blob: 14c1389b43435b83b943f13ec86564d936cf0987 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000031//
Chris Lattner53e677a2004-04-02 20:23:17 +000032// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
Chris Lattner53e677a2004-04-02 20:23:17 +000036// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
Chris Lattner3b27d682006-12-19 22:30:33 +000062#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000063#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000064#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000066#include "llvm/GlobalVariable.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
John Criswella1156432005-10-27 15:54:34 +000068#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
Chris Lattner95255282006-06-28 23:17:24 +000073#include "llvm/Support/CommandLine.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000074#include "llvm/Support/Compiler.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000077#include "llvm/Support/ManagedStatic.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000078#include "llvm/Support/MathExtras.h"
Bill Wendling6f81b512006-11-28 22:46:12 +000079#include "llvm/Support/Streams.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000080#include "llvm/ADT/Statistic.h"
Bill Wendling6f81b512006-11-28 22:46:12 +000081#include <ostream>
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000082#include <algorithm>
Jeff Cohen97af7512006-12-02 02:22:01 +000083#include <cmath>
Chris Lattner53e677a2004-04-02 20:23:17 +000084using namespace llvm;
85
Chris Lattner3b27d682006-12-19 22:30:33 +000086STATISTIC(NumBruteForceEvaluations,
87 "Number of brute force evaluations needed to "
88 "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90 "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92 "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94 "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96 "Number of loops with trip counts computed by force");
97
Dan Gohman844731a2008-05-13 00:00:25 +000098static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +000099MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100 cl::desc("Maximum number of iterations SCEV will "
101 "symbolically execute a constant derived loop"),
102 cl::init(100));
103
Dan Gohman844731a2008-05-13 00:00:25 +0000104static RegisterPass<ScalarEvolution>
105R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000106char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000107
108//===----------------------------------------------------------------------===//
109// SCEV class definitions
110//===----------------------------------------------------------------------===//
111
112//===----------------------------------------------------------------------===//
113// Implementation of the SCEV class.
114//
Chris Lattner53e677a2004-04-02 20:23:17 +0000115SCEV::~SCEV() {}
116void SCEV::dump() const {
Bill Wendlinge8156192006-12-07 01:30:32 +0000117 print(cerr);
Chris Lattner53e677a2004-04-02 20:23:17 +0000118}
119
Reid Spencer581b0d42007-02-28 19:57:34 +0000120uint32_t SCEV::getBitWidth() const {
121 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
122 return ITy->getBitWidth();
123 return 0;
124}
125
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000126bool SCEV::isZero() const {
127 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
128 return SC->getValue()->isZero();
129 return false;
130}
131
Chris Lattner53e677a2004-04-02 20:23:17 +0000132
133SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
134
135bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
136 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000137 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000138}
139
140const Type *SCEVCouldNotCompute::getType() const {
141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000142 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000143}
144
145bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147 return false;
148}
149
Chris Lattner4dc534c2005-02-13 04:37:18 +0000150SCEVHandle SCEVCouldNotCompute::
151replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman246b2562007-10-22 18:31:58 +0000152 const SCEVHandle &Conc,
153 ScalarEvolution &SE) const {
Chris Lattner4dc534c2005-02-13 04:37:18 +0000154 return this;
155}
156
Chris Lattner53e677a2004-04-02 20:23:17 +0000157void SCEVCouldNotCompute::print(std::ostream &OS) const {
158 OS << "***COULDNOTCOMPUTE***";
159}
160
161bool SCEVCouldNotCompute::classof(const SCEV *S) {
162 return S->getSCEVType() == scCouldNotCompute;
163}
164
165
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000166// SCEVConstants - Only allow the creation of one SCEVConstant for any
167// particular value. Don't use a SCEVHandle here, or else the object will
168// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000169static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000170
Chris Lattner53e677a2004-04-02 20:23:17 +0000171
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000172SCEVConstant::~SCEVConstant() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000173 SCEVConstants->erase(V);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000174}
Chris Lattner53e677a2004-04-02 20:23:17 +0000175
Dan Gohman246b2562007-10-22 18:31:58 +0000176SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Chris Lattnerb3364092006-10-04 21:49:37 +0000177 SCEVConstant *&R = (*SCEVConstants)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000178 if (R == 0) R = new SCEVConstant(V);
179 return R;
180}
Chris Lattner53e677a2004-04-02 20:23:17 +0000181
Dan Gohman246b2562007-10-22 18:31:58 +0000182SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
183 return getConstant(ConstantInt::get(Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000184}
185
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000186const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000187
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000188void SCEVConstant::print(std::ostream &OS) const {
189 WriteAsOperand(OS, V, false);
190}
Chris Lattner53e677a2004-04-02 20:23:17 +0000191
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000192// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
193// particular input. Don't use a SCEVHandle here, or else the object will
194// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000195static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
196 SCEVTruncateExpr*> > SCEVTruncates;
Chris Lattner53e677a2004-04-02 20:23:17 +0000197
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
199 : SCEV(scTruncate), Op(op), Ty(ty) {
Chris Lattner42a75512007-01-15 02:27:26 +0000200 assert(Op->getType()->isInteger() && Ty->isInteger() &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000201 "Cannot truncate non-integer value!");
Reid Spencere7ca0422007-01-08 01:26:33 +0000202 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
203 && "This is not a truncating conversion!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000204}
Chris Lattner53e677a2004-04-02 20:23:17 +0000205
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000206SCEVTruncateExpr::~SCEVTruncateExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000207 SCEVTruncates->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000208}
Chris Lattner53e677a2004-04-02 20:23:17 +0000209
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000210void SCEVTruncateExpr::print(std::ostream &OS) const {
211 OS << "(truncate " << *Op << " to " << *Ty << ")";
212}
213
214// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
215// particular input. Don't use a SCEVHandle here, or else the object will never
216// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000217static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
218 SCEVZeroExtendExpr*> > SCEVZeroExtends;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219
220SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Reid Spencer48d8a702006-11-01 21:53:12 +0000221 : SCEV(scZeroExtend), Op(op), Ty(ty) {
Chris Lattner42a75512007-01-15 02:27:26 +0000222 assert(Op->getType()->isInteger() && Ty->isInteger() &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223 "Cannot zero extend non-integer value!");
Reid Spencere7ca0422007-01-08 01:26:33 +0000224 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
225 && "This is not an extending conversion!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000226}
227
228SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000229 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230}
231
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000232void SCEVZeroExtendExpr::print(std::ostream &OS) const {
233 OS << "(zeroextend " << *Op << " to " << *Ty << ")";
234}
235
Dan Gohmand19534a2007-06-15 14:38:12 +0000236// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
237// particular input. Don't use a SCEVHandle here, or else the object will never
238// be deleted!
239static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
240 SCEVSignExtendExpr*> > SCEVSignExtends;
241
242SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
243 : SCEV(scSignExtend), Op(op), Ty(ty) {
244 assert(Op->getType()->isInteger() && Ty->isInteger() &&
245 "Cannot sign extend non-integer value!");
246 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
247 && "This is not an extending conversion!");
248}
249
250SCEVSignExtendExpr::~SCEVSignExtendExpr() {
251 SCEVSignExtends->erase(std::make_pair(Op, Ty));
252}
253
Dan Gohmand19534a2007-06-15 14:38:12 +0000254void SCEVSignExtendExpr::print(std::ostream &OS) const {
255 OS << "(signextend " << *Op << " to " << *Ty << ")";
256}
257
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000258// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
259// particular input. Don't use a SCEVHandle here, or else the object will never
260// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000261static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
262 SCEVCommutativeExpr*> > SCEVCommExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000263
264SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000265 SCEVCommExprs->erase(std::make_pair(getSCEVType(),
266 std::vector<SCEV*>(Operands.begin(),
267 Operands.end())));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000268}
269
270void SCEVCommutativeExpr::print(std::ostream &OS) const {
271 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
272 const char *OpStr = getOperationStr();
273 OS << "(" << *Operands[0];
274 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
275 OS << OpStr << *Operands[i];
276 OS << ")";
277}
278
Chris Lattner4dc534c2005-02-13 04:37:18 +0000279SCEVHandle SCEVCommutativeExpr::
280replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman246b2562007-10-22 18:31:58 +0000281 const SCEVHandle &Conc,
282 ScalarEvolution &SE) const {
Chris Lattner4dc534c2005-02-13 04:37:18 +0000283 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman246b2562007-10-22 18:31:58 +0000284 SCEVHandle H =
285 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000286 if (H != getOperand(i)) {
287 std::vector<SCEVHandle> NewOps;
288 NewOps.reserve(getNumOperands());
289 for (unsigned j = 0; j != i; ++j)
290 NewOps.push_back(getOperand(j));
291 NewOps.push_back(H);
292 for (++i; i != e; ++i)
293 NewOps.push_back(getOperand(i)->
Dan Gohman246b2562007-10-22 18:31:58 +0000294 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Chris Lattner4dc534c2005-02-13 04:37:18 +0000295
296 if (isa<SCEVAddExpr>(this))
Dan Gohman246b2562007-10-22 18:31:58 +0000297 return SE.getAddExpr(NewOps);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000298 else if (isa<SCEVMulExpr>(this))
Dan Gohman246b2562007-10-22 18:31:58 +0000299 return SE.getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +0000300 else if (isa<SCEVSMaxExpr>(this))
301 return SE.getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +0000302 else if (isa<SCEVUMaxExpr>(this))
303 return SE.getUMaxExpr(NewOps);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000304 else
305 assert(0 && "Unknown commutative expr!");
306 }
307 }
308 return this;
309}
310
311
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000312// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000313// input. Don't use a SCEVHandle here, or else the object will never be
314// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000315static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000316 SCEVUDivExpr*> > SCEVUDivs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000317
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000318SCEVUDivExpr::~SCEVUDivExpr() {
319 SCEVUDivs->erase(std::make_pair(LHS, RHS));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000320}
321
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000322void SCEVUDivExpr::print(std::ostream &OS) const {
323 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000324}
325
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000326const Type *SCEVUDivExpr::getType() const {
Reid Spencerc5b206b2006-12-31 05:48:39 +0000327 return LHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000328}
329
330// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
331// particular input. Don't use a SCEVHandle here, or else the object will never
332// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000333static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
334 SCEVAddRecExpr*> > SCEVAddRecExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000335
336SCEVAddRecExpr::~SCEVAddRecExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000337 SCEVAddRecExprs->erase(std::make_pair(L,
338 std::vector<SCEV*>(Operands.begin(),
339 Operands.end())));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000340}
341
Chris Lattner4dc534c2005-02-13 04:37:18 +0000342SCEVHandle SCEVAddRecExpr::
343replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman246b2562007-10-22 18:31:58 +0000344 const SCEVHandle &Conc,
345 ScalarEvolution &SE) const {
Chris Lattner4dc534c2005-02-13 04:37:18 +0000346 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman246b2562007-10-22 18:31:58 +0000347 SCEVHandle H =
348 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000349 if (H != getOperand(i)) {
350 std::vector<SCEVHandle> NewOps;
351 NewOps.reserve(getNumOperands());
352 for (unsigned j = 0; j != i; ++j)
353 NewOps.push_back(getOperand(j));
354 NewOps.push_back(H);
355 for (++i; i != e; ++i)
356 NewOps.push_back(getOperand(i)->
Dan Gohman246b2562007-10-22 18:31:58 +0000357 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000358
Dan Gohman246b2562007-10-22 18:31:58 +0000359 return SE.getAddRecExpr(NewOps, L);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000360 }
361 }
362 return this;
363}
364
365
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000366bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
367 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
Chris Lattnerff2006a2005-08-16 00:37:01 +0000368 // contain L and if the start is invariant.
369 return !QueryLoop->contains(L->getHeader()) &&
370 getOperand(0)->isLoopInvariant(QueryLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +0000371}
372
373
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000374void SCEVAddRecExpr::print(std::ostream &OS) const {
375 OS << "{" << *Operands[0];
376 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
377 OS << ",+," << *Operands[i];
378 OS << "}<" << L->getHeader()->getName() + ">";
379}
Chris Lattner53e677a2004-04-02 20:23:17 +0000380
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000381// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
382// value. Don't use a SCEVHandle here, or else the object will never be
383// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000384static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
Chris Lattner53e677a2004-04-02 20:23:17 +0000385
Chris Lattnerb3364092006-10-04 21:49:37 +0000386SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000387
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000388bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
389 // All non-instruction values are loop invariant. All instructions are loop
390 // invariant if they are not contained in the specified loop.
391 if (Instruction *I = dyn_cast<Instruction>(V))
392 return !L->contains(I->getParent());
393 return true;
394}
Chris Lattner53e677a2004-04-02 20:23:17 +0000395
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000396const Type *SCEVUnknown::getType() const {
397 return V->getType();
398}
Chris Lattner53e677a2004-04-02 20:23:17 +0000399
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000400void SCEVUnknown::print(std::ostream &OS) const {
401 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000402}
403
Chris Lattner8d741b82004-06-20 06:23:15 +0000404//===----------------------------------------------------------------------===//
405// SCEV Utilities
406//===----------------------------------------------------------------------===//
407
408namespace {
409 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
410 /// than the complexity of the RHS. This comparator is used to canonicalize
411 /// expressions.
Chris Lattner95255282006-06-28 23:17:24 +0000412 struct VISIBILITY_HIDDEN SCEVComplexityCompare {
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000413 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Chris Lattner8d741b82004-06-20 06:23:15 +0000414 return LHS->getSCEVType() < RHS->getSCEVType();
415 }
416 };
417}
418
419/// GroupByComplexity - Given a list of SCEV objects, order them by their
420/// complexity, and group objects of the same complexity together by value.
421/// When this routine is finished, we know that any duplicates in the vector are
422/// consecutive and that complexity is monotonically increasing.
423///
424/// Note that we go take special precautions to ensure that we get determinstic
425/// results from this routine. In other words, we don't want the results of
426/// this to depend on where the addresses of various SCEV objects happened to
427/// land in memory.
428///
429static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
430 if (Ops.size() < 2) return; // Noop
431 if (Ops.size() == 2) {
432 // This is the common case, which also happens to be trivially simple.
433 // Special case it.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000434 if (SCEVComplexityCompare()(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000435 std::swap(Ops[0], Ops[1]);
436 return;
437 }
438
439 // Do the rough sort by complexity.
440 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
441
442 // Now that we are sorted by complexity, group elements of the same
443 // complexity. Note that this is, at worst, N^2, but the vector is likely to
444 // be extremely short in practice. Note that we take this approach because we
445 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000446 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000447 SCEV *S = Ops[i];
448 unsigned Complexity = S->getSCEVType();
449
450 // If there are any objects of the same complexity and same value as this
451 // one, group them.
452 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
453 if (Ops[j] == S) { // Found a duplicate.
454 // Move it to immediately after i'th element.
455 std::swap(Ops[i+1], Ops[j]);
456 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000457 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000458 }
459 }
460 }
461}
462
Chris Lattner53e677a2004-04-02 20:23:17 +0000463
Chris Lattner53e677a2004-04-02 20:23:17 +0000464
465//===----------------------------------------------------------------------===//
466// Simple SCEV method implementations
467//===----------------------------------------------------------------------===//
468
469/// getIntegerSCEV - Given an integer or FP type, create a constant for the
470/// specified signed integer value and return a SCEV for the constant.
Dan Gohman246b2562007-10-22 18:31:58 +0000471SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000472 Constant *C;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000473 if (Val == 0)
Chris Lattner53e677a2004-04-02 20:23:17 +0000474 C = Constant::getNullValue(Ty);
475 else if (Ty->isFloatingPoint())
Chris Lattner02a260a2008-04-20 00:41:09 +0000476 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
477 APFloat::IEEEdouble, Val));
Reid Spencere4d87aa2006-12-23 06:05:41 +0000478 else
Reid Spencerb83eb642006-10-20 07:07:24 +0000479 C = ConstantInt::get(Ty, Val);
Dan Gohman246b2562007-10-22 18:31:58 +0000480 return getUnknown(C);
Chris Lattner53e677a2004-04-02 20:23:17 +0000481}
482
Chris Lattner53e677a2004-04-02 20:23:17 +0000483/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
484///
Dan Gohman246b2562007-10-22 18:31:58 +0000485SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000486 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohman246b2562007-10-22 18:31:58 +0000487 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000488
Nick Lewycky178f20a2008-02-20 06:58:55 +0000489 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(V->getType())));
Nick Lewycky3e630762008-02-20 06:48:22 +0000490}
491
492/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
493SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
494 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
495 return getUnknown(ConstantExpr::getNot(VC->getValue()));
496
Nick Lewycky178f20a2008-02-20 06:58:55 +0000497 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(V->getType()));
Nick Lewycky3e630762008-02-20 06:48:22 +0000498 return getMinusSCEV(AllOnes, V);
Chris Lattner53e677a2004-04-02 20:23:17 +0000499}
500
501/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
502///
Dan Gohman246b2562007-10-22 18:31:58 +0000503SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
504 const SCEVHandle &RHS) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000505 // X - Y --> X + -Y
Dan Gohman246b2562007-10-22 18:31:58 +0000506 return getAddExpr(LHS, getNegativeSCEV(RHS));
Chris Lattner53e677a2004-04-02 20:23:17 +0000507}
508
509
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000510/// BinomialCoefficient - Compute BC(It, K). The result is of the same type as
511/// It. Assume, K > 0.
512static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
513 ScalarEvolution &SE) {
514 // We are using the following formula for BC(It, K):
515 //
516 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
517 //
518 // Suppose, W is the bitwidth of It (and of the return value as well). We
519 // must be prepared for overflow. Hence, we must assure that the result of
520 // our computation is equal to the accurate one modulo 2^W. Unfortunately,
521 // division isn't safe in modular arithmetic. This means we must perform the
522 // whole computation accurately and then truncate the result to W bits.
523 //
524 // The dividend of the formula is a multiplication of K integers of bitwidth
525 // W. K*W bits suffice to compute it accurately.
526 //
527 // FIXME: We assume the divisor can be accurately computed using 16-bit
528 // unsigned integer type. It is true up to K = 8 (AddRecs of length 9). In
529 // future we may use APInt to use the minimum number of bits necessary to
530 // compute it accurately.
531 //
532 // It is safe to use unsigned division here: the dividend is nonnegative and
533 // the divisor is positive.
534
535 // Handle the simplest case efficiently.
536 if (K == 1)
537 return It;
538
539 assert(K < 9 && "We cannot handle such long AddRecs yet.");
540
Nick Lewycky9e13cbc2008-07-21 04:03:00 +0000541 // FIXME: A temporary hack to remove in future. Arbitrary precision integers
542 // aren't supported by the code generator yet. For the dividend, the bitwidth
543 // we use is the smallest power of 2 greater or equal to K*W and less or equal
544 // to 64. Note that setting the upper bound for bitwidth may still lead to
545 // miscompilation in some cases.
546 unsigned DividendBits = 1U << Log2_32_Ceil(K * It->getBitWidth());
547 if (DividendBits > 64)
548 DividendBits = 64;
549#if 0 // Waiting for the APInt support in the code generator...
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000550 unsigned DividendBits = K * It->getBitWidth();
Nick Lewycky9e13cbc2008-07-21 04:03:00 +0000551#endif
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000552
553 const IntegerType *DividendTy = IntegerType::get(DividendBits);
Nick Lewycky9e13cbc2008-07-21 04:03:00 +0000554 const SCEVHandle ExIt = SE.getTruncateOrZeroExtend(It, DividendTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000555
556 // The final number of bits we need to perform the division is the maximum of
557 // dividend and divisor bitwidths.
558 const IntegerType *DivisionTy =
559 IntegerType::get(std::max(DividendBits, 16U));
560
561 // Compute K! We know K >= 2 here.
562 unsigned F = 2;
563 for (unsigned i = 3; i <= K; ++i)
564 F *= i;
565 APInt Divisor(DivisionTy->getBitWidth(), F);
566
Chris Lattner53e677a2004-04-02 20:23:17 +0000567 // Handle this case efficiently, it is common to have constant iteration
568 // counts while computing loop exit values.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000569 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(ExIt)) {
570 const APInt& N = SC->getValue()->getValue();
571 APInt Dividend(N.getBitWidth(), 1);
572 for (; K; --K)
573 Dividend *= N-(K-1);
574 if (DividendTy != DivisionTy)
575 Dividend = Dividend.zext(DivisionTy->getBitWidth());
Nick Lewycky9e13cbc2008-07-21 04:03:00 +0000576
577 APInt Result = Dividend.udiv(Divisor);
578 if (Result.getBitWidth() != It->getBitWidth())
579 Result = Result.trunc(It->getBitWidth());
580
581 return SE.getConstant(Result);
Chris Lattner53e677a2004-04-02 20:23:17 +0000582 }
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000583
584 SCEVHandle Dividend = ExIt;
585 for (unsigned i = 1; i != K; ++i)
586 Dividend =
587 SE.getMulExpr(Dividend,
588 SE.getMinusSCEV(ExIt, SE.getIntegerSCEV(i, DividendTy)));
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000589
Nick Lewycky9e13cbc2008-07-21 04:03:00 +0000590 return SE.getTruncateOrZeroExtend(
591 SE.getUDivExpr(
592 SE.getTruncateOrZeroExtend(Dividend, DivisionTy),
593 SE.getConstant(Divisor)
594 ), It->getType());
Chris Lattner53e677a2004-04-02 20:23:17 +0000595}
596
Chris Lattner53e677a2004-04-02 20:23:17 +0000597/// evaluateAtIteration - Return the value of this chain of recurrences at
598/// the specified iteration number. We can evaluate this recurrence by
599/// multiplying each element in the chain by the binomial coefficient
600/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
601///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000602/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000603///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000604/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000605///
Dan Gohman246b2562007-10-22 18:31:58 +0000606SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
607 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000608 SCEVHandle Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000609 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000610 // The computation is correct in the face of overflow provided that the
611 // multiplication is performed _after_ the evaluation of the binomial
612 // coefficient.
613 SCEVHandle Val = SE.getMulExpr(getOperand(i),
614 BinomialCoefficient(It, i, SE));
Dan Gohman246b2562007-10-22 18:31:58 +0000615 Result = SE.getAddExpr(Result, Val);
Chris Lattner53e677a2004-04-02 20:23:17 +0000616 }
617 return Result;
618}
619
Chris Lattner53e677a2004-04-02 20:23:17 +0000620//===----------------------------------------------------------------------===//
621// SCEV Expression folder implementations
622//===----------------------------------------------------------------------===//
623
Dan Gohman246b2562007-10-22 18:31:58 +0000624SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000625 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman246b2562007-10-22 18:31:58 +0000626 return getUnknown(
Reid Spencer315d0552006-12-05 22:39:58 +0000627 ConstantExpr::getTrunc(SC->getValue(), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000628
629 // If the input value is a chrec scev made out of constants, truncate
630 // all of the constants.
631 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
632 std::vector<SCEVHandle> Operands;
633 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
634 // FIXME: This should allow truncation of other expression types!
635 if (isa<SCEVConstant>(AddRec->getOperand(i)))
Dan Gohman246b2562007-10-22 18:31:58 +0000636 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000637 else
638 break;
639 if (Operands.size() == AddRec->getNumOperands())
Dan Gohman246b2562007-10-22 18:31:58 +0000640 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000641 }
642
Chris Lattnerb3364092006-10-04 21:49:37 +0000643 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000644 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
645 return Result;
646}
647
Dan Gohman246b2562007-10-22 18:31:58 +0000648SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000649 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman246b2562007-10-22 18:31:58 +0000650 return getUnknown(
Reid Spencerd977d862006-12-12 23:36:14 +0000651 ConstantExpr::getZExt(SC->getValue(), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000652
653 // FIXME: If the input value is a chrec scev, and we can prove that the value
654 // did not overflow the old, smaller, value, we can zero extend all of the
655 // operands (often constants). This would allow analysis of something like
656 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
657
Chris Lattnerb3364092006-10-04 21:49:37 +0000658 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000659 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
660 return Result;
661}
662
Dan Gohman246b2562007-10-22 18:31:58 +0000663SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohmand19534a2007-06-15 14:38:12 +0000664 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman246b2562007-10-22 18:31:58 +0000665 return getUnknown(
Dan Gohmand19534a2007-06-15 14:38:12 +0000666 ConstantExpr::getSExt(SC->getValue(), Ty));
667
668 // FIXME: If the input value is a chrec scev, and we can prove that the value
669 // did not overflow the old, smaller, value, we can sign extend all of the
670 // operands (often constants). This would allow analysis of something like
671 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
672
673 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
674 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
675 return Result;
676}
677
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000678/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
679/// of the input value to the specified type. If the type must be
680/// extended, it is zero extended.
681SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
682 const Type *Ty) {
683 const Type *SrcTy = V->getType();
684 assert(SrcTy->isInteger() && Ty->isInteger() &&
685 "Cannot truncate or zero extend with non-integer arguments!");
686 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
687 return V; // No conversion
688 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
689 return getTruncateExpr(V, Ty);
690 return getZeroExtendExpr(V, Ty);
691}
692
Chris Lattner53e677a2004-04-02 20:23:17 +0000693// get - Get a canonical add expression, or something simpler if possible.
Dan Gohman246b2562007-10-22 18:31:58 +0000694SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000695 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +0000696 if (Ops.size() == 1) return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +0000697
698 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000699 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000700
701 // If there are any constants, fold them together.
702 unsigned Idx = 0;
703 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
704 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +0000705 assert(Idx < Ops.size());
Chris Lattner53e677a2004-04-02 20:23:17 +0000706 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
707 // We found two constants, fold them together!
Nick Lewycky3e630762008-02-20 06:48:22 +0000708 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
709 RHSC->getValue()->getValue());
710 Ops[0] = getConstant(Fold);
711 Ops.erase(Ops.begin()+1); // Erase the folded element
712 if (Ops.size() == 1) return Ops[0];
713 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000714 }
715
716 // If we are left with a constant zero being added, strip it off.
Reid Spencercae57542007-03-02 00:28:52 +0000717 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000718 Ops.erase(Ops.begin());
719 --Idx;
720 }
721 }
722
Chris Lattner627018b2004-04-07 16:16:11 +0000723 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000724
Chris Lattner53e677a2004-04-02 20:23:17 +0000725 // Okay, check to see if the same value occurs in the operand list twice. If
726 // so, merge them together into an multiply expression. Since we sorted the
727 // list, these values are required to be adjacent.
728 const Type *Ty = Ops[0]->getType();
729 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
730 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
731 // Found a match, merge the two values into a multiply, and add any
732 // remaining values to the result.
Dan Gohman246b2562007-10-22 18:31:58 +0000733 SCEVHandle Two = getIntegerSCEV(2, Ty);
734 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +0000735 if (Ops.size() == 2)
736 return Mul;
737 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
738 Ops.push_back(Mul);
Dan Gohman246b2562007-10-22 18:31:58 +0000739 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000740 }
741
Dan Gohmanf50cd742007-06-18 19:30:09 +0000742 // Now we know the first non-constant operand. Skip past any cast SCEVs.
743 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
744 ++Idx;
745
746 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +0000747 if (Idx < Ops.size()) {
748 bool DeletedAdd = false;
749 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
750 // If we have an add, expand the add operands onto the end of the operands
751 // list.
752 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
753 Ops.erase(Ops.begin()+Idx);
754 DeletedAdd = true;
755 }
756
757 // If we deleted at least one add, we added operands to the end of the list,
758 // and they are not necessarily sorted. Recurse to resort and resimplify
759 // any operands we just aquired.
760 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +0000761 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000762 }
763
764 // Skip over the add expression until we get to a multiply.
765 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
766 ++Idx;
767
768 // If we are adding something to a multiply expression, make sure the
769 // something is not already an operand of the multiply. If so, merge it into
770 // the multiply.
771 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
772 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
773 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
774 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
775 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000776 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000777 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
778 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
779 if (Mul->getNumOperands() != 2) {
780 // If the multiply has more than two operands, we must get the
781 // Y*Z term.
782 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
783 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +0000784 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +0000785 }
Dan Gohman246b2562007-10-22 18:31:58 +0000786 SCEVHandle One = getIntegerSCEV(1, Ty);
787 SCEVHandle AddOne = getAddExpr(InnerMul, One);
788 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000789 if (Ops.size() == 2) return OuterMul;
790 if (AddOp < Idx) {
791 Ops.erase(Ops.begin()+AddOp);
792 Ops.erase(Ops.begin()+Idx-1);
793 } else {
794 Ops.erase(Ops.begin()+Idx);
795 Ops.erase(Ops.begin()+AddOp-1);
796 }
797 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +0000798 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000799 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000800
Chris Lattner53e677a2004-04-02 20:23:17 +0000801 // Check this multiply against other multiplies being added together.
802 for (unsigned OtherMulIdx = Idx+1;
803 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
804 ++OtherMulIdx) {
805 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
806 // If MulOp occurs in OtherMul, we can fold the two multiplies
807 // together.
808 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
809 OMulOp != e; ++OMulOp)
810 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
811 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
812 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
813 if (Mul->getNumOperands() != 2) {
814 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
815 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +0000816 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +0000817 }
818 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
819 if (OtherMul->getNumOperands() != 2) {
820 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
821 OtherMul->op_end());
822 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +0000823 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +0000824 }
Dan Gohman246b2562007-10-22 18:31:58 +0000825 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
826 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +0000827 if (Ops.size() == 2) return OuterMul;
828 Ops.erase(Ops.begin()+Idx);
829 Ops.erase(Ops.begin()+OtherMulIdx-1);
830 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +0000831 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000832 }
833 }
834 }
835 }
836
837 // If there are any add recurrences in the operands list, see if any other
838 // added values are loop invariant. If so, we can fold them into the
839 // recurrence.
840 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
841 ++Idx;
842
843 // Scan over all recurrences, trying to fold loop invariants into them.
844 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
845 // Scan all of the other operands to this add and add them to the vector if
846 // they are loop invariant w.r.t. the recurrence.
847 std::vector<SCEVHandle> LIOps;
848 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
849 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
850 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
851 LIOps.push_back(Ops[i]);
852 Ops.erase(Ops.begin()+i);
853 --i; --e;
854 }
855
856 // If we found some loop invariants, fold them into the recurrence.
857 if (!LIOps.empty()) {
858 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step }
859 LIOps.push_back(AddRec->getStart());
860
861 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +0000862 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +0000863
Dan Gohman246b2562007-10-22 18:31:58 +0000864 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000865 // If all of the other operands were loop invariant, we are done.
866 if (Ops.size() == 1) return NewRec;
867
868 // Otherwise, add the folded AddRec by the non-liv parts.
869 for (unsigned i = 0;; ++i)
870 if (Ops[i] == AddRec) {
871 Ops[i] = NewRec;
872 break;
873 }
Dan Gohman246b2562007-10-22 18:31:58 +0000874 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000875 }
876
877 // Okay, if there weren't any loop invariants to be folded, check to see if
878 // there are multiple AddRec's with the same loop induction variable being
879 // added together. If so, we can fold them.
880 for (unsigned OtherIdx = Idx+1;
881 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
882 if (OtherIdx != Idx) {
883 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
884 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
885 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
886 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
887 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
888 if (i >= NewOps.size()) {
889 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
890 OtherAddRec->op_end());
891 break;
892 }
Dan Gohman246b2562007-10-22 18:31:58 +0000893 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +0000894 }
Dan Gohman246b2562007-10-22 18:31:58 +0000895 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000896
897 if (Ops.size() == 2) return NewAddRec;
898
899 Ops.erase(Ops.begin()+Idx);
900 Ops.erase(Ops.begin()+OtherIdx-1);
901 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +0000902 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000903 }
904 }
905
906 // Otherwise couldn't fold anything into this recurrence. Move onto the
907 // next one.
908 }
909
910 // Okay, it looks like we really DO need an add expr. Check to see if we
911 // already have one, otherwise create a new one.
912 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +0000913 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
914 SCEVOps)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000915 if (Result == 0) Result = new SCEVAddExpr(Ops);
916 return Result;
917}
918
919
Dan Gohman246b2562007-10-22 18:31:58 +0000920SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000921 assert(!Ops.empty() && "Cannot get empty mul!");
922
923 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000924 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000925
926 // If there are any constants, fold them together.
927 unsigned Idx = 0;
928 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
929
930 // C1*(C2+V) -> C1*C2 + C1*V
931 if (Ops.size() == 2)
932 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
933 if (Add->getNumOperands() == 2 &&
934 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +0000935 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
936 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000937
938
939 ++Idx;
940 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
941 // We found two constants, fold them together!
Nick Lewycky3e630762008-02-20 06:48:22 +0000942 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
943 RHSC->getValue()->getValue());
944 Ops[0] = getConstant(Fold);
945 Ops.erase(Ops.begin()+1); // Erase the folded element
946 if (Ops.size() == 1) return Ops[0];
947 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000948 }
949
950 // If we are left with a constant one being multiplied, strip it off.
951 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
952 Ops.erase(Ops.begin());
953 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +0000954 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000955 // If we have a multiply of zero, it will always be zero.
956 return Ops[0];
957 }
958 }
959
960 // Skip over the add expression until we get to a multiply.
961 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
962 ++Idx;
963
964 if (Ops.size() == 1)
965 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000966
Chris Lattner53e677a2004-04-02 20:23:17 +0000967 // If there are mul operands inline them all into this expression.
968 if (Idx < Ops.size()) {
969 bool DeletedMul = false;
970 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
971 // If we have an mul, expand the mul operands onto the end of the operands
972 // list.
973 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
974 Ops.erase(Ops.begin()+Idx);
975 DeletedMul = true;
976 }
977
978 // If we deleted at least one mul, we added operands to the end of the list,
979 // and they are not necessarily sorted. Recurse to resort and resimplify
980 // any operands we just aquired.
981 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +0000982 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000983 }
984
985 // If there are any add recurrences in the operands list, see if any other
986 // added values are loop invariant. If so, we can fold them into the
987 // recurrence.
988 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
989 ++Idx;
990
991 // Scan over all recurrences, trying to fold loop invariants into them.
992 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
993 // Scan all of the other operands to this mul and add them to the vector if
994 // they are loop invariant w.r.t. the recurrence.
995 std::vector<SCEVHandle> LIOps;
996 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
997 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
998 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
999 LIOps.push_back(Ops[i]);
1000 Ops.erase(Ops.begin()+i);
1001 --i; --e;
1002 }
1003
1004 // If we found some loop invariants, fold them into the recurrence.
1005 if (!LIOps.empty()) {
1006 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step }
1007 std::vector<SCEVHandle> NewOps;
1008 NewOps.reserve(AddRec->getNumOperands());
1009 if (LIOps.size() == 1) {
1010 SCEV *Scale = LIOps[0];
1011 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001012 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001013 } else {
1014 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1015 std::vector<SCEVHandle> MulOps(LIOps);
1016 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001017 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001018 }
1019 }
1020
Dan Gohman246b2562007-10-22 18:31:58 +00001021 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001022
1023 // If all of the other operands were loop invariant, we are done.
1024 if (Ops.size() == 1) return NewRec;
1025
1026 // Otherwise, multiply the folded AddRec by the non-liv parts.
1027 for (unsigned i = 0;; ++i)
1028 if (Ops[i] == AddRec) {
1029 Ops[i] = NewRec;
1030 break;
1031 }
Dan Gohman246b2562007-10-22 18:31:58 +00001032 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001033 }
1034
1035 // Okay, if there weren't any loop invariants to be folded, check to see if
1036 // there are multiple AddRec's with the same loop induction variable being
1037 // multiplied together. If so, we can fold them.
1038 for (unsigned OtherIdx = Idx+1;
1039 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1040 if (OtherIdx != Idx) {
1041 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1042 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1043 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1044 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman246b2562007-10-22 18:31:58 +00001045 SCEVHandle NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001046 G->getStart());
Dan Gohman246b2562007-10-22 18:31:58 +00001047 SCEVHandle B = F->getStepRecurrence(*this);
1048 SCEVHandle D = G->getStepRecurrence(*this);
1049 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1050 getMulExpr(G, B),
1051 getMulExpr(B, D));
1052 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1053 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001054 if (Ops.size() == 2) return NewAddRec;
1055
1056 Ops.erase(Ops.begin()+Idx);
1057 Ops.erase(Ops.begin()+OtherIdx-1);
1058 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001059 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001060 }
1061 }
1062
1063 // Otherwise couldn't fold anything into this recurrence. Move onto the
1064 // next one.
1065 }
1066
1067 // Okay, it looks like we really DO need an mul expr. Check to see if we
1068 // already have one, otherwise create a new one.
1069 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +00001070 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1071 SCEVOps)];
Chris Lattner6a1a78a2004-12-04 20:54:32 +00001072 if (Result == 0)
1073 Result = new SCEVMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001074 return Result;
1075}
1076
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00001077SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001078 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1079 if (RHSC->getValue()->equalsInt(1))
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00001080 return LHS; // X udiv 1 --> x
Chris Lattner53e677a2004-04-02 20:23:17 +00001081
1082 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1083 Constant *LHSCV = LHSC->getValue();
1084 Constant *RHSCV = RHSC->getValue();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00001085 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
Chris Lattner53e677a2004-04-02 20:23:17 +00001086 }
1087 }
1088
1089 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1090
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00001091 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1092 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00001093 return Result;
1094}
1095
1096
1097/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1098/// specified loop. Simplify the expression as much as possible.
Dan Gohman246b2562007-10-22 18:31:58 +00001099SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Chris Lattner53e677a2004-04-02 20:23:17 +00001100 const SCEVHandle &Step, const Loop *L) {
1101 std::vector<SCEVHandle> Operands;
1102 Operands.push_back(Start);
1103 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1104 if (StepChrec->getLoop() == L) {
1105 Operands.insert(Operands.end(), StepChrec->op_begin(),
1106 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001107 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001108 }
1109
1110 Operands.push_back(Step);
Dan Gohman246b2562007-10-22 18:31:58 +00001111 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001112}
1113
1114/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1115/// specified loop. Simplify the expression as much as possible.
Dan Gohman246b2562007-10-22 18:31:58 +00001116SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
Chris Lattner53e677a2004-04-02 20:23:17 +00001117 const Loop *L) {
1118 if (Operands.size() == 1) return Operands[0];
1119
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001120 if (Operands.back()->isZero()) {
1121 Operands.pop_back();
1122 return getAddRecExpr(Operands, L); // { X,+,0 } --> X
1123 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001124
1125 SCEVAddRecExpr *&Result =
Chris Lattnerb3364092006-10-04 21:49:37 +00001126 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1127 Operands.end()))];
Chris Lattner53e677a2004-04-02 20:23:17 +00001128 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1129 return Result;
1130}
1131
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001132SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1133 const SCEVHandle &RHS) {
1134 std::vector<SCEVHandle> Ops;
1135 Ops.push_back(LHS);
1136 Ops.push_back(RHS);
1137 return getSMaxExpr(Ops);
1138}
1139
1140SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1141 assert(!Ops.empty() && "Cannot get empty smax!");
1142 if (Ops.size() == 1) return Ops[0];
1143
1144 // Sort by complexity, this groups all similar expression types together.
1145 GroupByComplexity(Ops);
1146
1147 // If there are any constants, fold them together.
1148 unsigned Idx = 0;
1149 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1150 ++Idx;
1151 assert(Idx < Ops.size());
1152 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1153 // We found two constants, fold them together!
Nick Lewycky3e630762008-02-20 06:48:22 +00001154 ConstantInt *Fold = ConstantInt::get(
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001155 APIntOps::smax(LHSC->getValue()->getValue(),
1156 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00001157 Ops[0] = getConstant(Fold);
1158 Ops.erase(Ops.begin()+1); // Erase the folded element
1159 if (Ops.size() == 1) return Ops[0];
1160 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001161 }
1162
1163 // If we are left with a constant -inf, strip it off.
1164 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1165 Ops.erase(Ops.begin());
1166 --Idx;
1167 }
1168 }
1169
1170 if (Ops.size() == 1) return Ops[0];
1171
1172 // Find the first SMax
1173 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1174 ++Idx;
1175
1176 // Check to see if one of the operands is an SMax. If so, expand its operands
1177 // onto our operand list, and recurse to simplify.
1178 if (Idx < Ops.size()) {
1179 bool DeletedSMax = false;
1180 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1181 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1182 Ops.erase(Ops.begin()+Idx);
1183 DeletedSMax = true;
1184 }
1185
1186 if (DeletedSMax)
1187 return getSMaxExpr(Ops);
1188 }
1189
1190 // Okay, check to see if the same value occurs in the operand list twice. If
1191 // so, delete one. Since we sorted the list, these values are required to
1192 // be adjacent.
1193 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1194 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1195 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1196 --i; --e;
1197 }
1198
1199 if (Ops.size() == 1) return Ops[0];
1200
1201 assert(!Ops.empty() && "Reduced smax down to nothing!");
1202
Nick Lewycky3e630762008-02-20 06:48:22 +00001203 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001204 // already have one, otherwise create a new one.
1205 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1206 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1207 SCEVOps)];
1208 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1209 return Result;
1210}
1211
Nick Lewycky3e630762008-02-20 06:48:22 +00001212SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1213 const SCEVHandle &RHS) {
1214 std::vector<SCEVHandle> Ops;
1215 Ops.push_back(LHS);
1216 Ops.push_back(RHS);
1217 return getUMaxExpr(Ops);
1218}
1219
1220SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1221 assert(!Ops.empty() && "Cannot get empty umax!");
1222 if (Ops.size() == 1) return Ops[0];
1223
1224 // Sort by complexity, this groups all similar expression types together.
1225 GroupByComplexity(Ops);
1226
1227 // If there are any constants, fold them together.
1228 unsigned Idx = 0;
1229 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1230 ++Idx;
1231 assert(Idx < Ops.size());
1232 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1233 // We found two constants, fold them together!
1234 ConstantInt *Fold = ConstantInt::get(
1235 APIntOps::umax(LHSC->getValue()->getValue(),
1236 RHSC->getValue()->getValue()));
1237 Ops[0] = getConstant(Fold);
1238 Ops.erase(Ops.begin()+1); // Erase the folded element
1239 if (Ops.size() == 1) return Ops[0];
1240 LHSC = cast<SCEVConstant>(Ops[0]);
1241 }
1242
1243 // If we are left with a constant zero, strip it off.
1244 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1245 Ops.erase(Ops.begin());
1246 --Idx;
1247 }
1248 }
1249
1250 if (Ops.size() == 1) return Ops[0];
1251
1252 // Find the first UMax
1253 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1254 ++Idx;
1255
1256 // Check to see if one of the operands is a UMax. If so, expand its operands
1257 // onto our operand list, and recurse to simplify.
1258 if (Idx < Ops.size()) {
1259 bool DeletedUMax = false;
1260 while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1261 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1262 Ops.erase(Ops.begin()+Idx);
1263 DeletedUMax = true;
1264 }
1265
1266 if (DeletedUMax)
1267 return getUMaxExpr(Ops);
1268 }
1269
1270 // Okay, check to see if the same value occurs in the operand list twice. If
1271 // so, delete one. Since we sorted the list, these values are required to
1272 // be adjacent.
1273 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1274 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1275 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1276 --i; --e;
1277 }
1278
1279 if (Ops.size() == 1) return Ops[0];
1280
1281 assert(!Ops.empty() && "Reduced umax down to nothing!");
1282
1283 // Okay, it looks like we really DO need a umax expr. Check to see if we
1284 // already have one, otherwise create a new one.
1285 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1286 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1287 SCEVOps)];
1288 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1289 return Result;
1290}
1291
Dan Gohman246b2562007-10-22 18:31:58 +00001292SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001293 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman246b2562007-10-22 18:31:58 +00001294 return getConstant(CI);
Chris Lattnerb3364092006-10-04 21:49:37 +00001295 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001296 if (Result == 0) Result = new SCEVUnknown(V);
1297 return Result;
1298}
1299
Chris Lattner53e677a2004-04-02 20:23:17 +00001300
1301//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00001302// ScalarEvolutionsImpl Definition and Implementation
1303//===----------------------------------------------------------------------===//
1304//
1305/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1306/// evolution code.
1307///
1308namespace {
Chris Lattner95255282006-06-28 23:17:24 +00001309 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
Dan Gohman246b2562007-10-22 18:31:58 +00001310 /// SE - A reference to the public ScalarEvolution object.
1311 ScalarEvolution &SE;
1312
Chris Lattner53e677a2004-04-02 20:23:17 +00001313 /// F - The function we are analyzing.
1314 ///
1315 Function &F;
1316
1317 /// LI - The loop information for the function we are currently analyzing.
1318 ///
1319 LoopInfo &LI;
1320
1321 /// UnknownValue - This SCEV is used to represent unknown trip counts and
1322 /// things.
1323 SCEVHandle UnknownValue;
1324
1325 /// Scalars - This is a cache of the scalars we have analyzed so far.
1326 ///
1327 std::map<Value*, SCEVHandle> Scalars;
1328
1329 /// IterationCounts - Cache the iteration count of the loops for this
1330 /// function as they are computed.
1331 std::map<const Loop*, SCEVHandle> IterationCounts;
1332
Chris Lattner3221ad02004-04-17 22:58:41 +00001333 /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1334 /// the PHI instructions that we attempt to compute constant evolutions for.
1335 /// This allows us to avoid potentially expensive recomputation of these
1336 /// properties. An instruction maps to null if we are unable to compute its
1337 /// exit value.
1338 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001339
Chris Lattner53e677a2004-04-02 20:23:17 +00001340 public:
Dan Gohman246b2562007-10-22 18:31:58 +00001341 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li)
1342 : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
Chris Lattner53e677a2004-04-02 20:23:17 +00001343
1344 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1345 /// expression and create a new one.
1346 SCEVHandle getSCEV(Value *V);
1347
Chris Lattnera0740fb2005-08-09 23:36:33 +00001348 /// hasSCEV - Return true if the SCEV for this value has already been
1349 /// computed.
1350 bool hasSCEV(Value *V) const {
1351 return Scalars.count(V);
1352 }
1353
1354 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1355 /// the specified value.
1356 void setSCEV(Value *V, const SCEVHandle &H) {
1357 bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1358 assert(isNew && "This entry already existed!");
1359 }
1360
1361
Chris Lattner53e677a2004-04-02 20:23:17 +00001362 /// getSCEVAtScope - Compute the value of the specified expression within
1363 /// the indicated loop (which may be null to indicate in no loop). If the
1364 /// expression cannot be evaluated, return UnknownValue itself.
1365 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1366
1367
1368 /// hasLoopInvariantIterationCount - Return true if the specified loop has
1369 /// an analyzable loop-invariant iteration count.
1370 bool hasLoopInvariantIterationCount(const Loop *L);
1371
1372 /// getIterationCount - If the specified loop has a predictable iteration
1373 /// count, return it. Note that it is not valid to call this method on a
1374 /// loop without a loop-invariant iteration count.
1375 SCEVHandle getIterationCount(const Loop *L);
1376
Dan Gohman5cec4db2007-06-19 14:28:31 +00001377 /// deleteValueFromRecords - This method should be called by the
1378 /// client before it removes a value from the program, to make sure
Chris Lattner53e677a2004-04-02 20:23:17 +00001379 /// that no dangling references are left around.
Dan Gohman5cec4db2007-06-19 14:28:31 +00001380 void deleteValueFromRecords(Value *V);
Chris Lattner53e677a2004-04-02 20:23:17 +00001381
1382 private:
1383 /// createSCEV - We know that there is no SCEV for the specified value.
1384 /// Analyze the expression.
1385 SCEVHandle createSCEV(Value *V);
Chris Lattner53e677a2004-04-02 20:23:17 +00001386
1387 /// createNodeForPHI - Provide the special handling we need to analyze PHI
1388 /// SCEVs.
1389 SCEVHandle createNodeForPHI(PHINode *PN);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001390
1391 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1392 /// for the specified instruction and replaces any references to the
1393 /// symbolic value SymName with the specified value. This is used during
1394 /// PHI resolution.
1395 void ReplaceSymbolicValueWithConcrete(Instruction *I,
1396 const SCEVHandle &SymName,
1397 const SCEVHandle &NewVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00001398
1399 /// ComputeIterationCount - Compute the number of times the specified loop
1400 /// will iterate.
1401 SCEVHandle ComputeIterationCount(const Loop *L);
1402
Chris Lattner673e02b2004-10-12 01:49:27 +00001403 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
Nick Lewycky6e801dc2007-11-20 08:44:50 +00001404 /// 'icmp op load X, cst', try to see if we can compute the trip count.
Chris Lattner673e02b2004-10-12 01:49:27 +00001405 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1406 Constant *RHS,
1407 const Loop *L,
Reid Spencere4d87aa2006-12-23 06:05:41 +00001408 ICmpInst::Predicate p);
Chris Lattner673e02b2004-10-12 01:49:27 +00001409
Chris Lattner7980fb92004-04-17 18:36:24 +00001410 /// ComputeIterationCountExhaustively - If the trip is known to execute a
1411 /// constant number of times (the condition evolves only from constants),
1412 /// try to evaluate a few iterations of the loop until we get the exit
1413 /// condition gets a value of ExitWhen (true or false). If we cannot
1414 /// evaluate the trip count of the loop, return UnknownValue.
1415 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1416 bool ExitWhen);
1417
Chris Lattner53e677a2004-04-02 20:23:17 +00001418 /// HowFarToZero - Return the number of times a backedge comparing the
1419 /// specified value to zero will execute. If not computable, return
Chris Lattnerdb25de42005-08-15 23:33:51 +00001420 /// UnknownValue.
Chris Lattner53e677a2004-04-02 20:23:17 +00001421 SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1422
1423 /// HowFarToNonZero - Return the number of times a backedge checking the
1424 /// specified value for nonzero will execute. If not computable, return
Chris Lattnerdb25de42005-08-15 23:33:51 +00001425 /// UnknownValue.
Chris Lattner53e677a2004-04-02 20:23:17 +00001426 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
Chris Lattner3221ad02004-04-17 22:58:41 +00001427
Chris Lattnerdb25de42005-08-15 23:33:51 +00001428 /// HowManyLessThans - Return the number of times a backedge containing the
1429 /// specified less-than comparison will execute. If not computable, return
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00001430 /// UnknownValue. isSigned specifies whether the less-than is signed.
1431 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
1432 bool isSigned);
Chris Lattnerdb25de42005-08-15 23:33:51 +00001433
Nick Lewycky59cff122008-07-12 07:41:32 +00001434 /// executesAtLeastOnce - Test whether entry to the loop is protected by
1435 /// a conditional between LHS and RHS.
1436 bool executesAtLeastOnce(const Loop *L, bool isSigned, SCEV *LHS, SCEV *RHS);
1437
Chris Lattner3221ad02004-04-17 22:58:41 +00001438 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1439 /// in the header of its containing loop, we know the loop executes a
1440 /// constant number of times, and the PHI node is just a recurrence
1441 /// involving constants, fold it.
Reid Spencere8019bb2007-03-01 07:25:48 +00001442 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
Chris Lattner3221ad02004-04-17 22:58:41 +00001443 const Loop *L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001444 };
1445}
1446
1447//===----------------------------------------------------------------------===//
1448// Basic SCEV Analysis and PHI Idiom Recognition Code
1449//
1450
Dan Gohman5cec4db2007-06-19 14:28:31 +00001451/// deleteValueFromRecords - This method should be called by the
Chris Lattner53e677a2004-04-02 20:23:17 +00001452/// client before it removes an instruction from the program, to make sure
1453/// that no dangling references are left around.
Dan Gohman5cec4db2007-06-19 14:28:31 +00001454void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
1455 SmallVector<Value *, 16> Worklist;
Nick Lewycky9d0332f2007-06-06 04:12:20 +00001456
Dan Gohman5cec4db2007-06-19 14:28:31 +00001457 if (Scalars.erase(V)) {
1458 if (PHINode *PN = dyn_cast<PHINode>(V))
Nick Lewycky9d0332f2007-06-06 04:12:20 +00001459 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman5cec4db2007-06-19 14:28:31 +00001460 Worklist.push_back(V);
Nick Lewycky9d0332f2007-06-06 04:12:20 +00001461 }
1462
1463 while (!Worklist.empty()) {
Dan Gohman5cec4db2007-06-19 14:28:31 +00001464 Value *VV = Worklist.back();
Nick Lewycky9d0332f2007-06-06 04:12:20 +00001465 Worklist.pop_back();
1466
Dan Gohman5cec4db2007-06-19 14:28:31 +00001467 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
Nick Lewycky9d0332f2007-06-06 04:12:20 +00001468 UI != UE; ++UI) {
Nick Lewycky51e844b2007-06-06 11:26:20 +00001469 Instruction *Inst = cast<Instruction>(*UI);
1470 if (Scalars.erase(Inst)) {
Dan Gohman5cec4db2007-06-19 14:28:31 +00001471 if (PHINode *PN = dyn_cast<PHINode>(VV))
Nick Lewycky9d0332f2007-06-06 04:12:20 +00001472 ConstantEvolutionLoopExitValue.erase(PN);
1473 Worklist.push_back(Inst);
1474 }
1475 }
1476 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001477}
1478
1479
1480/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1481/// expression and create a new one.
1482SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1483 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1484
1485 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1486 if (I != Scalars.end()) return I->second;
1487 SCEVHandle S = createSCEV(V);
1488 Scalars.insert(std::make_pair(V, S));
1489 return S;
1490}
1491
Chris Lattner4dc534c2005-02-13 04:37:18 +00001492/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1493/// the specified instruction and replaces any references to the symbolic value
1494/// SymName with the specified value. This is used during PHI resolution.
1495void ScalarEvolutionsImpl::
1496ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1497 const SCEVHandle &NewVal) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001499 if (SI == Scalars.end()) return;
Chris Lattner53e677a2004-04-02 20:23:17 +00001500
Chris Lattner4dc534c2005-02-13 04:37:18 +00001501 SCEVHandle NV =
Dan Gohman246b2562007-10-22 18:31:58 +00001502 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001503 if (NV == SI->second) return; // No change.
1504
1505 SI->second = NV; // Update the scalars map!
1506
1507 // Any instruction values that use this instruction might also need to be
1508 // updated!
1509 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1510 UI != E; ++UI)
1511 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1512}
Chris Lattner53e677a2004-04-02 20:23:17 +00001513
1514/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1515/// a loop header, making it a potential recurrence, or it doesn't.
1516///
1517SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1518 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1519 if (const Loop *L = LI.getLoopFor(PN->getParent()))
1520 if (L->getHeader() == PN->getParent()) {
1521 // If it lives in the loop header, it has two incoming values, one
1522 // from outside the loop, and one from inside.
1523 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1524 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001525
Chris Lattner53e677a2004-04-02 20:23:17 +00001526 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman246b2562007-10-22 18:31:58 +00001527 SCEVHandle SymbolicName = SE.getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00001528 assert(Scalars.find(PN) == Scalars.end() &&
1529 "PHI node already processed?");
1530 Scalars.insert(std::make_pair(PN, SymbolicName));
1531
1532 // Using this symbolic name for the PHI, analyze the value coming around
1533 // the back-edge.
1534 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1535
1536 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1537 // has a special value for the first iteration of the loop.
1538
1539 // If the value coming around the backedge is an add with the symbolic
1540 // value we just inserted, then we found a simple induction variable!
1541 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1542 // If there is a single occurrence of the symbolic value, replace it
1543 // with a recurrence.
1544 unsigned FoundIndex = Add->getNumOperands();
1545 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1546 if (Add->getOperand(i) == SymbolicName)
1547 if (FoundIndex == e) {
1548 FoundIndex = i;
1549 break;
1550 }
1551
1552 if (FoundIndex != Add->getNumOperands()) {
1553 // Create an add with everything but the specified operand.
1554 std::vector<SCEVHandle> Ops;
1555 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1556 if (i != FoundIndex)
1557 Ops.push_back(Add->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001558 SCEVHandle Accum = SE.getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001559
1560 // This is not a valid addrec if the step amount is varying each
1561 // loop iteration, but is not itself an addrec in this loop.
1562 if (Accum->isLoopInvariant(L) ||
1563 (isa<SCEVAddRecExpr>(Accum) &&
1564 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1565 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohman246b2562007-10-22 18:31:58 +00001566 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001567
1568 // Okay, for the entire analysis of this edge we assumed the PHI
1569 // to be symbolic. We now need to go back and update all of the
1570 // entries for the scalars that use the PHI (except for the PHI
1571 // itself) to use the new analyzed value instead of the "symbolic"
1572 // value.
Chris Lattner4dc534c2005-02-13 04:37:18 +00001573 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001574 return PHISCEV;
1575 }
1576 }
Chris Lattner97156e72006-04-26 18:34:07 +00001577 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1578 // Otherwise, this could be a loop like this:
1579 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1580 // In this case, j = {1,+,1} and BEValue is j.
1581 // Because the other in-value of i (0) fits the evolution of BEValue
1582 // i really is an addrec evolution.
1583 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1584 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1585
1586 // If StartVal = j.start - j.stride, we can use StartVal as the
1587 // initial step of the addrec evolution.
Dan Gohman246b2562007-10-22 18:31:58 +00001588 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0),
1589 AddRec->getOperand(1))) {
Chris Lattner97156e72006-04-26 18:34:07 +00001590 SCEVHandle PHISCEV =
Dan Gohman246b2562007-10-22 18:31:58 +00001591 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00001592
1593 // Okay, for the entire analysis of this edge we assumed the PHI
1594 // to be symbolic. We now need to go back and update all of the
1595 // entries for the scalars that use the PHI (except for the PHI
1596 // itself) to use the new analyzed value instead of the "symbolic"
1597 // value.
1598 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1599 return PHISCEV;
1600 }
1601 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001602 }
1603
1604 return SymbolicName;
1605 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001606
Chris Lattner53e677a2004-04-02 20:23:17 +00001607 // If it's not a loop phi, we can't handle it yet.
Dan Gohman246b2562007-10-22 18:31:58 +00001608 return SE.getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00001609}
1610
Nick Lewycky83bb0052007-11-22 07:59:40 +00001611/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1612/// guaranteed to end in (at every loop iteration). It is, at the same time,
1613/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
1614/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
1615static uint32_t GetMinTrailingZeros(SCEVHandle S) {
1616 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00001617 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00001618
Nick Lewycky6e801dc2007-11-20 08:44:50 +00001619 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Nick Lewycky83bb0052007-11-22 07:59:40 +00001620 return std::min(GetMinTrailingZeros(T->getOperand()), T->getBitWidth());
1621
1622 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1623 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
1624 return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes;
1625 }
1626
1627 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1628 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
1629 return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes;
1630 }
1631
Chris Lattnera17f0392006-12-12 02:26:09 +00001632 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00001633 // The result is the min of all operands results.
1634 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
1635 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1636 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
1637 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00001638 }
1639
1640 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00001641 // The result is the sum of all operands results.
1642 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
1643 uint32_t BitWidth = M->getBitWidth();
1644 for (unsigned i = 1, e = M->getNumOperands();
1645 SumOpRes != BitWidth && i != e; ++i)
1646 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
1647 BitWidth);
1648 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00001649 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00001650
Chris Lattnera17f0392006-12-12 02:26:09 +00001651 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00001652 // The result is the min of all operands results.
1653 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
1654 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1655 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
1656 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00001657 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00001658
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001659 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1660 // The result is the min of all operands results.
1661 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
1662 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1663 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
1664 return MinOpRes;
1665 }
1666
Nick Lewycky3e630762008-02-20 06:48:22 +00001667 if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1668 // The result is the min of all operands results.
1669 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
1670 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1671 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
1672 return MinOpRes;
1673 }
1674
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00001675 // SCEVUDivExpr, SCEVUnknown
Nick Lewycky83bb0052007-11-22 07:59:40 +00001676 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00001677}
Chris Lattner53e677a2004-04-02 20:23:17 +00001678
1679/// createSCEV - We know that there is no SCEV for the specified value.
1680/// Analyze the expression.
1681///
1682SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
Chris Lattner42b5e082007-11-23 08:46:22 +00001683 if (!isa<IntegerType>(V->getType()))
1684 return SE.getUnknown(V);
1685
Dan Gohman6c459a22008-06-22 19:56:46 +00001686 unsigned Opcode = Instruction::UserOp1;
1687 if (Instruction *I = dyn_cast<Instruction>(V))
1688 Opcode = I->getOpcode();
1689 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1690 Opcode = CE->getOpcode();
1691 else
1692 return SE.getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00001693
Dan Gohman6c459a22008-06-22 19:56:46 +00001694 User *U = cast<User>(V);
1695 switch (Opcode) {
1696 case Instruction::Add:
1697 return SE.getAddExpr(getSCEV(U->getOperand(0)),
1698 getSCEV(U->getOperand(1)));
1699 case Instruction::Mul:
1700 return SE.getMulExpr(getSCEV(U->getOperand(0)),
1701 getSCEV(U->getOperand(1)));
1702 case Instruction::UDiv:
1703 return SE.getUDivExpr(getSCEV(U->getOperand(0)),
1704 getSCEV(U->getOperand(1)));
1705 case Instruction::Sub:
1706 return SE.getMinusSCEV(getSCEV(U->getOperand(0)),
1707 getSCEV(U->getOperand(1)));
1708 case Instruction::Or:
1709 // If the RHS of the Or is a constant, we may have something like:
1710 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
1711 // optimizations will transparently handle this case.
1712 //
1713 // In order for this transformation to be safe, the LHS must be of the
1714 // form X*(2^n) and the Or constant must be less than 2^n.
1715 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1716 SCEVHandle LHS = getSCEV(U->getOperand(0));
1717 const APInt &CIVal = CI->getValue();
1718 if (GetMinTrailingZeros(LHS) >=
1719 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
1720 return SE.getAddExpr(LHS, getSCEV(U->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001721 }
Dan Gohman6c459a22008-06-22 19:56:46 +00001722 break;
1723 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00001724 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00001725 // If the RHS of the xor is a signbit, then this is just an add.
1726 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00001727 if (CI->getValue().isSignBit())
1728 return SE.getAddExpr(getSCEV(U->getOperand(0)),
1729 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00001730
1731 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman6c459a22008-06-22 19:56:46 +00001732 else if (CI->isAllOnesValue())
1733 return SE.getNotSCEV(getSCEV(U->getOperand(0)));
1734 }
1735 break;
1736
1737 case Instruction::Shl:
1738 // Turn shift left of a constant amount into a multiply.
1739 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1740 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1741 Constant *X = ConstantInt::get(
1742 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1743 return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1744 }
1745 break;
1746
Nick Lewycky01eaf802008-07-07 06:15:49 +00001747 case Instruction::LShr:
1748 // Turn logical shift right of a constant into a unsigned divide.
1749 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1750 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1751 Constant *X = ConstantInt::get(
1752 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1753 return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1754 }
1755 break;
1756
Dan Gohman6c459a22008-06-22 19:56:46 +00001757 case Instruction::Trunc:
1758 return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
1759
1760 case Instruction::ZExt:
1761 return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1762
1763 case Instruction::SExt:
1764 return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1765
1766 case Instruction::BitCast:
1767 // BitCasts are no-op casts so we just eliminate the cast.
1768 if (U->getType()->isInteger() &&
1769 U->getOperand(0)->getType()->isInteger())
1770 return getSCEV(U->getOperand(0));
1771 break;
1772
1773 case Instruction::PHI:
1774 return createNodeForPHI(cast<PHINode>(U));
1775
1776 case Instruction::Select:
1777 // This could be a smax or umax that was lowered earlier.
1778 // Try to recover it.
1779 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
1780 Value *LHS = ICI->getOperand(0);
1781 Value *RHS = ICI->getOperand(1);
1782 switch (ICI->getPredicate()) {
1783 case ICmpInst::ICMP_SLT:
1784 case ICmpInst::ICMP_SLE:
1785 std::swap(LHS, RHS);
1786 // fall through
1787 case ICmpInst::ICMP_SGT:
1788 case ICmpInst::ICMP_SGE:
1789 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
1790 return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
1791 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
1792 // -smax(-x, -y) == smin(x, y).
1793 return SE.getNegativeSCEV(SE.getSMaxExpr(
1794 SE.getNegativeSCEV(getSCEV(LHS)),
1795 SE.getNegativeSCEV(getSCEV(RHS))));
1796 break;
1797 case ICmpInst::ICMP_ULT:
1798 case ICmpInst::ICMP_ULE:
1799 std::swap(LHS, RHS);
1800 // fall through
1801 case ICmpInst::ICMP_UGT:
1802 case ICmpInst::ICMP_UGE:
1803 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
1804 return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
1805 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
1806 // ~umax(~x, ~y) == umin(x, y)
1807 return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)),
1808 SE.getNotSCEV(getSCEV(RHS))));
1809 break;
1810 default:
1811 break;
1812 }
1813 }
1814
1815 default: // We cannot analyze this expression.
1816 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001817 }
1818
Dan Gohman246b2562007-10-22 18:31:58 +00001819 return SE.getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00001820}
1821
1822
1823
1824//===----------------------------------------------------------------------===//
1825// Iteration Count Computation Code
1826//
1827
1828/// getIterationCount - If the specified loop has a predictable iteration
1829/// count, return it. Note that it is not valid to call this method on a
1830/// loop without a loop-invariant iteration count.
1831SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1832 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1833 if (I == IterationCounts.end()) {
1834 SCEVHandle ItCount = ComputeIterationCount(L);
1835 I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1836 if (ItCount != UnknownValue) {
1837 assert(ItCount->isLoopInvariant(L) &&
1838 "Computed trip count isn't loop invariant for loop!");
1839 ++NumTripCountsComputed;
1840 } else if (isa<PHINode>(L->getHeader()->begin())) {
1841 // Only count loops that have phi nodes as not being computable.
1842 ++NumTripCountsNotComputed;
1843 }
1844 }
1845 return I->second;
1846}
1847
1848/// ComputeIterationCount - Compute the number of times the specified loop
1849/// will iterate.
1850SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1851 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patelb7211a22007-08-21 00:31:24 +00001852 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001853 L->getExitBlocks(ExitBlocks);
1854 if (ExitBlocks.size() != 1) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001855
1856 // Okay, there is one exit block. Try to find the condition that causes the
1857 // loop to be exited.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001858 BasicBlock *ExitBlock = ExitBlocks[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001859
1860 BasicBlock *ExitingBlock = 0;
1861 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1862 PI != E; ++PI)
1863 if (L->contains(*PI)) {
1864 if (ExitingBlock == 0)
1865 ExitingBlock = *PI;
1866 else
1867 return UnknownValue; // More than one block exiting!
1868 }
1869 assert(ExitingBlock && "No exits from loop, something is broken!");
1870
1871 // Okay, we've computed the exiting block. See what condition causes us to
1872 // exit.
1873 //
1874 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00001875 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1876 if (ExitBr == 0) return UnknownValue;
1877 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Chris Lattner8b0e3602007-01-07 02:24:26 +00001878
1879 // At this point, we know we have a conditional branch that determines whether
1880 // the loop is exited. However, we don't know if the branch is executed each
1881 // time through the loop. If not, then the execution count of the branch will
1882 // not be equal to the trip count of the loop.
1883 //
1884 // Currently we check for this by checking to see if the Exit branch goes to
1885 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00001886 // times as the loop. We also handle the case where the exit block *is* the
1887 // loop header. This is common for un-rotated loops. More extensive analysis
1888 // could be done to handle more cases here.
Chris Lattner8b0e3602007-01-07 02:24:26 +00001889 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00001890 ExitBr->getSuccessor(1) != L->getHeader() &&
1891 ExitBr->getParent() != L->getHeader())
Chris Lattner8b0e3602007-01-07 02:24:26 +00001892 return UnknownValue;
1893
Reid Spencere4d87aa2006-12-23 06:05:41 +00001894 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1895
Nick Lewycky3b711652008-02-21 08:34:02 +00001896 // If it's not an integer comparison then compute it the hard way.
Reid Spencere4d87aa2006-12-23 06:05:41 +00001897 // Note that ICmpInst deals with pointer comparisons too so we must check
1898 // the type of the operand.
Chris Lattner8b0e3602007-01-07 02:24:26 +00001899 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
Chris Lattner7980fb92004-04-17 18:36:24 +00001900 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1901 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner53e677a2004-04-02 20:23:17 +00001902
Reid Spencere4d87aa2006-12-23 06:05:41 +00001903 // If the condition was exit on true, convert the condition to exit on false
1904 ICmpInst::Predicate Cond;
Chris Lattner673e02b2004-10-12 01:49:27 +00001905 if (ExitBr->getSuccessor(1) == ExitBlock)
Reid Spencere4d87aa2006-12-23 06:05:41 +00001906 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00001907 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00001908 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00001909
1910 // Handle common loops like: for (X = "string"; *X; ++X)
1911 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1912 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1913 SCEVHandle ItCnt =
1914 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1915 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1916 }
1917
Chris Lattner53e677a2004-04-02 20:23:17 +00001918 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1919 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1920
1921 // Try to evaluate any dependencies out of the loop.
1922 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1923 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1924 Tmp = getSCEVAtScope(RHS, L);
1925 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1926
Reid Spencere4d87aa2006-12-23 06:05:41 +00001927 // At this point, we would like to compute how many iterations of the
1928 // loop the predicate will return true for these inputs.
Evan Chengb9a90572008-02-25 03:57:32 +00001929 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1930 // If there is a constant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00001931 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001932 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00001933 }
1934
1935 // FIXME: think about handling pointer comparisons! i.e.:
1936 // while (P != P+100) ++P;
1937
1938 // If we have a comparison of a chrec against a constant, try to use value
1939 // ranges to answer this query.
1940 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1941 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1942 if (AddRec->getLoop() == L) {
1943 // Form the comparison range using the constant of the correct type so
1944 // that the ConstantRange class knows to do a signed or unsigned
1945 // comparison.
1946 ConstantInt *CompVal = RHSC->getValue();
1947 const Type *RealTy = ExitCond->getOperand(0)->getType();
Reid Spencer4da49122006-12-12 05:05:00 +00001948 CompVal = dyn_cast<ConstantInt>(
Reid Spencerb6ba3e62006-12-12 09:17:50 +00001949 ConstantExpr::getBitCast(CompVal, RealTy));
Chris Lattner53e677a2004-04-02 20:23:17 +00001950 if (CompVal) {
1951 // Form the constant range.
Reid Spencerc6aedf72007-02-28 22:03:51 +00001952 ConstantRange CompRange(
1953 ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001954
Dan Gohman246b2562007-10-22 18:31:58 +00001955 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00001956 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1957 }
1958 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001959
Chris Lattner53e677a2004-04-02 20:23:17 +00001960 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00001961 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00001962 // Convert to: while (X-Y != 0)
Dan Gohman246b2562007-10-22 18:31:58 +00001963 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001964 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00001965 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001966 }
1967 case ICmpInst::ICMP_EQ: {
Chris Lattner53e677a2004-04-02 20:23:17 +00001968 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohman246b2562007-10-22 18:31:58 +00001969 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001970 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00001971 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001972 }
1973 case ICmpInst::ICMP_SLT: {
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00001974 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001975 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattnerdb25de42005-08-15 23:33:51 +00001976 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001977 }
1978 case ICmpInst::ICMP_SGT: {
Eli Friedman068acc32008-07-30 00:04:08 +00001979 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
1980 SE.getNotSCEV(RHS), L, true);
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00001981 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1982 break;
1983 }
1984 case ICmpInst::ICMP_ULT: {
1985 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
1986 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1987 break;
1988 }
1989 case ICmpInst::ICMP_UGT: {
Dale Johannesena0c8fc62008-04-20 16:58:57 +00001990 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
Nick Lewycky08de6132008-05-06 04:03:18 +00001991 SE.getNotSCEV(RHS), L, false);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001992 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattnerdb25de42005-08-15 23:33:51 +00001993 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001994 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001995 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001996#if 0
Bill Wendlinge8156192006-12-07 01:30:32 +00001997 cerr << "ComputeIterationCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00001998 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Bill Wendlinge8156192006-12-07 01:30:32 +00001999 cerr << "[unsigned] ";
2000 cerr << *LHS << " "
Reid Spencere4d87aa2006-12-23 06:05:41 +00002001 << Instruction::getOpcodeName(Instruction::ICmp)
2002 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002003#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00002004 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00002005 }
Chris Lattner7980fb92004-04-17 18:36:24 +00002006 return ComputeIterationCountExhaustively(L, ExitCond,
Reid Spencere4d87aa2006-12-23 06:05:41 +00002007 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner7980fb92004-04-17 18:36:24 +00002008}
2009
Chris Lattner673e02b2004-10-12 01:49:27 +00002010static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00002011EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2012 ScalarEvolution &SE) {
2013 SCEVHandle InVal = SE.getConstant(C);
2014 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00002015 assert(isa<SCEVConstant>(Val) &&
2016 "Evaluation of SCEV at constant didn't fold correctly?");
2017 return cast<SCEVConstant>(Val)->getValue();
2018}
2019
2020/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2021/// and a GEP expression (missing the pointer index) indexing into it, return
2022/// the addressed element of the initializer or null if the index expression is
2023/// invalid.
2024static Constant *
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002025GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00002026 const std::vector<ConstantInt*> &Indices) {
2027 Constant *Init = GV->getInitializer();
2028 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00002029 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00002030 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2031 assert(Idx < CS->getNumOperands() && "Bad struct index!");
2032 Init = cast<Constant>(CS->getOperand(Idx));
2033 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2034 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
2035 Init = cast<Constant>(CA->getOperand(Idx));
2036 } else if (isa<ConstantAggregateZero>(Init)) {
2037 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2038 assert(Idx < STy->getNumElements() && "Bad struct index!");
2039 Init = Constant::getNullValue(STy->getElementType(Idx));
2040 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2041 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
2042 Init = Constant::getNullValue(ATy->getElementType());
2043 } else {
2044 assert(0 && "Unknown constant aggregate type!");
2045 }
2046 return 0;
2047 } else {
2048 return 0; // Unknown initializer type
2049 }
2050 }
2051 return Init;
2052}
2053
2054/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
Nick Lewycky08de6132008-05-06 04:03:18 +00002055/// 'icmp op load X, cst', try to see if we can compute the trip count.
Chris Lattner673e02b2004-10-12 01:49:27 +00002056SCEVHandle ScalarEvolutionsImpl::
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002057ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
Reid Spencere4d87aa2006-12-23 06:05:41 +00002058 const Loop *L,
2059 ICmpInst::Predicate predicate) {
Chris Lattner673e02b2004-10-12 01:49:27 +00002060 if (LI->isVolatile()) return UnknownValue;
2061
2062 // Check to see if the loaded pointer is a getelementptr of a global.
2063 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2064 if (!GEP) return UnknownValue;
2065
2066 // Make sure that it is really a constant global we are gepping, with an
2067 // initializer, and make sure the first IDX is really 0.
2068 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2069 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2070 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2071 !cast<Constant>(GEP->getOperand(1))->isNullValue())
2072 return UnknownValue;
2073
2074 // Okay, we allow one non-constant index into the GEP instruction.
2075 Value *VarIdx = 0;
2076 std::vector<ConstantInt*> Indexes;
2077 unsigned VarIdxNum = 0;
2078 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2079 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2080 Indexes.push_back(CI);
2081 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2082 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
2083 VarIdx = GEP->getOperand(i);
2084 VarIdxNum = i-2;
2085 Indexes.push_back(0);
2086 }
2087
2088 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2089 // Check to see if X is a loop variant variable value now.
2090 SCEVHandle Idx = getSCEV(VarIdx);
2091 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2092 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2093
2094 // We can only recognize very limited forms of loop index expressions, in
2095 // particular, only affine AddRec's like {C1,+,C2}.
2096 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2097 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2098 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2099 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2100 return UnknownValue;
2101
2102 unsigned MaxSteps = MaxBruteForceIterations;
2103 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Reid Spencerb83eb642006-10-20 07:07:24 +00002104 ConstantInt *ItCst =
Reid Spencerc5b206b2006-12-31 05:48:39 +00002105 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohman246b2562007-10-22 18:31:58 +00002106 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00002107
2108 // Form the GEP offset.
2109 Indexes[VarIdxNum] = Val;
2110
2111 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2112 if (Result == 0) break; // Cannot compute!
2113
2114 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00002115 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002116 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00002117 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00002118#if 0
Bill Wendlinge8156192006-12-07 01:30:32 +00002119 cerr << "\n***\n*** Computed loop count " << *ItCst
2120 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2121 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00002122#endif
2123 ++NumArrayLenItCounts;
Dan Gohman246b2562007-10-22 18:31:58 +00002124 return SE.getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00002125 }
2126 }
2127 return UnknownValue;
2128}
2129
2130
Chris Lattner3221ad02004-04-17 22:58:41 +00002131/// CanConstantFold - Return true if we can constant fold an instruction of the
2132/// specified type, assuming that all operands were constants.
2133static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00002134 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00002135 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2136 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002137
Chris Lattner3221ad02004-04-17 22:58:41 +00002138 if (const CallInst *CI = dyn_cast<CallInst>(I))
2139 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00002140 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00002141 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00002142}
2143
Chris Lattner3221ad02004-04-17 22:58:41 +00002144/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2145/// in the loop that V is derived from. We allow arbitrary operations along the
2146/// way, but the operands of an operation must either be constants or a value
2147/// derived from a constant PHI. If this expression does not fit with these
2148/// constraints, return null.
2149static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2150 // If this is not an instruction, or if this is an instruction outside of the
2151 // loop, it can't be derived from a loop PHI.
2152 Instruction *I = dyn_cast<Instruction>(V);
2153 if (I == 0 || !L->contains(I->getParent())) return 0;
2154
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00002155 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00002156 if (L->getHeader() == I->getParent())
2157 return PN;
2158 else
2159 // We don't currently keep track of the control flow needed to evaluate
2160 // PHIs, so we cannot handle PHIs inside of loops.
2161 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00002162 }
Chris Lattner3221ad02004-04-17 22:58:41 +00002163
2164 // If we won't be able to constant fold this expression even if the operands
2165 // are constants, return early.
2166 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002167
Chris Lattner3221ad02004-04-17 22:58:41 +00002168 // Otherwise, we can evaluate this instruction if all of its operands are
2169 // constant or derived from a PHI node themselves.
2170 PHINode *PHI = 0;
2171 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2172 if (!(isa<Constant>(I->getOperand(Op)) ||
2173 isa<GlobalValue>(I->getOperand(Op)))) {
2174 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2175 if (P == 0) return 0; // Not evolving from PHI
2176 if (PHI == 0)
2177 PHI = P;
2178 else if (PHI != P)
2179 return 0; // Evolving from multiple different PHIs.
2180 }
2181
2182 // This is a expression evolving from a constant PHI!
2183 return PHI;
2184}
2185
2186/// EvaluateExpression - Given an expression that passes the
2187/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2188/// in the loop has the value PHIVal. If we can't fold this expression for some
2189/// reason, return null.
2190static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2191 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00002192 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00002193 Instruction *I = cast<Instruction>(V);
2194
2195 std::vector<Constant*> Operands;
2196 Operands.resize(I->getNumOperands());
2197
2198 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2199 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2200 if (Operands[i] == 0) return 0;
2201 }
2202
Chris Lattnerf286f6f2007-12-10 22:53:04 +00002203 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2204 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2205 &Operands[0], Operands.size());
2206 else
2207 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2208 &Operands[0], Operands.size());
Chris Lattner3221ad02004-04-17 22:58:41 +00002209}
2210
2211/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2212/// in the header of its containing loop, we know the loop executes a
2213/// constant number of times, and the PHI node is just a recurrence
2214/// involving constants, fold it.
2215Constant *ScalarEvolutionsImpl::
Reid Spencere8019bb2007-03-01 07:25:48 +00002216getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
Chris Lattner3221ad02004-04-17 22:58:41 +00002217 std::map<PHINode*, Constant*>::iterator I =
2218 ConstantEvolutionLoopExitValue.find(PN);
2219 if (I != ConstantEvolutionLoopExitValue.end())
2220 return I->second;
2221
Reid Spencere8019bb2007-03-01 07:25:48 +00002222 if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
Chris Lattner3221ad02004-04-17 22:58:41 +00002223 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2224
2225 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2226
2227 // Since the loop is canonicalized, the PHI node must have two entries. One
2228 // entry must be a constant (coming in from outside of the loop), and the
2229 // second must be derived from the same PHI.
2230 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2231 Constant *StartCST =
2232 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2233 if (StartCST == 0)
2234 return RetVal = 0; // Must be a constant.
2235
2236 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2237 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2238 if (PN2 != PN)
2239 return RetVal = 0; // Not derived from same PHI.
2240
2241 // Execute the loop symbolically to determine the exit value.
Reid Spencere8019bb2007-03-01 07:25:48 +00002242 if (Its.getActiveBits() >= 32)
2243 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00002244
Reid Spencere8019bb2007-03-01 07:25:48 +00002245 unsigned NumIterations = Its.getZExtValue(); // must be in range
2246 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00002247 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2248 if (IterationNum == NumIterations)
2249 return RetVal = PHIVal; // Got exit value!
2250
2251 // Compute the value of the PHI node for the next iteration.
2252 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2253 if (NextPHI == PHIVal)
2254 return RetVal = NextPHI; // Stopped evolving!
2255 if (NextPHI == 0)
2256 return 0; // Couldn't evaluate!
2257 PHIVal = NextPHI;
2258 }
2259}
2260
Chris Lattner7980fb92004-04-17 18:36:24 +00002261/// ComputeIterationCountExhaustively - If the trip is known to execute a
2262/// constant number of times (the condition evolves only from constants),
2263/// try to evaluate a few iterations of the loop until we get the exit
2264/// condition gets a value of ExitWhen (true or false). If we cannot
2265/// evaluate the trip count of the loop, return UnknownValue.
2266SCEVHandle ScalarEvolutionsImpl::
2267ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2268 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2269 if (PN == 0) return UnknownValue;
2270
2271 // Since the loop is canonicalized, the PHI node must have two entries. One
2272 // entry must be a constant (coming in from outside of the loop), and the
2273 // second must be derived from the same PHI.
2274 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2275 Constant *StartCST =
2276 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2277 if (StartCST == 0) return UnknownValue; // Must be a constant.
2278
2279 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2280 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2281 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2282
2283 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2284 // the loop symbolically to determine when the condition gets a value of
2285 // "ExitWhen".
2286 unsigned IterationNum = 0;
2287 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2288 for (Constant *PHIVal = StartCST;
2289 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002290 ConstantInt *CondVal =
2291 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
Chris Lattner3221ad02004-04-17 22:58:41 +00002292
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002293 // Couldn't symbolically evaluate.
Chris Lattneref3baf02007-01-12 18:28:58 +00002294 if (!CondVal) return UnknownValue;
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002295
Reid Spencere8019bb2007-03-01 07:25:48 +00002296 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00002297 ConstantEvolutionLoopExitValue[PN] = PHIVal;
Chris Lattner7980fb92004-04-17 18:36:24 +00002298 ++NumBruteForceTripCountsComputed;
Dan Gohman246b2562007-10-22 18:31:58 +00002299 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Chris Lattner7980fb92004-04-17 18:36:24 +00002300 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002301
Chris Lattner3221ad02004-04-17 22:58:41 +00002302 // Compute the value of the PHI node for the next iteration.
2303 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2304 if (NextPHI == 0 || NextPHI == PHIVal)
Chris Lattner7980fb92004-04-17 18:36:24 +00002305 return UnknownValue; // Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00002306 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00002307 }
2308
2309 // Too many iterations were needed to evaluate.
Chris Lattner53e677a2004-04-02 20:23:17 +00002310 return UnknownValue;
2311}
2312
2313/// getSCEVAtScope - Compute the value of the specified expression within the
2314/// indicated loop (which may be null to indicate in no loop). If the
2315/// expression cannot be evaluated, return UnknownValue.
2316SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
2317 // FIXME: this should be turned into a virtual method on SCEV!
2318
Chris Lattner3221ad02004-04-17 22:58:41 +00002319 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002320
Nick Lewycky3e630762008-02-20 06:48:22 +00002321 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00002322 // exit value from the loop without using SCEVs.
2323 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2324 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2325 const Loop *LI = this->LI[I->getParent()];
2326 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2327 if (PHINode *PN = dyn_cast<PHINode>(I))
2328 if (PN->getParent() == LI->getHeader()) {
2329 // Okay, there is no closed form solution for the PHI node. Check
2330 // to see if the loop that contains it has a known iteration count.
2331 // If so, we may be able to force computation of the exit value.
2332 SCEVHandle IterationCount = getIterationCount(LI);
2333 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
2334 // Okay, we know how many times the containing loop executes. If
2335 // this is a constant evolving PHI node, get the final value at
2336 // the specified iteration number.
2337 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Reid Spencere8019bb2007-03-01 07:25:48 +00002338 ICC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00002339 LI);
Dan Gohman246b2562007-10-22 18:31:58 +00002340 if (RV) return SE.getUnknown(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00002341 }
2342 }
2343
Reid Spencer09906f32006-12-04 21:33:23 +00002344 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00002345 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00002346 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00002347 // result. This is particularly useful for computing loop exit values.
2348 if (CanConstantFold(I)) {
2349 std::vector<Constant*> Operands;
2350 Operands.reserve(I->getNumOperands());
2351 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2352 Value *Op = I->getOperand(i);
2353 if (Constant *C = dyn_cast<Constant>(Op)) {
2354 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00002355 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00002356 // If any of the operands is non-constant and if they are
2357 // non-integer, don't even try to analyze them with scev techniques.
2358 if (!isa<IntegerType>(Op->getType()))
2359 return V;
2360
Chris Lattner3221ad02004-04-17 22:58:41 +00002361 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2362 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
Reid Spencerd977d862006-12-12 23:36:14 +00002363 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2364 Op->getType(),
2365 false));
Chris Lattner3221ad02004-04-17 22:58:41 +00002366 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2367 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
Reid Spencerd977d862006-12-12 23:36:14 +00002368 Operands.push_back(ConstantExpr::getIntegerCast(C,
2369 Op->getType(),
2370 false));
Chris Lattner3221ad02004-04-17 22:58:41 +00002371 else
2372 return V;
2373 } else {
2374 return V;
2375 }
2376 }
2377 }
Chris Lattnerf286f6f2007-12-10 22:53:04 +00002378
2379 Constant *C;
2380 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2381 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2382 &Operands[0], Operands.size());
2383 else
2384 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2385 &Operands[0], Operands.size());
Dan Gohman246b2562007-10-22 18:31:58 +00002386 return SE.getUnknown(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00002387 }
2388 }
2389
2390 // This is some other type of SCEVUnknown, just return it.
2391 return V;
2392 }
2393
Chris Lattner53e677a2004-04-02 20:23:17 +00002394 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2395 // Avoid performing the look-up in the common case where the specified
2396 // expression has no loop-variant portions.
2397 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2398 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2399 if (OpAtScope != Comm->getOperand(i)) {
2400 if (OpAtScope == UnknownValue) return UnknownValue;
2401 // Okay, at least one of these operands is loop variant but might be
2402 // foldable. Build a new instance of the folded commutative expression.
Chris Lattner3221ad02004-04-17 22:58:41 +00002403 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00002404 NewOps.push_back(OpAtScope);
2405
2406 for (++i; i != e; ++i) {
2407 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2408 if (OpAtScope == UnknownValue) return UnknownValue;
2409 NewOps.push_back(OpAtScope);
2410 }
2411 if (isa<SCEVAddExpr>(Comm))
Dan Gohman246b2562007-10-22 18:31:58 +00002412 return SE.getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002413 if (isa<SCEVMulExpr>(Comm))
2414 return SE.getMulExpr(NewOps);
2415 if (isa<SCEVSMaxExpr>(Comm))
2416 return SE.getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00002417 if (isa<SCEVUMaxExpr>(Comm))
2418 return SE.getUMaxExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002419 assert(0 && "Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002420 }
2421 }
2422 // If we got here, all operands are loop invariant.
2423 return Comm;
2424 }
2425
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00002426 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Chris Lattner60a05cc2006-04-01 04:48:52 +00002427 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002428 if (LHS == UnknownValue) return LHS;
Chris Lattner60a05cc2006-04-01 04:48:52 +00002429 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002430 if (RHS == UnknownValue) return RHS;
Chris Lattner60a05cc2006-04-01 04:48:52 +00002431 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2432 return Div; // must be loop invariant
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00002433 return SE.getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00002434 }
2435
2436 // If this is a loop recurrence for a loop that does not contain L, then we
2437 // are dealing with the final value computed by the loop.
2438 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2439 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2440 // To evaluate this recurrence, we need to know how many times the AddRec
2441 // loop iterates. Compute this now.
2442 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2443 if (IterationCount == UnknownValue) return UnknownValue;
Nick Lewycky6f8abf92008-06-13 04:38:55 +00002444 IterationCount = SE.getTruncateOrZeroExtend(IterationCount,
2445 AddRec->getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002446
Chris Lattner53e677a2004-04-02 20:23:17 +00002447 // If the value is affine, simplify the expression evaluation to just
2448 // Start + Step*IterationCount.
2449 if (AddRec->isAffine())
Dan Gohman246b2562007-10-22 18:31:58 +00002450 return SE.getAddExpr(AddRec->getStart(),
2451 SE.getMulExpr(IterationCount,
2452 AddRec->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002453
2454 // Otherwise, evaluate it the hard way.
Dan Gohman246b2562007-10-22 18:31:58 +00002455 return AddRec->evaluateAtIteration(IterationCount, SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00002456 }
2457 return UnknownValue;
2458 }
2459
2460 //assert(0 && "Unknown SCEV type!");
2461 return UnknownValue;
2462}
2463
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002464/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2465/// following equation:
2466///
2467/// A * X = B (mod N)
2468///
2469/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2470/// A and B isn't important.
2471///
2472/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2473static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2474 ScalarEvolution &SE) {
2475 uint32_t BW = A.getBitWidth();
2476 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2477 assert(A != 0 && "A must be non-zero.");
2478
2479 // 1. D = gcd(A, N)
2480 //
2481 // The gcd of A and N may have only one prime factor: 2. The number of
2482 // trailing zeros in A is its multiplicity
2483 uint32_t Mult2 = A.countTrailingZeros();
2484 // D = 2^Mult2
2485
2486 // 2. Check if B is divisible by D.
2487 //
2488 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2489 // is not less than multiplicity of this prime factor for D.
2490 if (B.countTrailingZeros() < Mult2)
2491 return new SCEVCouldNotCompute();
2492
2493 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2494 // modulo (N / D).
2495 //
2496 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
2497 // bit width during computations.
2498 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
2499 APInt Mod(BW + 1, 0);
2500 Mod.set(BW - Mult2); // Mod = N / D
2501 APInt I = AD.multiplicativeInverse(Mod);
2502
2503 // 4. Compute the minimum unsigned root of the equation:
2504 // I * (B / D) mod (N / D)
2505 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2506
2507 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2508 // bits.
2509 return SE.getConstant(Result.trunc(BW));
2510}
Chris Lattner53e677a2004-04-02 20:23:17 +00002511
2512/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2513/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2514/// might be the same) or two SCEVCouldNotCompute objects.
2515///
2516static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman246b2562007-10-22 18:31:58 +00002517SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002518 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Reid Spencere8019bb2007-03-01 07:25:48 +00002519 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2520 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2521 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002522
Chris Lattner53e677a2004-04-02 20:23:17 +00002523 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00002524 if (!LC || !MC || !NC) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002525 SCEV *CNC = new SCEVCouldNotCompute();
2526 return std::make_pair(CNC, CNC);
2527 }
2528
Reid Spencere8019bb2007-03-01 07:25:48 +00002529 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00002530 const APInt &L = LC->getValue()->getValue();
2531 const APInt &M = MC->getValue()->getValue();
2532 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00002533 APInt Two(BitWidth, 2);
2534 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002535
Reid Spencere8019bb2007-03-01 07:25:48 +00002536 {
2537 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00002538 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00002539 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2540 // The B coefficient is M-N/2
2541 APInt B(M);
2542 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002543
Reid Spencere8019bb2007-03-01 07:25:48 +00002544 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00002545 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00002546
Reid Spencere8019bb2007-03-01 07:25:48 +00002547 // Compute the B^2-4ac term.
2548 APInt SqrtTerm(B);
2549 SqrtTerm *= B;
2550 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00002551
Reid Spencere8019bb2007-03-01 07:25:48 +00002552 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2553 // integer value or else APInt::sqrt() will assert.
2554 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002555
Reid Spencere8019bb2007-03-01 07:25:48 +00002556 // Compute the two solutions for the quadratic formula.
2557 // The divisions must be performed as signed divisions.
2558 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00002559 APInt TwoA( A << 1 );
Reid Spencere8019bb2007-03-01 07:25:48 +00002560 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2561 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002562
Dan Gohman246b2562007-10-22 18:31:58 +00002563 return std::make_pair(SE.getConstant(Solution1),
2564 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00002565 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00002566}
2567
2568/// HowFarToZero - Return the number of times a backedge comparing the specified
2569/// value to zero will execute. If not computable, return UnknownValue
2570SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2571 // If the value is a constant
2572 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2573 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00002574 if (C->getValue()->isZero()) return C;
Chris Lattner53e677a2004-04-02 20:23:17 +00002575 return UnknownValue; // Otherwise it will loop infinitely.
2576 }
2577
2578 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2579 if (!AddRec || AddRec->getLoop() != L)
2580 return UnknownValue;
2581
2582 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002583 // If this is an affine expression, the execution count of this branch is
2584 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00002585 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002586 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00002587 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002588 // equivalent to:
2589 //
2590 // Step*N = -Start (mod 2^BW)
2591 //
2592 // where BW is the common bit width of Start and Step.
2593
Chris Lattner53e677a2004-04-02 20:23:17 +00002594 // Get the initial value for the loop.
2595 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Chris Lattner4a2b23e2004-10-11 04:07:27 +00002596 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00002597
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002598 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00002599
Chris Lattner53e677a2004-04-02 20:23:17 +00002600 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002601 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00002602
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002603 // First, handle unitary steps.
2604 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
2605 return SE.getNegativeSCEV(Start); // N = -Start (as unsigned)
2606 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
2607 return Start; // N = Start (as unsigned)
2608
2609 // Then, try to solve the above equation provided that Start is constant.
2610 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
2611 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
2612 -StartC->getValue()->getValue(),SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00002613 }
Chris Lattner42a75512007-01-15 02:27:26 +00002614 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002615 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2616 // the quadratic equation to solve it.
Dan Gohman246b2562007-10-22 18:31:58 +00002617 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00002618 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2619 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2620 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002621#if 0
Bill Wendlinge8156192006-12-07 01:30:32 +00002622 cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2623 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002624#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002625 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002626 if (ConstantInt *CB =
2627 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00002628 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00002629 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00002630 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002631
Chris Lattner53e677a2004-04-02 20:23:17 +00002632 // We can only use this value if the chrec ends up with an exact zero
2633 // value at this index. When solving for "X*X != 5", for example, we
2634 // should not accept a root of 2.
Dan Gohman246b2562007-10-22 18:31:58 +00002635 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002636 if (Val->isZero())
2637 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00002638 }
2639 }
2640 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002641
Chris Lattner53e677a2004-04-02 20:23:17 +00002642 return UnknownValue;
2643}
2644
2645/// HowFarToNonZero - Return the number of times a backedge checking the
2646/// specified value for nonzero will execute. If not computable, return
2647/// UnknownValue
2648SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2649 // Loops that look like: while (X == 0) are very strange indeed. We don't
2650 // handle them yet except for the trivial case. This could be expanded in the
2651 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002652
Chris Lattner53e677a2004-04-02 20:23:17 +00002653 // If the value is a constant, check to see if it is known to be non-zero
2654 // already. If so, the backedge will execute zero times.
2655 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00002656 if (!C->getValue()->isNullValue())
2657 return SE.getIntegerSCEV(0, C->getType());
Chris Lattner53e677a2004-04-02 20:23:17 +00002658 return UnknownValue; // Otherwise it will loop infinitely.
2659 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002660
Chris Lattner53e677a2004-04-02 20:23:17 +00002661 // We could implement others, but I really doubt anyone writes loops like
2662 // this, and if they did, they would already be constant folded.
2663 return UnknownValue;
2664}
2665
Nick Lewycky59cff122008-07-12 07:41:32 +00002666/// executesAtLeastOnce - Test whether entry to the loop is protected by
2667/// a conditional between LHS and RHS.
2668bool ScalarEvolutionsImpl::executesAtLeastOnce(const Loop *L, bool isSigned,
2669 SCEV *LHS, SCEV *RHS) {
2670 BasicBlock *Preheader = L->getLoopPreheader();
2671 BasicBlock *PreheaderDest = L->getHeader();
2672 if (Preheader == 0) return false;
2673
2674 BranchInst *LoopEntryPredicate =
2675 dyn_cast<BranchInst>(Preheader->getTerminator());
2676 if (!LoopEntryPredicate) return false;
2677
2678 // This might be a critical edge broken out. If the loop preheader ends in
2679 // an unconditional branch to the loop, check to see if the preheader has a
2680 // single predecessor, and if so, look for its terminator.
2681 while (LoopEntryPredicate->isUnconditional()) {
2682 PreheaderDest = Preheader;
2683 Preheader = Preheader->getSinglePredecessor();
2684 if (!Preheader) return false; // Multiple preds.
2685
2686 LoopEntryPredicate =
2687 dyn_cast<BranchInst>(Preheader->getTerminator());
2688 if (!LoopEntryPredicate) return false;
2689 }
2690
2691 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
2692 if (!ICI) return false;
2693
2694 // Now that we found a conditional branch that dominates the loop, check to
2695 // see if it is the comparison we are looking for.
2696 Value *PreCondLHS = ICI->getOperand(0);
2697 Value *PreCondRHS = ICI->getOperand(1);
2698 ICmpInst::Predicate Cond;
2699 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2700 Cond = ICI->getPredicate();
2701 else
2702 Cond = ICI->getInversePredicate();
2703
2704 switch (Cond) {
2705 case ICmpInst::ICMP_UGT:
2706 if (isSigned) return false;
2707 std::swap(PreCondLHS, PreCondRHS);
2708 Cond = ICmpInst::ICMP_ULT;
2709 break;
2710 case ICmpInst::ICMP_SGT:
2711 if (!isSigned) return false;
2712 std::swap(PreCondLHS, PreCondRHS);
2713 Cond = ICmpInst::ICMP_SLT;
2714 break;
2715 case ICmpInst::ICMP_ULT:
2716 if (isSigned) return false;
2717 break;
2718 case ICmpInst::ICMP_SLT:
2719 if (!isSigned) return false;
2720 break;
2721 default:
2722 return false;
2723 }
2724
Nick Lewycky8ae38e12008-07-15 03:47:44 +00002725 if (!PreCondLHS->getType()->isInteger()) return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00002726
Eli Friedman068acc32008-07-30 00:04:08 +00002727 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
2728 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
2729 return (LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
2730 (LHS == SE.getNotSCEV(PreCondRHSSCEV) &&
2731 RHS == SE.getNotSCEV(PreCondLHSSCEV));
Nick Lewycky59cff122008-07-12 07:41:32 +00002732}
2733
Chris Lattnerdb25de42005-08-15 23:33:51 +00002734/// HowManyLessThans - Return the number of times a backedge containing the
2735/// specified less-than comparison will execute. If not computable, return
2736/// UnknownValue.
2737SCEVHandle ScalarEvolutionsImpl::
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00002738HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00002739 // Only handle: "ADDREC < LoopInvariant".
2740 if (!RHS->isLoopInvariant(L)) return UnknownValue;
2741
2742 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2743 if (!AddRec || AddRec->getLoop() != L)
2744 return UnknownValue;
2745
2746 if (AddRec->isAffine()) {
2747 // FORNOW: We only support unit strides.
Dan Gohman246b2562007-10-22 18:31:58 +00002748 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
Chris Lattnerdb25de42005-08-15 23:33:51 +00002749 if (AddRec->getOperand(1) != One)
2750 return UnknownValue;
2751
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00002752 // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant
2753 // m. So, we count the number of iterations in which {n,+,1} < m is true.
2754 // Note that we cannot simply return max(m-n,0) because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00002755 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00002756
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00002757 // First, we get the value of the LHS in the first iteration: n
2758 SCEVHandle Start = AddRec->getOperand(0);
2759
Nick Lewycky59cff122008-07-12 07:41:32 +00002760 if (executesAtLeastOnce(L, isSigned,
Nick Lewycky86dae652008-07-15 03:40:27 +00002761 SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) {
2762 // Since we know that the condition is true in order to enter the loop,
2763 // we know that it will run exactly m-n times.
Nick Lewycky59cff122008-07-12 07:41:32 +00002764 return SE.getMinusSCEV(RHS, Start);
Nick Lewycky86dae652008-07-15 03:40:27 +00002765 } else {
2766 // Then, we get the value of the LHS in the first iteration in which the
2767 // above condition doesn't hold. This equals to max(m,n).
Nick Lewycky59cff122008-07-12 07:41:32 +00002768 SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start)
2769 : SE.getUMaxExpr(RHS, Start);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00002770
Nick Lewycky59cff122008-07-12 07:41:32 +00002771 // Finally, we subtract these two values to get the number of times the
2772 // backedge is executed: max(m,n)-n.
2773 return SE.getMinusSCEV(End, Start);
2774 }
Chris Lattnerdb25de42005-08-15 23:33:51 +00002775 }
2776
2777 return UnknownValue;
2778}
2779
Chris Lattner53e677a2004-04-02 20:23:17 +00002780/// getNumIterationsInRange - Return the number of iterations of this loop that
2781/// produce values in the specified constant range. Another way of looking at
2782/// this is that it returns the first iteration number where the value is not in
2783/// the condition, thus computing the exit count. If the iteration count can't
2784/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman246b2562007-10-22 18:31:58 +00002785SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2786 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00002787 if (Range.isFullSet()) // Infinite loop.
2788 return new SCEVCouldNotCompute();
2789
2790 // If the start is a non-zero constant, shift the range to simplify things.
2791 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00002792 if (!SC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002793 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002794 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
2795 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00002796 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2797 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00002798 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00002799 // This is strange and shouldn't happen.
2800 return new SCEVCouldNotCompute();
2801 }
2802
2803 // The only time we can solve this is when we have all constant indices.
2804 // Otherwise, we cannot determine the overflow conditions.
2805 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2806 if (!isa<SCEVConstant>(getOperand(i)))
2807 return new SCEVCouldNotCompute();
2808
2809
2810 // Okay at this point we know that all elements of the chrec are constants and
2811 // that the start element is zero.
2812
2813 // First check to see if the range contains zero. If not, the first
2814 // iteration exits.
Reid Spencera6e8a952007-03-01 07:54:15 +00002815 if (!Range.contains(APInt(getBitWidth(),0)))
Dan Gohman246b2562007-10-22 18:31:58 +00002816 return SE.getConstant(ConstantInt::get(getType(),0));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002817
Chris Lattner53e677a2004-04-02 20:23:17 +00002818 if (isAffine()) {
2819 // If this is an affine expression then we have this situation:
2820 // Solve {0,+,A} in Range === Ax in Range
2821
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00002822 // We know that zero is in the range. If A is positive then we know that
2823 // the upper value of the range must be the first possible exit value.
2824 // If A is negative then the lower of the range is the last possible loop
2825 // value. Also note that we already checked for a full range.
Reid Spencer581b0d42007-02-28 19:57:34 +00002826 APInt One(getBitWidth(),1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00002827 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2828 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00002829
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00002830 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00002831 APInt ExitVal = (End + A).udiv(A);
Reid Spencerc7cd7a02007-03-01 19:32:33 +00002832 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00002833
2834 // Evaluate at the exit value. If we really did fall out of the valid
2835 // range, then we computed our trip count, otherwise wrap around or other
2836 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00002837 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00002838 if (Range.contains(Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00002839 return new SCEVCouldNotCompute(); // Something strange happened
2840
2841 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00002842 assert(Range.contains(
2843 EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00002844 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002845 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00002846 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00002847 } else if (isQuadratic()) {
2848 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2849 // quadratic equation to solve it. To do this, we must frame our problem in
2850 // terms of figuring out when zero is crossed, instead of when
2851 // Range.getUpper() is crossed.
2852 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002853 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
2854 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00002855
2856 // Next, solve the constructed addrec
2857 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00002858 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00002859 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2860 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2861 if (R1) {
2862 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002863 if (ConstantInt *CB =
2864 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00002865 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00002866 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00002867 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002868
Chris Lattner53e677a2004-04-02 20:23:17 +00002869 // Make sure the root is not off by one. The returned iteration should
2870 // not be in the range, but the previous one should be. When solving
2871 // for "X*X < 5", for example, we should not return a root of 2.
2872 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00002873 R1->getValue(),
2874 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00002875 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002876 // The next iteration must be out of the range...
Dan Gohman9a6ae962007-07-09 15:25:17 +00002877 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002878
Dan Gohman246b2562007-10-22 18:31:58 +00002879 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00002880 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00002881 return SE.getConstant(NextVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00002882 return new SCEVCouldNotCompute(); // Something strange happened
2883 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002884
Chris Lattner53e677a2004-04-02 20:23:17 +00002885 // If R1 was not in the range, then it is a good return value. Make
2886 // sure that R1-1 WAS in the range though, just in case.
Dan Gohman9a6ae962007-07-09 15:25:17 +00002887 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00002888 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00002889 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00002890 return R1;
2891 return new SCEVCouldNotCompute(); // Something strange happened
2892 }
2893 }
2894 }
2895
2896 // Fallback, if this is a general polynomial, figure out the progression
2897 // through brute force: evaluate until we find an iteration that fails the
2898 // test. This is likely to be slow, but getting an accurate trip count is
2899 // incredibly important, we will be able to simplify the exit test a lot, and
2900 // we are almost guaranteed to get a trip count in this case.
2901 ConstantInt *TestVal = ConstantInt::get(getType(), 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00002902 ConstantInt *EndVal = TestVal; // Stop when we wrap around.
2903 do {
2904 ++NumBruteForceEvaluations;
Dan Gohman246b2562007-10-22 18:31:58 +00002905 SCEVHandle Val = evaluateAtIteration(SE.getConstant(TestVal), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00002906 if (!isa<SCEVConstant>(Val)) // This shouldn't happen.
2907 return new SCEVCouldNotCompute();
2908
2909 // Check to see if we found the value!
Reid Spencera6e8a952007-03-01 07:54:15 +00002910 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00002911 return SE.getConstant(TestVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00002912
2913 // Increment to test the next index.
Zhou Shengfdc1e162007-04-07 17:40:57 +00002914 TestVal = ConstantInt::get(TestVal->getValue()+1);
Chris Lattner53e677a2004-04-02 20:23:17 +00002915 } while (TestVal != EndVal);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002916
Chris Lattner53e677a2004-04-02 20:23:17 +00002917 return new SCEVCouldNotCompute();
2918}
2919
2920
2921
2922//===----------------------------------------------------------------------===//
2923// ScalarEvolution Class Implementation
2924//===----------------------------------------------------------------------===//
2925
2926bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohman246b2562007-10-22 18:31:58 +00002927 Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>());
Chris Lattner53e677a2004-04-02 20:23:17 +00002928 return false;
2929}
2930
2931void ScalarEvolution::releaseMemory() {
2932 delete (ScalarEvolutionsImpl*)Impl;
2933 Impl = 0;
2934}
2935
2936void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2937 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00002938 AU.addRequiredTransitive<LoopInfo>();
2939}
2940
2941SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2942 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2943}
2944
Chris Lattnera0740fb2005-08-09 23:36:33 +00002945/// hasSCEV - Return true if the SCEV for this value has already been
2946/// computed.
2947bool ScalarEvolution::hasSCEV(Value *V) const {
Chris Lattner05bd3742005-08-10 00:59:40 +00002948 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
Chris Lattnera0740fb2005-08-09 23:36:33 +00002949}
2950
2951
2952/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2953/// the specified value.
2954void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2955 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2956}
2957
2958
Chris Lattner53e677a2004-04-02 20:23:17 +00002959SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2960 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2961}
2962
2963bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2964 return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2965}
2966
2967SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2968 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2969}
2970
Dan Gohman5cec4db2007-06-19 14:28:31 +00002971void ScalarEvolution::deleteValueFromRecords(Value *V) const {
2972 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002973}
2974
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002975static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00002976 const Loop *L) {
2977 // Print all inner loops first
2978 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2979 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002980
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00002981 OS << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00002982
Devang Patelb7211a22007-08-21 00:31:24 +00002983 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00002984 L->getExitBlocks(ExitBlocks);
2985 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00002986 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002987
2988 if (SE->hasLoopInvariantIterationCount(L)) {
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00002989 OS << *SE->getIterationCount(L) << " iterations! ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002990 } else {
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00002991 OS << "Unpredictable iteration count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002992 }
2993
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00002994 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00002995}
2996
Reid Spencerce9653c2004-12-07 04:03:45 +00002997void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00002998 Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2999 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
3000
3001 OS << "Classifying expressions for: " << F.getName() << "\n";
3002 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Chris Lattner42a75512007-01-15 02:27:26 +00003003 if (I->getType()->isInteger()) {
Chris Lattner6ffe5512004-04-27 15:13:33 +00003004 OS << *I;
Chris Lattner53e677a2004-04-02 20:23:17 +00003005 OS << " --> ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00003006 SCEVHandle SV = getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00003007 SV->print(OS);
3008 OS << "\t\t";
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003009
Chris Lattner6ffe5512004-04-27 15:13:33 +00003010 if (const Loop *L = LI.getLoopFor((*I).getParent())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003011 OS << "Exits: ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00003012 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00003013 if (isa<SCEVCouldNotCompute>(ExitValue)) {
3014 OS << "<<Unknown>>";
3015 } else {
3016 OS << *ExitValue;
3017 }
3018 }
3019
3020
3021 OS << "\n";
3022 }
3023
3024 OS << "Determining loop execution counts for: " << F.getName() << "\n";
3025 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
3026 PrintLoopInfo(OS, this, *I);
3027}