152 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003153 } else if (isQuadratic()) {
3154 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3155 // quadratic equation to solve it. To do this, we must frame our problem in
3156 // terms of figuring out when zero is crossed, instead of when
3157 // Range.getUpper() is crossed.
3158 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003159 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3160 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003161
3162 // Next, solve the constructed addrec
3163 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00003164 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003165 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3166 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3167 if (R1) {
3168 // Pick the smallest positive root value.
3169 if (ConstantInt *CB =
3170 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3171 R1->getValue(), R2->getValue()))) {
3172 if (CB->getZExtValue() == false)
3173 std::swap(R1, R2); // R1 is the minimum root now.
3174
3175 // Make sure the root is not off by one. The returned iteration should
3176 // not be in the range, but the previous one should be. When solving
3177 // for "X*X < 5", for example, we should not return a root of 2.
3178 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003179 R1->getValue(),
3180 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003181 if (Range.contains(R1Val->getValue())) {
3182 // The next iteration must be out of the range...
3183 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3184
Dan Gohman89f85052007-10-22 18:31:58 +00003185 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003186 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00003187 return SE.getConstant(NextVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003188 return new SCEVCouldNotCompute(); // Something strange happened
3189 }
3190
3191 // If R1 was not in the range, then it is a good return value. Make
3192 // sure that R1-1 WAS in the range though, just in case.
3193 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00003194 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003195 if (Range.contains(R1Val->getValue()))
3196 return R1;
3197 return new SCEVCouldNotCompute(); // Something strange happened
3198 }
3199 }
3200 }
3201
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003202 return new SCEVCouldNotCompute();
3203}
3204
3205
3206
3207//===----------------------------------------------------------------------===//
3208// ScalarEvolution Class Implementation
3209//===----------------------------------------------------------------------===//
3210
3211bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00003212 Impl = new ScalarEvolutionsImpl(*this, F,
3213 getAnalysis<LoopInfo>(),
3214 getAnalysis<TargetData>());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003215 return false;
3216}
3217
3218void ScalarEvolution::releaseMemory() {
3219 delete (ScalarEvolutionsImpl*)Impl;
3220 Impl = 0;
3221}
3222
3223void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3224 AU.setPreservesAll();
3225 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman01c2ee72009-04-16 03:18:22 +00003226 AU.addRequiredTransitive<TargetData>();
3227}
3228
3229const TargetData &ScalarEvolution::getTargetData() const {
3230 return ((ScalarEvolutionsImpl*)Impl)->getTargetData();
3231}
3232
3233SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
3234 return ((ScalarEvolutionsImpl*)Impl)->getIntegerSCEV(Val, Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003235}
3236
3237SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
3238 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
3239}
3240
3241/// hasSCEV - Return true if the SCEV for this value has already been
3242/// computed.
3243bool ScalarEvolution::hasSCEV(Value *V) const {
3244 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
3245}
3246
3247
3248/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
3249/// the specified value.
3250void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
3251 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
3252}
3253
Dan Gohman01c2ee72009-04-16 03:18:22 +00003254/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3255///
3256SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
3257 return ((ScalarEvolutionsImpl*)Impl)->getNegativeSCEV(V);
3258}
3259
3260/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3261///
3262SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
3263 return ((ScalarEvolutionsImpl*)Impl)->getNotSCEV(V);
3264}
3265
3266/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
3267///
3268SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
3269 const SCEVHandle &RHS) {
3270 return ((ScalarEvolutionsImpl*)Impl)->getMinusSCEV(LHS, RHS);
3271}
3272
3273/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
3274/// of the input value to the specified type. If the type must be
3275/// extended, it is zero extended.
3276SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
3277 const Type *Ty) {
3278 return ((ScalarEvolutionsImpl*)Impl)->getTruncateOrZeroExtend(V, Ty);
3279}
3280
3281/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
3282/// of the input value to the specified type. If the type must be
3283/// extended, it is sign extended.
3284SCEVHandle ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
3285 const Type *Ty) {
3286 return ((ScalarEvolutionsImpl*)Impl)->getTruncateOrSignExtend(V, Ty);
3287}
3288
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003289
Dan Gohmancacd2012009-02-12 22:19:27 +00003290bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3291 ICmpInst::Predicate Pred,
3292 SCEV *LHS, SCEV *RHS) {
3293 return ((ScalarEvolutionsImpl*)Impl)->isLoopGuardedByCond(L, Pred,
3294 LHS, RHS);
3295}
3296
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003297SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) const {
3298 return ((ScalarEvolutionsImpl*)Impl)->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003299}
3300
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003301bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) const {
3302 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003303}
3304
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003305void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
3306 return ((ScalarEvolutionsImpl*)Impl)->forgetLoopBackedgeTakenCount(L);
Dan Gohmanf3a060a2009-02-17 20:49:49 +00003307}
3308
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003309SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
3310 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
3311}
3312
3313void ScalarEvolution::deleteValueFromRecords(Value *V) const {
3314 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
3315}
3316
3317static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
3318 const Loop *L) {
3319 // Print all inner loops first
3320 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3321 PrintLoopInfo(OS, SE, *I);
3322
Nick Lewyckye5da1912008-01-02 02:49:20 +00003323 OS << "Loop " << L->getHeader()->getName() << ": ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003324
Devang Patel02451fa2007-08-21 00:31:24 +00003325 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003326 L->getExitBlocks(ExitBlocks);
3327 if (ExitBlocks.size() != 1)
Nick Lewyckye5da1912008-01-02 02:49:20 +00003328 OS << "<multiple exits> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003329
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003330 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3331 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003332 } else {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003333 OS << "Unpredictable backedge-taken count. ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003334 }
3335
Nick Lewyckye5da1912008-01-02 02:49:20 +00003336 OS << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003337}
3338
3339void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
3340 Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
3341 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
3342
3343 OS << "Classifying expressions for: " << F.getName() << "\n";
3344 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3345 if (I->getType()->isInteger()) {
3346 OS << *I;
Dan Gohmanabe991f2008-09-14 17:21:12 +00003347 OS << " --> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003348 SCEVHandle SV = getSCEV(&*I);
3349 SV->print(OS);
3350 OS << "\t\t";
3351
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003352 if (const Loop *L = LI.getLoopFor((*I).getParent())) {
3353 OS << "Exits: ";
3354 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
3355 if (isa<SCEVCouldNotCompute>(ExitValue)) {
3356 OS << "<<Unknown>>";
3357 } else {
3358 OS << *ExitValue;
3359 }
3360 }
3361
3362
3363 OS << "\n";
3364 }
3365
3366 OS << "Determining loop execution counts for: " << F.getName() << "\n";
3367 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
3368 PrintLoopInfo(OS, this, *I);
3369}