blob: bb3f64e626f05943ff80a858138e023cd8cfaa25 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- Execution.cpp - Implement code to simulate the program ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the actual instruction interpreter.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "interpreter"
15#include "Interpreter.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Instructions.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
20#include "llvm/Support/GetElementPtrTypeIterator.h"
21#include "llvm/ADT/APInt.h"
22#include "llvm/ADT/Statistic.h"
Chris Lattner001ea9d2008-07-08 17:25:49 +000023#include "llvm/Support/CommandLine.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000024#include "llvm/Support/Debug.h"
25#include "llvm/Support/MathExtras.h"
Gabor Greif7ee10f92007-10-11 19:40:35 +000026#include <algorithm>
Anton Korobeynikov357a27d2008-02-20 11:08:44 +000027#include <cmath>
28#include <cstring>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029using namespace llvm;
30
31STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032
Chris Lattner001ea9d2008-07-08 17:25:49 +000033static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
34 cl::desc("make the interpreter print every volatile load and store"));
35
Dan Gohmanf17a25c2007-07-18 16:29:46 +000036//===----------------------------------------------------------------------===//
37// Various Helper Functions
38//===----------------------------------------------------------------------===//
39
40static inline uint64_t doSignExtension(uint64_t Val, const IntegerType* ITy) {
41 // Determine if the value is signed or not
42 bool isSigned = (Val & (1 << (ITy->getBitWidth()-1))) != 0;
43 // If its signed, extend the sign bits
44 if (isSigned)
45 Val |= ~ITy->getBitMask();
46 return Val;
47}
48
49static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
50 SF.Values[V] = Val;
51}
52
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053//===----------------------------------------------------------------------===//
54// Binary Instruction Implementations
55//===----------------------------------------------------------------------===//
56
57#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
58 case Type::TY##TyID: \
59 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
60 break
61
Dan Gohman7ce405e2009-06-04 22:49:04 +000062static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
63 GenericValue Src2, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000064 switch (Ty->getTypeID()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000065 IMPLEMENT_BINARY_OPERATOR(+, Float);
66 IMPLEMENT_BINARY_OPERATOR(+, Double);
67 default:
Dan Gohman7ce405e2009-06-04 22:49:04 +000068 cerr << "Unhandled type for FAdd instruction: " << *Ty << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +000069 abort();
70 }
71}
72
Dan Gohman7ce405e2009-06-04 22:49:04 +000073static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
74 GenericValue Src2, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000075 switch (Ty->getTypeID()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076 IMPLEMENT_BINARY_OPERATOR(-, Float);
77 IMPLEMENT_BINARY_OPERATOR(-, Double);
78 default:
Dan Gohman7ce405e2009-06-04 22:49:04 +000079 cerr << "Unhandled type for FSub instruction: " << *Ty << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +000080 abort();
81 }
82}
83
Dan Gohman7ce405e2009-06-04 22:49:04 +000084static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
85 GenericValue Src2, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086 switch (Ty->getTypeID()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087 IMPLEMENT_BINARY_OPERATOR(*, Float);
88 IMPLEMENT_BINARY_OPERATOR(*, Double);
89 default:
Dan Gohman7ce405e2009-06-04 22:49:04 +000090 cerr << "Unhandled type for FMul instruction: " << *Ty << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091 abort();
92 }
93}
94
95static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
96 GenericValue Src2, const Type *Ty) {
97 switch (Ty->getTypeID()) {
98 IMPLEMENT_BINARY_OPERATOR(/, Float);
99 IMPLEMENT_BINARY_OPERATOR(/, Double);
100 default:
101 cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n";
102 abort();
103 }
104}
105
106static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
107 GenericValue Src2, const Type *Ty) {
108 switch (Ty->getTypeID()) {
109 case Type::FloatTyID:
110 Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
111 break;
112 case Type::DoubleTyID:
113 Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
114 break;
115 default:
116 cerr << "Unhandled type for Rem instruction: " << *Ty << "\n";
117 abort();
118 }
119}
120
121#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
122 case Type::IntegerTyID: \
123 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
124 break;
125
126// Handle pointers specially because they must be compared with only as much
127// width as the host has. We _do not_ want to be comparing 64 bit values when
128// running on a 32-bit target, otherwise the upper 32 bits might mess up
129// comparisons if they contain garbage.
130#define IMPLEMENT_POINTER_ICMP(OP) \
131 case Type::PointerTyID: \
132 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
133 (void*)(intptr_t)Src2.PointerVal); \
134 break;
135
136static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
137 const Type *Ty) {
138 GenericValue Dest;
139 switch (Ty->getTypeID()) {
140 IMPLEMENT_INTEGER_ICMP(eq,Ty);
141 IMPLEMENT_POINTER_ICMP(==);
142 default:
143 cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
144 abort();
145 }
146 return Dest;
147}
148
149static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
150 const Type *Ty) {
151 GenericValue Dest;
152 switch (Ty->getTypeID()) {
153 IMPLEMENT_INTEGER_ICMP(ne,Ty);
154 IMPLEMENT_POINTER_ICMP(!=);
155 default:
156 cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
157 abort();
158 }
159 return Dest;
160}
161
162static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
163 const Type *Ty) {
164 GenericValue Dest;
165 switch (Ty->getTypeID()) {
166 IMPLEMENT_INTEGER_ICMP(ult,Ty);
167 IMPLEMENT_POINTER_ICMP(<);
168 default:
169 cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
170 abort();
171 }
172 return Dest;
173}
174
175static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
176 const Type *Ty) {
177 GenericValue Dest;
178 switch (Ty->getTypeID()) {
179 IMPLEMENT_INTEGER_ICMP(slt,Ty);
180 IMPLEMENT_POINTER_ICMP(<);
181 default:
182 cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
183 abort();
184 }
185 return Dest;
186}
187
188static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
189 const Type *Ty) {
190 GenericValue Dest;
191 switch (Ty->getTypeID()) {
192 IMPLEMENT_INTEGER_ICMP(ugt,Ty);
193 IMPLEMENT_POINTER_ICMP(>);
194 default:
195 cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
196 abort();
197 }
198 return Dest;
199}
200
201static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
202 const Type *Ty) {
203 GenericValue Dest;
204 switch (Ty->getTypeID()) {
205 IMPLEMENT_INTEGER_ICMP(sgt,Ty);
206 IMPLEMENT_POINTER_ICMP(>);
207 default:
208 cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
209 abort();
210 }
211 return Dest;
212}
213
214static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
215 const Type *Ty) {
216 GenericValue Dest;
217 switch (Ty->getTypeID()) {
218 IMPLEMENT_INTEGER_ICMP(ule,Ty);
219 IMPLEMENT_POINTER_ICMP(<=);
220 default:
221 cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
222 abort();
223 }
224 return Dest;
225}
226
227static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
228 const Type *Ty) {
229 GenericValue Dest;
230 switch (Ty->getTypeID()) {
231 IMPLEMENT_INTEGER_ICMP(sle,Ty);
232 IMPLEMENT_POINTER_ICMP(<=);
233 default:
234 cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
235 abort();
236 }
237 return Dest;
238}
239
240static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
241 const Type *Ty) {
242 GenericValue Dest;
243 switch (Ty->getTypeID()) {
244 IMPLEMENT_INTEGER_ICMP(uge,Ty);
245 IMPLEMENT_POINTER_ICMP(>=);
246 default:
247 cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
248 abort();
249 }
250 return Dest;
251}
252
253static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
254 const Type *Ty) {
255 GenericValue Dest;
256 switch (Ty->getTypeID()) {
257 IMPLEMENT_INTEGER_ICMP(sge,Ty);
258 IMPLEMENT_POINTER_ICMP(>=);
259 default:
260 cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
261 abort();
262 }
263 return Dest;
264}
265
266void Interpreter::visitICmpInst(ICmpInst &I) {
267 ExecutionContext &SF = ECStack.back();
268 const Type *Ty = I.getOperand(0)->getType();
269 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
270 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
271 GenericValue R; // Result
272
273 switch (I.getPredicate()) {
274 case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
275 case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
276 case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
277 case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
278 case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
279 case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
280 case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
281 case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
282 case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
283 case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
284 default:
285 cerr << "Don't know how to handle this ICmp predicate!\n-->" << I;
286 abort();
287 }
288
289 SetValue(&I, R, SF);
290}
291
292#define IMPLEMENT_FCMP(OP, TY) \
293 case Type::TY##TyID: \
294 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
295 break
296
297static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
298 const Type *Ty) {
299 GenericValue Dest;
300 switch (Ty->getTypeID()) {
301 IMPLEMENT_FCMP(==, Float);
302 IMPLEMENT_FCMP(==, Double);
303 default:
304 cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
305 abort();
306 }
307 return Dest;
308}
309
310static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
311 const Type *Ty) {
312 GenericValue Dest;
313 switch (Ty->getTypeID()) {
314 IMPLEMENT_FCMP(!=, Float);
315 IMPLEMENT_FCMP(!=, Double);
316
317 default:
318 cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
319 abort();
320 }
321 return Dest;
322}
323
324static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
325 const Type *Ty) {
326 GenericValue Dest;
327 switch (Ty->getTypeID()) {
328 IMPLEMENT_FCMP(<=, Float);
329 IMPLEMENT_FCMP(<=, Double);
330 default:
331 cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
332 abort();
333 }
334 return Dest;
335}
336
337static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
338 const Type *Ty) {
339 GenericValue Dest;
340 switch (Ty->getTypeID()) {
341 IMPLEMENT_FCMP(>=, Float);
342 IMPLEMENT_FCMP(>=, Double);
343 default:
344 cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
345 abort();
346 }
347 return Dest;
348}
349
350static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
351 const Type *Ty) {
352 GenericValue Dest;
353 switch (Ty->getTypeID()) {
354 IMPLEMENT_FCMP(<, Float);
355 IMPLEMENT_FCMP(<, Double);
356 default:
357 cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
358 abort();
359 }
360 return Dest;
361}
362
363static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
364 const Type *Ty) {
365 GenericValue Dest;
366 switch (Ty->getTypeID()) {
367 IMPLEMENT_FCMP(>, Float);
368 IMPLEMENT_FCMP(>, Double);
369 default:
370 cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
371 abort();
372 }
373 return Dest;
374}
375
Anton Korobeynikov53422f62008-02-20 11:10:28 +0000376#define IMPLEMENT_UNORDERED(TY, X,Y) \
377 if (TY == Type::FloatTy) { \
378 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
379 Dest.IntVal = APInt(1,true); \
380 return Dest; \
381 } \
382 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
383 Dest.IntVal = APInt(1,true); \
384 return Dest; \
385 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000386
387
388static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
389 const Type *Ty) {
390 GenericValue Dest;
391 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
392 return executeFCMP_OEQ(Src1, Src2, Ty);
393}
394
395static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
396 const Type *Ty) {
397 GenericValue Dest;
398 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
399 return executeFCMP_ONE(Src1, Src2, Ty);
400}
401
402static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
403 const Type *Ty) {
404 GenericValue Dest;
405 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
406 return executeFCMP_OLE(Src1, Src2, Ty);
407}
408
409static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
410 const Type *Ty) {
411 GenericValue Dest;
412 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
413 return executeFCMP_OGE(Src1, Src2, Ty);
414}
415
416static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
417 const Type *Ty) {
418 GenericValue Dest;
419 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
420 return executeFCMP_OLT(Src1, Src2, Ty);
421}
422
423static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
424 const Type *Ty) {
425 GenericValue Dest;
426 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
427 return executeFCMP_OGT(Src1, Src2, Ty);
428}
429
430static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
431 const Type *Ty) {
432 GenericValue Dest;
433 if (Ty == Type::FloatTy)
434 Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
435 Src2.FloatVal == Src2.FloatVal));
436 else
437 Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
438 Src2.DoubleVal == Src2.DoubleVal));
439 return Dest;
440}
441
442static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
443 const Type *Ty) {
444 GenericValue Dest;
445 if (Ty == Type::FloatTy)
446 Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
447 Src2.FloatVal != Src2.FloatVal));
448 else
449 Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
450 Src2.DoubleVal != Src2.DoubleVal));
451 return Dest;
452}
453
454void Interpreter::visitFCmpInst(FCmpInst &I) {
455 ExecutionContext &SF = ECStack.back();
456 const Type *Ty = I.getOperand(0)->getType();
457 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
458 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
459 GenericValue R; // Result
460
461 switch (I.getPredicate()) {
462 case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
463 case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
464 case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
465 case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
466 case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
467 case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
468 case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
469 case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
470 case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
471 case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
472 case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
473 case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
474 case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
475 case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
476 case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
477 case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
478 default:
479 cerr << "Don't know how to handle this FCmp predicate!\n-->" << I;
480 abort();
481 }
482
483 SetValue(&I, R, SF);
484}
485
486static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
487 GenericValue Src2, const Type *Ty) {
488 GenericValue Result;
489 switch (predicate) {
490 case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
491 case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
492 case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
493 case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
494 case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
495 case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
496 case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
497 case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
498 case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
499 case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
500 case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
501 case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
502 case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
503 case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
504 case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
505 case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
506 case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
507 case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
508 case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
509 case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
510 case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
511 case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
512 case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
513 case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
514 case FCmpInst::FCMP_FALSE: {
515 GenericValue Result;
516 Result.IntVal = APInt(1, false);
517 return Result;
518 }
519 case FCmpInst::FCMP_TRUE: {
520 GenericValue Result;
521 Result.IntVal = APInt(1, true);
522 return Result;
523 }
524 default:
525 cerr << "Unhandled Cmp predicate\n";
526 abort();
527 }
528}
529
530void Interpreter::visitBinaryOperator(BinaryOperator &I) {
531 ExecutionContext &SF = ECStack.back();
532 const Type *Ty = I.getOperand(0)->getType();
533 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
534 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
535 GenericValue R; // Result
536
537 switch (I.getOpcode()) {
Dan Gohman7ce405e2009-06-04 22:49:04 +0000538 case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
539 case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
540 case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
541 case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
542 case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
543 case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
544 case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
545 case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000546 case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
547 case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
548 case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
549 case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
550 case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
551 case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
552 case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
553 default:
554 cerr << "Don't know how to handle this binary operator!\n-->" << I;
555 abort();
556 }
557
558 SetValue(&I, R, SF);
559}
560
561static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
562 GenericValue Src3) {
563 return Src1.IntVal == 0 ? Src3 : Src2;
564}
565
566void Interpreter::visitSelectInst(SelectInst &I) {
567 ExecutionContext &SF = ECStack.back();
568 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
569 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
570 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
571 GenericValue R = executeSelectInst(Src1, Src2, Src3);
572 SetValue(&I, R, SF);
573}
574
575
576//===----------------------------------------------------------------------===//
577// Terminator Instruction Implementations
578//===----------------------------------------------------------------------===//
579
580void Interpreter::exitCalled(GenericValue GV) {
581 // runAtExitHandlers() assumes there are no stack frames, but
582 // if exit() was called, then it had a stack frame. Blow away
583 // the stack before interpreting atexit handlers.
584 ECStack.clear ();
585 runAtExitHandlers ();
586 exit (GV.IntVal.zextOrTrunc(32).getZExtValue());
587}
588
589/// Pop the last stack frame off of ECStack and then copy the result
590/// back into the result variable if we are not returning void. The
591/// result variable may be the ExitValue, or the Value of the calling
592/// CallInst if there was a previous stack frame. This method may
593/// invalidate any ECStack iterators you have. This method also takes
594/// care of switching to the normal destination BB, if we are returning
595/// from an invoke.
596///
597void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy,
598 GenericValue Result) {
599 // Pop the current stack frame.
600 ECStack.pop_back();
601
602 if (ECStack.empty()) { // Finished main. Put result into exit code...
603 if (RetTy && RetTy->isInteger()) { // Nonvoid return type?
604 ExitValue = Result; // Capture the exit value of the program
605 } else {
606 memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
607 }
608 } else {
609 // If we have a previous stack frame, and we have a previous call,
610 // fill in the return value...
611 ExecutionContext &CallingSF = ECStack.back();
612 if (Instruction *I = CallingSF.Caller.getInstruction()) {
613 if (CallingSF.Caller.getType() != Type::VoidTy) // Save result...
614 SetValue(I, Result, CallingSF);
615 if (InvokeInst *II = dyn_cast<InvokeInst> (I))
616 SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
617 CallingSF.Caller = CallSite(); // We returned from the call...
618 }
619 }
620}
621
622void Interpreter::visitReturnInst(ReturnInst &I) {
623 ExecutionContext &SF = ECStack.back();
624 const Type *RetTy = Type::VoidTy;
625 GenericValue Result;
626
627 // Save away the return value... (if we are not 'ret void')
628 if (I.getNumOperands()) {
629 RetTy = I.getReturnValue()->getType();
630 Result = getOperandValue(I.getReturnValue(), SF);
631 }
632
633 popStackAndReturnValueToCaller(RetTy, Result);
634}
635
636void Interpreter::visitUnwindInst(UnwindInst &I) {
637 // Unwind stack
638 Instruction *Inst;
639 do {
640 ECStack.pop_back ();
641 if (ECStack.empty ())
642 abort ();
643 Inst = ECStack.back ().Caller.getInstruction ();
644 } while (!(Inst && isa<InvokeInst> (Inst)));
645
646 // Return from invoke
647 ExecutionContext &InvokingSF = ECStack.back ();
648 InvokingSF.Caller = CallSite ();
649
650 // Go to exceptional destination BB of invoke instruction
651 SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF);
652}
653
654void Interpreter::visitUnreachableInst(UnreachableInst &I) {
655 cerr << "ERROR: Program executed an 'unreachable' instruction!\n";
656 abort();
657}
658
659void Interpreter::visitBranchInst(BranchInst &I) {
660 ExecutionContext &SF = ECStack.back();
661 BasicBlock *Dest;
662
663 Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
664 if (!I.isUnconditional()) {
665 Value *Cond = I.getCondition();
666 if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
667 Dest = I.getSuccessor(1);
668 }
669 SwitchToNewBasicBlock(Dest, SF);
670}
671
672void Interpreter::visitSwitchInst(SwitchInst &I) {
673 ExecutionContext &SF = ECStack.back();
674 GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
675 const Type *ElTy = I.getOperand(0)->getType();
676
677 // Check to see if any of the cases match...
678 BasicBlock *Dest = 0;
679 for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
680 if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy)
681 .IntVal != 0) {
682 Dest = cast<BasicBlock>(I.getOperand(i+1));
683 break;
684 }
685
686 if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
687 SwitchToNewBasicBlock(Dest, SF);
688}
689
690// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
691// This function handles the actual updating of block and instruction iterators
692// as well as execution of all of the PHI nodes in the destination block.
693//
694// This method does this because all of the PHI nodes must be executed
695// atomically, reading their inputs before any of the results are updated. Not
696// doing this can cause problems if the PHI nodes depend on other PHI nodes for
697// their inputs. If the input PHI node is updated before it is read, incorrect
698// results can happen. Thus we use a two phase approach.
699//
700void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
701 BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
702 SF.CurBB = Dest; // Update CurBB to branch destination
703 SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
704
705 if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
706
707 // Loop over all of the PHI nodes in the current block, reading their inputs.
708 std::vector<GenericValue> ResultValues;
709
710 for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
711 // Search for the value corresponding to this previous bb...
712 int i = PN->getBasicBlockIndex(PrevBB);
713 assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
714 Value *IncomingValue = PN->getIncomingValue(i);
715
716 // Save the incoming value for this PHI node...
717 ResultValues.push_back(getOperandValue(IncomingValue, SF));
718 }
719
720 // Now loop over all of the PHI nodes setting their values...
721 SF.CurInst = SF.CurBB->begin();
722 for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
723 PHINode *PN = cast<PHINode>(SF.CurInst);
724 SetValue(PN, ResultValues[i], SF);
725 }
726}
727
728//===----------------------------------------------------------------------===//
729// Memory Instruction Implementations
730//===----------------------------------------------------------------------===//
731
732void Interpreter::visitAllocationInst(AllocationInst &I) {
733 ExecutionContext &SF = ECStack.back();
734
735 const Type *Ty = I.getType()->getElementType(); // Type to be allocated
736
737 // Get the number of elements being allocated by the array...
738 unsigned NumElements =
739 getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
740
Duncan Sandsec4f97d2009-05-09 07:06:46 +0000741 unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742
Gabor Greif7ee10f92007-10-11 19:40:35 +0000743 // Avoid malloc-ing zero bytes, use max()...
744 unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745
746 // Allocate enough memory to hold the type...
747 void *Memory = malloc(MemToAlloc);
748
749 DOUT << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
750 << NumElements << " (Total: " << MemToAlloc << ") at "
751 << uintptr_t(Memory) << '\n';
752
753 GenericValue Result = PTOGV(Memory);
754 assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
755 SetValue(&I, Result, SF);
756
757 if (I.getOpcode() == Instruction::Alloca)
758 ECStack.back().Allocas.add(Memory);
759}
760
761void Interpreter::visitFreeInst(FreeInst &I) {
762 ExecutionContext &SF = ECStack.back();
763 assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
764 GenericValue Value = getOperandValue(I.getOperand(0), SF);
765 // TODO: Check to make sure memory is allocated
766 free(GVTOP(Value)); // Free memory
767}
768
769// getElementOffset - The workhorse for getelementptr.
770//
771GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
772 gep_type_iterator E,
773 ExecutionContext &SF) {
774 assert(isa<PointerType>(Ptr->getType()) &&
775 "Cannot getElementOffset of a nonpointer type!");
776
777 uint64_t Total = 0;
778
779 for (; I != E; ++I) {
780 if (const StructType *STy = dyn_cast<StructType>(*I)) {
781 const StructLayout *SLO = TD.getStructLayout(STy);
782
783 const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
784 unsigned Index = unsigned(CPU->getZExtValue());
785
786 Total += SLO->getElementOffset(Index);
787 } else {
788 const SequentialType *ST = cast<SequentialType>(*I);
789 // Get the index number for the array... which must be long type...
790 GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
791
792 int64_t Idx;
793 unsigned BitWidth =
794 cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
795 if (BitWidth == 32)
796 Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
Chris Lattner3203f192008-04-06 21:50:58 +0000797 else {
798 assert(BitWidth == 64 && "Invalid index type for getelementptr");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000799 Idx = (int64_t)IdxGV.IntVal.getZExtValue();
Chris Lattner3203f192008-04-06 21:50:58 +0000800 }
Duncan Sandsec4f97d2009-05-09 07:06:46 +0000801 Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000802 }
803 }
804
805 GenericValue Result;
806 Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
807 DOUT << "GEP Index " << Total << " bytes.\n";
808 return Result;
809}
810
811void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
812 ExecutionContext &SF = ECStack.back();
Owen Anderson0e17f632009-06-26 16:46:15 +0000813 SetValue(&I, executeGEPOperation(I.getPointerOperand(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000814 gep_type_begin(I), gep_type_end(I), SF), SF);
815}
816
817void Interpreter::visitLoadInst(LoadInst &I) {
818 ExecutionContext &SF = ECStack.back();
819 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
820 GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
821 GenericValue Result;
822 LoadValueFromMemory(Result, Ptr, I.getType());
823 SetValue(&I, Result, SF);
Chris Lattner001ea9d2008-07-08 17:25:49 +0000824 if (I.isVolatile() && PrintVolatile)
825 cerr << "Volatile load " << I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000826}
827
828void Interpreter::visitStoreInst(StoreInst &I) {
829 ExecutionContext &SF = ECStack.back();
830 GenericValue Val = getOperandValue(I.getOperand(0), SF);
831 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
832 StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
833 I.getOperand(0)->getType());
Chris Lattner001ea9d2008-07-08 17:25:49 +0000834 if (I.isVolatile() && PrintVolatile)
835 cerr << "Volatile store: " << I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000836}
837
838//===----------------------------------------------------------------------===//
839// Miscellaneous Instruction Implementations
840//===----------------------------------------------------------------------===//
841
842void Interpreter::visitCallSite(CallSite CS) {
843 ExecutionContext &SF = ECStack.back();
844
845 // Check to see if this is an intrinsic function call...
846 Function *F = CS.getCalledFunction();
847 if (F && F->isDeclaration ())
848 switch (F->getIntrinsicID()) {
849 case Intrinsic::not_intrinsic:
850 break;
851 case Intrinsic::vastart: { // va_start
852 GenericValue ArgIndex;
853 ArgIndex.UIntPairVal.first = ECStack.size() - 1;
854 ArgIndex.UIntPairVal.second = 0;
855 SetValue(CS.getInstruction(), ArgIndex, SF);
856 return;
857 }
858 case Intrinsic::vaend: // va_end is a noop for the interpreter
859 return;
860 case Intrinsic::vacopy: // va_copy: dest = src
861 SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
862 return;
863 default:
864 // If it is an unknown intrinsic function, use the intrinsic lowering
865 // class to transform it into hopefully tasty LLVM code.
866 //
867 BasicBlock::iterator me(CS.getInstruction());
868 BasicBlock *Parent = CS.getInstruction()->getParent();
869 bool atBegin(Parent->begin() == me);
870 if (!atBegin)
871 --me;
872 IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
873
874 // Restore the CurInst pointer to the first instruction newly inserted, if
875 // any.
876 if (atBegin) {
877 SF.CurInst = Parent->begin();
878 } else {
879 SF.CurInst = me;
880 ++SF.CurInst;
881 }
882 return;
883 }
884
885
886 SF.Caller = CS;
887 std::vector<GenericValue> ArgVals;
888 const unsigned NumArgs = SF.Caller.arg_size();
889 ArgVals.reserve(NumArgs);
890 uint16_t pNum = 1;
891 for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
892 e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
893 Value *V = *i;
894 ArgVals.push_back(getOperandValue(V, SF));
Duncan Sands637ec552007-11-28 17:07:01 +0000895 // Promote all integral types whose size is < sizeof(i32) into i32.
896 // We do this by zero or sign extending the value as appropriate
897 // according to the parameter attributes
898 const Type *Ty = V->getType();
Anton Korobeynikov53422f62008-02-20 11:10:28 +0000899 if (Ty->isInteger() && (ArgVals.back().IntVal.getBitWidth() < 32)) {
Devang Pateld222f862008-09-25 21:00:45 +0000900 if (CS.paramHasAttr(pNum, Attribute::ZExt))
Duncan Sands637ec552007-11-28 17:07:01 +0000901 ArgVals.back().IntVal = ArgVals.back().IntVal.zext(32);
Devang Pateld222f862008-09-25 21:00:45 +0000902 else if (CS.paramHasAttr(pNum, Attribute::SExt))
Duncan Sands637ec552007-11-28 17:07:01 +0000903 ArgVals.back().IntVal = ArgVals.back().IntVal.sext(32);
Anton Korobeynikov53422f62008-02-20 11:10:28 +0000904 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000905 }
906
907 // To handle indirect calls, we must get the pointer value from the argument
908 // and treat it as a function pointer.
909 GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
910 callFunction((Function*)GVTOP(SRC), ArgVals);
911}
912
913void Interpreter::visitShl(BinaryOperator &I) {
914 ExecutionContext &SF = ECStack.back();
915 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
916 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
917 GenericValue Dest;
Chris Lattner09484b42009-01-16 20:17:02 +0000918 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
919 Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
920 else
921 Dest.IntVal = Src1.IntVal;
922
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000923 SetValue(&I, Dest, SF);
924}
925
926void Interpreter::visitLShr(BinaryOperator &I) {
927 ExecutionContext &SF = ECStack.back();
928 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
929 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
930 GenericValue Dest;
Chris Lattner09484b42009-01-16 20:17:02 +0000931 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
932 Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
933 else
934 Dest.IntVal = Src1.IntVal;
935
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000936 SetValue(&I, Dest, SF);
937}
938
939void Interpreter::visitAShr(BinaryOperator &I) {
940 ExecutionContext &SF = ECStack.back();
941 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
942 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
Chris Lattner09484b42009-01-16 20:17:02 +0000943 GenericValue Dest;
944 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
945 Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
946 else
947 Dest.IntVal = Src1.IntVal;
948
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000949 SetValue(&I, Dest, SF);
950}
951
952GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy,
953 ExecutionContext &SF) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
955 const IntegerType *DITy = cast<IntegerType>(DstTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000956 unsigned DBitWidth = DITy->getBitWidth();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000957 Dest.IntVal = Src.IntVal.trunc(DBitWidth);
958 return Dest;
959}
960
961GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy,
962 ExecutionContext &SF) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000963 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
964 const IntegerType *DITy = cast<IntegerType>(DstTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000965 unsigned DBitWidth = DITy->getBitWidth();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000966 Dest.IntVal = Src.IntVal.sext(DBitWidth);
967 return Dest;
968}
969
970GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy,
971 ExecutionContext &SF) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000972 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
973 const IntegerType *DITy = cast<IntegerType>(DstTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000974 unsigned DBitWidth = DITy->getBitWidth();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000975 Dest.IntVal = Src.IntVal.zext(DBitWidth);
976 return Dest;
977}
978
979GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy,
980 ExecutionContext &SF) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000981 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
Chris Lattner3203f192008-04-06 21:50:58 +0000982 assert(SrcVal->getType() == Type::DoubleTy && DstTy == Type::FloatTy &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000983 "Invalid FPTrunc instruction");
984 Dest.FloatVal = (float) Src.DoubleVal;
985 return Dest;
986}
987
988GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy,
989 ExecutionContext &SF) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000990 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
Chris Lattner3203f192008-04-06 21:50:58 +0000991 assert(SrcVal->getType() == Type::FloatTy && DstTy == Type::DoubleTy &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000992 "Invalid FPTrunc instruction");
993 Dest.DoubleVal = (double) Src.FloatVal;
994 return Dest;
995}
996
997GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy,
998 ExecutionContext &SF) {
999 const Type *SrcTy = SrcVal->getType();
1000 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1001 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1002 assert(SrcTy->isFloatingPoint() && "Invalid FPToUI instruction");
1003
1004 if (SrcTy->getTypeID() == Type::FloatTyID)
1005 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1006 else
1007 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1008 return Dest;
1009}
1010
1011GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy,
1012 ExecutionContext &SF) {
1013 const Type *SrcTy = SrcVal->getType();
1014 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1015 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1016 assert(SrcTy->isFloatingPoint() && "Invalid FPToSI instruction");
1017
1018 if (SrcTy->getTypeID() == Type::FloatTyID)
1019 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1020 else
1021 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1022 return Dest;
1023}
1024
1025GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy,
1026 ExecutionContext &SF) {
1027 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1028 assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction");
1029
1030 if (DstTy->getTypeID() == Type::FloatTyID)
1031 Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1032 else
1033 Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1034 return Dest;
1035}
1036
1037GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy,
1038 ExecutionContext &SF) {
1039 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1040 assert(DstTy->isFloatingPoint() && "Invalid SIToFP instruction");
1041
1042 if (DstTy->getTypeID() == Type::FloatTyID)
1043 Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1044 else
1045 Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1046 return Dest;
1047
1048}
1049
1050GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy,
1051 ExecutionContext &SF) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001052 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1053 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
Chris Lattner3203f192008-04-06 21:50:58 +00001054 assert(isa<PointerType>(SrcVal->getType()) && "Invalid PtrToInt instruction");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001055
1056 Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1057 return Dest;
1058}
1059
1060GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy,
1061 ExecutionContext &SF) {
1062 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1063 assert(isa<PointerType>(DstTy) && "Invalid PtrToInt instruction");
1064
1065 uint32_t PtrSize = TD.getPointerSizeInBits();
1066 if (PtrSize != Src.IntVal.getBitWidth())
1067 Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1068
1069 Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1070 return Dest;
1071}
1072
1073GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy,
1074 ExecutionContext &SF) {
1075
1076 const Type *SrcTy = SrcVal->getType();
1077 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1078 if (isa<PointerType>(DstTy)) {
1079 assert(isa<PointerType>(SrcTy) && "Invalid BitCast");
1080 Dest.PointerVal = Src.PointerVal;
1081 } else if (DstTy->isInteger()) {
1082 if (SrcTy == Type::FloatTy) {
Dan Gohmand06cad62009-04-01 18:45:54 +00001083 Dest.IntVal.zext(sizeof(Src.FloatVal) * CHAR_BIT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001084 Dest.IntVal.floatToBits(Src.FloatVal);
1085 } else if (SrcTy == Type::DoubleTy) {
Dan Gohmand06cad62009-04-01 18:45:54 +00001086 Dest.IntVal.zext(sizeof(Src.DoubleVal) * CHAR_BIT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001087 Dest.IntVal.doubleToBits(Src.DoubleVal);
1088 } else if (SrcTy->isInteger()) {
1089 Dest.IntVal = Src.IntVal;
1090 } else
1091 assert(0 && "Invalid BitCast");
1092 } else if (DstTy == Type::FloatTy) {
1093 if (SrcTy->isInteger())
1094 Dest.FloatVal = Src.IntVal.bitsToFloat();
1095 else
1096 Dest.FloatVal = Src.FloatVal;
1097 } else if (DstTy == Type::DoubleTy) {
1098 if (SrcTy->isInteger())
1099 Dest.DoubleVal = Src.IntVal.bitsToDouble();
1100 else
1101 Dest.DoubleVal = Src.DoubleVal;
1102 } else
1103 assert(0 && "Invalid Bitcast");
1104
1105 return Dest;
1106}
1107
1108void Interpreter::visitTruncInst(TruncInst &I) {
1109 ExecutionContext &SF = ECStack.back();
1110 SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1111}
1112
1113void Interpreter::visitSExtInst(SExtInst &I) {
1114 ExecutionContext &SF = ECStack.back();
1115 SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1116}
1117
1118void Interpreter::visitZExtInst(ZExtInst &I) {
1119 ExecutionContext &SF = ECStack.back();
1120 SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1121}
1122
1123void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1124 ExecutionContext &SF = ECStack.back();
1125 SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1126}
1127
1128void Interpreter::visitFPExtInst(FPExtInst &I) {
1129 ExecutionContext &SF = ECStack.back();
1130 SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1131}
1132
1133void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1134 ExecutionContext &SF = ECStack.back();
1135 SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1136}
1137
1138void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1139 ExecutionContext &SF = ECStack.back();
1140 SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1141}
1142
1143void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1144 ExecutionContext &SF = ECStack.back();
1145 SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1146}
1147
1148void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1149 ExecutionContext &SF = ECStack.back();
1150 SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1151}
1152
1153void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1154 ExecutionContext &SF = ECStack.back();
1155 SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1156}
1157
1158void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1159 ExecutionContext &SF = ECStack.back();
1160 SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1161}
1162
1163void Interpreter::visitBitCastInst(BitCastInst &I) {
1164 ExecutionContext &SF = ECStack.back();
1165 SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1166}
1167
1168#define IMPLEMENT_VAARG(TY) \
1169 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1170
1171void Interpreter::visitVAArgInst(VAArgInst &I) {
1172 ExecutionContext &SF = ECStack.back();
1173
1174 // Get the incoming valist parameter. LLI treats the valist as a
1175 // (ec-stack-depth var-arg-index) pair.
1176 GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1177 GenericValue Dest;
1178 GenericValue Src = ECStack[VAList.UIntPairVal.first]
1179 .VarArgs[VAList.UIntPairVal.second];
1180 const Type *Ty = I.getType();
1181 switch (Ty->getTypeID()) {
1182 case Type::IntegerTyID: Dest.IntVal = Src.IntVal;
1183 IMPLEMENT_VAARG(Pointer);
1184 IMPLEMENT_VAARG(Float);
1185 IMPLEMENT_VAARG(Double);
1186 default:
1187 cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1188 abort();
1189 }
1190
1191 // Set the Value of this Instruction.
1192 SetValue(&I, Dest, SF);
1193
1194 // Move the pointer to the next vararg.
1195 ++VAList.UIntPairVal.second;
1196}
1197
1198GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
1199 ExecutionContext &SF) {
1200 switch (CE->getOpcode()) {
1201 case Instruction::Trunc:
1202 return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
1203 case Instruction::ZExt:
1204 return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
1205 case Instruction::SExt:
1206 return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
1207 case Instruction::FPTrunc:
1208 return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
1209 case Instruction::FPExt:
1210 return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
1211 case Instruction::UIToFP:
1212 return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
1213 case Instruction::SIToFP:
1214 return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
1215 case Instruction::FPToUI:
1216 return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
1217 case Instruction::FPToSI:
1218 return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
1219 case Instruction::PtrToInt:
1220 return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
1221 case Instruction::IntToPtr:
1222 return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
1223 case Instruction::BitCast:
1224 return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
1225 case Instruction::GetElementPtr:
1226 return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
1227 gep_type_end(CE), SF);
1228 case Instruction::FCmp:
1229 case Instruction::ICmp:
1230 return executeCmpInst(CE->getPredicate(),
1231 getOperandValue(CE->getOperand(0), SF),
1232 getOperandValue(CE->getOperand(1), SF),
1233 CE->getOperand(0)->getType());
1234 case Instruction::Select:
1235 return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
1236 getOperandValue(CE->getOperand(1), SF),
1237 getOperandValue(CE->getOperand(2), SF));
1238 default :
1239 break;
1240 }
1241
1242 // The cases below here require a GenericValue parameter for the result
1243 // so we initialize one, compute it and then return it.
1244 GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
1245 GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
1246 GenericValue Dest;
1247 const Type * Ty = CE->getOperand(0)->getType();
1248 switch (CE->getOpcode()) {
Dan Gohman7ce405e2009-06-04 22:49:04 +00001249 case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
1250 case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
1251 case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
1252 case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
1253 case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
1254 case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001255 case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
1256 case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
1257 case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
1258 case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
1259 case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
1260 case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
Dan Gohman7ce405e2009-06-04 22:49:04 +00001261 case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
1262 case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
1263 case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001264 case Instruction::Shl:
1265 Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
1266 break;
1267 case Instruction::LShr:
1268 Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
1269 break;
1270 case Instruction::AShr:
1271 Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
1272 break;
1273 default:
1274 cerr << "Unhandled ConstantExpr: " << *CE << "\n";
1275 abort();
1276 return GenericValue();
1277 }
1278 return Dest;
1279}
1280
1281GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
1282 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1283 return getConstantExprValue(CE, SF);
1284 } else if (Constant *CPV = dyn_cast<Constant>(V)) {
1285 return getConstantValue(CPV);
1286 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1287 return PTOGV(getPointerToGlobal(GV));
1288 } else {
1289 return SF.Values[V];
1290 }
1291}
1292
1293//===----------------------------------------------------------------------===//
1294// Dispatch and Execution Code
1295//===----------------------------------------------------------------------===//
1296
1297//===----------------------------------------------------------------------===//
1298// callFunction - Execute the specified function...
1299//
1300void Interpreter::callFunction(Function *F,
1301 const std::vector<GenericValue> &ArgVals) {
1302 assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
1303 ECStack.back().Caller.arg_size() == ArgVals.size()) &&
1304 "Incorrect number of arguments passed into function call!");
1305 // Make a new stack frame... and fill it in.
1306 ECStack.push_back(ExecutionContext());
1307 ExecutionContext &StackFrame = ECStack.back();
1308 StackFrame.CurFunction = F;
1309
1310 // Special handling for external functions.
1311 if (F->isDeclaration()) {
1312 GenericValue Result = callExternalFunction (F, ArgVals);
1313 // Simulate a 'ret' instruction of the appropriate type.
1314 popStackAndReturnValueToCaller (F->getReturnType (), Result);
1315 return;
1316 }
1317
1318 // Get pointers to first LLVM BB & Instruction in function.
1319 StackFrame.CurBB = F->begin();
1320 StackFrame.CurInst = StackFrame.CurBB->begin();
1321
1322 // Run through the function arguments and initialize their values...
1323 assert((ArgVals.size() == F->arg_size() ||
1324 (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
1325 "Invalid number of values passed to function invocation!");
1326
1327 // Handle non-varargs arguments...
1328 unsigned i = 0;
1329 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1330 AI != E; ++AI, ++i)
1331 SetValue(AI, ArgVals[i], StackFrame);
1332
1333 // Handle varargs arguments...
1334 StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
1335}
1336
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001337
1338void Interpreter::run() {
1339 while (!ECStack.empty()) {
1340 // Interpret a single instruction & increment the "PC".
1341 ExecutionContext &SF = ECStack.back(); // Current stack frame
1342 Instruction &I = *SF.CurInst++; // Increment before execute
1343
1344 // Track the number of dynamic instructions executed.
1345 ++NumDynamicInsts;
1346
1347 DOUT << "About to interpret: " << I;
1348 visit(I); // Dispatch to one of the visit* methods...
Chris Lattnerfc65a9f2007-09-21 18:30:39 +00001349#if 0
1350 // This is not safe, as visiting the instruction could lower it and free I.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001351#ifndef NDEBUG
1352 if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
1353 I.getType() != Type::VoidTy) {
1354 DOUT << " --> ";
Chris Lattnerfc65a9f2007-09-21 18:30:39 +00001355 const GenericValue &Val = SF.Values[&I];
1356 switch (I.getType()->getTypeID()) {
1357 default: assert(0 && "Invalid GenericValue Type");
1358 case Type::VoidTyID: DOUT << "void"; break;
1359 case Type::FloatTyID: DOUT << "float " << Val.FloatVal; break;
1360 case Type::DoubleTyID: DOUT << "double " << Val.DoubleVal; break;
1361 case Type::PointerTyID: DOUT << "void* " << intptr_t(Val.PointerVal);
1362 break;
1363 case Type::IntegerTyID:
1364 DOUT << "i" << Val.IntVal.getBitWidth() << " "
1365 << Val.IntVal.toStringUnsigned(10)
1366 << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
1367 break;
1368 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001369 }
1370#endif
Chris Lattnerfc65a9f2007-09-21 18:30:39 +00001371#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001372 }
1373}