blob: 7ce975e224735cfc59799cc17271055c5bc50ab4 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000031//
Chris Lattner53e677a2004-04-02 20:23:17 +000032// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
Chris Lattner53e677a2004-04-02 20:23:17 +000036// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
Chris Lattner3b27d682006-12-19 22:30:33 +000062#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000063#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000064#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000066#include "llvm/GlobalVariable.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
John Criswella1156432005-10-27 15:54:34 +000068#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
Chris Lattner95255282006-06-28 23:17:24 +000073#include "llvm/Support/CommandLine.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000074#include "llvm/Support/Compiler.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000077#include "llvm/Support/ManagedStatic.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000078#include "llvm/Support/MathExtras.h"
Bill Wendling6f81b512006-11-28 22:46:12 +000079#include "llvm/Support/Streams.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000080#include "llvm/ADT/Statistic.h"
Bill Wendling6f81b512006-11-28 22:46:12 +000081#include <ostream>
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000082#include <algorithm>
Jeff Cohen97af7512006-12-02 02:22:01 +000083#include <cmath>
Chris Lattner53e677a2004-04-02 20:23:17 +000084using namespace llvm;
85
Chris Lattner3b27d682006-12-19 22:30:33 +000086STATISTIC(NumBruteForceEvaluations,
87 "Number of brute force evaluations needed to "
88 "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90 "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92 "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94 "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96 "Number of loops with trip counts computed by force");
97
98cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100 cl::desc("Maximum number of iterations SCEV will "
101 "symbolically execute a constant derived loop"),
102 cl::init(100));
103
Chris Lattner53e677a2004-04-02 20:23:17 +0000104namespace {
Chris Lattner5d8925c2006-08-27 22:30:17 +0000105 RegisterPass<ScalarEvolution>
Chris Lattner45a1cf82004-04-19 03:42:32 +0000106 R("scalar-evolution", "Scalar Evolution Analysis");
Chris Lattner53e677a2004-04-02 20:23:17 +0000107}
108
109//===----------------------------------------------------------------------===//
110// SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
Chris Lattner53e677a2004-04-02 20:23:17 +0000116SCEV::~SCEV() {}
117void SCEV::dump() const {
Bill Wendlinge8156192006-12-07 01:30:32 +0000118 print(cerr);
Chris Lattner53e677a2004-04-02 20:23:17 +0000119}
120
121/// getValueRange - Return the tightest constant bounds that this value is
122/// known to have. This method is only valid on integer SCEV objects.
123ConstantRange SCEV::getValueRange() const {
124 const Type *Ty = getType();
Chris Lattner42a75512007-01-15 02:27:26 +0000125 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000126 // Default to a full range if no better information is available.
Reid Spencerc6aedf72007-02-28 22:03:51 +0000127 return ConstantRange(getBitWidth());
Chris Lattner53e677a2004-04-02 20:23:17 +0000128}
129
Reid Spencer581b0d42007-02-28 19:57:34 +0000130uint32_t SCEV::getBitWidth() const {
131 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
132 return ITy->getBitWidth();
133 return 0;
134}
135
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
137SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
138
139bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
140 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000141 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000142}
143
144const Type *SCEVCouldNotCompute::getType() const {
145 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000146 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000147}
148
149bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
150 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151 return false;
152}
153
Chris Lattner4dc534c2005-02-13 04:37:18 +0000154SCEVHandle SCEVCouldNotCompute::
155replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
156 const SCEVHandle &Conc) const {
157 return this;
158}
159
Chris Lattner53e677a2004-04-02 20:23:17 +0000160void SCEVCouldNotCompute::print(std::ostream &OS) const {
161 OS << "***COULDNOTCOMPUTE***";
162}
163
164bool SCEVCouldNotCompute::classof(const SCEV *S) {
165 return S->getSCEVType() == scCouldNotCompute;
166}
167
168
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000169// SCEVConstants - Only allow the creation of one SCEVConstant for any
170// particular value. Don't use a SCEVHandle here, or else the object will
171// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000172static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000173
Chris Lattner53e677a2004-04-02 20:23:17 +0000174
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000175SCEVConstant::~SCEVConstant() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000176 SCEVConstants->erase(V);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000177}
Chris Lattner53e677a2004-04-02 20:23:17 +0000178
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000179SCEVHandle SCEVConstant::get(ConstantInt *V) {
Chris Lattnerb3364092006-10-04 21:49:37 +0000180 SCEVConstant *&R = (*SCEVConstants)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000181 if (R == 0) R = new SCEVConstant(V);
182 return R;
183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000185ConstantRange SCEVConstant::getValueRange() const {
Reid Spencerdc5c1592007-02-28 18:57:32 +0000186 return ConstantRange(V->getValue());
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000187}
Chris Lattner53e677a2004-04-02 20:23:17 +0000188
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000189const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000190
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000191void SCEVConstant::print(std::ostream &OS) const {
192 WriteAsOperand(OS, V, false);
193}
Chris Lattner53e677a2004-04-02 20:23:17 +0000194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
196// particular input. Don't use a SCEVHandle here, or else the object will
197// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000198static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
199 SCEVTruncateExpr*> > SCEVTruncates;
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000201SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
202 : SCEV(scTruncate), Op(op), Ty(ty) {
Chris Lattner42a75512007-01-15 02:27:26 +0000203 assert(Op->getType()->isInteger() && Ty->isInteger() &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000204 "Cannot truncate non-integer value!");
Reid Spencere7ca0422007-01-08 01:26:33 +0000205 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
206 && "This is not a truncating conversion!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000207}
Chris Lattner53e677a2004-04-02 20:23:17 +0000208
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000209SCEVTruncateExpr::~SCEVTruncateExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000210 SCEVTruncates->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000211}
Chris Lattner53e677a2004-04-02 20:23:17 +0000212
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000213ConstantRange SCEVTruncateExpr::getValueRange() const {
Reid Spencerc6aedf72007-02-28 22:03:51 +0000214 return getOperand()->getValueRange().truncate(getBitWidth());
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000215}
Chris Lattner53e677a2004-04-02 20:23:17 +0000216
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000217void SCEVTruncateExpr::print(std::ostream &OS) const {
218 OS << "(truncate " << *Op << " to " << *Ty << ")";
219}
220
221// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
222// particular input. Don't use a SCEVHandle here, or else the object will never
223// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000224static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
225 SCEVZeroExtendExpr*> > SCEVZeroExtends;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000226
227SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Reid Spencer48d8a702006-11-01 21:53:12 +0000228 : SCEV(scZeroExtend), Op(op), Ty(ty) {
Chris Lattner42a75512007-01-15 02:27:26 +0000229 assert(Op->getType()->isInteger() && Ty->isInteger() &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Reid Spencere7ca0422007-01-08 01:26:33 +0000231 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
232 && "This is not an extending conversion!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000236 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000237}
238
239ConstantRange SCEVZeroExtendExpr::getValueRange() const {
Reid Spencerc6aedf72007-02-28 22:03:51 +0000240 return getOperand()->getValueRange().zeroExtend(getBitWidth());
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000241}
242
243void SCEVZeroExtendExpr::print(std::ostream &OS) const {
244 OS << "(zeroextend " << *Op << " to " << *Ty << ")";
245}
246
247// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
248// particular input. Don't use a SCEVHandle here, or else the object will never
249// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000250static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
251 SCEVCommutativeExpr*> > SCEVCommExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000252
253SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000254 SCEVCommExprs->erase(std::make_pair(getSCEVType(),
255 std::vector<SCEV*>(Operands.begin(),
256 Operands.end())));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257}
258
259void SCEVCommutativeExpr::print(std::ostream &OS) const {
260 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
261 const char *OpStr = getOperationStr();
262 OS << "(" << *Operands[0];
263 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
264 OS << OpStr << *Operands[i];
265 OS << ")";
266}
267
Chris Lattner4dc534c2005-02-13 04:37:18 +0000268SCEVHandle SCEVCommutativeExpr::
269replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
270 const SCEVHandle &Conc) const {
271 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
273 if (H != getOperand(i)) {
274 std::vector<SCEVHandle> NewOps;
275 NewOps.reserve(getNumOperands());
276 for (unsigned j = 0; j != i; ++j)
277 NewOps.push_back(getOperand(j));
278 NewOps.push_back(H);
279 for (++i; i != e; ++i)
280 NewOps.push_back(getOperand(i)->
281 replaceSymbolicValuesWithConcrete(Sym, Conc));
282
283 if (isa<SCEVAddExpr>(this))
284 return SCEVAddExpr::get(NewOps);
285 else if (isa<SCEVMulExpr>(this))
286 return SCEVMulExpr::get(NewOps);
287 else
288 assert(0 && "Unknown commutative expr!");
289 }
290 }
291 return this;
292}
293
294
Chris Lattner60a05cc2006-04-01 04:48:52 +0000295// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000296// input. Don't use a SCEVHandle here, or else the object will never be
297// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000298static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
299 SCEVSDivExpr*> > SCEVSDivs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000300
Chris Lattner60a05cc2006-04-01 04:48:52 +0000301SCEVSDivExpr::~SCEVSDivExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000302 SCEVSDivs->erase(std::make_pair(LHS, RHS));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000303}
304
Chris Lattner60a05cc2006-04-01 04:48:52 +0000305void SCEVSDivExpr::print(std::ostream &OS) const {
306 OS << "(" << *LHS << " /s " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000307}
308
Chris Lattner60a05cc2006-04-01 04:48:52 +0000309const Type *SCEVSDivExpr::getType() const {
Reid Spencerc5b206b2006-12-31 05:48:39 +0000310 return LHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000311}
312
313// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
314// particular input. Don't use a SCEVHandle here, or else the object will never
315// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000316static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
317 SCEVAddRecExpr*> > SCEVAddRecExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000318
319SCEVAddRecExpr::~SCEVAddRecExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000320 SCEVAddRecExprs->erase(std::make_pair(L,
321 std::vector<SCEV*>(Operands.begin(),
322 Operands.end())));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
324
Chris Lattner4dc534c2005-02-13 04:37:18 +0000325SCEVHandle SCEVAddRecExpr::
326replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
327 const SCEVHandle &Conc) const {
328 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
329 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
330 if (H != getOperand(i)) {
331 std::vector<SCEVHandle> NewOps;
332 NewOps.reserve(getNumOperands());
333 for (unsigned j = 0; j != i; ++j)
334 NewOps.push_back(getOperand(j));
335 NewOps.push_back(H);
336 for (++i; i != e; ++i)
337 NewOps.push_back(getOperand(i)->
338 replaceSymbolicValuesWithConcrete(Sym, Conc));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000339
Chris Lattner4dc534c2005-02-13 04:37:18 +0000340 return get(NewOps, L);
341 }
342 }
343 return this;
344}
345
346
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
348 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
Chris Lattnerff2006a2005-08-16 00:37:01 +0000349 // contain L and if the start is invariant.
350 return !QueryLoop->contains(L->getHeader()) &&
351 getOperand(0)->isLoopInvariant(QueryLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +0000352}
353
354
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000355void SCEVAddRecExpr::print(std::ostream &OS) const {
356 OS << "{" << *Operands[0];
357 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
358 OS << ",+," << *Operands[i];
359 OS << "}<" << L->getHeader()->getName() + ">";
360}
Chris Lattner53e677a2004-04-02 20:23:17 +0000361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
363// value. Don't use a SCEVHandle here, or else the object will never be
364// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000365static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
Chris Lattner53e677a2004-04-02 20:23:17 +0000366
Chris Lattnerb3364092006-10-04 21:49:37 +0000367SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000368
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000369bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
370 // All non-instruction values are loop invariant. All instructions are loop
371 // invariant if they are not contained in the specified loop.
372 if (Instruction *I = dyn_cast<Instruction>(V))
373 return !L->contains(I->getParent());
374 return true;
375}
Chris Lattner53e677a2004-04-02 20:23:17 +0000376
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000377const Type *SCEVUnknown::getType() const {
378 return V->getType();
379}
Chris Lattner53e677a2004-04-02 20:23:17 +0000380
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000381void SCEVUnknown::print(std::ostream &OS) const {
382 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000383}
384
Chris Lattner8d741b82004-06-20 06:23:15 +0000385//===----------------------------------------------------------------------===//
386// SCEV Utilities
387//===----------------------------------------------------------------------===//
388
389namespace {
390 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
391 /// than the complexity of the RHS. This comparator is used to canonicalize
392 /// expressions.
Chris Lattner95255282006-06-28 23:17:24 +0000393 struct VISIBILITY_HIDDEN SCEVComplexityCompare {
Chris Lattner8d741b82004-06-20 06:23:15 +0000394 bool operator()(SCEV *LHS, SCEV *RHS) {
395 return LHS->getSCEVType() < RHS->getSCEVType();
396 }
397 };
398}
399
400/// GroupByComplexity - Given a list of SCEV objects, order them by their
401/// complexity, and group objects of the same complexity together by value.
402/// When this routine is finished, we know that any duplicates in the vector are
403/// consecutive and that complexity is monotonically increasing.
404///
405/// Note that we go take special precautions to ensure that we get determinstic
406/// results from this routine. In other words, we don't want the results of
407/// this to depend on where the addresses of various SCEV objects happened to
408/// land in memory.
409///
410static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
411 if (Ops.size() < 2) return; // Noop
412 if (Ops.size() == 2) {
413 // This is the common case, which also happens to be trivially simple.
414 // Special case it.
415 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
416 std::swap(Ops[0], Ops[1]);
417 return;
418 }
419
420 // Do the rough sort by complexity.
421 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
422
423 // Now that we are sorted by complexity, group elements of the same
424 // complexity. Note that this is, at worst, N^2, but the vector is likely to
425 // be extremely short in practice. Note that we take this approach because we
426 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000427 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000428 SCEV *S = Ops[i];
429 unsigned Complexity = S->getSCEVType();
430
431 // If there are any objects of the same complexity and same value as this
432 // one, group them.
433 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
434 if (Ops[j] == S) { // Found a duplicate.
435 // Move it to immediately after i'th element.
436 std::swap(Ops[i+1], Ops[j]);
437 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000438 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000439 }
440 }
441 }
442}
443
Chris Lattner53e677a2004-04-02 20:23:17 +0000444
Chris Lattner53e677a2004-04-02 20:23:17 +0000445
446//===----------------------------------------------------------------------===//
447// Simple SCEV method implementations
448//===----------------------------------------------------------------------===//
449
450/// getIntegerSCEV - Given an integer or FP type, create a constant for the
451/// specified signed integer value and return a SCEV for the constant.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000452SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000453 Constant *C;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000454 if (Val == 0)
Chris Lattner53e677a2004-04-02 20:23:17 +0000455 C = Constant::getNullValue(Ty);
456 else if (Ty->isFloatingPoint())
457 C = ConstantFP::get(Ty, Val);
Reid Spencere4d87aa2006-12-23 06:05:41 +0000458 else
Reid Spencerb83eb642006-10-20 07:07:24 +0000459 C = ConstantInt::get(Ty, Val);
Chris Lattner53e677a2004-04-02 20:23:17 +0000460 return SCEVUnknown::get(C);
461}
462
463/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
464/// input value to the specified type. If the type must be extended, it is zero
465/// extended.
466static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
467 const Type *SrcTy = V->getType();
Chris Lattner42a75512007-01-15 02:27:26 +0000468 assert(SrcTy->isInteger() && Ty->isInteger() &&
Chris Lattner53e677a2004-04-02 20:23:17 +0000469 "Cannot truncate or zero extend with non-integer arguments!");
Reid Spencere7ca0422007-01-08 01:26:33 +0000470 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
Chris Lattner53e677a2004-04-02 20:23:17 +0000471 return V; // No conversion
Reid Spencere7ca0422007-01-08 01:26:33 +0000472 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
Chris Lattner53e677a2004-04-02 20:23:17 +0000473 return SCEVTruncateExpr::get(V, Ty);
474 return SCEVZeroExtendExpr::get(V, Ty);
475}
476
477/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
478///
Chris Lattnerbac5b462005-03-09 05:34:41 +0000479SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000480 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
481 return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000482
Chris Lattnerb06432c2004-04-23 21:29:03 +0000483 return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
Chris Lattner53e677a2004-04-02 20:23:17 +0000484}
485
486/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
487///
Chris Lattnerbac5b462005-03-09 05:34:41 +0000488SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000489 // X - Y --> X + -Y
Chris Lattnerbac5b462005-03-09 05:34:41 +0000490 return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
Chris Lattner53e677a2004-04-02 20:23:17 +0000491}
492
493
Chris Lattner53e677a2004-04-02 20:23:17 +0000494/// PartialFact - Compute V!/(V-NumSteps)!
495static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
496 // Handle this case efficiently, it is common to have constant iteration
497 // counts while computing loop exit values.
498 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
Reid Spencerdc5c1592007-02-28 18:57:32 +0000499 APInt Val = SC->getValue()->getValue();
500 APInt Result(Val.getBitWidth(), 1);
Chris Lattner53e677a2004-04-02 20:23:17 +0000501 for (; NumSteps; --NumSteps)
502 Result *= Val-(NumSteps-1);
Reid Spencerdc5c1592007-02-28 18:57:32 +0000503 return SCEVUnknown::get(ConstantInt::get(V->getType(), Result));
Chris Lattner53e677a2004-04-02 20:23:17 +0000504 }
505
506 const Type *Ty = V->getType();
507 if (NumSteps == 0)
Chris Lattnerb06432c2004-04-23 21:29:03 +0000508 return SCEVUnknown::getIntegerSCEV(1, Ty);
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000509
Chris Lattner53e677a2004-04-02 20:23:17 +0000510 SCEVHandle Result = V;
511 for (unsigned i = 1; i != NumSteps; ++i)
Chris Lattnerbac5b462005-03-09 05:34:41 +0000512 Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
Chris Lattnerb06432c2004-04-23 21:29:03 +0000513 SCEVUnknown::getIntegerSCEV(i, Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000514 return Result;
515}
516
517
518/// evaluateAtIteration - Return the value of this chain of recurrences at
519/// the specified iteration number. We can evaluate this recurrence by
520/// multiplying each element in the chain by the binomial coefficient
521/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
522///
523/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
524///
525/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
526/// Is the binomial equation safe using modular arithmetic??
527///
528SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
529 SCEVHandle Result = getStart();
530 int Divisor = 1;
531 const Type *Ty = It->getType();
532 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
533 SCEVHandle BC = PartialFact(It, i);
534 Divisor *= i;
Chris Lattner60a05cc2006-04-01 04:48:52 +0000535 SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
Chris Lattnerb06432c2004-04-23 21:29:03 +0000536 SCEVUnknown::getIntegerSCEV(Divisor,Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000537 Result = SCEVAddExpr::get(Result, Val);
538 }
539 return Result;
540}
541
542
543//===----------------------------------------------------------------------===//
544// SCEV Expression folder implementations
545//===----------------------------------------------------------------------===//
546
547SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
548 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Reid Spencer7858b332006-12-05 19:14:13 +0000549 return SCEVUnknown::get(
Reid Spencer315d0552006-12-05 22:39:58 +0000550 ConstantExpr::getTrunc(SC->getValue(), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000551
552 // If the input value is a chrec scev made out of constants, truncate
553 // all of the constants.
554 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
555 std::vector<SCEVHandle> Operands;
556 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
557 // FIXME: This should allow truncation of other expression types!
558 if (isa<SCEVConstant>(AddRec->getOperand(i)))
559 Operands.push_back(get(AddRec->getOperand(i), Ty));
560 else
561 break;
562 if (Operands.size() == AddRec->getNumOperands())
563 return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
564 }
565
Chris Lattnerb3364092006-10-04 21:49:37 +0000566 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000567 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
568 return Result;
569}
570
571SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
572 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Reid Spencer7858b332006-12-05 19:14:13 +0000573 return SCEVUnknown::get(
Reid Spencerd977d862006-12-12 23:36:14 +0000574 ConstantExpr::getZExt(SC->getValue(), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000575
576 // FIXME: If the input value is a chrec scev, and we can prove that the value
577 // did not overflow the old, smaller, value, we can zero extend all of the
578 // operands (often constants). This would allow analysis of something like
579 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
580
Chris Lattnerb3364092006-10-04 21:49:37 +0000581 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000582 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
583 return Result;
584}
585
586// get - Get a canonical add expression, or something simpler if possible.
587SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
588 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +0000589 if (Ops.size() == 1) return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +0000590
591 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000592 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000593
594 // If there are any constants, fold them together.
595 unsigned Idx = 0;
596 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
597 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +0000598 assert(Idx < Ops.size());
Chris Lattner53e677a2004-04-02 20:23:17 +0000599 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
600 // We found two constants, fold them together!
601 Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
602 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
603 Ops[0] = SCEVConstant::get(CI);
604 Ops.erase(Ops.begin()+1); // Erase the folded element
605 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000606 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000607 } else {
608 // If we couldn't fold the expression, move to the next constant. Note
609 // that this is impossible to happen in practice because we always
610 // constant fold constant ints to constant ints.
611 ++Idx;
612 }
613 }
614
615 // If we are left with a constant zero being added, strip it off.
616 if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
617 Ops.erase(Ops.begin());
618 --Idx;
619 }
620 }
621
Chris Lattner627018b2004-04-07 16:16:11 +0000622 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000623
Chris Lattner53e677a2004-04-02 20:23:17 +0000624 // Okay, check to see if the same value occurs in the operand list twice. If
625 // so, merge them together into an multiply expression. Since we sorted the
626 // list, these values are required to be adjacent.
627 const Type *Ty = Ops[0]->getType();
628 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
629 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
630 // Found a match, merge the two values into a multiply, and add any
631 // remaining values to the result.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000632 SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000633 SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
634 if (Ops.size() == 2)
635 return Mul;
636 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
637 Ops.push_back(Mul);
638 return SCEVAddExpr::get(Ops);
639 }
640
641 // Okay, now we know the first non-constant operand. If there are add
642 // operands they would be next.
643 if (Idx < Ops.size()) {
644 bool DeletedAdd = false;
645 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
646 // If we have an add, expand the add operands onto the end of the operands
647 // list.
648 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
649 Ops.erase(Ops.begin()+Idx);
650 DeletedAdd = true;
651 }
652
653 // If we deleted at least one add, we added operands to the end of the list,
654 // and they are not necessarily sorted. Recurse to resort and resimplify
655 // any operands we just aquired.
656 if (DeletedAdd)
657 return get(Ops);
658 }
659
660 // Skip over the add expression until we get to a multiply.
661 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
662 ++Idx;
663
664 // If we are adding something to a multiply expression, make sure the
665 // something is not already an operand of the multiply. If so, merge it into
666 // the multiply.
667 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
668 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
669 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
670 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
671 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000672 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000673 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
674 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
675 if (Mul->getNumOperands() != 2) {
676 // If the multiply has more than two operands, we must get the
677 // Y*Z term.
678 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
679 MulOps.erase(MulOps.begin()+MulOp);
680 InnerMul = SCEVMulExpr::get(MulOps);
681 }
Chris Lattnerb06432c2004-04-23 21:29:03 +0000682 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000683 SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
684 SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
685 if (Ops.size() == 2) return OuterMul;
686 if (AddOp < Idx) {
687 Ops.erase(Ops.begin()+AddOp);
688 Ops.erase(Ops.begin()+Idx-1);
689 } else {
690 Ops.erase(Ops.begin()+Idx);
691 Ops.erase(Ops.begin()+AddOp-1);
692 }
693 Ops.push_back(OuterMul);
694 return SCEVAddExpr::get(Ops);
695 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000696
Chris Lattner53e677a2004-04-02 20:23:17 +0000697 // Check this multiply against other multiplies being added together.
698 for (unsigned OtherMulIdx = Idx+1;
699 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
700 ++OtherMulIdx) {
701 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
702 // If MulOp occurs in OtherMul, we can fold the two multiplies
703 // together.
704 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
705 OMulOp != e; ++OMulOp)
706 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
707 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
708 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
709 if (Mul->getNumOperands() != 2) {
710 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
711 MulOps.erase(MulOps.begin()+MulOp);
712 InnerMul1 = SCEVMulExpr::get(MulOps);
713 }
714 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
715 if (OtherMul->getNumOperands() != 2) {
716 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
717 OtherMul->op_end());
718 MulOps.erase(MulOps.begin()+OMulOp);
719 InnerMul2 = SCEVMulExpr::get(MulOps);
720 }
721 SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
722 SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
723 if (Ops.size() == 2) return OuterMul;
724 Ops.erase(Ops.begin()+Idx);
725 Ops.erase(Ops.begin()+OtherMulIdx-1);
726 Ops.push_back(OuterMul);
727 return SCEVAddExpr::get(Ops);
728 }
729 }
730 }
731 }
732
733 // If there are any add recurrences in the operands list, see if any other
734 // added values are loop invariant. If so, we can fold them into the
735 // recurrence.
736 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
737 ++Idx;
738
739 // Scan over all recurrences, trying to fold loop invariants into them.
740 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
741 // Scan all of the other operands to this add and add them to the vector if
742 // they are loop invariant w.r.t. the recurrence.
743 std::vector<SCEVHandle> LIOps;
744 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
745 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
746 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
747 LIOps.push_back(Ops[i]);
748 Ops.erase(Ops.begin()+i);
749 --i; --e;
750 }
751
752 // If we found some loop invariants, fold them into the recurrence.
753 if (!LIOps.empty()) {
754 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step }
755 LIOps.push_back(AddRec->getStart());
756
757 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
758 AddRecOps[0] = SCEVAddExpr::get(LIOps);
759
760 SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
761 // If all of the other operands were loop invariant, we are done.
762 if (Ops.size() == 1) return NewRec;
763
764 // Otherwise, add the folded AddRec by the non-liv parts.
765 for (unsigned i = 0;; ++i)
766 if (Ops[i] == AddRec) {
767 Ops[i] = NewRec;
768 break;
769 }
770 return SCEVAddExpr::get(Ops);
771 }
772
773 // Okay, if there weren't any loop invariants to be folded, check to see if
774 // there are multiple AddRec's with the same loop induction variable being
775 // added together. If so, we can fold them.
776 for (unsigned OtherIdx = Idx+1;
777 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
778 if (OtherIdx != Idx) {
779 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
780 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
781 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
782 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
783 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
784 if (i >= NewOps.size()) {
785 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
786 OtherAddRec->op_end());
787 break;
788 }
789 NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
790 }
791 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
792
793 if (Ops.size() == 2) return NewAddRec;
794
795 Ops.erase(Ops.begin()+Idx);
796 Ops.erase(Ops.begin()+OtherIdx-1);
797 Ops.push_back(NewAddRec);
798 return SCEVAddExpr::get(Ops);
799 }
800 }
801
802 // Otherwise couldn't fold anything into this recurrence. Move onto the
803 // next one.
804 }
805
806 // Okay, it looks like we really DO need an add expr. Check to see if we
807 // already have one, otherwise create a new one.
808 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +0000809 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
810 SCEVOps)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000811 if (Result == 0) Result = new SCEVAddExpr(Ops);
812 return Result;
813}
814
815
816SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
817 assert(!Ops.empty() && "Cannot get empty mul!");
818
819 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000820 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000821
822 // If there are any constants, fold them together.
823 unsigned Idx = 0;
824 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
825
826 // C1*(C2+V) -> C1*C2 + C1*V
827 if (Ops.size() == 2)
828 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
829 if (Add->getNumOperands() == 2 &&
830 isa<SCEVConstant>(Add->getOperand(0)))
831 return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
832 SCEVMulExpr::get(LHSC, Add->getOperand(1)));
833
834
835 ++Idx;
836 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
837 // We found two constants, fold them together!
838 Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
839 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
840 Ops[0] = SCEVConstant::get(CI);
841 Ops.erase(Ops.begin()+1); // Erase the folded element
842 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000843 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000844 } else {
845 // If we couldn't fold the expression, move to the next constant. Note
846 // that this is impossible to happen in practice because we always
847 // constant fold constant ints to constant ints.
848 ++Idx;
849 }
850 }
851
852 // If we are left with a constant one being multiplied, strip it off.
853 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
854 Ops.erase(Ops.begin());
855 --Idx;
856 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
857 // If we have a multiply of zero, it will always be zero.
858 return Ops[0];
859 }
860 }
861
862 // Skip over the add expression until we get to a multiply.
863 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
864 ++Idx;
865
866 if (Ops.size() == 1)
867 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000868
Chris Lattner53e677a2004-04-02 20:23:17 +0000869 // If there are mul operands inline them all into this expression.
870 if (Idx < Ops.size()) {
871 bool DeletedMul = false;
872 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
873 // If we have an mul, expand the mul operands onto the end of the operands
874 // list.
875 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
876 Ops.erase(Ops.begin()+Idx);
877 DeletedMul = true;
878 }
879
880 // If we deleted at least one mul, we added operands to the end of the list,
881 // and they are not necessarily sorted. Recurse to resort and resimplify
882 // any operands we just aquired.
883 if (DeletedMul)
884 return get(Ops);
885 }
886
887 // If there are any add recurrences in the operands list, see if any other
888 // added values are loop invariant. If so, we can fold them into the
889 // recurrence.
890 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
891 ++Idx;
892
893 // Scan over all recurrences, trying to fold loop invariants into them.
894 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
895 // Scan all of the other operands to this mul and add them to the vector if
896 // they are loop invariant w.r.t. the recurrence.
897 std::vector<SCEVHandle> LIOps;
898 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
899 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
900 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
901 LIOps.push_back(Ops[i]);
902 Ops.erase(Ops.begin()+i);
903 --i; --e;
904 }
905
906 // If we found some loop invariants, fold them into the recurrence.
907 if (!LIOps.empty()) {
908 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step }
909 std::vector<SCEVHandle> NewOps;
910 NewOps.reserve(AddRec->getNumOperands());
911 if (LIOps.size() == 1) {
912 SCEV *Scale = LIOps[0];
913 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
914 NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
915 } else {
916 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
917 std::vector<SCEVHandle> MulOps(LIOps);
918 MulOps.push_back(AddRec->getOperand(i));
919 NewOps.push_back(SCEVMulExpr::get(MulOps));
920 }
921 }
922
923 SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
924
925 // If all of the other operands were loop invariant, we are done.
926 if (Ops.size() == 1) return NewRec;
927
928 // Otherwise, multiply the folded AddRec by the non-liv parts.
929 for (unsigned i = 0;; ++i)
930 if (Ops[i] == AddRec) {
931 Ops[i] = NewRec;
932 break;
933 }
934 return SCEVMulExpr::get(Ops);
935 }
936
937 // Okay, if there weren't any loop invariants to be folded, check to see if
938 // there are multiple AddRec's with the same loop induction variable being
939 // multiplied together. If so, we can fold them.
940 for (unsigned OtherIdx = Idx+1;
941 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
942 if (OtherIdx != Idx) {
943 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
944 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
945 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
946 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
947 SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
948 G->getStart());
949 SCEVHandle B = F->getStepRecurrence();
950 SCEVHandle D = G->getStepRecurrence();
951 SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
952 SCEVMulExpr::get(G, B),
953 SCEVMulExpr::get(B, D));
954 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
955 F->getLoop());
956 if (Ops.size() == 2) return NewAddRec;
957
958 Ops.erase(Ops.begin()+Idx);
959 Ops.erase(Ops.begin()+OtherIdx-1);
960 Ops.push_back(NewAddRec);
961 return SCEVMulExpr::get(Ops);
962 }
963 }
964
965 // Otherwise couldn't fold anything into this recurrence. Move onto the
966 // next one.
967 }
968
969 // Okay, it looks like we really DO need an mul expr. Check to see if we
970 // already have one, otherwise create a new one.
971 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +0000972 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
973 SCEVOps)];
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000974 if (Result == 0)
975 Result = new SCEVMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000976 return Result;
977}
978
Chris Lattner60a05cc2006-04-01 04:48:52 +0000979SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000980 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
981 if (RHSC->getValue()->equalsInt(1))
Reid Spencer1628cec2006-10-26 06:15:43 +0000982 return LHS; // X sdiv 1 --> x
Chris Lattner53e677a2004-04-02 20:23:17 +0000983 if (RHSC->getValue()->isAllOnesValue())
Reid Spencer1628cec2006-10-26 06:15:43 +0000984 return SCEV::getNegativeSCEV(LHS); // X sdiv -1 --> -x
Chris Lattner53e677a2004-04-02 20:23:17 +0000985
986 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
987 Constant *LHSCV = LHSC->getValue();
988 Constant *RHSCV = RHSC->getValue();
Reid Spencer1628cec2006-10-26 06:15:43 +0000989 return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
Chris Lattner53e677a2004-04-02 20:23:17 +0000990 }
991 }
992
993 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
994
Chris Lattnerb3364092006-10-04 21:49:37 +0000995 SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
Chris Lattner60a05cc2006-04-01 04:48:52 +0000996 if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +0000997 return Result;
998}
999
1000
1001/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1002/// specified loop. Simplify the expression as much as possible.
1003SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1004 const SCEVHandle &Step, const Loop *L) {
1005 std::vector<SCEVHandle> Operands;
1006 Operands.push_back(Start);
1007 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1008 if (StepChrec->getLoop() == L) {
1009 Operands.insert(Operands.end(), StepChrec->op_begin(),
1010 StepChrec->op_end());
1011 return get(Operands, L);
1012 }
1013
1014 Operands.push_back(Step);
1015 return get(Operands, L);
1016}
1017
1018/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1019/// specified loop. Simplify the expression as much as possible.
1020SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1021 const Loop *L) {
1022 if (Operands.size() == 1) return Operands[0];
1023
1024 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1025 if (StepC->getValue()->isNullValue()) {
1026 Operands.pop_back();
1027 return get(Operands, L); // { X,+,0 } --> X
1028 }
1029
1030 SCEVAddRecExpr *&Result =
Chris Lattnerb3364092006-10-04 21:49:37 +00001031 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1032 Operands.end()))];
Chris Lattner53e677a2004-04-02 20:23:17 +00001033 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1034 return Result;
1035}
1036
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001037SCEVHandle SCEVUnknown::get(Value *V) {
1038 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1039 return SCEVConstant::get(CI);
Chris Lattnerb3364092006-10-04 21:49:37 +00001040 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001041 if (Result == 0) Result = new SCEVUnknown(V);
1042 return Result;
1043}
1044
Chris Lattner53e677a2004-04-02 20:23:17 +00001045
1046//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00001047// ScalarEvolutionsImpl Definition and Implementation
1048//===----------------------------------------------------------------------===//
1049//
1050/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1051/// evolution code.
1052///
1053namespace {
Chris Lattner95255282006-06-28 23:17:24 +00001054 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
Chris Lattner53e677a2004-04-02 20:23:17 +00001055 /// F - The function we are analyzing.
1056 ///
1057 Function &F;
1058
1059 /// LI - The loop information for the function we are currently analyzing.
1060 ///
1061 LoopInfo &LI;
1062
1063 /// UnknownValue - This SCEV is used to represent unknown trip counts and
1064 /// things.
1065 SCEVHandle UnknownValue;
1066
1067 /// Scalars - This is a cache of the scalars we have analyzed so far.
1068 ///
1069 std::map<Value*, SCEVHandle> Scalars;
1070
1071 /// IterationCounts - Cache the iteration count of the loops for this
1072 /// function as they are computed.
1073 std::map<const Loop*, SCEVHandle> IterationCounts;
1074
Chris Lattner3221ad02004-04-17 22:58:41 +00001075 /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1076 /// the PHI instructions that we attempt to compute constant evolutions for.
1077 /// This allows us to avoid potentially expensive recomputation of these
1078 /// properties. An instruction maps to null if we are unable to compute its
1079 /// exit value.
1080 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001081
Chris Lattner53e677a2004-04-02 20:23:17 +00001082 public:
1083 ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1084 : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1085
1086 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1087 /// expression and create a new one.
1088 SCEVHandle getSCEV(Value *V);
1089
Chris Lattnera0740fb2005-08-09 23:36:33 +00001090 /// hasSCEV - Return true if the SCEV for this value has already been
1091 /// computed.
1092 bool hasSCEV(Value *V) const {
1093 return Scalars.count(V);
1094 }
1095
1096 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1097 /// the specified value.
1098 void setSCEV(Value *V, const SCEVHandle &H) {
1099 bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1100 assert(isNew && "This entry already existed!");
1101 }
1102
1103
Chris Lattner53e677a2004-04-02 20:23:17 +00001104 /// getSCEVAtScope - Compute the value of the specified expression within
1105 /// the indicated loop (which may be null to indicate in no loop). If the
1106 /// expression cannot be evaluated, return UnknownValue itself.
1107 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1108
1109
1110 /// hasLoopInvariantIterationCount - Return true if the specified loop has
1111 /// an analyzable loop-invariant iteration count.
1112 bool hasLoopInvariantIterationCount(const Loop *L);
1113
1114 /// getIterationCount - If the specified loop has a predictable iteration
1115 /// count, return it. Note that it is not valid to call this method on a
1116 /// loop without a loop-invariant iteration count.
1117 SCEVHandle getIterationCount(const Loop *L);
1118
1119 /// deleteInstructionFromRecords - This method should be called by the
1120 /// client before it removes an instruction from the program, to make sure
1121 /// that no dangling references are left around.
1122 void deleteInstructionFromRecords(Instruction *I);
1123
1124 private:
1125 /// createSCEV - We know that there is no SCEV for the specified value.
1126 /// Analyze the expression.
1127 SCEVHandle createSCEV(Value *V);
Chris Lattner53e677a2004-04-02 20:23:17 +00001128
1129 /// createNodeForPHI - Provide the special handling we need to analyze PHI
1130 /// SCEVs.
1131 SCEVHandle createNodeForPHI(PHINode *PN);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001132
1133 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1134 /// for the specified instruction and replaces any references to the
1135 /// symbolic value SymName with the specified value. This is used during
1136 /// PHI resolution.
1137 void ReplaceSymbolicValueWithConcrete(Instruction *I,
1138 const SCEVHandle &SymName,
1139 const SCEVHandle &NewVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00001140
1141 /// ComputeIterationCount - Compute the number of times the specified loop
1142 /// will iterate.
1143 SCEVHandle ComputeIterationCount(const Loop *L);
1144
Chris Lattner673e02b2004-10-12 01:49:27 +00001145 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1146 /// 'setcc load X, cst', try to se if we can compute the trip count.
1147 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1148 Constant *RHS,
1149 const Loop *L,
Reid Spencere4d87aa2006-12-23 06:05:41 +00001150 ICmpInst::Predicate p);
Chris Lattner673e02b2004-10-12 01:49:27 +00001151
Chris Lattner7980fb92004-04-17 18:36:24 +00001152 /// ComputeIterationCountExhaustively - If the trip is known to execute a
1153 /// constant number of times (the condition evolves only from constants),
1154 /// try to evaluate a few iterations of the loop until we get the exit
1155 /// condition gets a value of ExitWhen (true or false). If we cannot
1156 /// evaluate the trip count of the loop, return UnknownValue.
1157 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1158 bool ExitWhen);
1159
Chris Lattner53e677a2004-04-02 20:23:17 +00001160 /// HowFarToZero - Return the number of times a backedge comparing the
1161 /// specified value to zero will execute. If not computable, return
Chris Lattnerdb25de42005-08-15 23:33:51 +00001162 /// UnknownValue.
Chris Lattner53e677a2004-04-02 20:23:17 +00001163 SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1164
1165 /// HowFarToNonZero - Return the number of times a backedge checking the
1166 /// specified value for nonzero will execute. If not computable, return
Chris Lattnerdb25de42005-08-15 23:33:51 +00001167 /// UnknownValue.
Chris Lattner53e677a2004-04-02 20:23:17 +00001168 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
Chris Lattner3221ad02004-04-17 22:58:41 +00001169
Chris Lattnerdb25de42005-08-15 23:33:51 +00001170 /// HowManyLessThans - Return the number of times a backedge containing the
1171 /// specified less-than comparison will execute. If not computable, return
1172 /// UnknownValue.
1173 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1174
Chris Lattner3221ad02004-04-17 22:58:41 +00001175 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1176 /// in the header of its containing loop, we know the loop executes a
1177 /// constant number of times, and the PHI node is just a recurrence
1178 /// involving constants, fold it.
1179 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1180 const Loop *L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001181 };
1182}
1183
1184//===----------------------------------------------------------------------===//
1185// Basic SCEV Analysis and PHI Idiom Recognition Code
1186//
1187
1188/// deleteInstructionFromRecords - This method should be called by the
1189/// client before it removes an instruction from the program, to make sure
1190/// that no dangling references are left around.
1191void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1192 Scalars.erase(I);
Chris Lattner3221ad02004-04-17 22:58:41 +00001193 if (PHINode *PN = dyn_cast<PHINode>(I))
1194 ConstantEvolutionLoopExitValue.erase(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00001195}
1196
1197
1198/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1199/// expression and create a new one.
1200SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1201 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1202
1203 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1204 if (I != Scalars.end()) return I->second;
1205 SCEVHandle S = createSCEV(V);
1206 Scalars.insert(std::make_pair(V, S));
1207 return S;
1208}
1209
Chris Lattner4dc534c2005-02-13 04:37:18 +00001210/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1211/// the specified instruction and replaces any references to the symbolic value
1212/// SymName with the specified value. This is used during PHI resolution.
1213void ScalarEvolutionsImpl::
1214ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1215 const SCEVHandle &NewVal) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001216 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001217 if (SI == Scalars.end()) return;
Chris Lattner53e677a2004-04-02 20:23:17 +00001218
Chris Lattner4dc534c2005-02-13 04:37:18 +00001219 SCEVHandle NV =
1220 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1221 if (NV == SI->second) return; // No change.
1222
1223 SI->second = NV; // Update the scalars map!
1224
1225 // Any instruction values that use this instruction might also need to be
1226 // updated!
1227 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1228 UI != E; ++UI)
1229 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1230}
Chris Lattner53e677a2004-04-02 20:23:17 +00001231
1232/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1233/// a loop header, making it a potential recurrence, or it doesn't.
1234///
1235SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1236 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1237 if (const Loop *L = LI.getLoopFor(PN->getParent()))
1238 if (L->getHeader() == PN->getParent()) {
1239 // If it lives in the loop header, it has two incoming values, one
1240 // from outside the loop, and one from inside.
1241 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1242 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001243
Chris Lattner53e677a2004-04-02 20:23:17 +00001244 // While we are analyzing this PHI node, handle its value symbolically.
1245 SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1246 assert(Scalars.find(PN) == Scalars.end() &&
1247 "PHI node already processed?");
1248 Scalars.insert(std::make_pair(PN, SymbolicName));
1249
1250 // Using this symbolic name for the PHI, analyze the value coming around
1251 // the back-edge.
1252 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1253
1254 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1255 // has a special value for the first iteration of the loop.
1256
1257 // If the value coming around the backedge is an add with the symbolic
1258 // value we just inserted, then we found a simple induction variable!
1259 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1260 // If there is a single occurrence of the symbolic value, replace it
1261 // with a recurrence.
1262 unsigned FoundIndex = Add->getNumOperands();
1263 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1264 if (Add->getOperand(i) == SymbolicName)
1265 if (FoundIndex == e) {
1266 FoundIndex = i;
1267 break;
1268 }
1269
1270 if (FoundIndex != Add->getNumOperands()) {
1271 // Create an add with everything but the specified operand.
1272 std::vector<SCEVHandle> Ops;
1273 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1274 if (i != FoundIndex)
1275 Ops.push_back(Add->getOperand(i));
1276 SCEVHandle Accum = SCEVAddExpr::get(Ops);
1277
1278 // This is not a valid addrec if the step amount is varying each
1279 // loop iteration, but is not itself an addrec in this loop.
1280 if (Accum->isLoopInvariant(L) ||
1281 (isa<SCEVAddRecExpr>(Accum) &&
1282 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1283 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1284 SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L);
1285
1286 // Okay, for the entire analysis of this edge we assumed the PHI
1287 // to be symbolic. We now need to go back and update all of the
1288 // entries for the scalars that use the PHI (except for the PHI
1289 // itself) to use the new analyzed value instead of the "symbolic"
1290 // value.
Chris Lattner4dc534c2005-02-13 04:37:18 +00001291 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001292 return PHISCEV;
1293 }
1294 }
Chris Lattner97156e72006-04-26 18:34:07 +00001295 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1296 // Otherwise, this could be a loop like this:
1297 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1298 // In this case, j = {1,+,1} and BEValue is j.
1299 // Because the other in-value of i (0) fits the evolution of BEValue
1300 // i really is an addrec evolution.
1301 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1302 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1303
1304 // If StartVal = j.start - j.stride, we can use StartVal as the
1305 // initial step of the addrec evolution.
1306 if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1307 AddRec->getOperand(1))) {
1308 SCEVHandle PHISCEV =
1309 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1310
1311 // Okay, for the entire analysis of this edge we assumed the PHI
1312 // to be symbolic. We now need to go back and update all of the
1313 // entries for the scalars that use the PHI (except for the PHI
1314 // itself) to use the new analyzed value instead of the "symbolic"
1315 // value.
1316 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1317 return PHISCEV;
1318 }
1319 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001320 }
1321
1322 return SymbolicName;
1323 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001324
Chris Lattner53e677a2004-04-02 20:23:17 +00001325 // If it's not a loop phi, we can't handle it yet.
1326 return SCEVUnknown::get(PN);
1327}
1328
Chris Lattnera17f0392006-12-12 02:26:09 +00001329/// GetConstantFactor - Determine the largest constant factor that S has. For
1330/// example, turn {4,+,8} -> 4. (S umod result) should always equal zero.
1331static uint64_t GetConstantFactor(SCEVHandle S) {
1332 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
1333 if (uint64_t V = C->getValue()->getZExtValue())
1334 return V;
1335 else // Zero is a multiple of everything.
1336 return 1ULL << (S->getType()->getPrimitiveSizeInBits()-1);
1337 }
1338
1339 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1340 return GetConstantFactor(T->getOperand()) &
Reid Spencerc1030572007-01-19 21:13:56 +00001341 cast<IntegerType>(T->getType())->getBitMask();
Chris Lattnera17f0392006-12-12 02:26:09 +00001342 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
1343 return GetConstantFactor(E->getOperand());
1344
1345 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1346 // The result is the min of all operands.
1347 uint64_t Res = GetConstantFactor(A->getOperand(0));
1348 for (unsigned i = 1, e = A->getNumOperands(); i != e && Res > 1; ++i)
1349 Res = std::min(Res, GetConstantFactor(A->getOperand(i)));
1350 return Res;
1351 }
1352
1353 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1354 // The result is the product of all the operands.
1355 uint64_t Res = GetConstantFactor(M->getOperand(0));
1356 for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i)
1357 Res *= GetConstantFactor(M->getOperand(i));
1358 return Res;
1359 }
1360
1361 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Chris Lattner75de5ab2006-12-19 01:16:02 +00001362 // For now, we just handle linear expressions.
1363 if (A->getNumOperands() == 2) {
1364 // We want the GCD between the start and the stride value.
1365 uint64_t Start = GetConstantFactor(A->getOperand(0));
1366 if (Start == 1) return 1;
1367 uint64_t Stride = GetConstantFactor(A->getOperand(1));
1368 return GreatestCommonDivisor64(Start, Stride);
1369 }
Chris Lattnera17f0392006-12-12 02:26:09 +00001370 }
1371
1372 // SCEVSDivExpr, SCEVUnknown.
1373 return 1;
1374}
Chris Lattner53e677a2004-04-02 20:23:17 +00001375
1376/// createSCEV - We know that there is no SCEV for the specified value.
1377/// Analyze the expression.
1378///
1379SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1380 if (Instruction *I = dyn_cast<Instruction>(V)) {
1381 switch (I->getOpcode()) {
1382 case Instruction::Add:
1383 return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1384 getSCEV(I->getOperand(1)));
1385 case Instruction::Mul:
1386 return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1387 getSCEV(I->getOperand(1)));
Reid Spencer1628cec2006-10-26 06:15:43 +00001388 case Instruction::SDiv:
1389 return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1390 getSCEV(I->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001391 break;
1392
1393 case Instruction::Sub:
Chris Lattnerbac5b462005-03-09 05:34:41 +00001394 return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1395 getSCEV(I->getOperand(1)));
Chris Lattnera17f0392006-12-12 02:26:09 +00001396 case Instruction::Or:
1397 // If the RHS of the Or is a constant, we may have something like:
1398 // X*4+1 which got turned into X*4|1. Handle this as an add so loop
1399 // optimizations will transparently handle this case.
1400 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1401 SCEVHandle LHS = getSCEV(I->getOperand(0));
1402 uint64_t CommonFact = GetConstantFactor(LHS);
1403 assert(CommonFact && "Common factor should at least be 1!");
1404 if (CommonFact > CI->getZExtValue()) {
1405 // If the LHS is a multiple that is larger than the RHS, use +.
1406 return SCEVAddExpr::get(LHS,
1407 getSCEV(I->getOperand(1)));
1408 }
1409 }
1410 break;
1411
Chris Lattner53e677a2004-04-02 20:23:17 +00001412 case Instruction::Shl:
1413 // Turn shift left of a constant amount into a multiply.
1414 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1415 Constant *X = ConstantInt::get(V->getType(), 1);
1416 X = ConstantExpr::getShl(X, SA);
1417 return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1418 }
1419 break;
1420
Reid Spencer3da59db2006-11-27 01:05:10 +00001421 case Instruction::Trunc:
Chris Lattnerb2f3e702007-01-15 01:58:56 +00001422 return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType());
Reid Spencer3da59db2006-11-27 01:05:10 +00001423
1424 case Instruction::ZExt:
Chris Lattnerb2f3e702007-01-15 01:58:56 +00001425 return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
Reid Spencer3da59db2006-11-27 01:05:10 +00001426
1427 case Instruction::BitCast:
1428 // BitCasts are no-op casts so we just eliminate the cast.
Chris Lattner42a75512007-01-15 02:27:26 +00001429 if (I->getType()->isInteger() &&
1430 I->getOperand(0)->getType()->isInteger())
Chris Lattner82e8a8f2006-12-11 00:12:31 +00001431 return getSCEV(I->getOperand(0));
1432 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001433
1434 case Instruction::PHI:
1435 return createNodeForPHI(cast<PHINode>(I));
1436
1437 default: // We cannot analyze this expression.
1438 break;
1439 }
1440 }
1441
1442 return SCEVUnknown::get(V);
1443}
1444
1445
1446
1447//===----------------------------------------------------------------------===//
1448// Iteration Count Computation Code
1449//
1450
1451/// getIterationCount - If the specified loop has a predictable iteration
1452/// count, return it. Note that it is not valid to call this method on a
1453/// loop without a loop-invariant iteration count.
1454SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1455 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1456 if (I == IterationCounts.end()) {
1457 SCEVHandle ItCount = ComputeIterationCount(L);
1458 I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1459 if (ItCount != UnknownValue) {
1460 assert(ItCount->isLoopInvariant(L) &&
1461 "Computed trip count isn't loop invariant for loop!");
1462 ++NumTripCountsComputed;
1463 } else if (isa<PHINode>(L->getHeader()->begin())) {
1464 // Only count loops that have phi nodes as not being computable.
1465 ++NumTripCountsNotComputed;
1466 }
1467 }
1468 return I->second;
1469}
1470
1471/// ComputeIterationCount - Compute the number of times the specified loop
1472/// will iterate.
1473SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1474 // If the loop has a non-one exit block count, we can't analyze it.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001475 std::vector<BasicBlock*> ExitBlocks;
1476 L->getExitBlocks(ExitBlocks);
1477 if (ExitBlocks.size() != 1) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001478
1479 // Okay, there is one exit block. Try to find the condition that causes the
1480 // loop to be exited.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001481 BasicBlock *ExitBlock = ExitBlocks[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001482
1483 BasicBlock *ExitingBlock = 0;
1484 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1485 PI != E; ++PI)
1486 if (L->contains(*PI)) {
1487 if (ExitingBlock == 0)
1488 ExitingBlock = *PI;
1489 else
1490 return UnknownValue; // More than one block exiting!
1491 }
1492 assert(ExitingBlock && "No exits from loop, something is broken!");
1493
1494 // Okay, we've computed the exiting block. See what condition causes us to
1495 // exit.
1496 //
1497 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1499 if (ExitBr == 0) return UnknownValue;
1500 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Chris Lattner8b0e3602007-01-07 02:24:26 +00001501
1502 // At this point, we know we have a conditional branch that determines whether
1503 // the loop is exited. However, we don't know if the branch is executed each
1504 // time through the loop. If not, then the execution count of the branch will
1505 // not be equal to the trip count of the loop.
1506 //
1507 // Currently we check for this by checking to see if the Exit branch goes to
1508 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00001509 // times as the loop. We also handle the case where the exit block *is* the
1510 // loop header. This is common for un-rotated loops. More extensive analysis
1511 // could be done to handle more cases here.
Chris Lattner8b0e3602007-01-07 02:24:26 +00001512 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00001513 ExitBr->getSuccessor(1) != L->getHeader() &&
1514 ExitBr->getParent() != L->getHeader())
Chris Lattner8b0e3602007-01-07 02:24:26 +00001515 return UnknownValue;
1516
Reid Spencere4d87aa2006-12-23 06:05:41 +00001517 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1518
1519 // If its not an integer comparison then compute it the hard way.
1520 // Note that ICmpInst deals with pointer comparisons too so we must check
1521 // the type of the operand.
Chris Lattner8b0e3602007-01-07 02:24:26 +00001522 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
Chris Lattner7980fb92004-04-17 18:36:24 +00001523 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1524 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner53e677a2004-04-02 20:23:17 +00001525
Reid Spencere4d87aa2006-12-23 06:05:41 +00001526 // If the condition was exit on true, convert the condition to exit on false
1527 ICmpInst::Predicate Cond;
Chris Lattner673e02b2004-10-12 01:49:27 +00001528 if (ExitBr->getSuccessor(1) == ExitBlock)
Reid Spencere4d87aa2006-12-23 06:05:41 +00001529 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00001530 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00001531 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00001532
1533 // Handle common loops like: for (X = "string"; *X; ++X)
1534 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1535 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1536 SCEVHandle ItCnt =
1537 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1538 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1539 }
1540
Chris Lattner53e677a2004-04-02 20:23:17 +00001541 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1542 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1543
1544 // Try to evaluate any dependencies out of the loop.
1545 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1546 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1547 Tmp = getSCEVAtScope(RHS, L);
1548 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1549
Reid Spencere4d87aa2006-12-23 06:05:41 +00001550 // At this point, we would like to compute how many iterations of the
1551 // loop the predicate will return true for these inputs.
Chris Lattner53e677a2004-04-02 20:23:17 +00001552 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1553 // If there is a constant, force it into the RHS.
1554 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001555 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00001556 }
1557
1558 // FIXME: think about handling pointer comparisons! i.e.:
1559 // while (P != P+100) ++P;
1560
1561 // If we have a comparison of a chrec against a constant, try to use value
1562 // ranges to answer this query.
1563 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1564 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1565 if (AddRec->getLoop() == L) {
1566 // Form the comparison range using the constant of the correct type so
1567 // that the ConstantRange class knows to do a signed or unsigned
1568 // comparison.
1569 ConstantInt *CompVal = RHSC->getValue();
1570 const Type *RealTy = ExitCond->getOperand(0)->getType();
Reid Spencer4da49122006-12-12 05:05:00 +00001571 CompVal = dyn_cast<ConstantInt>(
Reid Spencerb6ba3e62006-12-12 09:17:50 +00001572 ConstantExpr::getBitCast(CompVal, RealTy));
Chris Lattner53e677a2004-04-02 20:23:17 +00001573 if (CompVal) {
1574 // Form the constant range.
Reid Spencerc6aedf72007-02-28 22:03:51 +00001575 ConstantRange CompRange(
1576 ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001577
Reid Spencere4d87aa2006-12-23 06:05:41 +00001578 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange,
Reid Spencerc5b206b2006-12-31 05:48:39 +00001579 false /*Always treat as unsigned range*/);
Chris Lattner53e677a2004-04-02 20:23:17 +00001580 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1581 }
1582 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001583
Chris Lattner53e677a2004-04-02 20:23:17 +00001584 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00001585 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00001586 // Convert to: while (X-Y != 0)
Reid Spencere4d87aa2006-12-23 06:05:41 +00001587 SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1588 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00001589 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001590 }
1591 case ICmpInst::ICMP_EQ: {
Chris Lattner53e677a2004-04-02 20:23:17 +00001592 // Convert to: while (X-Y == 0) // while (X == Y)
Reid Spencere4d87aa2006-12-23 06:05:41 +00001593 SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1594 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001596 }
1597 case ICmpInst::ICMP_SLT: {
1598 SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1599 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattnerdb25de42005-08-15 23:33:51 +00001600 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001601 }
1602 case ICmpInst::ICMP_SGT: {
1603 SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1604 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattnerdb25de42005-08-15 23:33:51 +00001605 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001606 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001607 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001608#if 0
Bill Wendlinge8156192006-12-07 01:30:32 +00001609 cerr << "ComputeIterationCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00001610 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Bill Wendlinge8156192006-12-07 01:30:32 +00001611 cerr << "[unsigned] ";
1612 cerr << *LHS << " "
Reid Spencere4d87aa2006-12-23 06:05:41 +00001613 << Instruction::getOpcodeName(Instruction::ICmp)
1614 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001615#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00001616 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001617 }
Chris Lattner7980fb92004-04-17 18:36:24 +00001618 return ComputeIterationCountExhaustively(L, ExitCond,
Reid Spencere4d87aa2006-12-23 06:05:41 +00001619 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner7980fb92004-04-17 18:36:24 +00001620}
1621
Chris Lattner673e02b2004-10-12 01:49:27 +00001622static ConstantInt *
1623EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1624 SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1625 SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1626 assert(isa<SCEVConstant>(Val) &&
1627 "Evaluation of SCEV at constant didn't fold correctly?");
1628 return cast<SCEVConstant>(Val)->getValue();
1629}
1630
1631/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1632/// and a GEP expression (missing the pointer index) indexing into it, return
1633/// the addressed element of the initializer or null if the index expression is
1634/// invalid.
1635static Constant *
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001636GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00001637 const std::vector<ConstantInt*> &Indices) {
1638 Constant *Init = GV->getInitializer();
1639 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00001640 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00001641 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1642 assert(Idx < CS->getNumOperands() && "Bad struct index!");
1643 Init = cast<Constant>(CS->getOperand(Idx));
1644 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1645 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
1646 Init = cast<Constant>(CA->getOperand(Idx));
1647 } else if (isa<ConstantAggregateZero>(Init)) {
1648 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1649 assert(Idx < STy->getNumElements() && "Bad struct index!");
1650 Init = Constant::getNullValue(STy->getElementType(Idx));
1651 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1652 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
1653 Init = Constant::getNullValue(ATy->getElementType());
1654 } else {
1655 assert(0 && "Unknown constant aggregate type!");
1656 }
1657 return 0;
1658 } else {
1659 return 0; // Unknown initializer type
1660 }
1661 }
1662 return Init;
1663}
1664
1665/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1666/// 'setcc load X, cst', try to se if we can compute the trip count.
1667SCEVHandle ScalarEvolutionsImpl::
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001668ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
Reid Spencere4d87aa2006-12-23 06:05:41 +00001669 const Loop *L,
1670 ICmpInst::Predicate predicate) {
Chris Lattner673e02b2004-10-12 01:49:27 +00001671 if (LI->isVolatile()) return UnknownValue;
1672
1673 // Check to see if the loaded pointer is a getelementptr of a global.
1674 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1675 if (!GEP) return UnknownValue;
1676
1677 // Make sure that it is really a constant global we are gepping, with an
1678 // initializer, and make sure the first IDX is really 0.
1679 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1680 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1681 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1682 !cast<Constant>(GEP->getOperand(1))->isNullValue())
1683 return UnknownValue;
1684
1685 // Okay, we allow one non-constant index into the GEP instruction.
1686 Value *VarIdx = 0;
1687 std::vector<ConstantInt*> Indexes;
1688 unsigned VarIdxNum = 0;
1689 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1690 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1691 Indexes.push_back(CI);
1692 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1693 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
1694 VarIdx = GEP->getOperand(i);
1695 VarIdxNum = i-2;
1696 Indexes.push_back(0);
1697 }
1698
1699 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1700 // Check to see if X is a loop variant variable value now.
1701 SCEVHandle Idx = getSCEV(VarIdx);
1702 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1703 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1704
1705 // We can only recognize very limited forms of loop index expressions, in
1706 // particular, only affine AddRec's like {C1,+,C2}.
1707 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1708 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1709 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1710 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1711 return UnknownValue;
1712
1713 unsigned MaxSteps = MaxBruteForceIterations;
1714 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Reid Spencerb83eb642006-10-20 07:07:24 +00001715 ConstantInt *ItCst =
Reid Spencerc5b206b2006-12-31 05:48:39 +00001716 ConstantInt::get(IdxExpr->getType(), IterationNum);
Chris Lattner673e02b2004-10-12 01:49:27 +00001717 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1718
1719 // Form the GEP offset.
1720 Indexes[VarIdxNum] = Val;
1721
1722 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1723 if (Result == 0) break; // Cannot compute!
1724
1725 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00001726 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001727 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer579dca12007-01-12 04:24:46 +00001728 if (cast<ConstantInt>(Result)->getZExtValue() == false) {
Chris Lattner673e02b2004-10-12 01:49:27 +00001729#if 0
Bill Wendlinge8156192006-12-07 01:30:32 +00001730 cerr << "\n***\n*** Computed loop count " << *ItCst
1731 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1732 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00001733#endif
1734 ++NumArrayLenItCounts;
1735 return SCEVConstant::get(ItCst); // Found terminating iteration!
1736 }
1737 }
1738 return UnknownValue;
1739}
1740
1741
Chris Lattner3221ad02004-04-17 22:58:41 +00001742/// CanConstantFold - Return true if we can constant fold an instruction of the
1743/// specified type, assuming that all operands were constants.
1744static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00001745 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00001746 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1747 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001748
Chris Lattner3221ad02004-04-17 22:58:41 +00001749 if (const CallInst *CI = dyn_cast<CallInst>(I))
1750 if (const Function *F = CI->getCalledFunction())
1751 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast
1752 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00001753}
1754
Chris Lattner3221ad02004-04-17 22:58:41 +00001755/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1756/// in the loop that V is derived from. We allow arbitrary operations along the
1757/// way, but the operands of an operation must either be constants or a value
1758/// derived from a constant PHI. If this expression does not fit with these
1759/// constraints, return null.
1760static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1761 // If this is not an instruction, or if this is an instruction outside of the
1762 // loop, it can't be derived from a loop PHI.
1763 Instruction *I = dyn_cast<Instruction>(V);
1764 if (I == 0 || !L->contains(I->getParent())) return 0;
1765
1766 if (PHINode *PN = dyn_cast<PHINode>(I))
1767 if (L->getHeader() == I->getParent())
1768 return PN;
1769 else
1770 // We don't currently keep track of the control flow needed to evaluate
1771 // PHIs, so we cannot handle PHIs inside of loops.
1772 return 0;
1773
1774 // If we won't be able to constant fold this expression even if the operands
1775 // are constants, return early.
1776 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001777
Chris Lattner3221ad02004-04-17 22:58:41 +00001778 // Otherwise, we can evaluate this instruction if all of its operands are
1779 // constant or derived from a PHI node themselves.
1780 PHINode *PHI = 0;
1781 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1782 if (!(isa<Constant>(I->getOperand(Op)) ||
1783 isa<GlobalValue>(I->getOperand(Op)))) {
1784 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1785 if (P == 0) return 0; // Not evolving from PHI
1786 if (PHI == 0)
1787 PHI = P;
1788 else if (PHI != P)
1789 return 0; // Evolving from multiple different PHIs.
1790 }
1791
1792 // This is a expression evolving from a constant PHI!
1793 return PHI;
1794}
1795
1796/// EvaluateExpression - Given an expression that passes the
1797/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1798/// in the loop has the value PHIVal. If we can't fold this expression for some
1799/// reason, return null.
1800static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1801 if (isa<PHINode>(V)) return PHIVal;
Chris Lattner3221ad02004-04-17 22:58:41 +00001802 if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
Reid Spencere8404342004-07-18 00:18:30 +00001803 return GV;
1804 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00001805 Instruction *I = cast<Instruction>(V);
1806
1807 std::vector<Constant*> Operands;
1808 Operands.resize(I->getNumOperands());
1809
1810 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1811 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1812 if (Operands[i] == 0) return 0;
1813 }
1814
Chris Lattner2e3a1d12007-01-30 23:52:44 +00001815 return ConstantFoldInstOperands(I, &Operands[0], Operands.size());
Chris Lattner3221ad02004-04-17 22:58:41 +00001816}
1817
1818/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1819/// in the header of its containing loop, we know the loop executes a
1820/// constant number of times, and the PHI node is just a recurrence
1821/// involving constants, fold it.
1822Constant *ScalarEvolutionsImpl::
1823getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1824 std::map<PHINode*, Constant*>::iterator I =
1825 ConstantEvolutionLoopExitValue.find(PN);
1826 if (I != ConstantEvolutionLoopExitValue.end())
1827 return I->second;
1828
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001829 if (Its > MaxBruteForceIterations)
Chris Lattner3221ad02004-04-17 22:58:41 +00001830 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
1831
1832 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1833
1834 // Since the loop is canonicalized, the PHI node must have two entries. One
1835 // entry must be a constant (coming in from outside of the loop), and the
1836 // second must be derived from the same PHI.
1837 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1838 Constant *StartCST =
1839 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1840 if (StartCST == 0)
1841 return RetVal = 0; // Must be a constant.
1842
1843 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1844 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1845 if (PN2 != PN)
1846 return RetVal = 0; // Not derived from same PHI.
1847
1848 // Execute the loop symbolically to determine the exit value.
1849 unsigned IterationNum = 0;
1850 unsigned NumIterations = Its;
1851 if (NumIterations != Its)
1852 return RetVal = 0; // More than 2^32 iterations??
1853
1854 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1855 if (IterationNum == NumIterations)
1856 return RetVal = PHIVal; // Got exit value!
1857
1858 // Compute the value of the PHI node for the next iteration.
1859 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1860 if (NextPHI == PHIVal)
1861 return RetVal = NextPHI; // Stopped evolving!
1862 if (NextPHI == 0)
1863 return 0; // Couldn't evaluate!
1864 PHIVal = NextPHI;
1865 }
1866}
1867
Chris Lattner7980fb92004-04-17 18:36:24 +00001868/// ComputeIterationCountExhaustively - If the trip is known to execute a
1869/// constant number of times (the condition evolves only from constants),
1870/// try to evaluate a few iterations of the loop until we get the exit
1871/// condition gets a value of ExitWhen (true or false). If we cannot
1872/// evaluate the trip count of the loop, return UnknownValue.
1873SCEVHandle ScalarEvolutionsImpl::
1874ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1875 PHINode *PN = getConstantEvolvingPHI(Cond, L);
1876 if (PN == 0) return UnknownValue;
1877
1878 // Since the loop is canonicalized, the PHI node must have two entries. One
1879 // entry must be a constant (coming in from outside of the loop), and the
1880 // second must be derived from the same PHI.
1881 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1882 Constant *StartCST =
1883 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1884 if (StartCST == 0) return UnknownValue; // Must be a constant.
1885
1886 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1887 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1888 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
1889
1890 // Okay, we find a PHI node that defines the trip count of this loop. Execute
1891 // the loop symbolically to determine when the condition gets a value of
1892 // "ExitWhen".
1893 unsigned IterationNum = 0;
1894 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
1895 for (Constant *PHIVal = StartCST;
1896 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001897 ConstantInt *CondVal =
1898 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
Chris Lattner3221ad02004-04-17 22:58:41 +00001899
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001900 // Couldn't symbolically evaluate.
Chris Lattneref3baf02007-01-12 18:28:58 +00001901 if (!CondVal) return UnknownValue;
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001902
Jeff Cohen1b307542007-01-15 20:27:18 +00001903 if (CondVal->getZExtValue() == uint64_t(ExitWhen)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00001904 ConstantEvolutionLoopExitValue[PN] = PHIVal;
Chris Lattner7980fb92004-04-17 18:36:24 +00001905 ++NumBruteForceTripCountsComputed;
Reid Spencerc5b206b2006-12-31 05:48:39 +00001906 return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
Chris Lattner7980fb92004-04-17 18:36:24 +00001907 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001908
Chris Lattner3221ad02004-04-17 22:58:41 +00001909 // Compute the value of the PHI node for the next iteration.
1910 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1911 if (NextPHI == 0 || NextPHI == PHIVal)
Chris Lattner7980fb92004-04-17 18:36:24 +00001912 return UnknownValue; // Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00001913 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00001914 }
1915
1916 // Too many iterations were needed to evaluate.
Chris Lattner53e677a2004-04-02 20:23:17 +00001917 return UnknownValue;
1918}
1919
1920/// getSCEVAtScope - Compute the value of the specified expression within the
1921/// indicated loop (which may be null to indicate in no loop). If the
1922/// expression cannot be evaluated, return UnknownValue.
1923SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1924 // FIXME: this should be turned into a virtual method on SCEV!
1925
Chris Lattner3221ad02004-04-17 22:58:41 +00001926 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001927
Chris Lattner3221ad02004-04-17 22:58:41 +00001928 // If this instruction is evolves from a constant-evolving PHI, compute the
1929 // exit value from the loop without using SCEVs.
1930 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1931 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1932 const Loop *LI = this->LI[I->getParent()];
1933 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
1934 if (PHINode *PN = dyn_cast<PHINode>(I))
1935 if (PN->getParent() == LI->getHeader()) {
1936 // Okay, there is no closed form solution for the PHI node. Check
1937 // to see if the loop that contains it has a known iteration count.
1938 // If so, we may be able to force computation of the exit value.
1939 SCEVHandle IterationCount = getIterationCount(LI);
1940 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1941 // Okay, we know how many times the containing loop executes. If
1942 // this is a constant evolving PHI node, get the final value at
1943 // the specified iteration number.
1944 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Reid Spencerb83eb642006-10-20 07:07:24 +00001945 ICC->getValue()->getZExtValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00001946 LI);
1947 if (RV) return SCEVUnknown::get(RV);
1948 }
1949 }
1950
Reid Spencer09906f32006-12-04 21:33:23 +00001951 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00001952 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00001953 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00001954 // result. This is particularly useful for computing loop exit values.
1955 if (CanConstantFold(I)) {
1956 std::vector<Constant*> Operands;
1957 Operands.reserve(I->getNumOperands());
1958 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1959 Value *Op = I->getOperand(i);
1960 if (Constant *C = dyn_cast<Constant>(Op)) {
1961 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00001962 } else {
1963 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1964 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
Reid Spencerd977d862006-12-12 23:36:14 +00001965 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
1966 Op->getType(),
1967 false));
Chris Lattner3221ad02004-04-17 22:58:41 +00001968 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1969 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
Reid Spencerd977d862006-12-12 23:36:14 +00001970 Operands.push_back(ConstantExpr::getIntegerCast(C,
1971 Op->getType(),
1972 false));
Chris Lattner3221ad02004-04-17 22:58:41 +00001973 else
1974 return V;
1975 } else {
1976 return V;
1977 }
1978 }
1979 }
Chris Lattner2e3a1d12007-01-30 23:52:44 +00001980 Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size());
1981 return SCEVUnknown::get(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00001982 }
1983 }
1984
1985 // This is some other type of SCEVUnknown, just return it.
1986 return V;
1987 }
1988
Chris Lattner53e677a2004-04-02 20:23:17 +00001989 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1990 // Avoid performing the look-up in the common case where the specified
1991 // expression has no loop-variant portions.
1992 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1993 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1994 if (OpAtScope != Comm->getOperand(i)) {
1995 if (OpAtScope == UnknownValue) return UnknownValue;
1996 // Okay, at least one of these operands is loop variant but might be
1997 // foldable. Build a new instance of the folded commutative expression.
Chris Lattner3221ad02004-04-17 22:58:41 +00001998 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00001999 NewOps.push_back(OpAtScope);
2000
2001 for (++i; i != e; ++i) {
2002 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2003 if (OpAtScope == UnknownValue) return UnknownValue;
2004 NewOps.push_back(OpAtScope);
2005 }
2006 if (isa<SCEVAddExpr>(Comm))
2007 return SCEVAddExpr::get(NewOps);
2008 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
2009 return SCEVMulExpr::get(NewOps);
2010 }
2011 }
2012 // If we got here, all operands are loop invariant.
2013 return Comm;
2014 }
2015
Chris Lattner60a05cc2006-04-01 04:48:52 +00002016 if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2017 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002018 if (LHS == UnknownValue) return LHS;
Chris Lattner60a05cc2006-04-01 04:48:52 +00002019 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002020 if (RHS == UnknownValue) return RHS;
Chris Lattner60a05cc2006-04-01 04:48:52 +00002021 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2022 return Div; // must be loop invariant
2023 return SCEVSDivExpr::get(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00002024 }
2025
2026 // If this is a loop recurrence for a loop that does not contain L, then we
2027 // are dealing with the final value computed by the loop.
2028 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2029 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2030 // To evaluate this recurrence, we need to know how many times the AddRec
2031 // loop iterates. Compute this now.
2032 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2033 if (IterationCount == UnknownValue) return UnknownValue;
2034 IterationCount = getTruncateOrZeroExtend(IterationCount,
2035 AddRec->getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002036
Chris Lattner53e677a2004-04-02 20:23:17 +00002037 // If the value is affine, simplify the expression evaluation to just
2038 // Start + Step*IterationCount.
2039 if (AddRec->isAffine())
2040 return SCEVAddExpr::get(AddRec->getStart(),
2041 SCEVMulExpr::get(IterationCount,
2042 AddRec->getOperand(1)));
2043
2044 // Otherwise, evaluate it the hard way.
2045 return AddRec->evaluateAtIteration(IterationCount);
2046 }
2047 return UnknownValue;
2048 }
2049
2050 //assert(0 && "Unknown SCEV type!");
2051 return UnknownValue;
2052}
2053
2054
2055/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2056/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2057/// might be the same) or two SCEVCouldNotCompute objects.
2058///
2059static std::pair<SCEVHandle,SCEVHandle>
2060SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2061 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2062 SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2063 SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2064 SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002065
Chris Lattner53e677a2004-04-02 20:23:17 +00002066 // We currently can only solve this if the coefficients are constants.
2067 if (!L || !M || !N) {
2068 SCEV *CNC = new SCEVCouldNotCompute();
2069 return std::make_pair(CNC, CNC);
2070 }
2071
Reid Spencer1628cec2006-10-26 06:15:43 +00002072 Constant *C = L->getValue();
2073 Constant *Two = ConstantInt::get(C->getType(), 2);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002074
Chris Lattner53e677a2004-04-02 20:23:17 +00002075 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
Chris Lattner53e677a2004-04-02 20:23:17 +00002076 // The B coefficient is M-N/2
2077 Constant *B = ConstantExpr::getSub(M->getValue(),
Reid Spencer1628cec2006-10-26 06:15:43 +00002078 ConstantExpr::getSDiv(N->getValue(),
Chris Lattner53e677a2004-04-02 20:23:17 +00002079 Two));
2080 // The A coefficient is N/2
Reid Spencer1628cec2006-10-26 06:15:43 +00002081 Constant *A = ConstantExpr::getSDiv(N->getValue(), Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002082
Chris Lattner53e677a2004-04-02 20:23:17 +00002083 // Compute the B^2-4ac term.
2084 Constant *SqrtTerm =
2085 ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2086 ConstantExpr::getMul(A, C));
2087 SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2088
2089 // Compute floor(sqrt(B^2-4ac))
Reid Spencerc5b206b2006-12-31 05:48:39 +00002090 uint64_t SqrtValV = cast<ConstantInt>(SqrtTerm)->getZExtValue();
Chris Lattner219c1412004-10-25 18:40:08 +00002091 uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002092 // The square root might not be precise for arbitrary 64-bit integer
2093 // values. Do some sanity checks to ensure it's correct.
2094 if (SqrtValV2*SqrtValV2 > SqrtValV ||
2095 (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2096 SCEV *CNC = new SCEVCouldNotCompute();
2097 return std::make_pair(CNC, CNC);
2098 }
2099
Reid Spencerc5b206b2006-12-31 05:48:39 +00002100 ConstantInt *SqrtVal = ConstantInt::get(Type::Int64Ty, SqrtValV2);
Reid Spencerd977d862006-12-12 23:36:14 +00002101 SqrtTerm = ConstantExpr::getTruncOrBitCast(SqrtVal, SqrtTerm->getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002102
Chris Lattner53e677a2004-04-02 20:23:17 +00002103 Constant *NegB = ConstantExpr::getNeg(B);
2104 Constant *TwoA = ConstantExpr::getMul(A, Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002105
Chris Lattner53e677a2004-04-02 20:23:17 +00002106 // The divisions must be performed as signed divisions.
Chris Lattner53e677a2004-04-02 20:23:17 +00002107 Constant *Solution1 =
Reid Spencer1628cec2006-10-26 06:15:43 +00002108 ConstantExpr::getSDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
Chris Lattner53e677a2004-04-02 20:23:17 +00002109 Constant *Solution2 =
Reid Spencer1628cec2006-10-26 06:15:43 +00002110 ConstantExpr::getSDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
Chris Lattner53e677a2004-04-02 20:23:17 +00002111 return std::make_pair(SCEVUnknown::get(Solution1),
2112 SCEVUnknown::get(Solution2));
2113}
2114
2115/// HowFarToZero - Return the number of times a backedge comparing the specified
2116/// value to zero will execute. If not computable, return UnknownValue
2117SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2118 // If the value is a constant
2119 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2120 // If the value is already zero, the branch will execute zero times.
2121 if (C->getValue()->isNullValue()) return C;
2122 return UnknownValue; // Otherwise it will loop infinitely.
2123 }
2124
2125 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2126 if (!AddRec || AddRec->getLoop() != L)
2127 return UnknownValue;
2128
2129 if (AddRec->isAffine()) {
2130 // If this is an affine expression the execution count of this branch is
2131 // equal to:
2132 //
2133 // (0 - Start/Step) iff Start % Step == 0
2134 //
2135 // Get the initial value for the loop.
2136 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Chris Lattner4a2b23e2004-10-11 04:07:27 +00002137 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00002138 SCEVHandle Step = AddRec->getOperand(1);
2139
2140 Step = getSCEVAtScope(Step, L->getParentLoop());
2141
2142 // Figure out if Start % Step == 0.
2143 // FIXME: We should add DivExpr and RemExpr operations to our AST.
2144 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2145 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0
Chris Lattnerbac5b462005-03-09 05:34:41 +00002146 return SCEV::getNegativeSCEV(Start); // 0 - Start/1 == -Start
Chris Lattner53e677a2004-04-02 20:23:17 +00002147 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0
2148 return Start; // 0 - Start/-1 == Start
2149
2150 // Check to see if Start is divisible by SC with no remainder.
2151 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2152 ConstantInt *StartCC = StartC->getValue();
2153 Constant *StartNegC = ConstantExpr::getNeg(StartCC);
Reid Spencer0a783f72006-11-02 01:53:59 +00002154 Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
Chris Lattner53e677a2004-04-02 20:23:17 +00002155 if (Rem->isNullValue()) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002156 Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
Chris Lattner53e677a2004-04-02 20:23:17 +00002157 return SCEVUnknown::get(Result);
2158 }
2159 }
2160 }
Chris Lattner42a75512007-01-15 02:27:26 +00002161 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002162 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2163 // the quadratic equation to solve it.
2164 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2165 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2166 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2167 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002168#if 0
Bill Wendlinge8156192006-12-07 01:30:32 +00002169 cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2170 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002171#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002172 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002173 if (ConstantInt *CB =
2174 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00002175 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00002176 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00002177 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002178
Chris Lattner53e677a2004-04-02 20:23:17 +00002179 // We can only use this value if the chrec ends up with an exact zero
2180 // value at this index. When solving for "X*X != 5", for example, we
2181 // should not accept a root of 2.
2182 SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2183 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2184 if (EvalVal->getValue()->isNullValue())
2185 return R1; // We found a quadratic root!
2186 }
2187 }
2188 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002189
Chris Lattner53e677a2004-04-02 20:23:17 +00002190 return UnknownValue;
2191}
2192
2193/// HowFarToNonZero - Return the number of times a backedge checking the
2194/// specified value for nonzero will execute. If not computable, return
2195/// UnknownValue
2196SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2197 // Loops that look like: while (X == 0) are very strange indeed. We don't
2198 // handle them yet except for the trivial case. This could be expanded in the
2199 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002200
Chris Lattner53e677a2004-04-02 20:23:17 +00002201 // If the value is a constant, check to see if it is known to be non-zero
2202 // already. If so, the backedge will execute zero times.
2203 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2204 Constant *Zero = Constant::getNullValue(C->getValue()->getType());
Reid Spencere4d87aa2006-12-23 06:05:41 +00002205 Constant *NonZero =
2206 ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002207 if (NonZero == ConstantInt::getTrue())
Chris Lattner53e677a2004-04-02 20:23:17 +00002208 return getSCEV(Zero);
2209 return UnknownValue; // Otherwise it will loop infinitely.
2210 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002211
Chris Lattner53e677a2004-04-02 20:23:17 +00002212 // We could implement others, but I really doubt anyone writes loops like
2213 // this, and if they did, they would already be constant folded.
2214 return UnknownValue;
2215}
2216
Chris Lattnerdb25de42005-08-15 23:33:51 +00002217/// HowManyLessThans - Return the number of times a backedge containing the
2218/// specified less-than comparison will execute. If not computable, return
2219/// UnknownValue.
2220SCEVHandle ScalarEvolutionsImpl::
2221HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2222 // Only handle: "ADDREC < LoopInvariant".
2223 if (!RHS->isLoopInvariant(L)) return UnknownValue;
2224
2225 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2226 if (!AddRec || AddRec->getLoop() != L)
2227 return UnknownValue;
2228
2229 if (AddRec->isAffine()) {
2230 // FORNOW: We only support unit strides.
2231 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2232 if (AddRec->getOperand(1) != One)
2233 return UnknownValue;
2234
2235 // The number of iterations for "[n,+,1] < m", is m-n. However, we don't
2236 // know that m is >= n on input to the loop. If it is, the condition return
2237 // true zero times. What we really should return, for full generality, is
2238 // SMAX(0, m-n). Since we cannot check this, we will instead check for a
2239 // canonical loop form: most do-loops will have a check that dominates the
2240 // loop, that only enters the loop if [n-1]<m. If we can find this check,
2241 // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2242
2243 // Search for the check.
2244 BasicBlock *Preheader = L->getLoopPreheader();
2245 BasicBlock *PreheaderDest = L->getHeader();
2246 if (Preheader == 0) return UnknownValue;
2247
2248 BranchInst *LoopEntryPredicate =
2249 dyn_cast<BranchInst>(Preheader->getTerminator());
2250 if (!LoopEntryPredicate) return UnknownValue;
2251
2252 // This might be a critical edge broken out. If the loop preheader ends in
2253 // an unconditional branch to the loop, check to see if the preheader has a
2254 // single predecessor, and if so, look for its terminator.
2255 while (LoopEntryPredicate->isUnconditional()) {
2256 PreheaderDest = Preheader;
2257 Preheader = Preheader->getSinglePredecessor();
2258 if (!Preheader) return UnknownValue; // Multiple preds.
2259
2260 LoopEntryPredicate =
2261 dyn_cast<BranchInst>(Preheader->getTerminator());
2262 if (!LoopEntryPredicate) return UnknownValue;
2263 }
2264
2265 // Now that we found a conditional branch that dominates the loop, check to
2266 // see if it is the comparison we are looking for.
Reid Spencere4d87aa2006-12-23 06:05:41 +00002267 if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
2268 Value *PreCondLHS = ICI->getOperand(0);
2269 Value *PreCondRHS = ICI->getOperand(1);
2270 ICmpInst::Predicate Cond;
2271 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2272 Cond = ICI->getPredicate();
2273 else
2274 Cond = ICI->getInversePredicate();
Chris Lattnerdb25de42005-08-15 23:33:51 +00002275
Reid Spencere4d87aa2006-12-23 06:05:41 +00002276 switch (Cond) {
2277 case ICmpInst::ICMP_UGT:
2278 std::swap(PreCondLHS, PreCondRHS);
2279 Cond = ICmpInst::ICMP_ULT;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002280 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00002281 case ICmpInst::ICMP_SGT:
2282 std::swap(PreCondLHS, PreCondRHS);
2283 Cond = ICmpInst::ICMP_SLT;
2284 break;
2285 default: break;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002286 }
Chris Lattnerdb25de42005-08-15 23:33:51 +00002287
Reid Spencere4d87aa2006-12-23 06:05:41 +00002288 if (Cond == ICmpInst::ICMP_SLT) {
Chris Lattner42a75512007-01-15 02:27:26 +00002289 if (PreCondLHS->getType()->isInteger()) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00002290 if (RHS != getSCEV(PreCondRHS))
2291 return UnknownValue; // Not a comparison against 'm'.
2292
2293 if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2294 != getSCEV(PreCondLHS))
2295 return UnknownValue; // Not a comparison against 'n-1'.
2296 }
2297 else return UnknownValue;
2298 } else if (Cond == ICmpInst::ICMP_ULT)
2299 return UnknownValue;
2300
2301 // cerr << "Computed Loop Trip Count as: "
2302 // << // *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2303 return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2304 }
2305 else
2306 return UnknownValue;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002307 }
2308
2309 return UnknownValue;
2310}
2311
Chris Lattner53e677a2004-04-02 20:23:17 +00002312/// getNumIterationsInRange - Return the number of iterations of this loop that
2313/// produce values in the specified constant range. Another way of looking at
2314/// this is that it returns the first iteration number where the value is not in
2315/// the condition, thus computing the exit count. If the iteration count can't
2316/// be computed, an instance of SCEVCouldNotCompute is returned.
Reid Spencere4d87aa2006-12-23 06:05:41 +00002317SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2318 bool isSigned) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00002319 if (Range.isFullSet()) // Infinite loop.
2320 return new SCEVCouldNotCompute();
2321
2322 // If the start is a non-zero constant, shift the range to simplify things.
2323 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2324 if (!SC->getValue()->isNullValue()) {
2325 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Chris Lattnerb06432c2004-04-23 21:29:03 +00002326 Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
Chris Lattner53e677a2004-04-02 20:23:17 +00002327 SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2328 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2329 return ShiftedAddRec->getNumIterationsInRange(
Reid Spencer581b0d42007-02-28 19:57:34 +00002330 Range.subtract(SC->getValue()->getValue()),isSigned);
Chris Lattner53e677a2004-04-02 20:23:17 +00002331 // This is strange and shouldn't happen.
2332 return new SCEVCouldNotCompute();
2333 }
2334
2335 // The only time we can solve this is when we have all constant indices.
2336 // Otherwise, we cannot determine the overflow conditions.
2337 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2338 if (!isa<SCEVConstant>(getOperand(i)))
2339 return new SCEVCouldNotCompute();
2340
2341
2342 // Okay at this point we know that all elements of the chrec are constants and
2343 // that the start element is zero.
2344
2345 // First check to see if the range contains zero. If not, the first
2346 // iteration exits.
Reid Spencer581b0d42007-02-28 19:57:34 +00002347 if (!Range.contains(APInt(getBitWidth(),0), isSigned))
2348 return SCEVConstant::get(ConstantInt::get(getType(),0));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002349
Chris Lattner53e677a2004-04-02 20:23:17 +00002350 if (isAffine()) {
2351 // If this is an affine expression then we have this situation:
2352 // Solve {0,+,A} in Range === Ax in Range
2353
2354 // Since we know that zero is in the range, we know that the upper value of
2355 // the range must be the first possible exit value. Also note that we
2356 // already checked for a full range.
Reid Spencer581b0d42007-02-28 19:57:34 +00002357 const APInt &Upper = Range.getUpper();
2358 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2359 APInt One(getBitWidth(),1);
Chris Lattner53e677a2004-04-02 20:23:17 +00002360
2361 // The exit value should be (Upper+A-1)/A.
Reid Spencer581b0d42007-02-28 19:57:34 +00002362 APInt ExitVal(Upper);
2363 if (A != One)
2364 ExitVal = (Upper + A - One).sdiv(A);
2365 ConstantInt *ExitValue = ConstantInt::get(getType(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00002366
2367 // Evaluate at the exit value. If we really did fall out of the valid
2368 // range, then we computed our trip count, otherwise wrap around or other
2369 // things must have happened.
2370 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
Reid Spencer581b0d42007-02-28 19:57:34 +00002371 if (Range.contains(Val->getValue(), isSigned))
Chris Lattner53e677a2004-04-02 20:23:17 +00002372 return new SCEVCouldNotCompute(); // Something strange happened
2373
2374 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00002375 assert(Range.contains(
2376 EvaluateConstantChrecAtConstant(this,
2377 ConstantInt::get(getType(), ExitVal - One))->getValue(), isSigned) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002378 "Linear scev computation is off in a bad way!");
2379 return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2380 } else if (isQuadratic()) {
2381 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2382 // quadratic equation to solve it. To do this, we must frame our problem in
2383 // terms of figuring out when zero is crossed, instead of when
2384 // Range.getUpper() is crossed.
2385 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Reid Spencer581b0d42007-02-28 19:57:34 +00002386 NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(
2387 ConstantInt::get(getType(), Range.getUpper())));
Chris Lattner53e677a2004-04-02 20:23:17 +00002388 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2389
2390 // Next, solve the constructed addrec
2391 std::pair<SCEVHandle,SCEVHandle> Roots =
2392 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2393 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2394 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2395 if (R1) {
2396 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002397 if (ConstantInt *CB =
2398 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00002399 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00002400 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00002401 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002402
Chris Lattner53e677a2004-04-02 20:23:17 +00002403 // Make sure the root is not off by one. The returned iteration should
2404 // not be in the range, but the previous one should be. When solving
2405 // for "X*X < 5", for example, we should not return a root of 2.
2406 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2407 R1->getValue());
Reid Spencer581b0d42007-02-28 19:57:34 +00002408 if (Range.contains(R1Val->getValue(), isSigned)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002409 // The next iteration must be out of the range...
2410 Constant *NextVal =
2411 ConstantExpr::getAdd(R1->getValue(),
2412 ConstantInt::get(R1->getType(), 1));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002413
Chris Lattner53e677a2004-04-02 20:23:17 +00002414 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
Reid Spencer581b0d42007-02-28 19:57:34 +00002415 if (!Range.contains(R1Val->getValue(), isSigned))
Chris Lattner53e677a2004-04-02 20:23:17 +00002416 return SCEVUnknown::get(NextVal);
2417 return new SCEVCouldNotCompute(); // Something strange happened
2418 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002419
Chris Lattner53e677a2004-04-02 20:23:17 +00002420 // If R1 was not in the range, then it is a good return value. Make
2421 // sure that R1-1 WAS in the range though, just in case.
2422 Constant *NextVal =
2423 ConstantExpr::getSub(R1->getValue(),
2424 ConstantInt::get(R1->getType(), 1));
2425 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
Reid Spencer581b0d42007-02-28 19:57:34 +00002426 if (Range.contains(R1Val->getValue(), isSigned))
Chris Lattner53e677a2004-04-02 20:23:17 +00002427 return R1;
2428 return new SCEVCouldNotCompute(); // Something strange happened
2429 }
2430 }
2431 }
2432
2433 // Fallback, if this is a general polynomial, figure out the progression
2434 // through brute force: evaluate until we find an iteration that fails the
2435 // test. This is likely to be slow, but getting an accurate trip count is
2436 // incredibly important, we will be able to simplify the exit test a lot, and
2437 // we are almost guaranteed to get a trip count in this case.
2438 ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2439 ConstantInt *One = ConstantInt::get(getType(), 1);
2440 ConstantInt *EndVal = TestVal; // Stop when we wrap around.
2441 do {
2442 ++NumBruteForceEvaluations;
2443 SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2444 if (!isa<SCEVConstant>(Val)) // This shouldn't happen.
2445 return new SCEVCouldNotCompute();
2446
2447 // Check to see if we found the value!
Reid Spencer581b0d42007-02-28 19:57:34 +00002448 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue(),
2449 isSigned))
Chris Lattner53e677a2004-04-02 20:23:17 +00002450 return SCEVConstant::get(TestVal);
2451
2452 // Increment to test the next index.
2453 TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2454 } while (TestVal != EndVal);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002455
Chris Lattner53e677a2004-04-02 20:23:17 +00002456 return new SCEVCouldNotCompute();
2457}
2458
2459
2460
2461//===----------------------------------------------------------------------===//
2462// ScalarEvolution Class Implementation
2463//===----------------------------------------------------------------------===//
2464
2465bool ScalarEvolution::runOnFunction(Function &F) {
2466 Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2467 return false;
2468}
2469
2470void ScalarEvolution::releaseMemory() {
2471 delete (ScalarEvolutionsImpl*)Impl;
2472 Impl = 0;
2473}
2474
2475void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2476 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00002477 AU.addRequiredTransitive<LoopInfo>();
2478}
2479
2480SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2481 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2482}
2483
Chris Lattnera0740fb2005-08-09 23:36:33 +00002484/// hasSCEV - Return true if the SCEV for this value has already been
2485/// computed.
2486bool ScalarEvolution::hasSCEV(Value *V) const {
Chris Lattner05bd3742005-08-10 00:59:40 +00002487 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
Chris Lattnera0740fb2005-08-09 23:36:33 +00002488}
2489
2490
2491/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2492/// the specified value.
2493void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2494 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2495}
2496
2497
Chris Lattner53e677a2004-04-02 20:23:17 +00002498SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2499 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2500}
2501
2502bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2503 return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2504}
2505
2506SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2507 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2508}
2509
2510void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2511 return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2512}
2513
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002514static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00002515 const Loop *L) {
2516 // Print all inner loops first
2517 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2518 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002519
Bill Wendlinge8156192006-12-07 01:30:32 +00002520 cerr << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00002521
2522 std::vector<BasicBlock*> ExitBlocks;
2523 L->getExitBlocks(ExitBlocks);
2524 if (ExitBlocks.size() != 1)
Bill Wendlinge8156192006-12-07 01:30:32 +00002525 cerr << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002526
2527 if (SE->hasLoopInvariantIterationCount(L)) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002528 cerr << *SE->getIterationCount(L) << " iterations! ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002529 } else {
Bill Wendlinge8156192006-12-07 01:30:32 +00002530 cerr << "Unpredictable iteration count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002531 }
2532
Bill Wendlinge8156192006-12-07 01:30:32 +00002533 cerr << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00002534}
2535
Reid Spencerce9653c2004-12-07 04:03:45 +00002536void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00002537 Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2538 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2539
2540 OS << "Classifying expressions for: " << F.getName() << "\n";
2541 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Chris Lattner42a75512007-01-15 02:27:26 +00002542 if (I->getType()->isInteger()) {
Chris Lattner6ffe5512004-04-27 15:13:33 +00002543 OS << *I;
Chris Lattner53e677a2004-04-02 20:23:17 +00002544 OS << " --> ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002545 SCEVHandle SV = getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00002546 SV->print(OS);
2547 OS << "\t\t";
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002548
Chris Lattner42a75512007-01-15 02:27:26 +00002549 if ((*I).getType()->isInteger()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002550 ConstantRange Bounds = SV->getValueRange();
2551 if (!Bounds.isFullSet())
2552 OS << "Bounds: " << Bounds << " ";
2553 }
2554
Chris Lattner6ffe5512004-04-27 15:13:33 +00002555 if (const Loop *L = LI.getLoopFor((*I).getParent())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002556 OS << "Exits: ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002557 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00002558 if (isa<SCEVCouldNotCompute>(ExitValue)) {
2559 OS << "<<Unknown>>";
2560 } else {
2561 OS << *ExitValue;
2562 }
2563 }
2564
2565
2566 OS << "\n";
2567 }
2568
2569 OS << "Determining loop execution counts for: " << F.getName() << "\n";
2570 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2571 PrintLoopInfo(OS, this, *I);
2572}
2573