blob: f8e22c8d7bf93371b1f67aae8491252054aa43ee [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000151 ; Declare the string constant as a global constant.
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000153
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000154 ; External declaration of the puts function
155 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000156
157 ; Definition of main function
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000158 define i32 @main() { ; i32()*
159 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000162 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000163 call i32 @puts(i8* %cast210)
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000164 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000265 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
Michael Gottesmanf5735882013-01-31 05:48:48 +0000468A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000472initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000504By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000505variables defined within the module are not modified from their
506initial values before the start of the global initializer. This is
507true even for variables potentially accessible from outside the
508module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000509``@llvm.used``. This assumption may be suppressed by marking the
510variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000511
Sean Silvaf722b002012-12-07 10:36:55 +0000512An explicit alignment may be specified for a global, which must be a
513power of 2. If not present, or if the alignment is set to zero, the
514alignment of the global is set by the target to whatever it feels
515convenient. If an explicit alignment is specified, the global is forced
516to have exactly that alignment. Targets and optimizers are not allowed
517to over-align the global if the global has an assigned section. In this
518case, the extra alignment could be observable: for example, code could
519assume that the globals are densely packed in their section and try to
520iterate over them as an array, alignment padding would break this
521iteration.
522
523For example, the following defines a global in a numbered address space
524with an initializer, section, and alignment:
525
526.. code-block:: llvm
527
528 @G = addrspace(5) constant float 1.0, section "foo", align 4
529
530The following example defines a thread-local global with the
531``initialexec`` TLS model:
532
533.. code-block:: llvm
534
535 @G = thread_local(initialexec) global i32 0, align 4
536
537.. _functionstructure:
538
539Functions
540---------
541
542LLVM function definitions consist of the "``define``" keyword, an
543optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
544style <visibility>`, an optional :ref:`calling convention <callingconv>`,
545an optional ``unnamed_addr`` attribute, a return type, an optional
546:ref:`parameter attribute <paramattrs>` for the return type, a function
547name, a (possibly empty) argument list (each with optional :ref:`parameter
548attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
549an optional section, an optional alignment, an optional :ref:`garbage
550collector name <gc>`, an opening curly brace, a list of basic blocks,
551and a closing curly brace.
552
553LLVM function declarations consist of the "``declare``" keyword, an
554optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
555style <visibility>`, an optional :ref:`calling convention <callingconv>`,
556an optional ``unnamed_addr`` attribute, a return type, an optional
557:ref:`parameter attribute <paramattrs>` for the return type, a function
558name, a possibly empty list of arguments, an optional alignment, and an
559optional :ref:`garbage collector name <gc>`.
560
561A function definition contains a list of basic blocks, forming the CFG
562(Control Flow Graph) for the function. Each basic block may optionally
563start with a label (giving the basic block a symbol table entry),
564contains a list of instructions, and ends with a
565:ref:`terminator <terminators>` instruction (such as a branch or function
566return).
567
568The first basic block in a function is special in two ways: it is
569immediately executed on entrance to the function, and it is not allowed
570to have predecessor basic blocks (i.e. there can not be any branches to
571the entry block of a function). Because the block can have no
572predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
573
574LLVM allows an explicit section to be specified for functions. If the
575target supports it, it will emit functions to the section specified.
576
577An explicit alignment may be specified for a function. If not present,
578or if the alignment is set to zero, the alignment of the function is set
579by the target to whatever it feels convenient. If an explicit alignment
580is specified, the function is forced to have at least that much
581alignment. All alignments must be a power of 2.
582
583If the ``unnamed_addr`` attribute is given, the address is know to not
584be significant and two identical functions can be merged.
585
586Syntax::
587
588 define [linkage] [visibility]
589 [cconv] [ret attrs]
590 <ResultType> @<FunctionName> ([argument list])
591 [fn Attrs] [section "name"] [align N]
592 [gc] { ... }
593
594Aliases
595-------
596
597Aliases act as "second name" for the aliasee value (which can be either
598function, global variable, another alias or bitcast of global value).
599Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
600:ref:`visibility style <visibility>`.
601
602Syntax::
603
604 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
605
606.. _namedmetadatastructure:
607
608Named Metadata
609--------------
610
611Named metadata is a collection of metadata. :ref:`Metadata
612nodes <metadata>` (but not metadata strings) are the only valid
613operands for a named metadata.
614
615Syntax::
616
617 ; Some unnamed metadata nodes, which are referenced by the named metadata.
618 !0 = metadata !{metadata !"zero"}
619 !1 = metadata !{metadata !"one"}
620 !2 = metadata !{metadata !"two"}
621 ; A named metadata.
622 !name = !{!0, !1, !2}
623
624.. _paramattrs:
625
626Parameter Attributes
627--------------------
628
629The return type and each parameter of a function type may have a set of
630*parameter attributes* associated with them. Parameter attributes are
631used to communicate additional information about the result or
632parameters of a function. Parameter attributes are considered to be part
633of the function, not of the function type, so functions with different
634parameter attributes can have the same function type.
635
636Parameter attributes are simple keywords that follow the type specified.
637If multiple parameter attributes are needed, they are space separated.
638For example:
639
640.. code-block:: llvm
641
642 declare i32 @printf(i8* noalias nocapture, ...)
643 declare i32 @atoi(i8 zeroext)
644 declare signext i8 @returns_signed_char()
645
646Note that any attributes for the function result (``nounwind``,
647``readonly``) come immediately after the argument list.
648
649Currently, only the following parameter attributes are defined:
650
651``zeroext``
652 This indicates to the code generator that the parameter or return
653 value should be zero-extended to the extent required by the target's
654 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
655 the caller (for a parameter) or the callee (for a return value).
656``signext``
657 This indicates to the code generator that the parameter or return
658 value should be sign-extended to the extent required by the target's
659 ABI (which is usually 32-bits) by the caller (for a parameter) or
660 the callee (for a return value).
661``inreg``
662 This indicates that this parameter or return value should be treated
663 in a special target-dependent fashion during while emitting code for
664 a function call or return (usually, by putting it in a register as
665 opposed to memory, though some targets use it to distinguish between
666 two different kinds of registers). Use of this attribute is
667 target-specific.
668``byval``
669 This indicates that the pointer parameter should really be passed by
670 value to the function. The attribute implies that a hidden copy of
671 the pointee is made between the caller and the callee, so the callee
672 is unable to modify the value in the caller. This attribute is only
673 valid on LLVM pointer arguments. It is generally used to pass
674 structs and arrays by value, but is also valid on pointers to
675 scalars. The copy is considered to belong to the caller not the
676 callee (for example, ``readonly`` functions should not write to
677 ``byval`` parameters). This is not a valid attribute for return
678 values.
679
680 The byval attribute also supports specifying an alignment with the
681 align attribute. It indicates the alignment of the stack slot to
682 form and the known alignment of the pointer specified to the call
683 site. If the alignment is not specified, then the code generator
684 makes a target-specific assumption.
685
686``sret``
687 This indicates that the pointer parameter specifies the address of a
688 structure that is the return value of the function in the source
689 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000690 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000691 not to trap and to be properly aligned. This may only be applied to
692 the first parameter. This is not a valid attribute for return
693 values.
694``noalias``
695 This indicates that pointer values `*based* <pointeraliasing>` on
696 the argument or return value do not alias pointer values which are
697 not *based* on it, ignoring certain "irrelevant" dependencies. For a
698 call to the parent function, dependencies between memory references
699 from before or after the call and from those during the call are
700 "irrelevant" to the ``noalias`` keyword for the arguments and return
701 value used in that call. The caller shares the responsibility with
702 the callee for ensuring that these requirements are met. For further
703 details, please see the discussion of the NoAlias response in `alias
704 analysis <AliasAnalysis.html#MustMayNo>`_.
705
706 Note that this definition of ``noalias`` is intentionally similar
707 to the definition of ``restrict`` in C99 for function arguments,
708 though it is slightly weaker.
709
710 For function return values, C99's ``restrict`` is not meaningful,
711 while LLVM's ``noalias`` is.
712``nocapture``
713 This indicates that the callee does not make any copies of the
714 pointer that outlive the callee itself. This is not a valid
715 attribute for return values.
716
717.. _nest:
718
719``nest``
720 This indicates that the pointer parameter can be excised using the
721 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
722 attribute for return values.
723
724.. _gc:
725
726Garbage Collector Names
727-----------------------
728
729Each function may specify a garbage collector name, which is simply a
730string:
731
732.. code-block:: llvm
733
734 define void @f() gc "name" { ... }
735
736The compiler declares the supported values of *name*. Specifying a
737collector which will cause the compiler to alter its output in order to
738support the named garbage collection algorithm.
739
Bill Wendling95ce4c22013-02-06 06:52:58 +0000740.. _attrgrp:
741
742Attribute Groups
743----------------
744
745Attribute groups are groups of attributes that are referenced by objects within
746the IR. They are important for keeping ``.ll`` files readable, because a lot of
747functions will use the same set of attributes. In the degenerative case of a
748``.ll`` file that corresponds to a single ``.c`` file, the single attribute
749group will capture the important command line flags used to build that file.
750
751An attribute group is a module-level object. To use an attribute group, an
752object references the attribute group's ID (e.g. ``#37``). An object may refer
753to more than one attribute group. In that situation, the attributes from the
754different groups are merged.
755
756Here is an example of attribute groups for a function that should always be
757inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
758
759.. code-block:: llvm
760
761 ; Target-independent attributes:
762 #0 = attributes { alwaysinline alignstack=4 }
763
764 ; Target-dependent attributes:
765 #1 = attributes { "no-sse" }
766
767 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
768 define void @f() #0 #1 { ... }
769
Sean Silvaf722b002012-12-07 10:36:55 +0000770.. _fnattrs:
771
772Function Attributes
773-------------------
774
775Function attributes are set to communicate additional information about
776a function. Function attributes are considered to be part of the
777function, not of the function type, so functions with different function
778attributes can have the same function type.
779
780Function attributes are simple keywords that follow the type specified.
781If multiple attributes are needed, they are space separated. For
782example:
783
784.. code-block:: llvm
785
786 define void @f() noinline { ... }
787 define void @f() alwaysinline { ... }
788 define void @f() alwaysinline optsize { ... }
789 define void @f() optsize { ... }
790
791``address_safety``
792 This attribute indicates that the address safety analysis is enabled
793 for this function.
794``alignstack(<n>)``
795 This attribute indicates that, when emitting the prologue and
796 epilogue, the backend should forcibly align the stack pointer.
797 Specify the desired alignment, which must be a power of two, in
798 parentheses.
799``alwaysinline``
800 This attribute indicates that the inliner should attempt to inline
801 this function into callers whenever possible, ignoring any active
802 inlining size threshold for this caller.
803``nonlazybind``
804 This attribute suppresses lazy symbol binding for the function. This
805 may make calls to the function faster, at the cost of extra program
806 startup time if the function is not called during program startup.
807``inlinehint``
808 This attribute indicates that the source code contained a hint that
809 inlining this function is desirable (such as the "inline" keyword in
810 C/C++). It is just a hint; it imposes no requirements on the
811 inliner.
812``naked``
813 This attribute disables prologue / epilogue emission for the
814 function. This can have very system-specific consequences.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000815``noduplicate``
816 This attribute indicates that calls to the function cannot be
817 duplicated. A call to a ``noduplicate`` function may be moved
818 within its parent function, but may not be duplicated within
819 its parent function.
820
821 A function containing a ``noduplicate`` call may still
822 be an inlining candidate, provided that the call is not
823 duplicated by inlining. That implies that the function has
824 internal linkage and only has one call site, so the original
825 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000826``noimplicitfloat``
827 This attributes disables implicit floating point instructions.
828``noinline``
829 This attribute indicates that the inliner should never inline this
830 function in any situation. This attribute may not be used together
831 with the ``alwaysinline`` attribute.
832``noredzone``
833 This attribute indicates that the code generator should not use a
834 red zone, even if the target-specific ABI normally permits it.
835``noreturn``
836 This function attribute indicates that the function never returns
837 normally. This produces undefined behavior at runtime if the
838 function ever does dynamically return.
839``nounwind``
840 This function attribute indicates that the function never returns
841 with an unwind or exceptional control flow. If the function does
842 unwind, its runtime behavior is undefined.
843``optsize``
844 This attribute suggests that optimization passes and code generator
845 passes make choices that keep the code size of this function low,
846 and otherwise do optimizations specifically to reduce code size.
847``readnone``
848 This attribute indicates that the function computes its result (or
849 decides to unwind an exception) based strictly on its arguments,
850 without dereferencing any pointer arguments or otherwise accessing
851 any mutable state (e.g. memory, control registers, etc) visible to
852 caller functions. It does not write through any pointer arguments
853 (including ``byval`` arguments) and never changes any state visible
854 to callers. This means that it cannot unwind exceptions by calling
855 the ``C++`` exception throwing methods.
856``readonly``
857 This attribute indicates that the function does not write through
858 any pointer arguments (including ``byval`` arguments) or otherwise
859 modify any state (e.g. memory, control registers, etc) visible to
860 caller functions. It may dereference pointer arguments and read
861 state that may be set in the caller. A readonly function always
862 returns the same value (or unwinds an exception identically) when
863 called with the same set of arguments and global state. It cannot
864 unwind an exception by calling the ``C++`` exception throwing
865 methods.
866``returns_twice``
867 This attribute indicates that this function can return twice. The C
868 ``setjmp`` is an example of such a function. The compiler disables
869 some optimizations (like tail calls) in the caller of these
870 functions.
871``ssp``
872 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000873 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000874 placed on the stack before the local variables that's checked upon
875 return from the function to see if it has been overwritten. A
876 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000877 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000878
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000879 - Character arrays larger than ``ssp-buffer-size`` (default 8).
880 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
881 - Calls to alloca() with variable sizes or constant sizes greater than
882 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000883
884 If a function that has an ``ssp`` attribute is inlined into a
885 function that doesn't have an ``ssp`` attribute, then the resulting
886 function will have an ``ssp`` attribute.
887``sspreq``
888 This attribute indicates that the function should *always* emit a
889 stack smashing protector. This overrides the ``ssp`` function
890 attribute.
891
892 If a function that has an ``sspreq`` attribute is inlined into a
893 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000894 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
895 an ``sspreq`` attribute.
896``sspstrong``
897 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000898 protector. This attribute causes a strong heuristic to be used when
899 determining if a function needs stack protectors. The strong heuristic
900 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000901
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000902 - Arrays of any size and type
903 - Aggregates containing an array of any size and type.
904 - Calls to alloca().
905 - Local variables that have had their address taken.
906
907 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000908
909 If a function that has an ``sspstrong`` attribute is inlined into a
910 function that doesn't have an ``sspstrong`` attribute, then the
911 resulting function will have an ``sspstrong`` attribute.
Kostya Serebryanyab39afa2013-02-11 08:13:54 +0000912``thread_safety``
913 This attribute indicates that the thread safety analysis is enabled
914 for this function.
915``uninitialized_checks``
916 This attribute indicates that the checks for uses of uninitialized
917 memory are enabled.
Sean Silvaf722b002012-12-07 10:36:55 +0000918``uwtable``
919 This attribute indicates that the ABI being targeted requires that
920 an unwind table entry be produce for this function even if we can
921 show that no exceptions passes by it. This is normally the case for
922 the ELF x86-64 abi, but it can be disabled for some compilation
923 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000924
925.. _moduleasm:
926
927Module-Level Inline Assembly
928----------------------------
929
930Modules may contain "module-level inline asm" blocks, which corresponds
931to the GCC "file scope inline asm" blocks. These blocks are internally
932concatenated by LLVM and treated as a single unit, but may be separated
933in the ``.ll`` file if desired. The syntax is very simple:
934
935.. code-block:: llvm
936
937 module asm "inline asm code goes here"
938 module asm "more can go here"
939
940The strings can contain any character by escaping non-printable
941characters. The escape sequence used is simply "\\xx" where "xx" is the
942two digit hex code for the number.
943
944The inline asm code is simply printed to the machine code .s file when
945assembly code is generated.
946
947Data Layout
948-----------
949
950A module may specify a target specific data layout string that specifies
951how data is to be laid out in memory. The syntax for the data layout is
952simply:
953
954.. code-block:: llvm
955
956 target datalayout = "layout specification"
957
958The *layout specification* consists of a list of specifications
959separated by the minus sign character ('-'). Each specification starts
960with a letter and may include other information after the letter to
961define some aspect of the data layout. The specifications accepted are
962as follows:
963
964``E``
965 Specifies that the target lays out data in big-endian form. That is,
966 the bits with the most significance have the lowest address
967 location.
968``e``
969 Specifies that the target lays out data in little-endian form. That
970 is, the bits with the least significance have the lowest address
971 location.
972``S<size>``
973 Specifies the natural alignment of the stack in bits. Alignment
974 promotion of stack variables is limited to the natural stack
975 alignment to avoid dynamic stack realignment. The stack alignment
976 must be a multiple of 8-bits. If omitted, the natural stack
977 alignment defaults to "unspecified", which does not prevent any
978 alignment promotions.
979``p[n]:<size>:<abi>:<pref>``
980 This specifies the *size* of a pointer and its ``<abi>`` and
981 ``<pref>``\erred alignments for address space ``n``. All sizes are in
982 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
983 preceding ``:`` should be omitted too. The address space, ``n`` is
984 optional, and if not specified, denotes the default address space 0.
985 The value of ``n`` must be in the range [1,2^23).
986``i<size>:<abi>:<pref>``
987 This specifies the alignment for an integer type of a given bit
988 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
989``v<size>:<abi>:<pref>``
990 This specifies the alignment for a vector type of a given bit
991 ``<size>``.
992``f<size>:<abi>:<pref>``
993 This specifies the alignment for a floating point type of a given bit
994 ``<size>``. Only values of ``<size>`` that are supported by the target
995 will work. 32 (float) and 64 (double) are supported on all targets; 80
996 or 128 (different flavors of long double) are also supported on some
997 targets.
998``a<size>:<abi>:<pref>``
999 This specifies the alignment for an aggregate type of a given bit
1000 ``<size>``.
1001``s<size>:<abi>:<pref>``
1002 This specifies the alignment for a stack object of a given bit
1003 ``<size>``.
1004``n<size1>:<size2>:<size3>...``
1005 This specifies a set of native integer widths for the target CPU in
1006 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1007 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1008 this set are considered to support most general arithmetic operations
1009 efficiently.
1010
1011When constructing the data layout for a given target, LLVM starts with a
1012default set of specifications which are then (possibly) overridden by
1013the specifications in the ``datalayout`` keyword. The default
1014specifications are given in this list:
1015
1016- ``E`` - big endian
1017- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001018- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001019- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1020- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1021- ``i16:16:16`` - i16 is 16-bit aligned
1022- ``i32:32:32`` - i32 is 32-bit aligned
1023- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1024 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001025- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001026- ``f32:32:32`` - float is 32-bit aligned
1027- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001028- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001029- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1030- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001031- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001032
1033When LLVM is determining the alignment for a given type, it uses the
1034following rules:
1035
1036#. If the type sought is an exact match for one of the specifications,
1037 that specification is used.
1038#. If no match is found, and the type sought is an integer type, then
1039 the smallest integer type that is larger than the bitwidth of the
1040 sought type is used. If none of the specifications are larger than
1041 the bitwidth then the largest integer type is used. For example,
1042 given the default specifications above, the i7 type will use the
1043 alignment of i8 (next largest) while both i65 and i256 will use the
1044 alignment of i64 (largest specified).
1045#. If no match is found, and the type sought is a vector type, then the
1046 largest vector type that is smaller than the sought vector type will
1047 be used as a fall back. This happens because <128 x double> can be
1048 implemented in terms of 64 <2 x double>, for example.
1049
1050The function of the data layout string may not be what you expect.
1051Notably, this is not a specification from the frontend of what alignment
1052the code generator should use.
1053
1054Instead, if specified, the target data layout is required to match what
1055the ultimate *code generator* expects. This string is used by the
1056mid-level optimizers to improve code, and this only works if it matches
1057what the ultimate code generator uses. If you would like to generate IR
1058that does not embed this target-specific detail into the IR, then you
1059don't have to specify the string. This will disable some optimizations
1060that require precise layout information, but this also prevents those
1061optimizations from introducing target specificity into the IR.
1062
1063.. _pointeraliasing:
1064
1065Pointer Aliasing Rules
1066----------------------
1067
1068Any memory access must be done through a pointer value associated with
1069an address range of the memory access, otherwise the behavior is
1070undefined. Pointer values are associated with address ranges according
1071to the following rules:
1072
1073- A pointer value is associated with the addresses associated with any
1074 value it is *based* on.
1075- An address of a global variable is associated with the address range
1076 of the variable's storage.
1077- The result value of an allocation instruction is associated with the
1078 address range of the allocated storage.
1079- A null pointer in the default address-space is associated with no
1080 address.
1081- An integer constant other than zero or a pointer value returned from
1082 a function not defined within LLVM may be associated with address
1083 ranges allocated through mechanisms other than those provided by
1084 LLVM. Such ranges shall not overlap with any ranges of addresses
1085 allocated by mechanisms provided by LLVM.
1086
1087A pointer value is *based* on another pointer value according to the
1088following rules:
1089
1090- A pointer value formed from a ``getelementptr`` operation is *based*
1091 on the first operand of the ``getelementptr``.
1092- The result value of a ``bitcast`` is *based* on the operand of the
1093 ``bitcast``.
1094- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1095 values that contribute (directly or indirectly) to the computation of
1096 the pointer's value.
1097- The "*based* on" relationship is transitive.
1098
1099Note that this definition of *"based"* is intentionally similar to the
1100definition of *"based"* in C99, though it is slightly weaker.
1101
1102LLVM IR does not associate types with memory. The result type of a
1103``load`` merely indicates the size and alignment of the memory from
1104which to load, as well as the interpretation of the value. The first
1105operand type of a ``store`` similarly only indicates the size and
1106alignment of the store.
1107
1108Consequently, type-based alias analysis, aka TBAA, aka
1109``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1110:ref:`Metadata <metadata>` may be used to encode additional information
1111which specialized optimization passes may use to implement type-based
1112alias analysis.
1113
1114.. _volatile:
1115
1116Volatile Memory Accesses
1117------------------------
1118
1119Certain memory accesses, such as :ref:`load <i_load>`'s,
1120:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1121marked ``volatile``. The optimizers must not change the number of
1122volatile operations or change their order of execution relative to other
1123volatile operations. The optimizers *may* change the order of volatile
1124operations relative to non-volatile operations. This is not Java's
1125"volatile" and has no cross-thread synchronization behavior.
1126
Andrew Trick9a6dd022013-01-30 21:19:35 +00001127IR-level volatile loads and stores cannot safely be optimized into
1128llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1129flagged volatile. Likewise, the backend should never split or merge
1130target-legal volatile load/store instructions.
1131
Andrew Trick946317d2013-01-31 00:49:39 +00001132.. admonition:: Rationale
1133
1134 Platforms may rely on volatile loads and stores of natively supported
1135 data width to be executed as single instruction. For example, in C
1136 this holds for an l-value of volatile primitive type with native
1137 hardware support, but not necessarily for aggregate types. The
1138 frontend upholds these expectations, which are intentionally
1139 unspecified in the IR. The rules above ensure that IR transformation
1140 do not violate the frontend's contract with the language.
1141
Sean Silvaf722b002012-12-07 10:36:55 +00001142.. _memmodel:
1143
1144Memory Model for Concurrent Operations
1145--------------------------------------
1146
1147The LLVM IR does not define any way to start parallel threads of
1148execution or to register signal handlers. Nonetheless, there are
1149platform-specific ways to create them, and we define LLVM IR's behavior
1150in their presence. This model is inspired by the C++0x memory model.
1151
1152For a more informal introduction to this model, see the :doc:`Atomics`.
1153
1154We define a *happens-before* partial order as the least partial order
1155that
1156
1157- Is a superset of single-thread program order, and
1158- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1159 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1160 techniques, like pthread locks, thread creation, thread joining,
1161 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1162 Constraints <ordering>`).
1163
1164Note that program order does not introduce *happens-before* edges
1165between a thread and signals executing inside that thread.
1166
1167Every (defined) read operation (load instructions, memcpy, atomic
1168loads/read-modify-writes, etc.) R reads a series of bytes written by
1169(defined) write operations (store instructions, atomic
1170stores/read-modify-writes, memcpy, etc.). For the purposes of this
1171section, initialized globals are considered to have a write of the
1172initializer which is atomic and happens before any other read or write
1173of the memory in question. For each byte of a read R, R\ :sub:`byte`
1174may see any write to the same byte, except:
1175
1176- If write\ :sub:`1` happens before write\ :sub:`2`, and
1177 write\ :sub:`2` happens before R\ :sub:`byte`, then
1178 R\ :sub:`byte` does not see write\ :sub:`1`.
1179- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1180 R\ :sub:`byte` does not see write\ :sub:`3`.
1181
1182Given that definition, R\ :sub:`byte` is defined as follows:
1183
1184- If R is volatile, the result is target-dependent. (Volatile is
1185 supposed to give guarantees which can support ``sig_atomic_t`` in
1186 C/C++, and may be used for accesses to addresses which do not behave
1187 like normal memory. It does not generally provide cross-thread
1188 synchronization.)
1189- Otherwise, if there is no write to the same byte that happens before
1190 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1191- Otherwise, if R\ :sub:`byte` may see exactly one write,
1192 R\ :sub:`byte` returns the value written by that write.
1193- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1194 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1195 Memory Ordering Constraints <ordering>` section for additional
1196 constraints on how the choice is made.
1197- Otherwise R\ :sub:`byte` returns ``undef``.
1198
1199R returns the value composed of the series of bytes it read. This
1200implies that some bytes within the value may be ``undef`` **without**
1201the entire value being ``undef``. Note that this only defines the
1202semantics of the operation; it doesn't mean that targets will emit more
1203than one instruction to read the series of bytes.
1204
1205Note that in cases where none of the atomic intrinsics are used, this
1206model places only one restriction on IR transformations on top of what
1207is required for single-threaded execution: introducing a store to a byte
1208which might not otherwise be stored is not allowed in general.
1209(Specifically, in the case where another thread might write to and read
1210from an address, introducing a store can change a load that may see
1211exactly one write into a load that may see multiple writes.)
1212
1213.. _ordering:
1214
1215Atomic Memory Ordering Constraints
1216----------------------------------
1217
1218Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1219:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1220:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1221an ordering parameter that determines which other atomic instructions on
1222the same address they *synchronize with*. These semantics are borrowed
1223from Java and C++0x, but are somewhat more colloquial. If these
1224descriptions aren't precise enough, check those specs (see spec
1225references in the :doc:`atomics guide <Atomics>`).
1226:ref:`fence <i_fence>` instructions treat these orderings somewhat
1227differently since they don't take an address. See that instruction's
1228documentation for details.
1229
1230For a simpler introduction to the ordering constraints, see the
1231:doc:`Atomics`.
1232
1233``unordered``
1234 The set of values that can be read is governed by the happens-before
1235 partial order. A value cannot be read unless some operation wrote
1236 it. This is intended to provide a guarantee strong enough to model
1237 Java's non-volatile shared variables. This ordering cannot be
1238 specified for read-modify-write operations; it is not strong enough
1239 to make them atomic in any interesting way.
1240``monotonic``
1241 In addition to the guarantees of ``unordered``, there is a single
1242 total order for modifications by ``monotonic`` operations on each
1243 address. All modification orders must be compatible with the
1244 happens-before order. There is no guarantee that the modification
1245 orders can be combined to a global total order for the whole program
1246 (and this often will not be possible). The read in an atomic
1247 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1248 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1249 order immediately before the value it writes. If one atomic read
1250 happens before another atomic read of the same address, the later
1251 read must see the same value or a later value in the address's
1252 modification order. This disallows reordering of ``monotonic`` (or
1253 stronger) operations on the same address. If an address is written
1254 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1255 read that address repeatedly, the other threads must eventually see
1256 the write. This corresponds to the C++0x/C1x
1257 ``memory_order_relaxed``.
1258``acquire``
1259 In addition to the guarantees of ``monotonic``, a
1260 *synchronizes-with* edge may be formed with a ``release`` operation.
1261 This is intended to model C++'s ``memory_order_acquire``.
1262``release``
1263 In addition to the guarantees of ``monotonic``, if this operation
1264 writes a value which is subsequently read by an ``acquire``
1265 operation, it *synchronizes-with* that operation. (This isn't a
1266 complete description; see the C++0x definition of a release
1267 sequence.) This corresponds to the C++0x/C1x
1268 ``memory_order_release``.
1269``acq_rel`` (acquire+release)
1270 Acts as both an ``acquire`` and ``release`` operation on its
1271 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1272``seq_cst`` (sequentially consistent)
1273 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1274 operation which only reads, ``release`` for an operation which only
1275 writes), there is a global total order on all
1276 sequentially-consistent operations on all addresses, which is
1277 consistent with the *happens-before* partial order and with the
1278 modification orders of all the affected addresses. Each
1279 sequentially-consistent read sees the last preceding write to the
1280 same address in this global order. This corresponds to the C++0x/C1x
1281 ``memory_order_seq_cst`` and Java volatile.
1282
1283.. _singlethread:
1284
1285If an atomic operation is marked ``singlethread``, it only *synchronizes
1286with* or participates in modification and seq\_cst total orderings with
1287other operations running in the same thread (for example, in signal
1288handlers).
1289
1290.. _fastmath:
1291
1292Fast-Math Flags
1293---------------
1294
1295LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1296:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1297:ref:`frem <i_frem>`) have the following flags that can set to enable
1298otherwise unsafe floating point operations
1299
1300``nnan``
1301 No NaNs - Allow optimizations to assume the arguments and result are not
1302 NaN. Such optimizations are required to retain defined behavior over
1303 NaNs, but the value of the result is undefined.
1304
1305``ninf``
1306 No Infs - Allow optimizations to assume the arguments and result are not
1307 +/-Inf. Such optimizations are required to retain defined behavior over
1308 +/-Inf, but the value of the result is undefined.
1309
1310``nsz``
1311 No Signed Zeros - Allow optimizations to treat the sign of a zero
1312 argument or result as insignificant.
1313
1314``arcp``
1315 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1316 argument rather than perform division.
1317
1318``fast``
1319 Fast - Allow algebraically equivalent transformations that may
1320 dramatically change results in floating point (e.g. reassociate). This
1321 flag implies all the others.
1322
1323.. _typesystem:
1324
1325Type System
1326===========
1327
1328The LLVM type system is one of the most important features of the
1329intermediate representation. Being typed enables a number of
1330optimizations to be performed on the intermediate representation
1331directly, without having to do extra analyses on the side before the
1332transformation. A strong type system makes it easier to read the
1333generated code and enables novel analyses and transformations that are
1334not feasible to perform on normal three address code representations.
1335
1336Type Classifications
1337--------------------
1338
1339The types fall into a few useful classifications:
1340
1341
1342.. list-table::
1343 :header-rows: 1
1344
1345 * - Classification
1346 - Types
1347
1348 * - :ref:`integer <t_integer>`
1349 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1350 ``i64``, ...
1351
1352 * - :ref:`floating point <t_floating>`
1353 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1354 ``ppc_fp128``
1355
1356
1357 * - first class
1358
1359 .. _t_firstclass:
1360
1361 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1362 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1363 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1364 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1365
1366 * - :ref:`primitive <t_primitive>`
1367 - :ref:`label <t_label>`,
1368 :ref:`void <t_void>`,
1369 :ref:`integer <t_integer>`,
1370 :ref:`floating point <t_floating>`,
1371 :ref:`x86mmx <t_x86mmx>`,
1372 :ref:`metadata <t_metadata>`.
1373
1374 * - :ref:`derived <t_derived>`
1375 - :ref:`array <t_array>`,
1376 :ref:`function <t_function>`,
1377 :ref:`pointer <t_pointer>`,
1378 :ref:`structure <t_struct>`,
1379 :ref:`vector <t_vector>`,
1380 :ref:`opaque <t_opaque>`.
1381
1382The :ref:`first class <t_firstclass>` types are perhaps the most important.
1383Values of these types are the only ones which can be produced by
1384instructions.
1385
1386.. _t_primitive:
1387
1388Primitive Types
1389---------------
1390
1391The primitive types are the fundamental building blocks of the LLVM
1392system.
1393
1394.. _t_integer:
1395
1396Integer Type
1397^^^^^^^^^^^^
1398
1399Overview:
1400"""""""""
1401
1402The integer type is a very simple type that simply specifies an
1403arbitrary bit width for the integer type desired. Any bit width from 1
1404bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1405
1406Syntax:
1407"""""""
1408
1409::
1410
1411 iN
1412
1413The number of bits the integer will occupy is specified by the ``N``
1414value.
1415
1416Examples:
1417"""""""""
1418
1419+----------------+------------------------------------------------+
1420| ``i1`` | a single-bit integer. |
1421+----------------+------------------------------------------------+
1422| ``i32`` | a 32-bit integer. |
1423+----------------+------------------------------------------------+
1424| ``i1942652`` | a really big integer of over 1 million bits. |
1425+----------------+------------------------------------------------+
1426
1427.. _t_floating:
1428
1429Floating Point Types
1430^^^^^^^^^^^^^^^^^^^^
1431
1432.. list-table::
1433 :header-rows: 1
1434
1435 * - Type
1436 - Description
1437
1438 * - ``half``
1439 - 16-bit floating point value
1440
1441 * - ``float``
1442 - 32-bit floating point value
1443
1444 * - ``double``
1445 - 64-bit floating point value
1446
1447 * - ``fp128``
1448 - 128-bit floating point value (112-bit mantissa)
1449
1450 * - ``x86_fp80``
1451 - 80-bit floating point value (X87)
1452
1453 * - ``ppc_fp128``
1454 - 128-bit floating point value (two 64-bits)
1455
1456.. _t_x86mmx:
1457
1458X86mmx Type
1459^^^^^^^^^^^
1460
1461Overview:
1462"""""""""
1463
1464The x86mmx type represents a value held in an MMX register on an x86
1465machine. The operations allowed on it are quite limited: parameters and
1466return values, load and store, and bitcast. User-specified MMX
1467instructions are represented as intrinsic or asm calls with arguments
1468and/or results of this type. There are no arrays, vectors or constants
1469of this type.
1470
1471Syntax:
1472"""""""
1473
1474::
1475
1476 x86mmx
1477
1478.. _t_void:
1479
1480Void Type
1481^^^^^^^^^
1482
1483Overview:
1484"""""""""
1485
1486The void type does not represent any value and has no size.
1487
1488Syntax:
1489"""""""
1490
1491::
1492
1493 void
1494
1495.. _t_label:
1496
1497Label Type
1498^^^^^^^^^^
1499
1500Overview:
1501"""""""""
1502
1503The label type represents code labels.
1504
1505Syntax:
1506"""""""
1507
1508::
1509
1510 label
1511
1512.. _t_metadata:
1513
1514Metadata Type
1515^^^^^^^^^^^^^
1516
1517Overview:
1518"""""""""
1519
1520The metadata type represents embedded metadata. No derived types may be
1521created from metadata except for :ref:`function <t_function>` arguments.
1522
1523Syntax:
1524"""""""
1525
1526::
1527
1528 metadata
1529
1530.. _t_derived:
1531
1532Derived Types
1533-------------
1534
1535The real power in LLVM comes from the derived types in the system. This
1536is what allows a programmer to represent arrays, functions, pointers,
1537and other useful types. Each of these types contain one or more element
1538types which may be a primitive type, or another derived type. For
1539example, it is possible to have a two dimensional array, using an array
1540as the element type of another array.
1541
1542.. _t_aggregate:
1543
1544Aggregate Types
1545^^^^^^^^^^^^^^^
1546
1547Aggregate Types are a subset of derived types that can contain multiple
1548member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1549aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1550aggregate types.
1551
1552.. _t_array:
1553
1554Array Type
1555^^^^^^^^^^
1556
1557Overview:
1558"""""""""
1559
1560The array type is a very simple derived type that arranges elements
1561sequentially in memory. The array type requires a size (number of
1562elements) and an underlying data type.
1563
1564Syntax:
1565"""""""
1566
1567::
1568
1569 [<# elements> x <elementtype>]
1570
1571The number of elements is a constant integer value; ``elementtype`` may
1572be any type with a size.
1573
1574Examples:
1575"""""""""
1576
1577+------------------+--------------------------------------+
1578| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1579+------------------+--------------------------------------+
1580| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1581+------------------+--------------------------------------+
1582| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1583+------------------+--------------------------------------+
1584
1585Here are some examples of multidimensional arrays:
1586
1587+-----------------------------+----------------------------------------------------------+
1588| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1589+-----------------------------+----------------------------------------------------------+
1590| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1591+-----------------------------+----------------------------------------------------------+
1592| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1593+-----------------------------+----------------------------------------------------------+
1594
1595There is no restriction on indexing beyond the end of the array implied
1596by a static type (though there are restrictions on indexing beyond the
1597bounds of an allocated object in some cases). This means that
1598single-dimension 'variable sized array' addressing can be implemented in
1599LLVM with a zero length array type. An implementation of 'pascal style
1600arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1601example.
1602
1603.. _t_function:
1604
1605Function Type
1606^^^^^^^^^^^^^
1607
1608Overview:
1609"""""""""
1610
1611The function type can be thought of as a function signature. It consists
1612of a return type and a list of formal parameter types. The return type
1613of a function type is a first class type or a void type.
1614
1615Syntax:
1616"""""""
1617
1618::
1619
1620 <returntype> (<parameter list>)
1621
1622...where '``<parameter list>``' is a comma-separated list of type
1623specifiers. Optionally, the parameter list may include a type ``...``,
1624which indicates that the function takes a variable number of arguments.
1625Variable argument functions can access their arguments with the
1626:ref:`variable argument handling intrinsic <int_varargs>` functions.
1627'``<returntype>``' is any type except :ref:`label <t_label>`.
1628
1629Examples:
1630"""""""""
1631
1632+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1633| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1634+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001635| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001636+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1637| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1638+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1639| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1640+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1641
1642.. _t_struct:
1643
1644Structure Type
1645^^^^^^^^^^^^^^
1646
1647Overview:
1648"""""""""
1649
1650The structure type is used to represent a collection of data members
1651together in memory. The elements of a structure may be any type that has
1652a size.
1653
1654Structures in memory are accessed using '``load``' and '``store``' by
1655getting a pointer to a field with the '``getelementptr``' instruction.
1656Structures in registers are accessed using the '``extractvalue``' and
1657'``insertvalue``' instructions.
1658
1659Structures may optionally be "packed" structures, which indicate that
1660the alignment of the struct is one byte, and that there is no padding
1661between the elements. In non-packed structs, padding between field types
1662is inserted as defined by the DataLayout string in the module, which is
1663required to match what the underlying code generator expects.
1664
1665Structures can either be "literal" or "identified". A literal structure
1666is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1667identified types are always defined at the top level with a name.
1668Literal types are uniqued by their contents and can never be recursive
1669or opaque since there is no way to write one. Identified types can be
1670recursive, can be opaqued, and are never uniqued.
1671
1672Syntax:
1673"""""""
1674
1675::
1676
1677 %T1 = type { <type list> } ; Identified normal struct type
1678 %T2 = type <{ <type list> }> ; Identified packed struct type
1679
1680Examples:
1681"""""""""
1682
1683+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1684| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1685+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001686| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001687+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1688| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1689+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1690
1691.. _t_opaque:
1692
1693Opaque Structure Types
1694^^^^^^^^^^^^^^^^^^^^^^
1695
1696Overview:
1697"""""""""
1698
1699Opaque structure types are used to represent named structure types that
1700do not have a body specified. This corresponds (for example) to the C
1701notion of a forward declared structure.
1702
1703Syntax:
1704"""""""
1705
1706::
1707
1708 %X = type opaque
1709 %52 = type opaque
1710
1711Examples:
1712"""""""""
1713
1714+--------------+-------------------+
1715| ``opaque`` | An opaque type. |
1716+--------------+-------------------+
1717
1718.. _t_pointer:
1719
1720Pointer Type
1721^^^^^^^^^^^^
1722
1723Overview:
1724"""""""""
1725
1726The pointer type is used to specify memory locations. Pointers are
1727commonly used to reference objects in memory.
1728
1729Pointer types may have an optional address space attribute defining the
1730numbered address space where the pointed-to object resides. The default
1731address space is number zero. The semantics of non-zero address spaces
1732are target-specific.
1733
1734Note that LLVM does not permit pointers to void (``void*``) nor does it
1735permit pointers to labels (``label*``). Use ``i8*`` instead.
1736
1737Syntax:
1738"""""""
1739
1740::
1741
1742 <type> *
1743
1744Examples:
1745"""""""""
1746
1747+-------------------------+--------------------------------------------------------------------------------------------------------------+
1748| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1749+-------------------------+--------------------------------------------------------------------------------------------------------------+
1750| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1751+-------------------------+--------------------------------------------------------------------------------------------------------------+
1752| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1753+-------------------------+--------------------------------------------------------------------------------------------------------------+
1754
1755.. _t_vector:
1756
1757Vector Type
1758^^^^^^^^^^^
1759
1760Overview:
1761"""""""""
1762
1763A vector type is a simple derived type that represents a vector of
1764elements. Vector types are used when multiple primitive data are
1765operated in parallel using a single instruction (SIMD). A vector type
1766requires a size (number of elements) and an underlying primitive data
1767type. Vector types are considered :ref:`first class <t_firstclass>`.
1768
1769Syntax:
1770"""""""
1771
1772::
1773
1774 < <# elements> x <elementtype> >
1775
1776The number of elements is a constant integer value larger than 0;
1777elementtype may be any integer or floating point type, or a pointer to
1778these types. Vectors of size zero are not allowed.
1779
1780Examples:
1781"""""""""
1782
1783+-------------------+--------------------------------------------------+
1784| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1785+-------------------+--------------------------------------------------+
1786| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1787+-------------------+--------------------------------------------------+
1788| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1789+-------------------+--------------------------------------------------+
1790| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1791+-------------------+--------------------------------------------------+
1792
1793Constants
1794=========
1795
1796LLVM has several different basic types of constants. This section
1797describes them all and their syntax.
1798
1799Simple Constants
1800----------------
1801
1802**Boolean constants**
1803 The two strings '``true``' and '``false``' are both valid constants
1804 of the ``i1`` type.
1805**Integer constants**
1806 Standard integers (such as '4') are constants of the
1807 :ref:`integer <t_integer>` type. Negative numbers may be used with
1808 integer types.
1809**Floating point constants**
1810 Floating point constants use standard decimal notation (e.g.
1811 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1812 hexadecimal notation (see below). The assembler requires the exact
1813 decimal value of a floating-point constant. For example, the
1814 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1815 decimal in binary. Floating point constants must have a :ref:`floating
1816 point <t_floating>` type.
1817**Null pointer constants**
1818 The identifier '``null``' is recognized as a null pointer constant
1819 and must be of :ref:`pointer type <t_pointer>`.
1820
1821The one non-intuitive notation for constants is the hexadecimal form of
1822floating point constants. For example, the form
1823'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1824than) '``double 4.5e+15``'. The only time hexadecimal floating point
1825constants are required (and the only time that they are generated by the
1826disassembler) is when a floating point constant must be emitted but it
1827cannot be represented as a decimal floating point number in a reasonable
1828number of digits. For example, NaN's, infinities, and other special
1829values are represented in their IEEE hexadecimal format so that assembly
1830and disassembly do not cause any bits to change in the constants.
1831
1832When using the hexadecimal form, constants of types half, float, and
1833double are represented using the 16-digit form shown above (which
1834matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001835must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001836precision, respectively. Hexadecimal format is always used for long
1837double, and there are three forms of long double. The 80-bit format used
1838by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1839128-bit format used by PowerPC (two adjacent doubles) is represented by
1840``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1841represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1842supported target uses this format. Long doubles will only work if they
1843match the long double format on your target. The IEEE 16-bit format
1844(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1845digits. All hexadecimal formats are big-endian (sign bit at the left).
1846
1847There are no constants of type x86mmx.
1848
1849Complex Constants
1850-----------------
1851
1852Complex constants are a (potentially recursive) combination of simple
1853constants and smaller complex constants.
1854
1855**Structure constants**
1856 Structure constants are represented with notation similar to
1857 structure type definitions (a comma separated list of elements,
1858 surrounded by braces (``{}``)). For example:
1859 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1860 "``@G = external global i32``". Structure constants must have
1861 :ref:`structure type <t_struct>`, and the number and types of elements
1862 must match those specified by the type.
1863**Array constants**
1864 Array constants are represented with notation similar to array type
1865 definitions (a comma separated list of elements, surrounded by
1866 square brackets (``[]``)). For example:
1867 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1868 :ref:`array type <t_array>`, and the number and types of elements must
1869 match those specified by the type.
1870**Vector constants**
1871 Vector constants are represented with notation similar to vector
1872 type definitions (a comma separated list of elements, surrounded by
1873 less-than/greater-than's (``<>``)). For example:
1874 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1875 must have :ref:`vector type <t_vector>`, and the number and types of
1876 elements must match those specified by the type.
1877**Zero initialization**
1878 The string '``zeroinitializer``' can be used to zero initialize a
1879 value to zero of *any* type, including scalar and
1880 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1881 having to print large zero initializers (e.g. for large arrays) and
1882 is always exactly equivalent to using explicit zero initializers.
1883**Metadata node**
1884 A metadata node is a structure-like constant with :ref:`metadata
1885 type <t_metadata>`. For example:
1886 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1887 constants that are meant to be interpreted as part of the
1888 instruction stream, metadata is a place to attach additional
1889 information such as debug info.
1890
1891Global Variable and Function Addresses
1892--------------------------------------
1893
1894The addresses of :ref:`global variables <globalvars>` and
1895:ref:`functions <functionstructure>` are always implicitly valid
1896(link-time) constants. These constants are explicitly referenced when
1897the :ref:`identifier for the global <identifiers>` is used and always have
1898:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1899file:
1900
1901.. code-block:: llvm
1902
1903 @X = global i32 17
1904 @Y = global i32 42
1905 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1906
1907.. _undefvalues:
1908
1909Undefined Values
1910----------------
1911
1912The string '``undef``' can be used anywhere a constant is expected, and
1913indicates that the user of the value may receive an unspecified
1914bit-pattern. Undefined values may be of any type (other than '``label``'
1915or '``void``') and be used anywhere a constant is permitted.
1916
1917Undefined values are useful because they indicate to the compiler that
1918the program is well defined no matter what value is used. This gives the
1919compiler more freedom to optimize. Here are some examples of
1920(potentially surprising) transformations that are valid (in pseudo IR):
1921
1922.. code-block:: llvm
1923
1924 %A = add %X, undef
1925 %B = sub %X, undef
1926 %C = xor %X, undef
1927 Safe:
1928 %A = undef
1929 %B = undef
1930 %C = undef
1931
1932This is safe because all of the output bits are affected by the undef
1933bits. Any output bit can have a zero or one depending on the input bits.
1934
1935.. code-block:: llvm
1936
1937 %A = or %X, undef
1938 %B = and %X, undef
1939 Safe:
1940 %A = -1
1941 %B = 0
1942 Unsafe:
1943 %A = undef
1944 %B = undef
1945
1946These logical operations have bits that are not always affected by the
1947input. For example, if ``%X`` has a zero bit, then the output of the
1948'``and``' operation will always be a zero for that bit, no matter what
1949the corresponding bit from the '``undef``' is. As such, it is unsafe to
1950optimize or assume that the result of the '``and``' is '``undef``'.
1951However, it is safe to assume that all bits of the '``undef``' could be
19520, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1953all the bits of the '``undef``' operand to the '``or``' could be set,
1954allowing the '``or``' to be folded to -1.
1955
1956.. code-block:: llvm
1957
1958 %A = select undef, %X, %Y
1959 %B = select undef, 42, %Y
1960 %C = select %X, %Y, undef
1961 Safe:
1962 %A = %X (or %Y)
1963 %B = 42 (or %Y)
1964 %C = %Y
1965 Unsafe:
1966 %A = undef
1967 %B = undef
1968 %C = undef
1969
1970This set of examples shows that undefined '``select``' (and conditional
1971branch) conditions can go *either way*, but they have to come from one
1972of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1973both known to have a clear low bit, then ``%A`` would have to have a
1974cleared low bit. However, in the ``%C`` example, the optimizer is
1975allowed to assume that the '``undef``' operand could be the same as
1976``%Y``, allowing the whole '``select``' to be eliminated.
1977
1978.. code-block:: llvm
1979
1980 %A = xor undef, undef
1981
1982 %B = undef
1983 %C = xor %B, %B
1984
1985 %D = undef
1986 %E = icmp lt %D, 4
1987 %F = icmp gte %D, 4
1988
1989 Safe:
1990 %A = undef
1991 %B = undef
1992 %C = undef
1993 %D = undef
1994 %E = undef
1995 %F = undef
1996
1997This example points out that two '``undef``' operands are not
1998necessarily the same. This can be surprising to people (and also matches
1999C semantics) where they assume that "``X^X``" is always zero, even if
2000``X`` is undefined. This isn't true for a number of reasons, but the
2001short answer is that an '``undef``' "variable" can arbitrarily change
2002its value over its "live range". This is true because the variable
2003doesn't actually *have a live range*. Instead, the value is logically
2004read from arbitrary registers that happen to be around when needed, so
2005the value is not necessarily consistent over time. In fact, ``%A`` and
2006``%C`` need to have the same semantics or the core LLVM "replace all
2007uses with" concept would not hold.
2008
2009.. code-block:: llvm
2010
2011 %A = fdiv undef, %X
2012 %B = fdiv %X, undef
2013 Safe:
2014 %A = undef
2015 b: unreachable
2016
2017These examples show the crucial difference between an *undefined value*
2018and *undefined behavior*. An undefined value (like '``undef``') is
2019allowed to have an arbitrary bit-pattern. This means that the ``%A``
2020operation can be constant folded to '``undef``', because the '``undef``'
2021could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2022However, in the second example, we can make a more aggressive
2023assumption: because the ``undef`` is allowed to be an arbitrary value,
2024we are allowed to assume that it could be zero. Since a divide by zero
2025has *undefined behavior*, we are allowed to assume that the operation
2026does not execute at all. This allows us to delete the divide and all
2027code after it. Because the undefined operation "can't happen", the
2028optimizer can assume that it occurs in dead code.
2029
2030.. code-block:: llvm
2031
2032 a: store undef -> %X
2033 b: store %X -> undef
2034 Safe:
2035 a: <deleted>
2036 b: unreachable
2037
2038These examples reiterate the ``fdiv`` example: a store *of* an undefined
2039value can be assumed to not have any effect; we can assume that the
2040value is overwritten with bits that happen to match what was already
2041there. However, a store *to* an undefined location could clobber
2042arbitrary memory, therefore, it has undefined behavior.
2043
2044.. _poisonvalues:
2045
2046Poison Values
2047-------------
2048
2049Poison values are similar to :ref:`undef values <undefvalues>`, however
2050they also represent the fact that an instruction or constant expression
2051which cannot evoke side effects has nevertheless detected a condition
2052which results in undefined behavior.
2053
2054There is currently no way of representing a poison value in the IR; they
2055only exist when produced by operations such as :ref:`add <i_add>` with
2056the ``nsw`` flag.
2057
2058Poison value behavior is defined in terms of value *dependence*:
2059
2060- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2061- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2062 their dynamic predecessor basic block.
2063- Function arguments depend on the corresponding actual argument values
2064 in the dynamic callers of their functions.
2065- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2066 instructions that dynamically transfer control back to them.
2067- :ref:`Invoke <i_invoke>` instructions depend on the
2068 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2069 call instructions that dynamically transfer control back to them.
2070- Non-volatile loads and stores depend on the most recent stores to all
2071 of the referenced memory addresses, following the order in the IR
2072 (including loads and stores implied by intrinsics such as
2073 :ref:`@llvm.memcpy <int_memcpy>`.)
2074- An instruction with externally visible side effects depends on the
2075 most recent preceding instruction with externally visible side
2076 effects, following the order in the IR. (This includes :ref:`volatile
2077 operations <volatile>`.)
2078- An instruction *control-depends* on a :ref:`terminator
2079 instruction <terminators>` if the terminator instruction has
2080 multiple successors and the instruction is always executed when
2081 control transfers to one of the successors, and may not be executed
2082 when control is transferred to another.
2083- Additionally, an instruction also *control-depends* on a terminator
2084 instruction if the set of instructions it otherwise depends on would
2085 be different if the terminator had transferred control to a different
2086 successor.
2087- Dependence is transitive.
2088
2089Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2090with the additional affect that any instruction which has a *dependence*
2091on a poison value has undefined behavior.
2092
2093Here are some examples:
2094
2095.. code-block:: llvm
2096
2097 entry:
2098 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2099 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2100 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2101 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2102
2103 store i32 %poison, i32* @g ; Poison value stored to memory.
2104 %poison2 = load i32* @g ; Poison value loaded back from memory.
2105
2106 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2107
2108 %narrowaddr = bitcast i32* @g to i16*
2109 %wideaddr = bitcast i32* @g to i64*
2110 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2111 %poison4 = load i64* %wideaddr ; Returns a poison value.
2112
2113 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2114 br i1 %cmp, label %true, label %end ; Branch to either destination.
2115
2116 true:
2117 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2118 ; it has undefined behavior.
2119 br label %end
2120
2121 end:
2122 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2123 ; Both edges into this PHI are
2124 ; control-dependent on %cmp, so this
2125 ; always results in a poison value.
2126
2127 store volatile i32 0, i32* @g ; This would depend on the store in %true
2128 ; if %cmp is true, or the store in %entry
2129 ; otherwise, so this is undefined behavior.
2130
2131 br i1 %cmp, label %second_true, label %second_end
2132 ; The same branch again, but this time the
2133 ; true block doesn't have side effects.
2134
2135 second_true:
2136 ; No side effects!
2137 ret void
2138
2139 second_end:
2140 store volatile i32 0, i32* @g ; This time, the instruction always depends
2141 ; on the store in %end. Also, it is
2142 ; control-equivalent to %end, so this is
2143 ; well-defined (ignoring earlier undefined
2144 ; behavior in this example).
2145
2146.. _blockaddress:
2147
2148Addresses of Basic Blocks
2149-------------------------
2150
2151``blockaddress(@function, %block)``
2152
2153The '``blockaddress``' constant computes the address of the specified
2154basic block in the specified function, and always has an ``i8*`` type.
2155Taking the address of the entry block is illegal.
2156
2157This value only has defined behavior when used as an operand to the
2158':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2159against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002160undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002161no label is equal to the null pointer. This may be passed around as an
2162opaque pointer sized value as long as the bits are not inspected. This
2163allows ``ptrtoint`` and arithmetic to be performed on these values so
2164long as the original value is reconstituted before the ``indirectbr``
2165instruction.
2166
2167Finally, some targets may provide defined semantics when using the value
2168as the operand to an inline assembly, but that is target specific.
2169
2170Constant Expressions
2171--------------------
2172
2173Constant expressions are used to allow expressions involving other
2174constants to be used as constants. Constant expressions may be of any
2175:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2176that does not have side effects (e.g. load and call are not supported).
2177The following is the syntax for constant expressions:
2178
2179``trunc (CST to TYPE)``
2180 Truncate a constant to another type. The bit size of CST must be
2181 larger than the bit size of TYPE. Both types must be integers.
2182``zext (CST to TYPE)``
2183 Zero extend a constant to another type. The bit size of CST must be
2184 smaller than the bit size of TYPE. Both types must be integers.
2185``sext (CST to TYPE)``
2186 Sign extend a constant to another type. The bit size of CST must be
2187 smaller than the bit size of TYPE. Both types must be integers.
2188``fptrunc (CST to TYPE)``
2189 Truncate a floating point constant to another floating point type.
2190 The size of CST must be larger than the size of TYPE. Both types
2191 must be floating point.
2192``fpext (CST to TYPE)``
2193 Floating point extend a constant to another type. The size of CST
2194 must be smaller or equal to the size of TYPE. Both types must be
2195 floating point.
2196``fptoui (CST to TYPE)``
2197 Convert a floating point constant to the corresponding unsigned
2198 integer constant. TYPE must be a scalar or vector integer type. CST
2199 must be of scalar or vector floating point type. Both CST and TYPE
2200 must be scalars, or vectors of the same number of elements. If the
2201 value won't fit in the integer type, the results are undefined.
2202``fptosi (CST to TYPE)``
2203 Convert a floating point constant to the corresponding signed
2204 integer constant. TYPE must be a scalar or vector integer type. CST
2205 must be of scalar or vector floating point type. Both CST and TYPE
2206 must be scalars, or vectors of the same number of elements. If the
2207 value won't fit in the integer type, the results are undefined.
2208``uitofp (CST to TYPE)``
2209 Convert an unsigned integer constant to the corresponding floating
2210 point constant. TYPE must be a scalar or vector floating point type.
2211 CST must be of scalar or vector integer type. Both CST and TYPE must
2212 be scalars, or vectors of the same number of elements. If the value
2213 won't fit in the floating point type, the results are undefined.
2214``sitofp (CST to TYPE)``
2215 Convert a signed integer constant to the corresponding floating
2216 point constant. TYPE must be a scalar or vector floating point type.
2217 CST must be of scalar or vector integer type. Both CST and TYPE must
2218 be scalars, or vectors of the same number of elements. If the value
2219 won't fit in the floating point type, the results are undefined.
2220``ptrtoint (CST to TYPE)``
2221 Convert a pointer typed constant to the corresponding integer
2222 constant ``TYPE`` must be an integer type. ``CST`` must be of
2223 pointer type. The ``CST`` value is zero extended, truncated, or
2224 unchanged to make it fit in ``TYPE``.
2225``inttoptr (CST to TYPE)``
2226 Convert an integer constant to a pointer constant. TYPE must be a
2227 pointer type. CST must be of integer type. The CST value is zero
2228 extended, truncated, or unchanged to make it fit in a pointer size.
2229 This one is *really* dangerous!
2230``bitcast (CST to TYPE)``
2231 Convert a constant, CST, to another TYPE. The constraints of the
2232 operands are the same as those for the :ref:`bitcast
2233 instruction <i_bitcast>`.
2234``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2235 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2236 constants. As with the :ref:`getelementptr <i_getelementptr>`
2237 instruction, the index list may have zero or more indexes, which are
2238 required to make sense for the type of "CSTPTR".
2239``select (COND, VAL1, VAL2)``
2240 Perform the :ref:`select operation <i_select>` on constants.
2241``icmp COND (VAL1, VAL2)``
2242 Performs the :ref:`icmp operation <i_icmp>` on constants.
2243``fcmp COND (VAL1, VAL2)``
2244 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2245``extractelement (VAL, IDX)``
2246 Perform the :ref:`extractelement operation <i_extractelement>` on
2247 constants.
2248``insertelement (VAL, ELT, IDX)``
2249 Perform the :ref:`insertelement operation <i_insertelement>` on
2250 constants.
2251``shufflevector (VEC1, VEC2, IDXMASK)``
2252 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2253 constants.
2254``extractvalue (VAL, IDX0, IDX1, ...)``
2255 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2256 constants. The index list is interpreted in a similar manner as
2257 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2258 least one index value must be specified.
2259``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2260 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2261 The index list is interpreted in a similar manner as indices in a
2262 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2263 value must be specified.
2264``OPCODE (LHS, RHS)``
2265 Perform the specified operation of the LHS and RHS constants. OPCODE
2266 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2267 binary <bitwiseops>` operations. The constraints on operands are
2268 the same as those for the corresponding instruction (e.g. no bitwise
2269 operations on floating point values are allowed).
2270
2271Other Values
2272============
2273
2274Inline Assembler Expressions
2275----------------------------
2276
2277LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2278Inline Assembly <moduleasm>`) through the use of a special value. This
2279value represents the inline assembler as a string (containing the
2280instructions to emit), a list of operand constraints (stored as a
2281string), a flag that indicates whether or not the inline asm expression
2282has side effects, and a flag indicating whether the function containing
2283the asm needs to align its stack conservatively. An example inline
2284assembler expression is:
2285
2286.. code-block:: llvm
2287
2288 i32 (i32) asm "bswap $0", "=r,r"
2289
2290Inline assembler expressions may **only** be used as the callee operand
2291of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2292Thus, typically we have:
2293
2294.. code-block:: llvm
2295
2296 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2297
2298Inline asms with side effects not visible in the constraint list must be
2299marked as having side effects. This is done through the use of the
2300'``sideeffect``' keyword, like so:
2301
2302.. code-block:: llvm
2303
2304 call void asm sideeffect "eieio", ""()
2305
2306In some cases inline asms will contain code that will not work unless
2307the stack is aligned in some way, such as calls or SSE instructions on
2308x86, yet will not contain code that does that alignment within the asm.
2309The compiler should make conservative assumptions about what the asm
2310might contain and should generate its usual stack alignment code in the
2311prologue if the '``alignstack``' keyword is present:
2312
2313.. code-block:: llvm
2314
2315 call void asm alignstack "eieio", ""()
2316
2317Inline asms also support using non-standard assembly dialects. The
2318assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2319the inline asm is using the Intel dialect. Currently, ATT and Intel are
2320the only supported dialects. An example is:
2321
2322.. code-block:: llvm
2323
2324 call void asm inteldialect "eieio", ""()
2325
2326If multiple keywords appear the '``sideeffect``' keyword must come
2327first, the '``alignstack``' keyword second and the '``inteldialect``'
2328keyword last.
2329
2330Inline Asm Metadata
2331^^^^^^^^^^^^^^^^^^^
2332
2333The call instructions that wrap inline asm nodes may have a
2334"``!srcloc``" MDNode attached to it that contains a list of constant
2335integers. If present, the code generator will use the integer as the
2336location cookie value when report errors through the ``LLVMContext``
2337error reporting mechanisms. This allows a front-end to correlate backend
2338errors that occur with inline asm back to the source code that produced
2339it. For example:
2340
2341.. code-block:: llvm
2342
2343 call void asm sideeffect "something bad", ""(), !srcloc !42
2344 ...
2345 !42 = !{ i32 1234567 }
2346
2347It is up to the front-end to make sense of the magic numbers it places
2348in the IR. If the MDNode contains multiple constants, the code generator
2349will use the one that corresponds to the line of the asm that the error
2350occurs on.
2351
2352.. _metadata:
2353
2354Metadata Nodes and Metadata Strings
2355-----------------------------------
2356
2357LLVM IR allows metadata to be attached to instructions in the program
2358that can convey extra information about the code to the optimizers and
2359code generator. One example application of metadata is source-level
2360debug information. There are two metadata primitives: strings and nodes.
2361All metadata has the ``metadata`` type and is identified in syntax by a
2362preceding exclamation point ('``!``').
2363
2364A metadata string is a string surrounded by double quotes. It can
2365contain any character by escaping non-printable characters with
2366"``\xx``" where "``xx``" is the two digit hex code. For example:
2367"``!"test\00"``".
2368
2369Metadata nodes are represented with notation similar to structure
2370constants (a comma separated list of elements, surrounded by braces and
2371preceded by an exclamation point). Metadata nodes can have any values as
2372their operand. For example:
2373
2374.. code-block:: llvm
2375
2376 !{ metadata !"test\00", i32 10}
2377
2378A :ref:`named metadata <namedmetadatastructure>` is a collection of
2379metadata nodes, which can be looked up in the module symbol table. For
2380example:
2381
2382.. code-block:: llvm
2383
2384 !foo = metadata !{!4, !3}
2385
2386Metadata can be used as function arguments. Here ``llvm.dbg.value``
2387function is using two metadata arguments:
2388
2389.. code-block:: llvm
2390
2391 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2392
2393Metadata can be attached with an instruction. Here metadata ``!21`` is
2394attached to the ``add`` instruction using the ``!dbg`` identifier:
2395
2396.. code-block:: llvm
2397
2398 %indvar.next = add i64 %indvar, 1, !dbg !21
2399
2400More information about specific metadata nodes recognized by the
2401optimizers and code generator is found below.
2402
2403'``tbaa``' Metadata
2404^^^^^^^^^^^^^^^^^^^
2405
2406In LLVM IR, memory does not have types, so LLVM's own type system is not
2407suitable for doing TBAA. Instead, metadata is added to the IR to
2408describe a type system of a higher level language. This can be used to
2409implement typical C/C++ TBAA, but it can also be used to implement
2410custom alias analysis behavior for other languages.
2411
2412The current metadata format is very simple. TBAA metadata nodes have up
2413to three fields, e.g.:
2414
2415.. code-block:: llvm
2416
2417 !0 = metadata !{ metadata !"an example type tree" }
2418 !1 = metadata !{ metadata !"int", metadata !0 }
2419 !2 = metadata !{ metadata !"float", metadata !0 }
2420 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2421
2422The first field is an identity field. It can be any value, usually a
2423metadata string, which uniquely identifies the type. The most important
2424name in the tree is the name of the root node. Two trees with different
2425root node names are entirely disjoint, even if they have leaves with
2426common names.
2427
2428The second field identifies the type's parent node in the tree, or is
2429null or omitted for a root node. A type is considered to alias all of
2430its descendants and all of its ancestors in the tree. Also, a type is
2431considered to alias all types in other trees, so that bitcode produced
2432from multiple front-ends is handled conservatively.
2433
2434If the third field is present, it's an integer which if equal to 1
2435indicates that the type is "constant" (meaning
2436``pointsToConstantMemory`` should return true; see `other useful
2437AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2438
2439'``tbaa.struct``' Metadata
2440^^^^^^^^^^^^^^^^^^^^^^^^^^
2441
2442The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2443aggregate assignment operations in C and similar languages, however it
2444is defined to copy a contiguous region of memory, which is more than
2445strictly necessary for aggregate types which contain holes due to
2446padding. Also, it doesn't contain any TBAA information about the fields
2447of the aggregate.
2448
2449``!tbaa.struct`` metadata can describe which memory subregions in a
2450memcpy are padding and what the TBAA tags of the struct are.
2451
2452The current metadata format is very simple. ``!tbaa.struct`` metadata
2453nodes are a list of operands which are in conceptual groups of three.
2454For each group of three, the first operand gives the byte offset of a
2455field in bytes, the second gives its size in bytes, and the third gives
2456its tbaa tag. e.g.:
2457
2458.. code-block:: llvm
2459
2460 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2461
2462This describes a struct with two fields. The first is at offset 0 bytes
2463with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2464and has size 4 bytes and has tbaa tag !2.
2465
2466Note that the fields need not be contiguous. In this example, there is a
24674 byte gap between the two fields. This gap represents padding which
2468does not carry useful data and need not be preserved.
2469
2470'``fpmath``' Metadata
2471^^^^^^^^^^^^^^^^^^^^^
2472
2473``fpmath`` metadata may be attached to any instruction of floating point
2474type. It can be used to express the maximum acceptable error in the
2475result of that instruction, in ULPs, thus potentially allowing the
2476compiler to use a more efficient but less accurate method of computing
2477it. ULP is defined as follows:
2478
2479 If ``x`` is a real number that lies between two finite consecutive
2480 floating-point numbers ``a`` and ``b``, without being equal to one
2481 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2482 distance between the two non-equal finite floating-point numbers
2483 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2484
2485The metadata node shall consist of a single positive floating point
2486number representing the maximum relative error, for example:
2487
2488.. code-block:: llvm
2489
2490 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2491
2492'``range``' Metadata
2493^^^^^^^^^^^^^^^^^^^^
2494
2495``range`` metadata may be attached only to loads of integer types. It
2496expresses the possible ranges the loaded value is in. The ranges are
2497represented with a flattened list of integers. The loaded value is known
2498to be in the union of the ranges defined by each consecutive pair. Each
2499pair has the following properties:
2500
2501- The type must match the type loaded by the instruction.
2502- The pair ``a,b`` represents the range ``[a,b)``.
2503- Both ``a`` and ``b`` are constants.
2504- The range is allowed to wrap.
2505- The range should not represent the full or empty set. That is,
2506 ``a!=b``.
2507
2508In addition, the pairs must be in signed order of the lower bound and
2509they must be non-contiguous.
2510
2511Examples:
2512
2513.. code-block:: llvm
2514
2515 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2516 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2517 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2518 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2519 ...
2520 !0 = metadata !{ i8 0, i8 2 }
2521 !1 = metadata !{ i8 255, i8 2 }
2522 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2523 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2524
2525Module Flags Metadata
2526=====================
2527
2528Information about the module as a whole is difficult to convey to LLVM's
2529subsystems. The LLVM IR isn't sufficient to transmit this information.
2530The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002531this. These flags are in the form of key / value pairs --- much like a
2532dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002533look it up.
2534
2535The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2536Each triplet has the following form:
2537
2538- The first element is a *behavior* flag, which specifies the behavior
2539 when two (or more) modules are merged together, and it encounters two
2540 (or more) metadata with the same ID. The supported behaviors are
2541 described below.
2542- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002543 metadata. Each module may only have one flag entry for each unique ID (not
2544 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002545- The third element is the value of the flag.
2546
2547When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002548``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2549each unique metadata ID string, there will be exactly one entry in the merged
2550modules ``llvm.module.flags`` metadata table, and the value for that entry will
2551be determined by the merge behavior flag, as described below. The only exception
2552is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002553
2554The following behaviors are supported:
2555
2556.. list-table::
2557 :header-rows: 1
2558 :widths: 10 90
2559
2560 * - Value
2561 - Behavior
2562
2563 * - 1
2564 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002565 Emits an error if two values disagree, otherwise the resulting value
2566 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002567
2568 * - 2
2569 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002570 Emits a warning if two values disagree. The result value will be the
2571 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002572
2573 * - 3
2574 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002575 Adds a requirement that another module flag be present and have a
2576 specified value after linking is performed. The value must be a
2577 metadata pair, where the first element of the pair is the ID of the
2578 module flag to be restricted, and the second element of the pair is
2579 the value the module flag should be restricted to. This behavior can
2580 be used to restrict the allowable results (via triggering of an
2581 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002582
2583 * - 4
2584 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002585 Uses the specified value, regardless of the behavior or value of the
2586 other module. If both modules specify **Override**, but the values
2587 differ, an error will be emitted.
2588
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002589 * - 5
2590 - **Append**
2591 Appends the two values, which are required to be metadata nodes.
2592
2593 * - 6
2594 - **AppendUnique**
2595 Appends the two values, which are required to be metadata
2596 nodes. However, duplicate entries in the second list are dropped
2597 during the append operation.
2598
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002599It is an error for a particular unique flag ID to have multiple behaviors,
2600except in the case of **Require** (which adds restrictions on another metadata
2601value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002602
2603An example of module flags:
2604
2605.. code-block:: llvm
2606
2607 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2608 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2609 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2610 !3 = metadata !{ i32 3, metadata !"qux",
2611 metadata !{
2612 metadata !"foo", i32 1
2613 }
2614 }
2615 !llvm.module.flags = !{ !0, !1, !2, !3 }
2616
2617- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2618 if two or more ``!"foo"`` flags are seen is to emit an error if their
2619 values are not equal.
2620
2621- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2622 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002623 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002624
2625- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2626 behavior if two or more ``!"qux"`` flags are seen is to emit a
2627 warning if their values are not equal.
2628
2629- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2630
2631 ::
2632
2633 metadata !{ metadata !"foo", i32 1 }
2634
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002635 The behavior is to emit an error if the ``llvm.module.flags`` does not
2636 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2637 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002638
2639Objective-C Garbage Collection Module Flags Metadata
2640----------------------------------------------------
2641
2642On the Mach-O platform, Objective-C stores metadata about garbage
2643collection in a special section called "image info". The metadata
2644consists of a version number and a bitmask specifying what types of
2645garbage collection are supported (if any) by the file. If two or more
2646modules are linked together their garbage collection metadata needs to
2647be merged rather than appended together.
2648
2649The Objective-C garbage collection module flags metadata consists of the
2650following key-value pairs:
2651
2652.. list-table::
2653 :header-rows: 1
2654 :widths: 30 70
2655
2656 * - Key
2657 - Value
2658
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002659 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002660 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002661
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002662 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002663 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002664 always 0.
2665
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002666 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002667 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002668 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2669 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2670 Objective-C ABI version 2.
2671
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002672 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002673 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002674 not. Valid values are 0, for no garbage collection, and 2, for garbage
2675 collection supported.
2676
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002677 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002678 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002679 If present, its value must be 6. This flag requires that the
2680 ``Objective-C Garbage Collection`` flag have the value 2.
2681
2682Some important flag interactions:
2683
2684- If a module with ``Objective-C Garbage Collection`` set to 0 is
2685 merged with a module with ``Objective-C Garbage Collection`` set to
2686 2, then the resulting module has the
2687 ``Objective-C Garbage Collection`` flag set to 0.
2688- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2689 merged with a module with ``Objective-C GC Only`` set to 6.
2690
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002691Automatic Linker Flags Module Flags Metadata
2692--------------------------------------------
2693
2694Some targets support embedding flags to the linker inside individual object
2695files. Typically this is used in conjunction with language extensions which
2696allow source files to explicitly declare the libraries they depend on, and have
2697these automatically be transmitted to the linker via object files.
2698
2699These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002700using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002701to be ``AppendUnique``, and the value for the key is expected to be a metadata
2702node which should be a list of other metadata nodes, each of which should be a
2703list of metadata strings defining linker options.
2704
2705For example, the following metadata section specifies two separate sets of
2706linker options, presumably to link against ``libz`` and the ``Cocoa``
2707framework::
2708
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002709 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002710 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002711 metadata !{ metadata !"-lz" },
2712 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002713 !llvm.module.flags = !{ !0 }
2714
2715The metadata encoding as lists of lists of options, as opposed to a collapsed
2716list of options, is chosen so that the IR encoding can use multiple option
2717strings to specify e.g., a single library, while still having that specifier be
2718preserved as an atomic element that can be recognized by a target specific
2719assembly writer or object file emitter.
2720
2721Each individual option is required to be either a valid option for the target's
2722linker, or an option that is reserved by the target specific assembly writer or
2723object file emitter. No other aspect of these options is defined by the IR.
2724
Sean Silvaf722b002012-12-07 10:36:55 +00002725Intrinsic Global Variables
2726==========================
2727
2728LLVM has a number of "magic" global variables that contain data that
2729affect code generation or other IR semantics. These are documented here.
2730All globals of this sort should have a section specified as
2731"``llvm.metadata``". This section and all globals that start with
2732"``llvm.``" are reserved for use by LLVM.
2733
2734The '``llvm.used``' Global Variable
2735-----------------------------------
2736
2737The ``@llvm.used`` global is an array with i8\* element type which has
2738:ref:`appending linkage <linkage_appending>`. This array contains a list of
2739pointers to global variables and functions which may optionally have a
2740pointer cast formed of bitcast or getelementptr. For example, a legal
2741use of it is:
2742
2743.. code-block:: llvm
2744
2745 @X = global i8 4
2746 @Y = global i32 123
2747
2748 @llvm.used = appending global [2 x i8*] [
2749 i8* @X,
2750 i8* bitcast (i32* @Y to i8*)
2751 ], section "llvm.metadata"
2752
2753If a global variable appears in the ``@llvm.used`` list, then the
2754compiler, assembler, and linker are required to treat the symbol as if
2755there is a reference to the global that it cannot see. For example, if a
2756variable has internal linkage and no references other than that from the
2757``@llvm.used`` list, it cannot be deleted. This is commonly used to
2758represent references from inline asms and other things the compiler
2759cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2760
2761On some targets, the code generator must emit a directive to the
2762assembler or object file to prevent the assembler and linker from
2763molesting the symbol.
2764
2765The '``llvm.compiler.used``' Global Variable
2766--------------------------------------------
2767
2768The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2769directive, except that it only prevents the compiler from touching the
2770symbol. On targets that support it, this allows an intelligent linker to
2771optimize references to the symbol without being impeded as it would be
2772by ``@llvm.used``.
2773
2774This is a rare construct that should only be used in rare circumstances,
2775and should not be exposed to source languages.
2776
2777The '``llvm.global_ctors``' Global Variable
2778-------------------------------------------
2779
2780.. code-block:: llvm
2781
2782 %0 = type { i32, void ()* }
2783 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2784
2785The ``@llvm.global_ctors`` array contains a list of constructor
2786functions and associated priorities. The functions referenced by this
2787array will be called in ascending order of priority (i.e. lowest first)
2788when the module is loaded. The order of functions with the same priority
2789is not defined.
2790
2791The '``llvm.global_dtors``' Global Variable
2792-------------------------------------------
2793
2794.. code-block:: llvm
2795
2796 %0 = type { i32, void ()* }
2797 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2798
2799The ``@llvm.global_dtors`` array contains a list of destructor functions
2800and associated priorities. The functions referenced by this array will
2801be called in descending order of priority (i.e. highest first) when the
2802module is loaded. The order of functions with the same priority is not
2803defined.
2804
2805Instruction Reference
2806=====================
2807
2808The LLVM instruction set consists of several different classifications
2809of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2810instructions <binaryops>`, :ref:`bitwise binary
2811instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2812:ref:`other instructions <otherops>`.
2813
2814.. _terminators:
2815
2816Terminator Instructions
2817-----------------------
2818
2819As mentioned :ref:`previously <functionstructure>`, every basic block in a
2820program ends with a "Terminator" instruction, which indicates which
2821block should be executed after the current block is finished. These
2822terminator instructions typically yield a '``void``' value: they produce
2823control flow, not values (the one exception being the
2824':ref:`invoke <i_invoke>`' instruction).
2825
2826The terminator instructions are: ':ref:`ret <i_ret>`',
2827':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2828':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2829':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2830
2831.. _i_ret:
2832
2833'``ret``' Instruction
2834^^^^^^^^^^^^^^^^^^^^^
2835
2836Syntax:
2837"""""""
2838
2839::
2840
2841 ret <type> <value> ; Return a value from a non-void function
2842 ret void ; Return from void function
2843
2844Overview:
2845"""""""""
2846
2847The '``ret``' instruction is used to return control flow (and optionally
2848a value) from a function back to the caller.
2849
2850There are two forms of the '``ret``' instruction: one that returns a
2851value and then causes control flow, and one that just causes control
2852flow to occur.
2853
2854Arguments:
2855""""""""""
2856
2857The '``ret``' instruction optionally accepts a single argument, the
2858return value. The type of the return value must be a ':ref:`first
2859class <t_firstclass>`' type.
2860
2861A function is not :ref:`well formed <wellformed>` if it it has a non-void
2862return type and contains a '``ret``' instruction with no return value or
2863a return value with a type that does not match its type, or if it has a
2864void return type and contains a '``ret``' instruction with a return
2865value.
2866
2867Semantics:
2868""""""""""
2869
2870When the '``ret``' instruction is executed, control flow returns back to
2871the calling function's context. If the caller is a
2872":ref:`call <i_call>`" instruction, execution continues at the
2873instruction after the call. If the caller was an
2874":ref:`invoke <i_invoke>`" instruction, execution continues at the
2875beginning of the "normal" destination block. If the instruction returns
2876a value, that value shall set the call or invoke instruction's return
2877value.
2878
2879Example:
2880""""""""
2881
2882.. code-block:: llvm
2883
2884 ret i32 5 ; Return an integer value of 5
2885 ret void ; Return from a void function
2886 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
2887
2888.. _i_br:
2889
2890'``br``' Instruction
2891^^^^^^^^^^^^^^^^^^^^
2892
2893Syntax:
2894"""""""
2895
2896::
2897
2898 br i1 <cond>, label <iftrue>, label <iffalse>
2899 br label <dest> ; Unconditional branch
2900
2901Overview:
2902"""""""""
2903
2904The '``br``' instruction is used to cause control flow to transfer to a
2905different basic block in the current function. There are two forms of
2906this instruction, corresponding to a conditional branch and an
2907unconditional branch.
2908
2909Arguments:
2910""""""""""
2911
2912The conditional branch form of the '``br``' instruction takes a single
2913'``i1``' value and two '``label``' values. The unconditional form of the
2914'``br``' instruction takes a single '``label``' value as a target.
2915
2916Semantics:
2917""""""""""
2918
2919Upon execution of a conditional '``br``' instruction, the '``i1``'
2920argument is evaluated. If the value is ``true``, control flows to the
2921'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
2922to the '``iffalse``' ``label`` argument.
2923
2924Example:
2925""""""""
2926
2927.. code-block:: llvm
2928
2929 Test:
2930 %cond = icmp eq i32 %a, %b
2931 br i1 %cond, label %IfEqual, label %IfUnequal
2932 IfEqual:
2933 ret i32 1
2934 IfUnequal:
2935 ret i32 0
2936
2937.. _i_switch:
2938
2939'``switch``' Instruction
2940^^^^^^^^^^^^^^^^^^^^^^^^
2941
2942Syntax:
2943"""""""
2944
2945::
2946
2947 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
2948
2949Overview:
2950"""""""""
2951
2952The '``switch``' instruction is used to transfer control flow to one of
2953several different places. It is a generalization of the '``br``'
2954instruction, allowing a branch to occur to one of many possible
2955destinations.
2956
2957Arguments:
2958""""""""""
2959
2960The '``switch``' instruction uses three parameters: an integer
2961comparison value '``value``', a default '``label``' destination, and an
2962array of pairs of comparison value constants and '``label``'s. The table
2963is not allowed to contain duplicate constant entries.
2964
2965Semantics:
2966""""""""""
2967
2968The ``switch`` instruction specifies a table of values and destinations.
2969When the '``switch``' instruction is executed, this table is searched
2970for the given value. If the value is found, control flow is transferred
2971to the corresponding destination; otherwise, control flow is transferred
2972to the default destination.
2973
2974Implementation:
2975"""""""""""""""
2976
2977Depending on properties of the target machine and the particular
2978``switch`` instruction, this instruction may be code generated in
2979different ways. For example, it could be generated as a series of
2980chained conditional branches or with a lookup table.
2981
2982Example:
2983""""""""
2984
2985.. code-block:: llvm
2986
2987 ; Emulate a conditional br instruction
2988 %Val = zext i1 %value to i32
2989 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2990
2991 ; Emulate an unconditional br instruction
2992 switch i32 0, label %dest [ ]
2993
2994 ; Implement a jump table:
2995 switch i32 %val, label %otherwise [ i32 0, label %onzero
2996 i32 1, label %onone
2997 i32 2, label %ontwo ]
2998
2999.. _i_indirectbr:
3000
3001'``indirectbr``' Instruction
3002^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3003
3004Syntax:
3005"""""""
3006
3007::
3008
3009 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3010
3011Overview:
3012"""""""""
3013
3014The '``indirectbr``' instruction implements an indirect branch to a
3015label within the current function, whose address is specified by
3016"``address``". Address must be derived from a
3017:ref:`blockaddress <blockaddress>` constant.
3018
3019Arguments:
3020""""""""""
3021
3022The '``address``' argument is the address of the label to jump to. The
3023rest of the arguments indicate the full set of possible destinations
3024that the address may point to. Blocks are allowed to occur multiple
3025times in the destination list, though this isn't particularly useful.
3026
3027This destination list is required so that dataflow analysis has an
3028accurate understanding of the CFG.
3029
3030Semantics:
3031""""""""""
3032
3033Control transfers to the block specified in the address argument. All
3034possible destination blocks must be listed in the label list, otherwise
3035this instruction has undefined behavior. This implies that jumps to
3036labels defined in other functions have undefined behavior as well.
3037
3038Implementation:
3039"""""""""""""""
3040
3041This is typically implemented with a jump through a register.
3042
3043Example:
3044""""""""
3045
3046.. code-block:: llvm
3047
3048 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3049
3050.. _i_invoke:
3051
3052'``invoke``' Instruction
3053^^^^^^^^^^^^^^^^^^^^^^^^
3054
3055Syntax:
3056"""""""
3057
3058::
3059
3060 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3061 to label <normal label> unwind label <exception label>
3062
3063Overview:
3064"""""""""
3065
3066The '``invoke``' instruction causes control to transfer to a specified
3067function, with the possibility of control flow transfer to either the
3068'``normal``' label or the '``exception``' label. If the callee function
3069returns with the "``ret``" instruction, control flow will return to the
3070"normal" label. If the callee (or any indirect callees) returns via the
3071":ref:`resume <i_resume>`" instruction or other exception handling
3072mechanism, control is interrupted and continued at the dynamically
3073nearest "exception" label.
3074
3075The '``exception``' label is a `landing
3076pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3077'``exception``' label is required to have the
3078":ref:`landingpad <i_landingpad>`" instruction, which contains the
3079information about the behavior of the program after unwinding happens,
3080as its first non-PHI instruction. The restrictions on the
3081"``landingpad``" instruction's tightly couples it to the "``invoke``"
3082instruction, so that the important information contained within the
3083"``landingpad``" instruction can't be lost through normal code motion.
3084
3085Arguments:
3086""""""""""
3087
3088This instruction requires several arguments:
3089
3090#. The optional "cconv" marker indicates which :ref:`calling
3091 convention <callingconv>` the call should use. If none is
3092 specified, the call defaults to using C calling conventions.
3093#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3094 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3095 are valid here.
3096#. '``ptr to function ty``': shall be the signature of the pointer to
3097 function value being invoked. In most cases, this is a direct
3098 function invocation, but indirect ``invoke``'s are just as possible,
3099 branching off an arbitrary pointer to function value.
3100#. '``function ptr val``': An LLVM value containing a pointer to a
3101 function to be invoked.
3102#. '``function args``': argument list whose types match the function
3103 signature argument types and parameter attributes. All arguments must
3104 be of :ref:`first class <t_firstclass>` type. If the function signature
3105 indicates the function accepts a variable number of arguments, the
3106 extra arguments can be specified.
3107#. '``normal label``': the label reached when the called function
3108 executes a '``ret``' instruction.
3109#. '``exception label``': the label reached when a callee returns via
3110 the :ref:`resume <i_resume>` instruction or other exception handling
3111 mechanism.
3112#. The optional :ref:`function attributes <fnattrs>` list. Only
3113 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3114 attributes are valid here.
3115
3116Semantics:
3117""""""""""
3118
3119This instruction is designed to operate as a standard '``call``'
3120instruction in most regards. The primary difference is that it
3121establishes an association with a label, which is used by the runtime
3122library to unwind the stack.
3123
3124This instruction is used in languages with destructors to ensure that
3125proper cleanup is performed in the case of either a ``longjmp`` or a
3126thrown exception. Additionally, this is important for implementation of
3127'``catch``' clauses in high-level languages that support them.
3128
3129For the purposes of the SSA form, the definition of the value returned
3130by the '``invoke``' instruction is deemed to occur on the edge from the
3131current block to the "normal" label. If the callee unwinds then no
3132return value is available.
3133
3134Example:
3135""""""""
3136
3137.. code-block:: llvm
3138
3139 %retval = invoke i32 @Test(i32 15) to label %Continue
3140 unwind label %TestCleanup ; {i32}:retval set
3141 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3142 unwind label %TestCleanup ; {i32}:retval set
3143
3144.. _i_resume:
3145
3146'``resume``' Instruction
3147^^^^^^^^^^^^^^^^^^^^^^^^
3148
3149Syntax:
3150"""""""
3151
3152::
3153
3154 resume <type> <value>
3155
3156Overview:
3157"""""""""
3158
3159The '``resume``' instruction is a terminator instruction that has no
3160successors.
3161
3162Arguments:
3163""""""""""
3164
3165The '``resume``' instruction requires one argument, which must have the
3166same type as the result of any '``landingpad``' instruction in the same
3167function.
3168
3169Semantics:
3170""""""""""
3171
3172The '``resume``' instruction resumes propagation of an existing
3173(in-flight) exception whose unwinding was interrupted with a
3174:ref:`landingpad <i_landingpad>` instruction.
3175
3176Example:
3177""""""""
3178
3179.. code-block:: llvm
3180
3181 resume { i8*, i32 } %exn
3182
3183.. _i_unreachable:
3184
3185'``unreachable``' Instruction
3186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3187
3188Syntax:
3189"""""""
3190
3191::
3192
3193 unreachable
3194
3195Overview:
3196"""""""""
3197
3198The '``unreachable``' instruction has no defined semantics. This
3199instruction is used to inform the optimizer that a particular portion of
3200the code is not reachable. This can be used to indicate that the code
3201after a no-return function cannot be reached, and other facts.
3202
3203Semantics:
3204""""""""""
3205
3206The '``unreachable``' instruction has no defined semantics.
3207
3208.. _binaryops:
3209
3210Binary Operations
3211-----------------
3212
3213Binary operators are used to do most of the computation in a program.
3214They require two operands of the same type, execute an operation on
3215them, and produce a single value. The operands might represent multiple
3216data, as is the case with the :ref:`vector <t_vector>` data type. The
3217result value has the same type as its operands.
3218
3219There are several different binary operators:
3220
3221.. _i_add:
3222
3223'``add``' Instruction
3224^^^^^^^^^^^^^^^^^^^^^
3225
3226Syntax:
3227"""""""
3228
3229::
3230
3231 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3232 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3233 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3234 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3235
3236Overview:
3237"""""""""
3238
3239The '``add``' instruction returns the sum of its two operands.
3240
3241Arguments:
3242""""""""""
3243
3244The two arguments to the '``add``' instruction must be
3245:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3246arguments must have identical types.
3247
3248Semantics:
3249""""""""""
3250
3251The value produced is the integer sum of the two operands.
3252
3253If the sum has unsigned overflow, the result returned is the
3254mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3255the result.
3256
3257Because LLVM integers use a two's complement representation, this
3258instruction is appropriate for both signed and unsigned integers.
3259
3260``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3261respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3262result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3263unsigned and/or signed overflow, respectively, occurs.
3264
3265Example:
3266""""""""
3267
3268.. code-block:: llvm
3269
3270 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3271
3272.. _i_fadd:
3273
3274'``fadd``' Instruction
3275^^^^^^^^^^^^^^^^^^^^^^
3276
3277Syntax:
3278"""""""
3279
3280::
3281
3282 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3283
3284Overview:
3285"""""""""
3286
3287The '``fadd``' instruction returns the sum of its two operands.
3288
3289Arguments:
3290""""""""""
3291
3292The two arguments to the '``fadd``' instruction must be :ref:`floating
3293point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3294Both arguments must have identical types.
3295
3296Semantics:
3297""""""""""
3298
3299The value produced is the floating point sum of the two operands. This
3300instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3301which are optimization hints to enable otherwise unsafe floating point
3302optimizations:
3303
3304Example:
3305""""""""
3306
3307.. code-block:: llvm
3308
3309 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3310
3311'``sub``' Instruction
3312^^^^^^^^^^^^^^^^^^^^^
3313
3314Syntax:
3315"""""""
3316
3317::
3318
3319 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3320 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3321 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3322 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3323
3324Overview:
3325"""""""""
3326
3327The '``sub``' instruction returns the difference of its two operands.
3328
3329Note that the '``sub``' instruction is used to represent the '``neg``'
3330instruction present in most other intermediate representations.
3331
3332Arguments:
3333""""""""""
3334
3335The two arguments to the '``sub``' instruction must be
3336:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3337arguments must have identical types.
3338
3339Semantics:
3340""""""""""
3341
3342The value produced is the integer difference of the two operands.
3343
3344If the difference has unsigned overflow, the result returned is the
3345mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3346the result.
3347
3348Because LLVM integers use a two's complement representation, this
3349instruction is appropriate for both signed and unsigned integers.
3350
3351``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3352respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3353result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3354unsigned and/or signed overflow, respectively, occurs.
3355
3356Example:
3357""""""""
3358
3359.. code-block:: llvm
3360
3361 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3362 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3363
3364.. _i_fsub:
3365
3366'``fsub``' Instruction
3367^^^^^^^^^^^^^^^^^^^^^^
3368
3369Syntax:
3370"""""""
3371
3372::
3373
3374 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3375
3376Overview:
3377"""""""""
3378
3379The '``fsub``' instruction returns the difference of its two operands.
3380
3381Note that the '``fsub``' instruction is used to represent the '``fneg``'
3382instruction present in most other intermediate representations.
3383
3384Arguments:
3385""""""""""
3386
3387The two arguments to the '``fsub``' instruction must be :ref:`floating
3388point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3389Both arguments must have identical types.
3390
3391Semantics:
3392""""""""""
3393
3394The value produced is the floating point difference of the two operands.
3395This instruction can also take any number of :ref:`fast-math
3396flags <fastmath>`, which are optimization hints to enable otherwise
3397unsafe floating point optimizations:
3398
3399Example:
3400""""""""
3401
3402.. code-block:: llvm
3403
3404 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3405 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3406
3407'``mul``' Instruction
3408^^^^^^^^^^^^^^^^^^^^^
3409
3410Syntax:
3411"""""""
3412
3413::
3414
3415 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3416 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3417 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3418 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3419
3420Overview:
3421"""""""""
3422
3423The '``mul``' instruction returns the product of its two operands.
3424
3425Arguments:
3426""""""""""
3427
3428The two arguments to the '``mul``' instruction must be
3429:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3430arguments must have identical types.
3431
3432Semantics:
3433""""""""""
3434
3435The value produced is the integer product of the two operands.
3436
3437If the result of the multiplication has unsigned overflow, the result
3438returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3439bit width of the result.
3440
3441Because LLVM integers use a two's complement representation, and the
3442result is the same width as the operands, this instruction returns the
3443correct result for both signed and unsigned integers. If a full product
3444(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3445sign-extended or zero-extended as appropriate to the width of the full
3446product.
3447
3448``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3449respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3450result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3451unsigned and/or signed overflow, respectively, occurs.
3452
3453Example:
3454""""""""
3455
3456.. code-block:: llvm
3457
3458 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3459
3460.. _i_fmul:
3461
3462'``fmul``' Instruction
3463^^^^^^^^^^^^^^^^^^^^^^
3464
3465Syntax:
3466"""""""
3467
3468::
3469
3470 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3471
3472Overview:
3473"""""""""
3474
3475The '``fmul``' instruction returns the product of its two operands.
3476
3477Arguments:
3478""""""""""
3479
3480The two arguments to the '``fmul``' instruction must be :ref:`floating
3481point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3482Both arguments must have identical types.
3483
3484Semantics:
3485""""""""""
3486
3487The value produced is the floating point product of the two operands.
3488This instruction can also take any number of :ref:`fast-math
3489flags <fastmath>`, which are optimization hints to enable otherwise
3490unsafe floating point optimizations:
3491
3492Example:
3493""""""""
3494
3495.. code-block:: llvm
3496
3497 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3498
3499'``udiv``' Instruction
3500^^^^^^^^^^^^^^^^^^^^^^
3501
3502Syntax:
3503"""""""
3504
3505::
3506
3507 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3508 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3509
3510Overview:
3511"""""""""
3512
3513The '``udiv``' instruction returns the quotient of its two operands.
3514
3515Arguments:
3516""""""""""
3517
3518The two arguments to the '``udiv``' instruction must be
3519:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3520arguments must have identical types.
3521
3522Semantics:
3523""""""""""
3524
3525The value produced is the unsigned integer quotient of the two operands.
3526
3527Note that unsigned integer division and signed integer division are
3528distinct operations; for signed integer division, use '``sdiv``'.
3529
3530Division by zero leads to undefined behavior.
3531
3532If the ``exact`` keyword is present, the result value of the ``udiv`` is
3533a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3534such, "((a udiv exact b) mul b) == a").
3535
3536Example:
3537""""""""
3538
3539.. code-block:: llvm
3540
3541 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3542
3543'``sdiv``' Instruction
3544^^^^^^^^^^^^^^^^^^^^^^
3545
3546Syntax:
3547"""""""
3548
3549::
3550
3551 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3552 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3553
3554Overview:
3555"""""""""
3556
3557The '``sdiv``' instruction returns the quotient of its two operands.
3558
3559Arguments:
3560""""""""""
3561
3562The two arguments to the '``sdiv``' instruction must be
3563:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3564arguments must have identical types.
3565
3566Semantics:
3567""""""""""
3568
3569The value produced is the signed integer quotient of the two operands
3570rounded towards zero.
3571
3572Note that signed integer division and unsigned integer division are
3573distinct operations; for unsigned integer division, use '``udiv``'.
3574
3575Division by zero leads to undefined behavior. Overflow also leads to
3576undefined behavior; this is a rare case, but can occur, for example, by
3577doing a 32-bit division of -2147483648 by -1.
3578
3579If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3580a :ref:`poison value <poisonvalues>` if the result would be rounded.
3581
3582Example:
3583""""""""
3584
3585.. code-block:: llvm
3586
3587 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3588
3589.. _i_fdiv:
3590
3591'``fdiv``' Instruction
3592^^^^^^^^^^^^^^^^^^^^^^
3593
3594Syntax:
3595"""""""
3596
3597::
3598
3599 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3600
3601Overview:
3602"""""""""
3603
3604The '``fdiv``' instruction returns the quotient of its two operands.
3605
3606Arguments:
3607""""""""""
3608
3609The two arguments to the '``fdiv``' instruction must be :ref:`floating
3610point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3611Both arguments must have identical types.
3612
3613Semantics:
3614""""""""""
3615
3616The value produced is the floating point quotient of the two operands.
3617This instruction can also take any number of :ref:`fast-math
3618flags <fastmath>`, which are optimization hints to enable otherwise
3619unsafe floating point optimizations:
3620
3621Example:
3622""""""""
3623
3624.. code-block:: llvm
3625
3626 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3627
3628'``urem``' Instruction
3629^^^^^^^^^^^^^^^^^^^^^^
3630
3631Syntax:
3632"""""""
3633
3634::
3635
3636 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3637
3638Overview:
3639"""""""""
3640
3641The '``urem``' instruction returns the remainder from the unsigned
3642division of its two arguments.
3643
3644Arguments:
3645""""""""""
3646
3647The two arguments to the '``urem``' instruction must be
3648:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3649arguments must have identical types.
3650
3651Semantics:
3652""""""""""
3653
3654This instruction returns the unsigned integer *remainder* of a division.
3655This instruction always performs an unsigned division to get the
3656remainder.
3657
3658Note that unsigned integer remainder and signed integer remainder are
3659distinct operations; for signed integer remainder, use '``srem``'.
3660
3661Taking the remainder of a division by zero leads to undefined behavior.
3662
3663Example:
3664""""""""
3665
3666.. code-block:: llvm
3667
3668 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3669
3670'``srem``' Instruction
3671^^^^^^^^^^^^^^^^^^^^^^
3672
3673Syntax:
3674"""""""
3675
3676::
3677
3678 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3679
3680Overview:
3681"""""""""
3682
3683The '``srem``' instruction returns the remainder from the signed
3684division of its two operands. This instruction can also take
3685:ref:`vector <t_vector>` versions of the values in which case the elements
3686must be integers.
3687
3688Arguments:
3689""""""""""
3690
3691The two arguments to the '``srem``' instruction must be
3692:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3693arguments must have identical types.
3694
3695Semantics:
3696""""""""""
3697
3698This instruction returns the *remainder* of a division (where the result
3699is either zero or has the same sign as the dividend, ``op1``), not the
3700*modulo* operator (where the result is either zero or has the same sign
3701as the divisor, ``op2``) of a value. For more information about the
3702difference, see `The Math
3703Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3704table of how this is implemented in various languages, please see
3705`Wikipedia: modulo
3706operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3707
3708Note that signed integer remainder and unsigned integer remainder are
3709distinct operations; for unsigned integer remainder, use '``urem``'.
3710
3711Taking the remainder of a division by zero leads to undefined behavior.
3712Overflow also leads to undefined behavior; this is a rare case, but can
3713occur, for example, by taking the remainder of a 32-bit division of
3714-2147483648 by -1. (The remainder doesn't actually overflow, but this
3715rule lets srem be implemented using instructions that return both the
3716result of the division and the remainder.)
3717
3718Example:
3719""""""""
3720
3721.. code-block:: llvm
3722
3723 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3724
3725.. _i_frem:
3726
3727'``frem``' Instruction
3728^^^^^^^^^^^^^^^^^^^^^^
3729
3730Syntax:
3731"""""""
3732
3733::
3734
3735 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3736
3737Overview:
3738"""""""""
3739
3740The '``frem``' instruction returns the remainder from the division of
3741its two operands.
3742
3743Arguments:
3744""""""""""
3745
3746The two arguments to the '``frem``' instruction must be :ref:`floating
3747point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3748Both arguments must have identical types.
3749
3750Semantics:
3751""""""""""
3752
3753This instruction returns the *remainder* of a division. The remainder
3754has the same sign as the dividend. This instruction can also take any
3755number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3756to enable otherwise unsafe floating point optimizations:
3757
3758Example:
3759""""""""
3760
3761.. code-block:: llvm
3762
3763 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3764
3765.. _bitwiseops:
3766
3767Bitwise Binary Operations
3768-------------------------
3769
3770Bitwise binary operators are used to do various forms of bit-twiddling
3771in a program. They are generally very efficient instructions and can
3772commonly be strength reduced from other instructions. They require two
3773operands of the same type, execute an operation on them, and produce a
3774single value. The resulting value is the same type as its operands.
3775
3776'``shl``' Instruction
3777^^^^^^^^^^^^^^^^^^^^^
3778
3779Syntax:
3780"""""""
3781
3782::
3783
3784 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3785 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3786 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3787 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3788
3789Overview:
3790"""""""""
3791
3792The '``shl``' instruction returns the first operand shifted to the left
3793a specified number of bits.
3794
3795Arguments:
3796""""""""""
3797
3798Both arguments to the '``shl``' instruction must be the same
3799:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3800'``op2``' is treated as an unsigned value.
3801
3802Semantics:
3803""""""""""
3804
3805The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3806where ``n`` is the width of the result. If ``op2`` is (statically or
3807dynamically) negative or equal to or larger than the number of bits in
3808``op1``, the result is undefined. If the arguments are vectors, each
3809vector element of ``op1`` is shifted by the corresponding shift amount
3810in ``op2``.
3811
3812If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3813value <poisonvalues>` if it shifts out any non-zero bits. If the
3814``nsw`` keyword is present, then the shift produces a :ref:`poison
3815value <poisonvalues>` if it shifts out any bits that disagree with the
3816resultant sign bit. As such, NUW/NSW have the same semantics as they
3817would if the shift were expressed as a mul instruction with the same
3818nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3819
3820Example:
3821""""""""
3822
3823.. code-block:: llvm
3824
3825 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3826 <result> = shl i32 4, 2 ; yields {i32}: 16
3827 <result> = shl i32 1, 10 ; yields {i32}: 1024
3828 <result> = shl i32 1, 32 ; undefined
3829 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3830
3831'``lshr``' Instruction
3832^^^^^^^^^^^^^^^^^^^^^^
3833
3834Syntax:
3835"""""""
3836
3837::
3838
3839 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3840 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3841
3842Overview:
3843"""""""""
3844
3845The '``lshr``' instruction (logical shift right) returns the first
3846operand shifted to the right a specified number of bits with zero fill.
3847
3848Arguments:
3849""""""""""
3850
3851Both arguments to the '``lshr``' instruction must be the same
3852:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3853'``op2``' is treated as an unsigned value.
3854
3855Semantics:
3856""""""""""
3857
3858This instruction always performs a logical shift right operation. The
3859most significant bits of the result will be filled with zero bits after
3860the shift. If ``op2`` is (statically or dynamically) equal to or larger
3861than the number of bits in ``op1``, the result is undefined. If the
3862arguments are vectors, each vector element of ``op1`` is shifted by the
3863corresponding shift amount in ``op2``.
3864
3865If the ``exact`` keyword is present, the result value of the ``lshr`` is
3866a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3867non-zero.
3868
3869Example:
3870""""""""
3871
3872.. code-block:: llvm
3873
3874 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3875 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3876 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3877 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3878 <result> = lshr i32 1, 32 ; undefined
3879 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3880
3881'``ashr``' Instruction
3882^^^^^^^^^^^^^^^^^^^^^^
3883
3884Syntax:
3885"""""""
3886
3887::
3888
3889 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
3890 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
3891
3892Overview:
3893"""""""""
3894
3895The '``ashr``' instruction (arithmetic shift right) returns the first
3896operand shifted to the right a specified number of bits with sign
3897extension.
3898
3899Arguments:
3900""""""""""
3901
3902Both arguments to the '``ashr``' instruction must be the same
3903:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3904'``op2``' is treated as an unsigned value.
3905
3906Semantics:
3907""""""""""
3908
3909This instruction always performs an arithmetic shift right operation,
3910The most significant bits of the result will be filled with the sign bit
3911of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
3912than the number of bits in ``op1``, the result is undefined. If the
3913arguments are vectors, each vector element of ``op1`` is shifted by the
3914corresponding shift amount in ``op2``.
3915
3916If the ``exact`` keyword is present, the result value of the ``ashr`` is
3917a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3918non-zero.
3919
3920Example:
3921""""""""
3922
3923.. code-block:: llvm
3924
3925 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
3926 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
3927 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
3928 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
3929 <result> = ashr i32 1, 32 ; undefined
3930 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
3931
3932'``and``' Instruction
3933^^^^^^^^^^^^^^^^^^^^^
3934
3935Syntax:
3936"""""""
3937
3938::
3939
3940 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
3941
3942Overview:
3943"""""""""
3944
3945The '``and``' instruction returns the bitwise logical and of its two
3946operands.
3947
3948Arguments:
3949""""""""""
3950
3951The two arguments to the '``and``' instruction must be
3952:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3953arguments must have identical types.
3954
3955Semantics:
3956""""""""""
3957
3958The truth table used for the '``and``' instruction is:
3959
3960+-----+-----+-----+
3961| In0 | In1 | Out |
3962+-----+-----+-----+
3963| 0 | 0 | 0 |
3964+-----+-----+-----+
3965| 0 | 1 | 0 |
3966+-----+-----+-----+
3967| 1 | 0 | 0 |
3968+-----+-----+-----+
3969| 1 | 1 | 1 |
3970+-----+-----+-----+
3971
3972Example:
3973""""""""
3974
3975.. code-block:: llvm
3976
3977 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
3978 <result> = and i32 15, 40 ; yields {i32}:result = 8
3979 <result> = and i32 4, 8 ; yields {i32}:result = 0
3980
3981'``or``' Instruction
3982^^^^^^^^^^^^^^^^^^^^
3983
3984Syntax:
3985"""""""
3986
3987::
3988
3989 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
3990
3991Overview:
3992"""""""""
3993
3994The '``or``' instruction returns the bitwise logical inclusive or of its
3995two operands.
3996
3997Arguments:
3998""""""""""
3999
4000The two arguments to the '``or``' instruction must be
4001:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4002arguments must have identical types.
4003
4004Semantics:
4005""""""""""
4006
4007The truth table used for the '``or``' instruction is:
4008
4009+-----+-----+-----+
4010| In0 | In1 | Out |
4011+-----+-----+-----+
4012| 0 | 0 | 0 |
4013+-----+-----+-----+
4014| 0 | 1 | 1 |
4015+-----+-----+-----+
4016| 1 | 0 | 1 |
4017+-----+-----+-----+
4018| 1 | 1 | 1 |
4019+-----+-----+-----+
4020
4021Example:
4022""""""""
4023
4024::
4025
4026 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4027 <result> = or i32 15, 40 ; yields {i32}:result = 47
4028 <result> = or i32 4, 8 ; yields {i32}:result = 12
4029
4030'``xor``' Instruction
4031^^^^^^^^^^^^^^^^^^^^^
4032
4033Syntax:
4034"""""""
4035
4036::
4037
4038 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4039
4040Overview:
4041"""""""""
4042
4043The '``xor``' instruction returns the bitwise logical exclusive or of
4044its two operands. The ``xor`` is used to implement the "one's
4045complement" operation, which is the "~" operator in C.
4046
4047Arguments:
4048""""""""""
4049
4050The two arguments to the '``xor``' instruction must be
4051:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4052arguments must have identical types.
4053
4054Semantics:
4055""""""""""
4056
4057The truth table used for the '``xor``' instruction is:
4058
4059+-----+-----+-----+
4060| In0 | In1 | Out |
4061+-----+-----+-----+
4062| 0 | 0 | 0 |
4063+-----+-----+-----+
4064| 0 | 1 | 1 |
4065+-----+-----+-----+
4066| 1 | 0 | 1 |
4067+-----+-----+-----+
4068| 1 | 1 | 0 |
4069+-----+-----+-----+
4070
4071Example:
4072""""""""
4073
4074.. code-block:: llvm
4075
4076 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4077 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4078 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4079 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4080
4081Vector Operations
4082-----------------
4083
4084LLVM supports several instructions to represent vector operations in a
4085target-independent manner. These instructions cover the element-access
4086and vector-specific operations needed to process vectors effectively.
4087While LLVM does directly support these vector operations, many
4088sophisticated algorithms will want to use target-specific intrinsics to
4089take full advantage of a specific target.
4090
4091.. _i_extractelement:
4092
4093'``extractelement``' Instruction
4094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4095
4096Syntax:
4097"""""""
4098
4099::
4100
4101 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4102
4103Overview:
4104"""""""""
4105
4106The '``extractelement``' instruction extracts a single scalar element
4107from a vector at a specified index.
4108
4109Arguments:
4110""""""""""
4111
4112The first operand of an '``extractelement``' instruction is a value of
4113:ref:`vector <t_vector>` type. The second operand is an index indicating
4114the position from which to extract the element. The index may be a
4115variable.
4116
4117Semantics:
4118""""""""""
4119
4120The result is a scalar of the same type as the element type of ``val``.
4121Its value is the value at position ``idx`` of ``val``. If ``idx``
4122exceeds the length of ``val``, the results are undefined.
4123
4124Example:
4125""""""""
4126
4127.. code-block:: llvm
4128
4129 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4130
4131.. _i_insertelement:
4132
4133'``insertelement``' Instruction
4134^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4135
4136Syntax:
4137"""""""
4138
4139::
4140
4141 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4142
4143Overview:
4144"""""""""
4145
4146The '``insertelement``' instruction inserts a scalar element into a
4147vector at a specified index.
4148
4149Arguments:
4150""""""""""
4151
4152The first operand of an '``insertelement``' instruction is a value of
4153:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4154type must equal the element type of the first operand. The third operand
4155is an index indicating the position at which to insert the value. The
4156index may be a variable.
4157
4158Semantics:
4159""""""""""
4160
4161The result is a vector of the same type as ``val``. Its element values
4162are those of ``val`` except at position ``idx``, where it gets the value
4163``elt``. If ``idx`` exceeds the length of ``val``, the results are
4164undefined.
4165
4166Example:
4167""""""""
4168
4169.. code-block:: llvm
4170
4171 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4172
4173.. _i_shufflevector:
4174
4175'``shufflevector``' Instruction
4176^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4177
4178Syntax:
4179"""""""
4180
4181::
4182
4183 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4184
4185Overview:
4186"""""""""
4187
4188The '``shufflevector``' instruction constructs a permutation of elements
4189from two input vectors, returning a vector with the same element type as
4190the input and length that is the same as the shuffle mask.
4191
4192Arguments:
4193""""""""""
4194
4195The first two operands of a '``shufflevector``' instruction are vectors
4196with the same type. The third argument is a shuffle mask whose element
4197type is always 'i32'. The result of the instruction is a vector whose
4198length is the same as the shuffle mask and whose element type is the
4199same as the element type of the first two operands.
4200
4201The shuffle mask operand is required to be a constant vector with either
4202constant integer or undef values.
4203
4204Semantics:
4205""""""""""
4206
4207The elements of the two input vectors are numbered from left to right
4208across both of the vectors. The shuffle mask operand specifies, for each
4209element of the result vector, which element of the two input vectors the
4210result element gets. The element selector may be undef (meaning "don't
4211care") and the second operand may be undef if performing a shuffle from
4212only one vector.
4213
4214Example:
4215""""""""
4216
4217.. code-block:: llvm
4218
4219 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4220 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4221 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4222 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4223 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4224 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4225 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4226 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4227
4228Aggregate Operations
4229--------------------
4230
4231LLVM supports several instructions for working with
4232:ref:`aggregate <t_aggregate>` values.
4233
4234.. _i_extractvalue:
4235
4236'``extractvalue``' Instruction
4237^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4238
4239Syntax:
4240"""""""
4241
4242::
4243
4244 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4245
4246Overview:
4247"""""""""
4248
4249The '``extractvalue``' instruction extracts the value of a member field
4250from an :ref:`aggregate <t_aggregate>` value.
4251
4252Arguments:
4253""""""""""
4254
4255The first operand of an '``extractvalue``' instruction is a value of
4256:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4257constant indices to specify which value to extract in a similar manner
4258as indices in a '``getelementptr``' instruction.
4259
4260The major differences to ``getelementptr`` indexing are:
4261
4262- Since the value being indexed is not a pointer, the first index is
4263 omitted and assumed to be zero.
4264- At least one index must be specified.
4265- Not only struct indices but also array indices must be in bounds.
4266
4267Semantics:
4268""""""""""
4269
4270The result is the value at the position in the aggregate specified by
4271the index operands.
4272
4273Example:
4274""""""""
4275
4276.. code-block:: llvm
4277
4278 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4279
4280.. _i_insertvalue:
4281
4282'``insertvalue``' Instruction
4283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4284
4285Syntax:
4286"""""""
4287
4288::
4289
4290 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4291
4292Overview:
4293"""""""""
4294
4295The '``insertvalue``' instruction inserts a value into a member field in
4296an :ref:`aggregate <t_aggregate>` value.
4297
4298Arguments:
4299""""""""""
4300
4301The first operand of an '``insertvalue``' instruction is a value of
4302:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4303a first-class value to insert. The following operands are constant
4304indices indicating the position at which to insert the value in a
4305similar manner as indices in a '``extractvalue``' instruction. The value
4306to insert must have the same type as the value identified by the
4307indices.
4308
4309Semantics:
4310""""""""""
4311
4312The result is an aggregate of the same type as ``val``. Its value is
4313that of ``val`` except that the value at the position specified by the
4314indices is that of ``elt``.
4315
4316Example:
4317""""""""
4318
4319.. code-block:: llvm
4320
4321 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4322 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4323 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4324
4325.. _memoryops:
4326
4327Memory Access and Addressing Operations
4328---------------------------------------
4329
4330A key design point of an SSA-based representation is how it represents
4331memory. In LLVM, no memory locations are in SSA form, which makes things
4332very simple. This section describes how to read, write, and allocate
4333memory in LLVM.
4334
4335.. _i_alloca:
4336
4337'``alloca``' Instruction
4338^^^^^^^^^^^^^^^^^^^^^^^^
4339
4340Syntax:
4341"""""""
4342
4343::
4344
4345 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4346
4347Overview:
4348"""""""""
4349
4350The '``alloca``' instruction allocates memory on the stack frame of the
4351currently executing function, to be automatically released when this
4352function returns to its caller. The object is always allocated in the
4353generic address space (address space zero).
4354
4355Arguments:
4356""""""""""
4357
4358The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4359bytes of memory on the runtime stack, returning a pointer of the
4360appropriate type to the program. If "NumElements" is specified, it is
4361the number of elements allocated, otherwise "NumElements" is defaulted
4362to be one. If a constant alignment is specified, the value result of the
4363allocation is guaranteed to be aligned to at least that boundary. If not
4364specified, or if zero, the target can choose to align the allocation on
4365any convenient boundary compatible with the type.
4366
4367'``type``' may be any sized type.
4368
4369Semantics:
4370""""""""""
4371
4372Memory is allocated; a pointer is returned. The operation is undefined
4373if there is insufficient stack space for the allocation. '``alloca``'d
4374memory is automatically released when the function returns. The
4375'``alloca``' instruction is commonly used to represent automatic
4376variables that must have an address available. When the function returns
4377(either with the ``ret`` or ``resume`` instructions), the memory is
4378reclaimed. Allocating zero bytes is legal, but the result is undefined.
4379The order in which memory is allocated (ie., which way the stack grows)
4380is not specified.
4381
4382Example:
4383""""""""
4384
4385.. code-block:: llvm
4386
4387 %ptr = alloca i32 ; yields {i32*}:ptr
4388 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4389 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4390 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4391
4392.. _i_load:
4393
4394'``load``' Instruction
4395^^^^^^^^^^^^^^^^^^^^^^
4396
4397Syntax:
4398"""""""
4399
4400::
4401
4402 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4403 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4404 !<index> = !{ i32 1 }
4405
4406Overview:
4407"""""""""
4408
4409The '``load``' instruction is used to read from memory.
4410
4411Arguments:
4412""""""""""
4413
4414The argument to the '``load``' instruction specifies the memory address
4415from which to load. The pointer must point to a :ref:`first
4416class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4417then the optimizer is not allowed to modify the number or order of
4418execution of this ``load`` with other :ref:`volatile
4419operations <volatile>`.
4420
4421If the ``load`` is marked as ``atomic``, it takes an extra
4422:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4423``release`` and ``acq_rel`` orderings are not valid on ``load``
4424instructions. Atomic loads produce :ref:`defined <memmodel>` results
4425when they may see multiple atomic stores. The type of the pointee must
4426be an integer type whose bit width is a power of two greater than or
4427equal to eight and less than or equal to a target-specific size limit.
4428``align`` must be explicitly specified on atomic loads, and the load has
4429undefined behavior if the alignment is not set to a value which is at
4430least the size in bytes of the pointee. ``!nontemporal`` does not have
4431any defined semantics for atomic loads.
4432
4433The optional constant ``align`` argument specifies the alignment of the
4434operation (that is, the alignment of the memory address). A value of 0
4435or an omitted ``align`` argument means that the operation has the abi
4436alignment for the target. It is the responsibility of the code emitter
4437to ensure that the alignment information is correct. Overestimating the
4438alignment results in undefined behavior. Underestimating the alignment
4439may produce less efficient code. An alignment of 1 is always safe.
4440
4441The optional ``!nontemporal`` metadata must reference a single
4442metatadata name <index> corresponding to a metadata node with one
4443``i32`` entry of value 1. The existence of the ``!nontemporal``
4444metatadata on the instruction tells the optimizer and code generator
4445that this load is not expected to be reused in the cache. The code
4446generator may select special instructions to save cache bandwidth, such
4447as the ``MOVNT`` instruction on x86.
4448
4449The optional ``!invariant.load`` metadata must reference a single
4450metatadata name <index> corresponding to a metadata node with no
4451entries. The existence of the ``!invariant.load`` metatadata on the
4452instruction tells the optimizer and code generator that this load
4453address points to memory which does not change value during program
4454execution. The optimizer may then move this load around, for example, by
4455hoisting it out of loops using loop invariant code motion.
4456
4457Semantics:
4458""""""""""
4459
4460The location of memory pointed to is loaded. If the value being loaded
4461is of scalar type then the number of bytes read does not exceed the
4462minimum number of bytes needed to hold all bits of the type. For
4463example, loading an ``i24`` reads at most three bytes. When loading a
4464value of a type like ``i20`` with a size that is not an integral number
4465of bytes, the result is undefined if the value was not originally
4466written using a store of the same type.
4467
4468Examples:
4469"""""""""
4470
4471.. code-block:: llvm
4472
4473 %ptr = alloca i32 ; yields {i32*}:ptr
4474 store i32 3, i32* %ptr ; yields {void}
4475 %val = load i32* %ptr ; yields {i32}:val = i32 3
4476
4477.. _i_store:
4478
4479'``store``' Instruction
4480^^^^^^^^^^^^^^^^^^^^^^^
4481
4482Syntax:
4483"""""""
4484
4485::
4486
4487 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4488 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4489
4490Overview:
4491"""""""""
4492
4493The '``store``' instruction is used to write to memory.
4494
4495Arguments:
4496""""""""""
4497
4498There are two arguments to the '``store``' instruction: a value to store
4499and an address at which to store it. The type of the '``<pointer>``'
4500operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4501the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4502then the optimizer is not allowed to modify the number or order of
4503execution of this ``store`` with other :ref:`volatile
4504operations <volatile>`.
4505
4506If the ``store`` is marked as ``atomic``, it takes an extra
4507:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4508``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4509instructions. Atomic loads produce :ref:`defined <memmodel>` results
4510when they may see multiple atomic stores. The type of the pointee must
4511be an integer type whose bit width is a power of two greater than or
4512equal to eight and less than or equal to a target-specific size limit.
4513``align`` must be explicitly specified on atomic stores, and the store
4514has undefined behavior if the alignment is not set to a value which is
4515at least the size in bytes of the pointee. ``!nontemporal`` does not
4516have any defined semantics for atomic stores.
4517
4518The optional constant "align" argument specifies the alignment of the
4519operation (that is, the alignment of the memory address). A value of 0
4520or an omitted "align" argument means that the operation has the abi
4521alignment for the target. It is the responsibility of the code emitter
4522to ensure that the alignment information is correct. Overestimating the
4523alignment results in an undefined behavior. Underestimating the
4524alignment may produce less efficient code. An alignment of 1 is always
4525safe.
4526
4527The optional !nontemporal metadata must reference a single metatadata
4528name <index> corresponding to a metadata node with one i32 entry of
4529value 1. The existence of the !nontemporal metatadata on the instruction
4530tells the optimizer and code generator that this load is not expected to
4531be reused in the cache. The code generator may select special
4532instructions to save cache bandwidth, such as the MOVNT instruction on
4533x86.
4534
4535Semantics:
4536""""""""""
4537
4538The contents of memory are updated to contain '``<value>``' at the
4539location specified by the '``<pointer>``' operand. If '``<value>``' is
4540of scalar type then the number of bytes written does not exceed the
4541minimum number of bytes needed to hold all bits of the type. For
4542example, storing an ``i24`` writes at most three bytes. When writing a
4543value of a type like ``i20`` with a size that is not an integral number
4544of bytes, it is unspecified what happens to the extra bits that do not
4545belong to the type, but they will typically be overwritten.
4546
4547Example:
4548""""""""
4549
4550.. code-block:: llvm
4551
4552 %ptr = alloca i32 ; yields {i32*}:ptr
4553 store i32 3, i32* %ptr ; yields {void}
4554 %val = load i32* %ptr ; yields {i32}:val = i32 3
4555
4556.. _i_fence:
4557
4558'``fence``' Instruction
4559^^^^^^^^^^^^^^^^^^^^^^^
4560
4561Syntax:
4562"""""""
4563
4564::
4565
4566 fence [singlethread] <ordering> ; yields {void}
4567
4568Overview:
4569"""""""""
4570
4571The '``fence``' instruction is used to introduce happens-before edges
4572between operations.
4573
4574Arguments:
4575""""""""""
4576
4577'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4578defines what *synchronizes-with* edges they add. They can only be given
4579``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4580
4581Semantics:
4582""""""""""
4583
4584A fence A which has (at least) ``release`` ordering semantics
4585*synchronizes with* a fence B with (at least) ``acquire`` ordering
4586semantics if and only if there exist atomic operations X and Y, both
4587operating on some atomic object M, such that A is sequenced before X, X
4588modifies M (either directly or through some side effect of a sequence
4589headed by X), Y is sequenced before B, and Y observes M. This provides a
4590*happens-before* dependency between A and B. Rather than an explicit
4591``fence``, one (but not both) of the atomic operations X or Y might
4592provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4593still *synchronize-with* the explicit ``fence`` and establish the
4594*happens-before* edge.
4595
4596A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4597``acquire`` and ``release`` semantics specified above, participates in
4598the global program order of other ``seq_cst`` operations and/or fences.
4599
4600The optional ":ref:`singlethread <singlethread>`" argument specifies
4601that the fence only synchronizes with other fences in the same thread.
4602(This is useful for interacting with signal handlers.)
4603
4604Example:
4605""""""""
4606
4607.. code-block:: llvm
4608
4609 fence acquire ; yields {void}
4610 fence singlethread seq_cst ; yields {void}
4611
4612.. _i_cmpxchg:
4613
4614'``cmpxchg``' Instruction
4615^^^^^^^^^^^^^^^^^^^^^^^^^
4616
4617Syntax:
4618"""""""
4619
4620::
4621
4622 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4623
4624Overview:
4625"""""""""
4626
4627The '``cmpxchg``' instruction is used to atomically modify memory. It
4628loads a value in memory and compares it to a given value. If they are
4629equal, it stores a new value into the memory.
4630
4631Arguments:
4632""""""""""
4633
4634There are three arguments to the '``cmpxchg``' instruction: an address
4635to operate on, a value to compare to the value currently be at that
4636address, and a new value to place at that address if the compared values
4637are equal. The type of '<cmp>' must be an integer type whose bit width
4638is a power of two greater than or equal to eight and less than or equal
4639to a target-specific size limit. '<cmp>' and '<new>' must have the same
4640type, and the type of '<pointer>' must be a pointer to that type. If the
4641``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4642to modify the number or order of execution of this ``cmpxchg`` with
4643other :ref:`volatile operations <volatile>`.
4644
4645The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4646synchronizes with other atomic operations.
4647
4648The optional "``singlethread``" argument declares that the ``cmpxchg``
4649is only atomic with respect to code (usually signal handlers) running in
4650the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4651respect to all other code in the system.
4652
4653The pointer passed into cmpxchg must have alignment greater than or
4654equal to the size in memory of the operand.
4655
4656Semantics:
4657""""""""""
4658
4659The contents of memory at the location specified by the '``<pointer>``'
4660operand is read and compared to '``<cmp>``'; if the read value is the
4661equal, '``<new>``' is written. The original value at the location is
4662returned.
4663
4664A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4665of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4666atomic load with an ordering parameter determined by dropping any
4667``release`` part of the ``cmpxchg``'s ordering.
4668
4669Example:
4670""""""""
4671
4672.. code-block:: llvm
4673
4674 entry:
4675 %orig = atomic load i32* %ptr unordered ; yields {i32}
4676 br label %loop
4677
4678 loop:
4679 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4680 %squared = mul i32 %cmp, %cmp
4681 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4682 %success = icmp eq i32 %cmp, %old
4683 br i1 %success, label %done, label %loop
4684
4685 done:
4686 ...
4687
4688.. _i_atomicrmw:
4689
4690'``atomicrmw``' Instruction
4691^^^^^^^^^^^^^^^^^^^^^^^^^^^
4692
4693Syntax:
4694"""""""
4695
4696::
4697
4698 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4699
4700Overview:
4701"""""""""
4702
4703The '``atomicrmw``' instruction is used to atomically modify memory.
4704
4705Arguments:
4706""""""""""
4707
4708There are three arguments to the '``atomicrmw``' instruction: an
4709operation to apply, an address whose value to modify, an argument to the
4710operation. The operation must be one of the following keywords:
4711
4712- xchg
4713- add
4714- sub
4715- and
4716- nand
4717- or
4718- xor
4719- max
4720- min
4721- umax
4722- umin
4723
4724The type of '<value>' must be an integer type whose bit width is a power
4725of two greater than or equal to eight and less than or equal to a
4726target-specific size limit. The type of the '``<pointer>``' operand must
4727be a pointer to that type. If the ``atomicrmw`` is marked as
4728``volatile``, then the optimizer is not allowed to modify the number or
4729order of execution of this ``atomicrmw`` with other :ref:`volatile
4730operations <volatile>`.
4731
4732Semantics:
4733""""""""""
4734
4735The contents of memory at the location specified by the '``<pointer>``'
4736operand are atomically read, modified, and written back. The original
4737value at the location is returned. The modification is specified by the
4738operation argument:
4739
4740- xchg: ``*ptr = val``
4741- add: ``*ptr = *ptr + val``
4742- sub: ``*ptr = *ptr - val``
4743- and: ``*ptr = *ptr & val``
4744- nand: ``*ptr = ~(*ptr & val)``
4745- or: ``*ptr = *ptr | val``
4746- xor: ``*ptr = *ptr ^ val``
4747- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4748- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4749- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4750 comparison)
4751- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4752 comparison)
4753
4754Example:
4755""""""""
4756
4757.. code-block:: llvm
4758
4759 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4760
4761.. _i_getelementptr:
4762
4763'``getelementptr``' Instruction
4764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4765
4766Syntax:
4767"""""""
4768
4769::
4770
4771 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4772 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4773 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4774
4775Overview:
4776"""""""""
4777
4778The '``getelementptr``' instruction is used to get the address of a
4779subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4780address calculation only and does not access memory.
4781
4782Arguments:
4783""""""""""
4784
4785The first argument is always a pointer or a vector of pointers, and
4786forms the basis of the calculation. The remaining arguments are indices
4787that indicate which of the elements of the aggregate object are indexed.
4788The interpretation of each index is dependent on the type being indexed
4789into. The first index always indexes the pointer value given as the
4790first argument, the second index indexes a value of the type pointed to
4791(not necessarily the value directly pointed to, since the first index
4792can be non-zero), etc. The first type indexed into must be a pointer
4793value, subsequent types can be arrays, vectors, and structs. Note that
4794subsequent types being indexed into can never be pointers, since that
4795would require loading the pointer before continuing calculation.
4796
4797The type of each index argument depends on the type it is indexing into.
4798When indexing into a (optionally packed) structure, only ``i32`` integer
4799**constants** are allowed (when using a vector of indices they must all
4800be the **same** ``i32`` integer constant). When indexing into an array,
4801pointer or vector, integers of any width are allowed, and they are not
4802required to be constant. These integers are treated as signed values
4803where relevant.
4804
4805For example, let's consider a C code fragment and how it gets compiled
4806to LLVM:
4807
4808.. code-block:: c
4809
4810 struct RT {
4811 char A;
4812 int B[10][20];
4813 char C;
4814 };
4815 struct ST {
4816 int X;
4817 double Y;
4818 struct RT Z;
4819 };
4820
4821 int *foo(struct ST *s) {
4822 return &s[1].Z.B[5][13];
4823 }
4824
4825The LLVM code generated by Clang is:
4826
4827.. code-block:: llvm
4828
4829 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4830 %struct.ST = type { i32, double, %struct.RT }
4831
4832 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4833 entry:
4834 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4835 ret i32* %arrayidx
4836 }
4837
4838Semantics:
4839""""""""""
4840
4841In the example above, the first index is indexing into the
4842'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4843= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4844indexes into the third element of the structure, yielding a
4845'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4846structure. The third index indexes into the second element of the
4847structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4848dimensions of the array are subscripted into, yielding an '``i32``'
4849type. The '``getelementptr``' instruction returns a pointer to this
4850element, thus computing a value of '``i32*``' type.
4851
4852Note that it is perfectly legal to index partially through a structure,
4853returning a pointer to an inner element. Because of this, the LLVM code
4854for the given testcase is equivalent to:
4855
4856.. code-block:: llvm
4857
4858 define i32* @foo(%struct.ST* %s) {
4859 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4860 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4861 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4862 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4863 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4864 ret i32* %t5
4865 }
4866
4867If the ``inbounds`` keyword is present, the result value of the
4868``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4869pointer is not an *in bounds* address of an allocated object, or if any
4870of the addresses that would be formed by successive addition of the
4871offsets implied by the indices to the base address with infinitely
4872precise signed arithmetic are not an *in bounds* address of that
4873allocated object. The *in bounds* addresses for an allocated object are
4874all the addresses that point into the object, plus the address one byte
4875past the end. In cases where the base is a vector of pointers the
4876``inbounds`` keyword applies to each of the computations element-wise.
4877
4878If the ``inbounds`` keyword is not present, the offsets are added to the
4879base address with silently-wrapping two's complement arithmetic. If the
4880offsets have a different width from the pointer, they are sign-extended
4881or truncated to the width of the pointer. The result value of the
4882``getelementptr`` may be outside the object pointed to by the base
4883pointer. The result value may not necessarily be used to access memory
4884though, even if it happens to point into allocated storage. See the
4885:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
4886information.
4887
4888The getelementptr instruction is often confusing. For some more insight
4889into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
4890
4891Example:
4892""""""""
4893
4894.. code-block:: llvm
4895
4896 ; yields [12 x i8]*:aptr
4897 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4898 ; yields i8*:vptr
4899 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
4900 ; yields i8*:eptr
4901 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4902 ; yields i32*:iptr
4903 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4904
4905In cases where the pointer argument is a vector of pointers, each index
4906must be a vector with the same number of elements. For example:
4907
4908.. code-block:: llvm
4909
4910 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
4911
4912Conversion Operations
4913---------------------
4914
4915The instructions in this category are the conversion instructions
4916(casting) which all take a single operand and a type. They perform
4917various bit conversions on the operand.
4918
4919'``trunc .. to``' Instruction
4920^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4921
4922Syntax:
4923"""""""
4924
4925::
4926
4927 <result> = trunc <ty> <value> to <ty2> ; yields ty2
4928
4929Overview:
4930"""""""""
4931
4932The '``trunc``' instruction truncates its operand to the type ``ty2``.
4933
4934Arguments:
4935""""""""""
4936
4937The '``trunc``' instruction takes a value to trunc, and a type to trunc
4938it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
4939of the same number of integers. The bit size of the ``value`` must be
4940larger than the bit size of the destination type, ``ty2``. Equal sized
4941types are not allowed.
4942
4943Semantics:
4944""""""""""
4945
4946The '``trunc``' instruction truncates the high order bits in ``value``
4947and converts the remaining bits to ``ty2``. Since the source size must
4948be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
4949It will always truncate bits.
4950
4951Example:
4952""""""""
4953
4954.. code-block:: llvm
4955
4956 %X = trunc i32 257 to i8 ; yields i8:1
4957 %Y = trunc i32 123 to i1 ; yields i1:true
4958 %Z = trunc i32 122 to i1 ; yields i1:false
4959 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
4960
4961'``zext .. to``' Instruction
4962^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4963
4964Syntax:
4965"""""""
4966
4967::
4968
4969 <result> = zext <ty> <value> to <ty2> ; yields ty2
4970
4971Overview:
4972"""""""""
4973
4974The '``zext``' instruction zero extends its operand to type ``ty2``.
4975
4976Arguments:
4977""""""""""
4978
4979The '``zext``' instruction takes a value to cast, and a type to cast it
4980to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4981the same number of integers. The bit size of the ``value`` must be
4982smaller than the bit size of the destination type, ``ty2``.
4983
4984Semantics:
4985""""""""""
4986
4987The ``zext`` fills the high order bits of the ``value`` with zero bits
4988until it reaches the size of the destination type, ``ty2``.
4989
4990When zero extending from i1, the result will always be either 0 or 1.
4991
4992Example:
4993""""""""
4994
4995.. code-block:: llvm
4996
4997 %X = zext i32 257 to i64 ; yields i64:257
4998 %Y = zext i1 true to i32 ; yields i32:1
4999 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5000
5001'``sext .. to``' Instruction
5002^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5003
5004Syntax:
5005"""""""
5006
5007::
5008
5009 <result> = sext <ty> <value> to <ty2> ; yields ty2
5010
5011Overview:
5012"""""""""
5013
5014The '``sext``' sign extends ``value`` to the type ``ty2``.
5015
5016Arguments:
5017""""""""""
5018
5019The '``sext``' instruction takes a value to cast, and a type to cast it
5020to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5021the same number of integers. The bit size of the ``value`` must be
5022smaller than the bit size of the destination type, ``ty2``.
5023
5024Semantics:
5025""""""""""
5026
5027The '``sext``' instruction performs a sign extension by copying the sign
5028bit (highest order bit) of the ``value`` until it reaches the bit size
5029of the type ``ty2``.
5030
5031When sign extending from i1, the extension always results in -1 or 0.
5032
5033Example:
5034""""""""
5035
5036.. code-block:: llvm
5037
5038 %X = sext i8 -1 to i16 ; yields i16 :65535
5039 %Y = sext i1 true to i32 ; yields i32:-1
5040 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5041
5042'``fptrunc .. to``' Instruction
5043^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5044
5045Syntax:
5046"""""""
5047
5048::
5049
5050 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5051
5052Overview:
5053"""""""""
5054
5055The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5056
5057Arguments:
5058""""""""""
5059
5060The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5061value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5062The size of ``value`` must be larger than the size of ``ty2``. This
5063implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5064
5065Semantics:
5066""""""""""
5067
5068The '``fptrunc``' instruction truncates a ``value`` from a larger
5069:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5070point <t_floating>` type. If the value cannot fit within the
5071destination type, ``ty2``, then the results are undefined.
5072
5073Example:
5074""""""""
5075
5076.. code-block:: llvm
5077
5078 %X = fptrunc double 123.0 to float ; yields float:123.0
5079 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5080
5081'``fpext .. to``' Instruction
5082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5083
5084Syntax:
5085"""""""
5086
5087::
5088
5089 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5090
5091Overview:
5092"""""""""
5093
5094The '``fpext``' extends a floating point ``value`` to a larger floating
5095point value.
5096
5097Arguments:
5098""""""""""
5099
5100The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5101``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5102to. The source type must be smaller than the destination type.
5103
5104Semantics:
5105""""""""""
5106
5107The '``fpext``' instruction extends the ``value`` from a smaller
5108:ref:`floating point <t_floating>` type to a larger :ref:`floating
5109point <t_floating>` type. The ``fpext`` cannot be used to make a
5110*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5111*no-op cast* for a floating point cast.
5112
5113Example:
5114""""""""
5115
5116.. code-block:: llvm
5117
5118 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5119 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5120
5121'``fptoui .. to``' Instruction
5122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5123
5124Syntax:
5125"""""""
5126
5127::
5128
5129 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5130
5131Overview:
5132"""""""""
5133
5134The '``fptoui``' converts a floating point ``value`` to its unsigned
5135integer equivalent of type ``ty2``.
5136
5137Arguments:
5138""""""""""
5139
5140The '``fptoui``' instruction takes a value to cast, which must be a
5141scalar or vector :ref:`floating point <t_floating>` value, and a type to
5142cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5143``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5144type with the same number of elements as ``ty``
5145
5146Semantics:
5147""""""""""
5148
5149The '``fptoui``' instruction converts its :ref:`floating
5150point <t_floating>` operand into the nearest (rounding towards zero)
5151unsigned integer value. If the value cannot fit in ``ty2``, the results
5152are undefined.
5153
5154Example:
5155""""""""
5156
5157.. code-block:: llvm
5158
5159 %X = fptoui double 123.0 to i32 ; yields i32:123
5160 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5161 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5162
5163'``fptosi .. to``' Instruction
5164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5165
5166Syntax:
5167"""""""
5168
5169::
5170
5171 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5172
5173Overview:
5174"""""""""
5175
5176The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5177``value`` to type ``ty2``.
5178
5179Arguments:
5180""""""""""
5181
5182The '``fptosi``' instruction takes a value to cast, which must be a
5183scalar or vector :ref:`floating point <t_floating>` value, and a type to
5184cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5185``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5186type with the same number of elements as ``ty``
5187
5188Semantics:
5189""""""""""
5190
5191The '``fptosi``' instruction converts its :ref:`floating
5192point <t_floating>` operand into the nearest (rounding towards zero)
5193signed integer value. If the value cannot fit in ``ty2``, the results
5194are undefined.
5195
5196Example:
5197""""""""
5198
5199.. code-block:: llvm
5200
5201 %X = fptosi double -123.0 to i32 ; yields i32:-123
5202 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5203 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5204
5205'``uitofp .. to``' Instruction
5206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5207
5208Syntax:
5209"""""""
5210
5211::
5212
5213 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5214
5215Overview:
5216"""""""""
5217
5218The '``uitofp``' instruction regards ``value`` as an unsigned integer
5219and converts that value to the ``ty2`` type.
5220
5221Arguments:
5222""""""""""
5223
5224The '``uitofp``' instruction takes a value to cast, which must be a
5225scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5226``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5227``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5228type with the same number of elements as ``ty``
5229
5230Semantics:
5231""""""""""
5232
5233The '``uitofp``' instruction interprets its operand as an unsigned
5234integer quantity and converts it to the corresponding floating point
5235value. If the value cannot fit in the floating point value, the results
5236are undefined.
5237
5238Example:
5239""""""""
5240
5241.. code-block:: llvm
5242
5243 %X = uitofp i32 257 to float ; yields float:257.0
5244 %Y = uitofp i8 -1 to double ; yields double:255.0
5245
5246'``sitofp .. to``' Instruction
5247^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5248
5249Syntax:
5250"""""""
5251
5252::
5253
5254 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5255
5256Overview:
5257"""""""""
5258
5259The '``sitofp``' instruction regards ``value`` as a signed integer and
5260converts that value to the ``ty2`` type.
5261
5262Arguments:
5263""""""""""
5264
5265The '``sitofp``' instruction takes a value to cast, which must be a
5266scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5267``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5268``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5269type with the same number of elements as ``ty``
5270
5271Semantics:
5272""""""""""
5273
5274The '``sitofp``' instruction interprets its operand as a signed integer
5275quantity and converts it to the corresponding floating point value. If
5276the value cannot fit in the floating point value, the results are
5277undefined.
5278
5279Example:
5280""""""""
5281
5282.. code-block:: llvm
5283
5284 %X = sitofp i32 257 to float ; yields float:257.0
5285 %Y = sitofp i8 -1 to double ; yields double:-1.0
5286
5287.. _i_ptrtoint:
5288
5289'``ptrtoint .. to``' Instruction
5290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5291
5292Syntax:
5293"""""""
5294
5295::
5296
5297 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5298
5299Overview:
5300"""""""""
5301
5302The '``ptrtoint``' instruction converts the pointer or a vector of
5303pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5304
5305Arguments:
5306""""""""""
5307
5308The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5309a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5310type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5311a vector of integers type.
5312
5313Semantics:
5314""""""""""
5315
5316The '``ptrtoint``' instruction converts ``value`` to integer type
5317``ty2`` by interpreting the pointer value as an integer and either
5318truncating or zero extending that value to the size of the integer type.
5319If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5320``value`` is larger than ``ty2`` then a truncation is done. If they are
5321the same size, then nothing is done (*no-op cast*) other than a type
5322change.
5323
5324Example:
5325""""""""
5326
5327.. code-block:: llvm
5328
5329 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5330 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5331 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5332
5333.. _i_inttoptr:
5334
5335'``inttoptr .. to``' Instruction
5336^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5337
5338Syntax:
5339"""""""
5340
5341::
5342
5343 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5344
5345Overview:
5346"""""""""
5347
5348The '``inttoptr``' instruction converts an integer ``value`` to a
5349pointer type, ``ty2``.
5350
5351Arguments:
5352""""""""""
5353
5354The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5355cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5356type.
5357
5358Semantics:
5359""""""""""
5360
5361The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5362applying either a zero extension or a truncation depending on the size
5363of the integer ``value``. If ``value`` is larger than the size of a
5364pointer then a truncation is done. If ``value`` is smaller than the size
5365of a pointer then a zero extension is done. If they are the same size,
5366nothing is done (*no-op cast*).
5367
5368Example:
5369""""""""
5370
5371.. code-block:: llvm
5372
5373 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5374 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5375 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5376 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5377
5378.. _i_bitcast:
5379
5380'``bitcast .. to``' Instruction
5381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5382
5383Syntax:
5384"""""""
5385
5386::
5387
5388 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5389
5390Overview:
5391"""""""""
5392
5393The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5394changing any bits.
5395
5396Arguments:
5397""""""""""
5398
5399The '``bitcast``' instruction takes a value to cast, which must be a
5400non-aggregate first class value, and a type to cast it to, which must
5401also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5402sizes of ``value`` and the destination type, ``ty2``, must be identical.
5403If the source type is a pointer, the destination type must also be a
5404pointer. This instruction supports bitwise conversion of vectors to
5405integers and to vectors of other types (as long as they have the same
5406size).
5407
5408Semantics:
5409""""""""""
5410
5411The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5412always a *no-op cast* because no bits change with this conversion. The
5413conversion is done as if the ``value`` had been stored to memory and
5414read back as type ``ty2``. Pointer (or vector of pointers) types may
5415only be converted to other pointer (or vector of pointers) types with
5416this instruction. To convert pointers to other types, use the
5417:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5418first.
5419
5420Example:
5421""""""""
5422
5423.. code-block:: llvm
5424
5425 %X = bitcast i8 255 to i8 ; yields i8 :-1
5426 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5427 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5428 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5429
5430.. _otherops:
5431
5432Other Operations
5433----------------
5434
5435The instructions in this category are the "miscellaneous" instructions,
5436which defy better classification.
5437
5438.. _i_icmp:
5439
5440'``icmp``' Instruction
5441^^^^^^^^^^^^^^^^^^^^^^
5442
5443Syntax:
5444"""""""
5445
5446::
5447
5448 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5449
5450Overview:
5451"""""""""
5452
5453The '``icmp``' instruction returns a boolean value or a vector of
5454boolean values based on comparison of its two integer, integer vector,
5455pointer, or pointer vector operands.
5456
5457Arguments:
5458""""""""""
5459
5460The '``icmp``' instruction takes three operands. The first operand is
5461the condition code indicating the kind of comparison to perform. It is
5462not a value, just a keyword. The possible condition code are:
5463
5464#. ``eq``: equal
5465#. ``ne``: not equal
5466#. ``ugt``: unsigned greater than
5467#. ``uge``: unsigned greater or equal
5468#. ``ult``: unsigned less than
5469#. ``ule``: unsigned less or equal
5470#. ``sgt``: signed greater than
5471#. ``sge``: signed greater or equal
5472#. ``slt``: signed less than
5473#. ``sle``: signed less or equal
5474
5475The remaining two arguments must be :ref:`integer <t_integer>` or
5476:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5477must also be identical types.
5478
5479Semantics:
5480""""""""""
5481
5482The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5483code given as ``cond``. The comparison performed always yields either an
5484:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5485
5486#. ``eq``: yields ``true`` if the operands are equal, ``false``
5487 otherwise. No sign interpretation is necessary or performed.
5488#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5489 otherwise. No sign interpretation is necessary or performed.
5490#. ``ugt``: interprets the operands as unsigned values and yields
5491 ``true`` if ``op1`` is greater than ``op2``.
5492#. ``uge``: interprets the operands as unsigned values and yields
5493 ``true`` if ``op1`` is greater than or equal to ``op2``.
5494#. ``ult``: interprets the operands as unsigned values and yields
5495 ``true`` if ``op1`` is less than ``op2``.
5496#. ``ule``: interprets the operands as unsigned values and yields
5497 ``true`` if ``op1`` is less than or equal to ``op2``.
5498#. ``sgt``: interprets the operands as signed values and yields ``true``
5499 if ``op1`` is greater than ``op2``.
5500#. ``sge``: interprets the operands as signed values and yields ``true``
5501 if ``op1`` is greater than or equal to ``op2``.
5502#. ``slt``: interprets the operands as signed values and yields ``true``
5503 if ``op1`` is less than ``op2``.
5504#. ``sle``: interprets the operands as signed values and yields ``true``
5505 if ``op1`` is less than or equal to ``op2``.
5506
5507If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5508are compared as if they were integers.
5509
5510If the operands are integer vectors, then they are compared element by
5511element. The result is an ``i1`` vector with the same number of elements
5512as the values being compared. Otherwise, the result is an ``i1``.
5513
5514Example:
5515""""""""
5516
5517.. code-block:: llvm
5518
5519 <result> = icmp eq i32 4, 5 ; yields: result=false
5520 <result> = icmp ne float* %X, %X ; yields: result=false
5521 <result> = icmp ult i16 4, 5 ; yields: result=true
5522 <result> = icmp sgt i16 4, 5 ; yields: result=false
5523 <result> = icmp ule i16 -4, 5 ; yields: result=false
5524 <result> = icmp sge i16 4, 5 ; yields: result=false
5525
5526Note that the code generator does not yet support vector types with the
5527``icmp`` instruction.
5528
5529.. _i_fcmp:
5530
5531'``fcmp``' Instruction
5532^^^^^^^^^^^^^^^^^^^^^^
5533
5534Syntax:
5535"""""""
5536
5537::
5538
5539 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5540
5541Overview:
5542"""""""""
5543
5544The '``fcmp``' instruction returns a boolean value or vector of boolean
5545values based on comparison of its operands.
5546
5547If the operands are floating point scalars, then the result type is a
5548boolean (:ref:`i1 <t_integer>`).
5549
5550If the operands are floating point vectors, then the result type is a
5551vector of boolean with the same number of elements as the operands being
5552compared.
5553
5554Arguments:
5555""""""""""
5556
5557The '``fcmp``' instruction takes three operands. The first operand is
5558the condition code indicating the kind of comparison to perform. It is
5559not a value, just a keyword. The possible condition code are:
5560
5561#. ``false``: no comparison, always returns false
5562#. ``oeq``: ordered and equal
5563#. ``ogt``: ordered and greater than
5564#. ``oge``: ordered and greater than or equal
5565#. ``olt``: ordered and less than
5566#. ``ole``: ordered and less than or equal
5567#. ``one``: ordered and not equal
5568#. ``ord``: ordered (no nans)
5569#. ``ueq``: unordered or equal
5570#. ``ugt``: unordered or greater than
5571#. ``uge``: unordered or greater than or equal
5572#. ``ult``: unordered or less than
5573#. ``ule``: unordered or less than or equal
5574#. ``une``: unordered or not equal
5575#. ``uno``: unordered (either nans)
5576#. ``true``: no comparison, always returns true
5577
5578*Ordered* means that neither operand is a QNAN while *unordered* means
5579that either operand may be a QNAN.
5580
5581Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5582point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5583type. They must have identical types.
5584
5585Semantics:
5586""""""""""
5587
5588The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5589condition code given as ``cond``. If the operands are vectors, then the
5590vectors are compared element by element. Each comparison performed
5591always yields an :ref:`i1 <t_integer>` result, as follows:
5592
5593#. ``false``: always yields ``false``, regardless of operands.
5594#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5595 is equal to ``op2``.
5596#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5597 is greater than ``op2``.
5598#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5599 is greater than or equal to ``op2``.
5600#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5601 is less than ``op2``.
5602#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5603 is less than or equal to ``op2``.
5604#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5605 is not equal to ``op2``.
5606#. ``ord``: yields ``true`` if both operands are not a QNAN.
5607#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5608 equal to ``op2``.
5609#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5610 greater than ``op2``.
5611#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5612 greater than or equal to ``op2``.
5613#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5614 less than ``op2``.
5615#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5616 less than or equal to ``op2``.
5617#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5618 not equal to ``op2``.
5619#. ``uno``: yields ``true`` if either operand is a QNAN.
5620#. ``true``: always yields ``true``, regardless of operands.
5621
5622Example:
5623""""""""
5624
5625.. code-block:: llvm
5626
5627 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5628 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5629 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5630 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5631
5632Note that the code generator does not yet support vector types with the
5633``fcmp`` instruction.
5634
5635.. _i_phi:
5636
5637'``phi``' Instruction
5638^^^^^^^^^^^^^^^^^^^^^
5639
5640Syntax:
5641"""""""
5642
5643::
5644
5645 <result> = phi <ty> [ <val0>, <label0>], ...
5646
5647Overview:
5648"""""""""
5649
5650The '``phi``' instruction is used to implement the φ node in the SSA
5651graph representing the function.
5652
5653Arguments:
5654""""""""""
5655
5656The type of the incoming values is specified with the first type field.
5657After this, the '``phi``' instruction takes a list of pairs as
5658arguments, with one pair for each predecessor basic block of the current
5659block. Only values of :ref:`first class <t_firstclass>` type may be used as
5660the value arguments to the PHI node. Only labels may be used as the
5661label arguments.
5662
5663There must be no non-phi instructions between the start of a basic block
5664and the PHI instructions: i.e. PHI instructions must be first in a basic
5665block.
5666
5667For the purposes of the SSA form, the use of each incoming value is
5668deemed to occur on the edge from the corresponding predecessor block to
5669the current block (but after any definition of an '``invoke``'
5670instruction's return value on the same edge).
5671
5672Semantics:
5673""""""""""
5674
5675At runtime, the '``phi``' instruction logically takes on the value
5676specified by the pair corresponding to the predecessor basic block that
5677executed just prior to the current block.
5678
5679Example:
5680""""""""
5681
5682.. code-block:: llvm
5683
5684 Loop: ; Infinite loop that counts from 0 on up...
5685 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5686 %nextindvar = add i32 %indvar, 1
5687 br label %Loop
5688
5689.. _i_select:
5690
5691'``select``' Instruction
5692^^^^^^^^^^^^^^^^^^^^^^^^
5693
5694Syntax:
5695"""""""
5696
5697::
5698
5699 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5700
5701 selty is either i1 or {<N x i1>}
5702
5703Overview:
5704"""""""""
5705
5706The '``select``' instruction is used to choose one value based on a
5707condition, without branching.
5708
5709Arguments:
5710""""""""""
5711
5712The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5713values indicating the condition, and two values of the same :ref:`first
5714class <t_firstclass>` type. If the val1/val2 are vectors and the
5715condition is a scalar, then entire vectors are selected, not individual
5716elements.
5717
5718Semantics:
5719""""""""""
5720
5721If the condition is an i1 and it evaluates to 1, the instruction returns
5722the first value argument; otherwise, it returns the second value
5723argument.
5724
5725If the condition is a vector of i1, then the value arguments must be
5726vectors of the same size, and the selection is done element by element.
5727
5728Example:
5729""""""""
5730
5731.. code-block:: llvm
5732
5733 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5734
5735.. _i_call:
5736
5737'``call``' Instruction
5738^^^^^^^^^^^^^^^^^^^^^^
5739
5740Syntax:
5741"""""""
5742
5743::
5744
5745 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5746
5747Overview:
5748"""""""""
5749
5750The '``call``' instruction represents a simple function call.
5751
5752Arguments:
5753""""""""""
5754
5755This instruction requires several arguments:
5756
5757#. The optional "tail" marker indicates that the callee function does
5758 not access any allocas or varargs in the caller. Note that calls may
5759 be marked "tail" even if they do not occur before a
5760 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5761 function call is eligible for tail call optimization, but `might not
5762 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5763 The code generator may optimize calls marked "tail" with either 1)
5764 automatic `sibling call
5765 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5766 callee have matching signatures, or 2) forced tail call optimization
5767 when the following extra requirements are met:
5768
5769 - Caller and callee both have the calling convention ``fastcc``.
5770 - The call is in tail position (ret immediately follows call and ret
5771 uses value of call or is void).
5772 - Option ``-tailcallopt`` is enabled, or
5773 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5774 - `Platform specific constraints are
5775 met. <CodeGenerator.html#tailcallopt>`_
5776
5777#. The optional "cconv" marker indicates which :ref:`calling
5778 convention <callingconv>` the call should use. If none is
5779 specified, the call defaults to using C calling conventions. The
5780 calling convention of the call must match the calling convention of
5781 the target function, or else the behavior is undefined.
5782#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5783 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5784 are valid here.
5785#. '``ty``': the type of the call instruction itself which is also the
5786 type of the return value. Functions that return no value are marked
5787 ``void``.
5788#. '``fnty``': shall be the signature of the pointer to function value
5789 being invoked. The argument types must match the types implied by
5790 this signature. This type can be omitted if the function is not
5791 varargs and if the function type does not return a pointer to a
5792 function.
5793#. '``fnptrval``': An LLVM value containing a pointer to a function to
5794 be invoked. In most cases, this is a direct function invocation, but
5795 indirect ``call``'s are just as possible, calling an arbitrary pointer
5796 to function value.
5797#. '``function args``': argument list whose types match the function
5798 signature argument types and parameter attributes. All arguments must
5799 be of :ref:`first class <t_firstclass>` type. If the function signature
5800 indicates the function accepts a variable number of arguments, the
5801 extra arguments can be specified.
5802#. The optional :ref:`function attributes <fnattrs>` list. Only
5803 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5804 attributes are valid here.
5805
5806Semantics:
5807""""""""""
5808
5809The '``call``' instruction is used to cause control flow to transfer to
5810a specified function, with its incoming arguments bound to the specified
5811values. Upon a '``ret``' instruction in the called function, control
5812flow continues with the instruction after the function call, and the
5813return value of the function is bound to the result argument.
5814
5815Example:
5816""""""""
5817
5818.. code-block:: llvm
5819
5820 %retval = call i32 @test(i32 %argc)
5821 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5822 %X = tail call i32 @foo() ; yields i32
5823 %Y = tail call fastcc i32 @foo() ; yields i32
5824 call void %foo(i8 97 signext)
5825
5826 %struct.A = type { i32, i8 }
5827 %r = call %struct.A @foo() ; yields { 32, i8 }
5828 %gr = extractvalue %struct.A %r, 0 ; yields i32
5829 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5830 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5831 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5832
5833llvm treats calls to some functions with names and arguments that match
5834the standard C99 library as being the C99 library functions, and may
5835perform optimizations or generate code for them under that assumption.
5836This is something we'd like to change in the future to provide better
5837support for freestanding environments and non-C-based languages.
5838
5839.. _i_va_arg:
5840
5841'``va_arg``' Instruction
5842^^^^^^^^^^^^^^^^^^^^^^^^
5843
5844Syntax:
5845"""""""
5846
5847::
5848
5849 <resultval> = va_arg <va_list*> <arglist>, <argty>
5850
5851Overview:
5852"""""""""
5853
5854The '``va_arg``' instruction is used to access arguments passed through
5855the "variable argument" area of a function call. It is used to implement
5856the ``va_arg`` macro in C.
5857
5858Arguments:
5859""""""""""
5860
5861This instruction takes a ``va_list*`` value and the type of the
5862argument. It returns a value of the specified argument type and
5863increments the ``va_list`` to point to the next argument. The actual
5864type of ``va_list`` is target specific.
5865
5866Semantics:
5867""""""""""
5868
5869The '``va_arg``' instruction loads an argument of the specified type
5870from the specified ``va_list`` and causes the ``va_list`` to point to
5871the next argument. For more information, see the variable argument
5872handling :ref:`Intrinsic Functions <int_varargs>`.
5873
5874It is legal for this instruction to be called in a function which does
5875not take a variable number of arguments, for example, the ``vfprintf``
5876function.
5877
5878``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5879function <intrinsics>` because it takes a type as an argument.
5880
5881Example:
5882""""""""
5883
5884See the :ref:`variable argument processing <int_varargs>` section.
5885
5886Note that the code generator does not yet fully support va\_arg on many
5887targets. Also, it does not currently support va\_arg with aggregate
5888types on any target.
5889
5890.. _i_landingpad:
5891
5892'``landingpad``' Instruction
5893^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5894
5895Syntax:
5896"""""""
5897
5898::
5899
5900 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
5901 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
5902
5903 <clause> := catch <type> <value>
5904 <clause> := filter <array constant type> <array constant>
5905
5906Overview:
5907"""""""""
5908
5909The '``landingpad``' instruction is used by `LLVM's exception handling
5910system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00005911is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00005912code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
5913defines values supplied by the personality function (``pers_fn``) upon
5914re-entry to the function. The ``resultval`` has the type ``resultty``.
5915
5916Arguments:
5917""""""""""
5918
5919This instruction takes a ``pers_fn`` value. This is the personality
5920function associated with the unwinding mechanism. The optional
5921``cleanup`` flag indicates that the landing pad block is a cleanup.
5922
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00005923A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00005924contains the global variable representing the "type" that may be caught
5925or filtered respectively. Unlike the ``catch`` clause, the ``filter``
5926clause takes an array constant as its argument. Use
5927"``[0 x i8**] undef``" for a filter which cannot throw. The
5928'``landingpad``' instruction must contain *at least* one ``clause`` or
5929the ``cleanup`` flag.
5930
5931Semantics:
5932""""""""""
5933
5934The '``landingpad``' instruction defines the values which are set by the
5935personality function (``pers_fn``) upon re-entry to the function, and
5936therefore the "result type" of the ``landingpad`` instruction. As with
5937calling conventions, how the personality function results are
5938represented in LLVM IR is target specific.
5939
5940The clauses are applied in order from top to bottom. If two
5941``landingpad`` instructions are merged together through inlining, the
5942clauses from the calling function are appended to the list of clauses.
5943When the call stack is being unwound due to an exception being thrown,
5944the exception is compared against each ``clause`` in turn. If it doesn't
5945match any of the clauses, and the ``cleanup`` flag is not set, then
5946unwinding continues further up the call stack.
5947
5948The ``landingpad`` instruction has several restrictions:
5949
5950- A landing pad block is a basic block which is the unwind destination
5951 of an '``invoke``' instruction.
5952- A landing pad block must have a '``landingpad``' instruction as its
5953 first non-PHI instruction.
5954- There can be only one '``landingpad``' instruction within the landing
5955 pad block.
5956- A basic block that is not a landing pad block may not include a
5957 '``landingpad``' instruction.
5958- All '``landingpad``' instructions in a function must have the same
5959 personality function.
5960
5961Example:
5962""""""""
5963
5964.. code-block:: llvm
5965
5966 ;; A landing pad which can catch an integer.
5967 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5968 catch i8** @_ZTIi
5969 ;; A landing pad that is a cleanup.
5970 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5971 cleanup
5972 ;; A landing pad which can catch an integer and can only throw a double.
5973 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5974 catch i8** @_ZTIi
5975 filter [1 x i8**] [@_ZTId]
5976
5977.. _intrinsics:
5978
5979Intrinsic Functions
5980===================
5981
5982LLVM supports the notion of an "intrinsic function". These functions
5983have well known names and semantics and are required to follow certain
5984restrictions. Overall, these intrinsics represent an extension mechanism
5985for the LLVM language that does not require changing all of the
5986transformations in LLVM when adding to the language (or the bitcode
5987reader/writer, the parser, etc...).
5988
5989Intrinsic function names must all start with an "``llvm.``" prefix. This
5990prefix is reserved in LLVM for intrinsic names; thus, function names may
5991not begin with this prefix. Intrinsic functions must always be external
5992functions: you cannot define the body of intrinsic functions. Intrinsic
5993functions may only be used in call or invoke instructions: it is illegal
5994to take the address of an intrinsic function. Additionally, because
5995intrinsic functions are part of the LLVM language, it is required if any
5996are added that they be documented here.
5997
5998Some intrinsic functions can be overloaded, i.e., the intrinsic
5999represents a family of functions that perform the same operation but on
6000different data types. Because LLVM can represent over 8 million
6001different integer types, overloading is used commonly to allow an
6002intrinsic function to operate on any integer type. One or more of the
6003argument types or the result type can be overloaded to accept any
6004integer type. Argument types may also be defined as exactly matching a
6005previous argument's type or the result type. This allows an intrinsic
6006function which accepts multiple arguments, but needs all of them to be
6007of the same type, to only be overloaded with respect to a single
6008argument or the result.
6009
6010Overloaded intrinsics will have the names of its overloaded argument
6011types encoded into its function name, each preceded by a period. Only
6012those types which are overloaded result in a name suffix. Arguments
6013whose type is matched against another type do not. For example, the
6014``llvm.ctpop`` function can take an integer of any width and returns an
6015integer of exactly the same integer width. This leads to a family of
6016functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6017``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6018overloaded, and only one type suffix is required. Because the argument's
6019type is matched against the return type, it does not require its own
6020name suffix.
6021
6022To learn how to add an intrinsic function, please see the `Extending
6023LLVM Guide <ExtendingLLVM.html>`_.
6024
6025.. _int_varargs:
6026
6027Variable Argument Handling Intrinsics
6028-------------------------------------
6029
6030Variable argument support is defined in LLVM with the
6031:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6032functions. These functions are related to the similarly named macros
6033defined in the ``<stdarg.h>`` header file.
6034
6035All of these functions operate on arguments that use a target-specific
6036value type "``va_list``". The LLVM assembly language reference manual
6037does not define what this type is, so all transformations should be
6038prepared to handle these functions regardless of the type used.
6039
6040This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6041variable argument handling intrinsic functions are used.
6042
6043.. code-block:: llvm
6044
6045 define i32 @test(i32 %X, ...) {
6046 ; Initialize variable argument processing
6047 %ap = alloca i8*
6048 %ap2 = bitcast i8** %ap to i8*
6049 call void @llvm.va_start(i8* %ap2)
6050
6051 ; Read a single integer argument
6052 %tmp = va_arg i8** %ap, i32
6053
6054 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6055 %aq = alloca i8*
6056 %aq2 = bitcast i8** %aq to i8*
6057 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6058 call void @llvm.va_end(i8* %aq2)
6059
6060 ; Stop processing of arguments.
6061 call void @llvm.va_end(i8* %ap2)
6062 ret i32 %tmp
6063 }
6064
6065 declare void @llvm.va_start(i8*)
6066 declare void @llvm.va_copy(i8*, i8*)
6067 declare void @llvm.va_end(i8*)
6068
6069.. _int_va_start:
6070
6071'``llvm.va_start``' Intrinsic
6072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6073
6074Syntax:
6075"""""""
6076
6077::
6078
6079 declare void %llvm.va_start(i8* <arglist>)
6080
6081Overview:
6082"""""""""
6083
6084The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6085subsequent use by ``va_arg``.
6086
6087Arguments:
6088""""""""""
6089
6090The argument is a pointer to a ``va_list`` element to initialize.
6091
6092Semantics:
6093""""""""""
6094
6095The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6096available in C. In a target-dependent way, it initializes the
6097``va_list`` element to which the argument points, so that the next call
6098to ``va_arg`` will produce the first variable argument passed to the
6099function. Unlike the C ``va_start`` macro, this intrinsic does not need
6100to know the last argument of the function as the compiler can figure
6101that out.
6102
6103'``llvm.va_end``' Intrinsic
6104^^^^^^^^^^^^^^^^^^^^^^^^^^^
6105
6106Syntax:
6107"""""""
6108
6109::
6110
6111 declare void @llvm.va_end(i8* <arglist>)
6112
6113Overview:
6114"""""""""
6115
6116The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6117initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6118
6119Arguments:
6120""""""""""
6121
6122The argument is a pointer to a ``va_list`` to destroy.
6123
6124Semantics:
6125""""""""""
6126
6127The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6128available in C. In a target-dependent way, it destroys the ``va_list``
6129element to which the argument points. Calls to
6130:ref:`llvm.va_start <int_va_start>` and
6131:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6132``llvm.va_end``.
6133
6134.. _int_va_copy:
6135
6136'``llvm.va_copy``' Intrinsic
6137^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6138
6139Syntax:
6140"""""""
6141
6142::
6143
6144 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6145
6146Overview:
6147"""""""""
6148
6149The '``llvm.va_copy``' intrinsic copies the current argument position
6150from the source argument list to the destination argument list.
6151
6152Arguments:
6153""""""""""
6154
6155The first argument is a pointer to a ``va_list`` element to initialize.
6156The second argument is a pointer to a ``va_list`` element to copy from.
6157
6158Semantics:
6159""""""""""
6160
6161The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6162available in C. In a target-dependent way, it copies the source
6163``va_list`` element into the destination ``va_list`` element. This
6164intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6165arbitrarily complex and require, for example, memory allocation.
6166
6167Accurate Garbage Collection Intrinsics
6168--------------------------------------
6169
6170LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6171(GC) requires the implementation and generation of these intrinsics.
6172These intrinsics allow identification of :ref:`GC roots on the
6173stack <int_gcroot>`, as well as garbage collector implementations that
6174require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6175Front-ends for type-safe garbage collected languages should generate
6176these intrinsics to make use of the LLVM garbage collectors. For more
6177details, see `Accurate Garbage Collection with
6178LLVM <GarbageCollection.html>`_.
6179
6180The garbage collection intrinsics only operate on objects in the generic
6181address space (address space zero).
6182
6183.. _int_gcroot:
6184
6185'``llvm.gcroot``' Intrinsic
6186^^^^^^^^^^^^^^^^^^^^^^^^^^^
6187
6188Syntax:
6189"""""""
6190
6191::
6192
6193 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6194
6195Overview:
6196"""""""""
6197
6198The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6199the code generator, and allows some metadata to be associated with it.
6200
6201Arguments:
6202""""""""""
6203
6204The first argument specifies the address of a stack object that contains
6205the root pointer. The second pointer (which must be either a constant or
6206a global value address) contains the meta-data to be associated with the
6207root.
6208
6209Semantics:
6210""""""""""
6211
6212At runtime, a call to this intrinsic stores a null pointer into the
6213"ptrloc" location. At compile-time, the code generator generates
6214information to allow the runtime to find the pointer at GC safe points.
6215The '``llvm.gcroot``' intrinsic may only be used in a function which
6216:ref:`specifies a GC algorithm <gc>`.
6217
6218.. _int_gcread:
6219
6220'``llvm.gcread``' Intrinsic
6221^^^^^^^^^^^^^^^^^^^^^^^^^^^
6222
6223Syntax:
6224"""""""
6225
6226::
6227
6228 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6229
6230Overview:
6231"""""""""
6232
6233The '``llvm.gcread``' intrinsic identifies reads of references from heap
6234locations, allowing garbage collector implementations that require read
6235barriers.
6236
6237Arguments:
6238""""""""""
6239
6240The second argument is the address to read from, which should be an
6241address allocated from the garbage collector. The first object is a
6242pointer to the start of the referenced object, if needed by the language
6243runtime (otherwise null).
6244
6245Semantics:
6246""""""""""
6247
6248The '``llvm.gcread``' intrinsic has the same semantics as a load
6249instruction, but may be replaced with substantially more complex code by
6250the garbage collector runtime, as needed. The '``llvm.gcread``'
6251intrinsic may only be used in a function which :ref:`specifies a GC
6252algorithm <gc>`.
6253
6254.. _int_gcwrite:
6255
6256'``llvm.gcwrite``' Intrinsic
6257^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6258
6259Syntax:
6260"""""""
6261
6262::
6263
6264 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6265
6266Overview:
6267"""""""""
6268
6269The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6270locations, allowing garbage collector implementations that require write
6271barriers (such as generational or reference counting collectors).
6272
6273Arguments:
6274""""""""""
6275
6276The first argument is the reference to store, the second is the start of
6277the object to store it to, and the third is the address of the field of
6278Obj to store to. If the runtime does not require a pointer to the
6279object, Obj may be null.
6280
6281Semantics:
6282""""""""""
6283
6284The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6285instruction, but may be replaced with substantially more complex code by
6286the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6287intrinsic may only be used in a function which :ref:`specifies a GC
6288algorithm <gc>`.
6289
6290Code Generator Intrinsics
6291-------------------------
6292
6293These intrinsics are provided by LLVM to expose special features that
6294may only be implemented with code generator support.
6295
6296'``llvm.returnaddress``' Intrinsic
6297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6298
6299Syntax:
6300"""""""
6301
6302::
6303
6304 declare i8 *@llvm.returnaddress(i32 <level>)
6305
6306Overview:
6307"""""""""
6308
6309The '``llvm.returnaddress``' intrinsic attempts to compute a
6310target-specific value indicating the return address of the current
6311function or one of its callers.
6312
6313Arguments:
6314""""""""""
6315
6316The argument to this intrinsic indicates which function to return the
6317address for. Zero indicates the calling function, one indicates its
6318caller, etc. The argument is **required** to be a constant integer
6319value.
6320
6321Semantics:
6322""""""""""
6323
6324The '``llvm.returnaddress``' intrinsic either returns a pointer
6325indicating the return address of the specified call frame, or zero if it
6326cannot be identified. The value returned by this intrinsic is likely to
6327be incorrect or 0 for arguments other than zero, so it should only be
6328used for debugging purposes.
6329
6330Note that calling this intrinsic does not prevent function inlining or
6331other aggressive transformations, so the value returned may not be that
6332of the obvious source-language caller.
6333
6334'``llvm.frameaddress``' Intrinsic
6335^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6336
6337Syntax:
6338"""""""
6339
6340::
6341
6342 declare i8* @llvm.frameaddress(i32 <level>)
6343
6344Overview:
6345"""""""""
6346
6347The '``llvm.frameaddress``' intrinsic attempts to return the
6348target-specific frame pointer value for the specified stack frame.
6349
6350Arguments:
6351""""""""""
6352
6353The argument to this intrinsic indicates which function to return the
6354frame pointer for. Zero indicates the calling function, one indicates
6355its caller, etc. The argument is **required** to be a constant integer
6356value.
6357
6358Semantics:
6359""""""""""
6360
6361The '``llvm.frameaddress``' intrinsic either returns a pointer
6362indicating the frame address of the specified call frame, or zero if it
6363cannot be identified. The value returned by this intrinsic is likely to
6364be incorrect or 0 for arguments other than zero, so it should only be
6365used for debugging purposes.
6366
6367Note that calling this intrinsic does not prevent function inlining or
6368other aggressive transformations, so the value returned may not be that
6369of the obvious source-language caller.
6370
6371.. _int_stacksave:
6372
6373'``llvm.stacksave``' Intrinsic
6374^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6375
6376Syntax:
6377"""""""
6378
6379::
6380
6381 declare i8* @llvm.stacksave()
6382
6383Overview:
6384"""""""""
6385
6386The '``llvm.stacksave``' intrinsic is used to remember the current state
6387of the function stack, for use with
6388:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6389implementing language features like scoped automatic variable sized
6390arrays in C99.
6391
6392Semantics:
6393""""""""""
6394
6395This intrinsic returns a opaque pointer value that can be passed to
6396:ref:`llvm.stackrestore <int_stackrestore>`. When an
6397``llvm.stackrestore`` intrinsic is executed with a value saved from
6398``llvm.stacksave``, it effectively restores the state of the stack to
6399the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6400practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6401were allocated after the ``llvm.stacksave`` was executed.
6402
6403.. _int_stackrestore:
6404
6405'``llvm.stackrestore``' Intrinsic
6406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6407
6408Syntax:
6409"""""""
6410
6411::
6412
6413 declare void @llvm.stackrestore(i8* %ptr)
6414
6415Overview:
6416"""""""""
6417
6418The '``llvm.stackrestore``' intrinsic is used to restore the state of
6419the function stack to the state it was in when the corresponding
6420:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6421useful for implementing language features like scoped automatic variable
6422sized arrays in C99.
6423
6424Semantics:
6425""""""""""
6426
6427See the description for :ref:`llvm.stacksave <int_stacksave>`.
6428
6429'``llvm.prefetch``' Intrinsic
6430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6431
6432Syntax:
6433"""""""
6434
6435::
6436
6437 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6438
6439Overview:
6440"""""""""
6441
6442The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6443insert a prefetch instruction if supported; otherwise, it is a noop.
6444Prefetches have no effect on the behavior of the program but can change
6445its performance characteristics.
6446
6447Arguments:
6448""""""""""
6449
6450``address`` is the address to be prefetched, ``rw`` is the specifier
6451determining if the fetch should be for a read (0) or write (1), and
6452``locality`` is a temporal locality specifier ranging from (0) - no
6453locality, to (3) - extremely local keep in cache. The ``cache type``
6454specifies whether the prefetch is performed on the data (1) or
6455instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6456arguments must be constant integers.
6457
6458Semantics:
6459""""""""""
6460
6461This intrinsic does not modify the behavior of the program. In
6462particular, prefetches cannot trap and do not produce a value. On
6463targets that support this intrinsic, the prefetch can provide hints to
6464the processor cache for better performance.
6465
6466'``llvm.pcmarker``' Intrinsic
6467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6468
6469Syntax:
6470"""""""
6471
6472::
6473
6474 declare void @llvm.pcmarker(i32 <id>)
6475
6476Overview:
6477"""""""""
6478
6479The '``llvm.pcmarker``' intrinsic is a method to export a Program
6480Counter (PC) in a region of code to simulators and other tools. The
6481method is target specific, but it is expected that the marker will use
6482exported symbols to transmit the PC of the marker. The marker makes no
6483guarantees that it will remain with any specific instruction after
6484optimizations. It is possible that the presence of a marker will inhibit
6485optimizations. The intended use is to be inserted after optimizations to
6486allow correlations of simulation runs.
6487
6488Arguments:
6489""""""""""
6490
6491``id`` is a numerical id identifying the marker.
6492
6493Semantics:
6494""""""""""
6495
6496This intrinsic does not modify the behavior of the program. Backends
6497that do not support this intrinsic may ignore it.
6498
6499'``llvm.readcyclecounter``' Intrinsic
6500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6501
6502Syntax:
6503"""""""
6504
6505::
6506
6507 declare i64 @llvm.readcyclecounter()
6508
6509Overview:
6510"""""""""
6511
6512The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6513counter register (or similar low latency, high accuracy clocks) on those
6514targets that support it. On X86, it should map to RDTSC. On Alpha, it
6515should map to RPCC. As the backing counters overflow quickly (on the
6516order of 9 seconds on alpha), this should only be used for small
6517timings.
6518
6519Semantics:
6520""""""""""
6521
6522When directly supported, reading the cycle counter should not modify any
6523memory. Implementations are allowed to either return a application
6524specific value or a system wide value. On backends without support, this
6525is lowered to a constant 0.
6526
6527Standard C Library Intrinsics
6528-----------------------------
6529
6530LLVM provides intrinsics for a few important standard C library
6531functions. These intrinsics allow source-language front-ends to pass
6532information about the alignment of the pointer arguments to the code
6533generator, providing opportunity for more efficient code generation.
6534
6535.. _int_memcpy:
6536
6537'``llvm.memcpy``' Intrinsic
6538^^^^^^^^^^^^^^^^^^^^^^^^^^^
6539
6540Syntax:
6541"""""""
6542
6543This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6544integer bit width and for different address spaces. Not all targets
6545support all bit widths however.
6546
6547::
6548
6549 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6550 i32 <len>, i32 <align>, i1 <isvolatile>)
6551 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6552 i64 <len>, i32 <align>, i1 <isvolatile>)
6553
6554Overview:
6555"""""""""
6556
6557The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6558source location to the destination location.
6559
6560Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6561intrinsics do not return a value, takes extra alignment/isvolatile
6562arguments and the pointers can be in specified address spaces.
6563
6564Arguments:
6565""""""""""
6566
6567The first argument is a pointer to the destination, the second is a
6568pointer to the source. The third argument is an integer argument
6569specifying the number of bytes to copy, the fourth argument is the
6570alignment of the source and destination locations, and the fifth is a
6571boolean indicating a volatile access.
6572
6573If the call to this intrinsic has an alignment value that is not 0 or 1,
6574then the caller guarantees that both the source and destination pointers
6575are aligned to that boundary.
6576
6577If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6578a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6579very cleanly specified and it is unwise to depend on it.
6580
6581Semantics:
6582""""""""""
6583
6584The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6585source location to the destination location, which are not allowed to
6586overlap. It copies "len" bytes of memory over. If the argument is known
6587to be aligned to some boundary, this can be specified as the fourth
6588argument, otherwise it should be set to 0 or 1.
6589
6590'``llvm.memmove``' Intrinsic
6591^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6592
6593Syntax:
6594"""""""
6595
6596This is an overloaded intrinsic. You can use llvm.memmove on any integer
6597bit width and for different address space. Not all targets support all
6598bit widths however.
6599
6600::
6601
6602 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6603 i32 <len>, i32 <align>, i1 <isvolatile>)
6604 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6605 i64 <len>, i32 <align>, i1 <isvolatile>)
6606
6607Overview:
6608"""""""""
6609
6610The '``llvm.memmove.*``' intrinsics move a block of memory from the
6611source location to the destination location. It is similar to the
6612'``llvm.memcpy``' intrinsic but allows the two memory locations to
6613overlap.
6614
6615Note that, unlike the standard libc function, the ``llvm.memmove.*``
6616intrinsics do not return a value, takes extra alignment/isvolatile
6617arguments and the pointers can be in specified address spaces.
6618
6619Arguments:
6620""""""""""
6621
6622The first argument is a pointer to the destination, the second is a
6623pointer to the source. The third argument is an integer argument
6624specifying the number of bytes to copy, the fourth argument is the
6625alignment of the source and destination locations, and the fifth is a
6626boolean indicating a volatile access.
6627
6628If the call to this intrinsic has an alignment value that is not 0 or 1,
6629then the caller guarantees that the source and destination pointers are
6630aligned to that boundary.
6631
6632If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6633is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6634not very cleanly specified and it is unwise to depend on it.
6635
6636Semantics:
6637""""""""""
6638
6639The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6640source location to the destination location, which may overlap. It
6641copies "len" bytes of memory over. If the argument is known to be
6642aligned to some boundary, this can be specified as the fourth argument,
6643otherwise it should be set to 0 or 1.
6644
6645'``llvm.memset.*``' Intrinsics
6646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6647
6648Syntax:
6649"""""""
6650
6651This is an overloaded intrinsic. You can use llvm.memset on any integer
6652bit width and for different address spaces. However, not all targets
6653support all bit widths.
6654
6655::
6656
6657 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6658 i32 <len>, i32 <align>, i1 <isvolatile>)
6659 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6660 i64 <len>, i32 <align>, i1 <isvolatile>)
6661
6662Overview:
6663"""""""""
6664
6665The '``llvm.memset.*``' intrinsics fill a block of memory with a
6666particular byte value.
6667
6668Note that, unlike the standard libc function, the ``llvm.memset``
6669intrinsic does not return a value and takes extra alignment/volatile
6670arguments. Also, the destination can be in an arbitrary address space.
6671
6672Arguments:
6673""""""""""
6674
6675The first argument is a pointer to the destination to fill, the second
6676is the byte value with which to fill it, the third argument is an
6677integer argument specifying the number of bytes to fill, and the fourth
6678argument is the known alignment of the destination location.
6679
6680If the call to this intrinsic has an alignment value that is not 0 or 1,
6681then the caller guarantees that the destination pointer is aligned to
6682that boundary.
6683
6684If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6685a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6686very cleanly specified and it is unwise to depend on it.
6687
6688Semantics:
6689""""""""""
6690
6691The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6692at the destination location. If the argument is known to be aligned to
6693some boundary, this can be specified as the fourth argument, otherwise
6694it should be set to 0 or 1.
6695
6696'``llvm.sqrt.*``' Intrinsic
6697^^^^^^^^^^^^^^^^^^^^^^^^^^^
6698
6699Syntax:
6700"""""""
6701
6702This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6703floating point or vector of floating point type. Not all targets support
6704all types however.
6705
6706::
6707
6708 declare float @llvm.sqrt.f32(float %Val)
6709 declare double @llvm.sqrt.f64(double %Val)
6710 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6711 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6712 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6713
6714Overview:
6715"""""""""
6716
6717The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6718returning the same value as the libm '``sqrt``' functions would. Unlike
6719``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6720negative numbers other than -0.0 (which allows for better optimization,
6721because there is no need to worry about errno being set).
6722``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6723
6724Arguments:
6725""""""""""
6726
6727The argument and return value are floating point numbers of the same
6728type.
6729
6730Semantics:
6731""""""""""
6732
6733This function returns the sqrt of the specified operand if it is a
6734nonnegative floating point number.
6735
6736'``llvm.powi.*``' Intrinsic
6737^^^^^^^^^^^^^^^^^^^^^^^^^^^
6738
6739Syntax:
6740"""""""
6741
6742This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6743floating point or vector of floating point type. Not all targets support
6744all types however.
6745
6746::
6747
6748 declare float @llvm.powi.f32(float %Val, i32 %power)
6749 declare double @llvm.powi.f64(double %Val, i32 %power)
6750 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6751 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6752 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6753
6754Overview:
6755"""""""""
6756
6757The '``llvm.powi.*``' intrinsics return the first operand raised to the
6758specified (positive or negative) power. The order of evaluation of
6759multiplications is not defined. When a vector of floating point type is
6760used, the second argument remains a scalar integer value.
6761
6762Arguments:
6763""""""""""
6764
6765The second argument is an integer power, and the first is a value to
6766raise to that power.
6767
6768Semantics:
6769""""""""""
6770
6771This function returns the first value raised to the second power with an
6772unspecified sequence of rounding operations.
6773
6774'``llvm.sin.*``' Intrinsic
6775^^^^^^^^^^^^^^^^^^^^^^^^^^
6776
6777Syntax:
6778"""""""
6779
6780This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6781floating point or vector of floating point type. Not all targets support
6782all types however.
6783
6784::
6785
6786 declare float @llvm.sin.f32(float %Val)
6787 declare double @llvm.sin.f64(double %Val)
6788 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6789 declare fp128 @llvm.sin.f128(fp128 %Val)
6790 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6791
6792Overview:
6793"""""""""
6794
6795The '``llvm.sin.*``' intrinsics return the sine of the operand.
6796
6797Arguments:
6798""""""""""
6799
6800The argument and return value are floating point numbers of the same
6801type.
6802
6803Semantics:
6804""""""""""
6805
6806This function returns the sine of the specified operand, returning the
6807same values as the libm ``sin`` functions would, and handles error
6808conditions in the same way.
6809
6810'``llvm.cos.*``' Intrinsic
6811^^^^^^^^^^^^^^^^^^^^^^^^^^
6812
6813Syntax:
6814"""""""
6815
6816This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6817floating point or vector of floating point type. Not all targets support
6818all types however.
6819
6820::
6821
6822 declare float @llvm.cos.f32(float %Val)
6823 declare double @llvm.cos.f64(double %Val)
6824 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6825 declare fp128 @llvm.cos.f128(fp128 %Val)
6826 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6827
6828Overview:
6829"""""""""
6830
6831The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6832
6833Arguments:
6834""""""""""
6835
6836The argument and return value are floating point numbers of the same
6837type.
6838
6839Semantics:
6840""""""""""
6841
6842This function returns the cosine of the specified operand, returning the
6843same values as the libm ``cos`` functions would, and handles error
6844conditions in the same way.
6845
6846'``llvm.pow.*``' Intrinsic
6847^^^^^^^^^^^^^^^^^^^^^^^^^^
6848
6849Syntax:
6850"""""""
6851
6852This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6853floating point or vector of floating point type. Not all targets support
6854all types however.
6855
6856::
6857
6858 declare float @llvm.pow.f32(float %Val, float %Power)
6859 declare double @llvm.pow.f64(double %Val, double %Power)
6860 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6861 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6862 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6863
6864Overview:
6865"""""""""
6866
6867The '``llvm.pow.*``' intrinsics return the first operand raised to the
6868specified (positive or negative) power.
6869
6870Arguments:
6871""""""""""
6872
6873The second argument is a floating point power, and the first is a value
6874to raise to that power.
6875
6876Semantics:
6877""""""""""
6878
6879This function returns the first value raised to the second power,
6880returning the same values as the libm ``pow`` functions would, and
6881handles error conditions in the same way.
6882
6883'``llvm.exp.*``' Intrinsic
6884^^^^^^^^^^^^^^^^^^^^^^^^^^
6885
6886Syntax:
6887"""""""
6888
6889This is an overloaded intrinsic. You can use ``llvm.exp`` on any
6890floating point or vector of floating point type. Not all targets support
6891all types however.
6892
6893::
6894
6895 declare float @llvm.exp.f32(float %Val)
6896 declare double @llvm.exp.f64(double %Val)
6897 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
6898 declare fp128 @llvm.exp.f128(fp128 %Val)
6899 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
6900
6901Overview:
6902"""""""""
6903
6904The '``llvm.exp.*``' intrinsics perform the exp function.
6905
6906Arguments:
6907""""""""""
6908
6909The argument and return value are floating point numbers of the same
6910type.
6911
6912Semantics:
6913""""""""""
6914
6915This function returns the same values as the libm ``exp`` functions
6916would, and handles error conditions in the same way.
6917
6918'``llvm.exp2.*``' Intrinsic
6919^^^^^^^^^^^^^^^^^^^^^^^^^^^
6920
6921Syntax:
6922"""""""
6923
6924This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
6925floating point or vector of floating point type. Not all targets support
6926all types however.
6927
6928::
6929
6930 declare float @llvm.exp2.f32(float %Val)
6931 declare double @llvm.exp2.f64(double %Val)
6932 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
6933 declare fp128 @llvm.exp2.f128(fp128 %Val)
6934 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
6935
6936Overview:
6937"""""""""
6938
6939The '``llvm.exp2.*``' intrinsics perform the exp2 function.
6940
6941Arguments:
6942""""""""""
6943
6944The argument and return value are floating point numbers of the same
6945type.
6946
6947Semantics:
6948""""""""""
6949
6950This function returns the same values as the libm ``exp2`` functions
6951would, and handles error conditions in the same way.
6952
6953'``llvm.log.*``' Intrinsic
6954^^^^^^^^^^^^^^^^^^^^^^^^^^
6955
6956Syntax:
6957"""""""
6958
6959This is an overloaded intrinsic. You can use ``llvm.log`` on any
6960floating point or vector of floating point type. Not all targets support
6961all types however.
6962
6963::
6964
6965 declare float @llvm.log.f32(float %Val)
6966 declare double @llvm.log.f64(double %Val)
6967 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
6968 declare fp128 @llvm.log.f128(fp128 %Val)
6969 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
6970
6971Overview:
6972"""""""""
6973
6974The '``llvm.log.*``' intrinsics perform the log function.
6975
6976Arguments:
6977""""""""""
6978
6979The argument and return value are floating point numbers of the same
6980type.
6981
6982Semantics:
6983""""""""""
6984
6985This function returns the same values as the libm ``log`` functions
6986would, and handles error conditions in the same way.
6987
6988'``llvm.log10.*``' Intrinsic
6989^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6990
6991Syntax:
6992"""""""
6993
6994This is an overloaded intrinsic. You can use ``llvm.log10`` on any
6995floating point or vector of floating point type. Not all targets support
6996all types however.
6997
6998::
6999
7000 declare float @llvm.log10.f32(float %Val)
7001 declare double @llvm.log10.f64(double %Val)
7002 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7003 declare fp128 @llvm.log10.f128(fp128 %Val)
7004 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7005
7006Overview:
7007"""""""""
7008
7009The '``llvm.log10.*``' intrinsics perform the log10 function.
7010
7011Arguments:
7012""""""""""
7013
7014The argument and return value are floating point numbers of the same
7015type.
7016
7017Semantics:
7018""""""""""
7019
7020This function returns the same values as the libm ``log10`` functions
7021would, and handles error conditions in the same way.
7022
7023'``llvm.log2.*``' Intrinsic
7024^^^^^^^^^^^^^^^^^^^^^^^^^^^
7025
7026Syntax:
7027"""""""
7028
7029This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7030floating point or vector of floating point type. Not all targets support
7031all types however.
7032
7033::
7034
7035 declare float @llvm.log2.f32(float %Val)
7036 declare double @llvm.log2.f64(double %Val)
7037 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7038 declare fp128 @llvm.log2.f128(fp128 %Val)
7039 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7040
7041Overview:
7042"""""""""
7043
7044The '``llvm.log2.*``' intrinsics perform the log2 function.
7045
7046Arguments:
7047""""""""""
7048
7049The argument and return value are floating point numbers of the same
7050type.
7051
7052Semantics:
7053""""""""""
7054
7055This function returns the same values as the libm ``log2`` functions
7056would, and handles error conditions in the same way.
7057
7058'``llvm.fma.*``' Intrinsic
7059^^^^^^^^^^^^^^^^^^^^^^^^^^
7060
7061Syntax:
7062"""""""
7063
7064This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7065floating point or vector of floating point type. Not all targets support
7066all types however.
7067
7068::
7069
7070 declare float @llvm.fma.f32(float %a, float %b, float %c)
7071 declare double @llvm.fma.f64(double %a, double %b, double %c)
7072 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7073 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7074 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7075
7076Overview:
7077"""""""""
7078
7079The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7080operation.
7081
7082Arguments:
7083""""""""""
7084
7085The argument and return value are floating point numbers of the same
7086type.
7087
7088Semantics:
7089""""""""""
7090
7091This function returns the same values as the libm ``fma`` functions
7092would.
7093
7094'``llvm.fabs.*``' Intrinsic
7095^^^^^^^^^^^^^^^^^^^^^^^^^^^
7096
7097Syntax:
7098"""""""
7099
7100This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7101floating point or vector of floating point type. Not all targets support
7102all types however.
7103
7104::
7105
7106 declare float @llvm.fabs.f32(float %Val)
7107 declare double @llvm.fabs.f64(double %Val)
7108 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7109 declare fp128 @llvm.fabs.f128(fp128 %Val)
7110 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7111
7112Overview:
7113"""""""""
7114
7115The '``llvm.fabs.*``' intrinsics return the absolute value of the
7116operand.
7117
7118Arguments:
7119""""""""""
7120
7121The argument and return value are floating point numbers of the same
7122type.
7123
7124Semantics:
7125""""""""""
7126
7127This function returns the same values as the libm ``fabs`` functions
7128would, and handles error conditions in the same way.
7129
7130'``llvm.floor.*``' Intrinsic
7131^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7132
7133Syntax:
7134"""""""
7135
7136This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7137floating point or vector of floating point type. Not all targets support
7138all types however.
7139
7140::
7141
7142 declare float @llvm.floor.f32(float %Val)
7143 declare double @llvm.floor.f64(double %Val)
7144 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7145 declare fp128 @llvm.floor.f128(fp128 %Val)
7146 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7147
7148Overview:
7149"""""""""
7150
7151The '``llvm.floor.*``' intrinsics return the floor of the operand.
7152
7153Arguments:
7154""""""""""
7155
7156The argument and return value are floating point numbers of the same
7157type.
7158
7159Semantics:
7160""""""""""
7161
7162This function returns the same values as the libm ``floor`` functions
7163would, and handles error conditions in the same way.
7164
7165'``llvm.ceil.*``' Intrinsic
7166^^^^^^^^^^^^^^^^^^^^^^^^^^^
7167
7168Syntax:
7169"""""""
7170
7171This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7172floating point or vector of floating point type. Not all targets support
7173all types however.
7174
7175::
7176
7177 declare float @llvm.ceil.f32(float %Val)
7178 declare double @llvm.ceil.f64(double %Val)
7179 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7180 declare fp128 @llvm.ceil.f128(fp128 %Val)
7181 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7182
7183Overview:
7184"""""""""
7185
7186The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7187
7188Arguments:
7189""""""""""
7190
7191The argument and return value are floating point numbers of the same
7192type.
7193
7194Semantics:
7195""""""""""
7196
7197This function returns the same values as the libm ``ceil`` functions
7198would, and handles error conditions in the same way.
7199
7200'``llvm.trunc.*``' Intrinsic
7201^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7202
7203Syntax:
7204"""""""
7205
7206This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7207floating point or vector of floating point type. Not all targets support
7208all types however.
7209
7210::
7211
7212 declare float @llvm.trunc.f32(float %Val)
7213 declare double @llvm.trunc.f64(double %Val)
7214 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7215 declare fp128 @llvm.trunc.f128(fp128 %Val)
7216 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7217
7218Overview:
7219"""""""""
7220
7221The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7222nearest integer not larger in magnitude than the operand.
7223
7224Arguments:
7225""""""""""
7226
7227The argument and return value are floating point numbers of the same
7228type.
7229
7230Semantics:
7231""""""""""
7232
7233This function returns the same values as the libm ``trunc`` functions
7234would, and handles error conditions in the same way.
7235
7236'``llvm.rint.*``' Intrinsic
7237^^^^^^^^^^^^^^^^^^^^^^^^^^^
7238
7239Syntax:
7240"""""""
7241
7242This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7243floating point or vector of floating point type. Not all targets support
7244all types however.
7245
7246::
7247
7248 declare float @llvm.rint.f32(float %Val)
7249 declare double @llvm.rint.f64(double %Val)
7250 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7251 declare fp128 @llvm.rint.f128(fp128 %Val)
7252 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7253
7254Overview:
7255"""""""""
7256
7257The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7258nearest integer. It may raise an inexact floating-point exception if the
7259operand isn't an integer.
7260
7261Arguments:
7262""""""""""
7263
7264The argument and return value are floating point numbers of the same
7265type.
7266
7267Semantics:
7268""""""""""
7269
7270This function returns the same values as the libm ``rint`` functions
7271would, and handles error conditions in the same way.
7272
7273'``llvm.nearbyint.*``' Intrinsic
7274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7275
7276Syntax:
7277"""""""
7278
7279This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7280floating point or vector of floating point type. Not all targets support
7281all types however.
7282
7283::
7284
7285 declare float @llvm.nearbyint.f32(float %Val)
7286 declare double @llvm.nearbyint.f64(double %Val)
7287 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7288 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7289 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7290
7291Overview:
7292"""""""""
7293
7294The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7295nearest integer.
7296
7297Arguments:
7298""""""""""
7299
7300The argument and return value are floating point numbers of the same
7301type.
7302
7303Semantics:
7304""""""""""
7305
7306This function returns the same values as the libm ``nearbyint``
7307functions would, and handles error conditions in the same way.
7308
7309Bit Manipulation Intrinsics
7310---------------------------
7311
7312LLVM provides intrinsics for a few important bit manipulation
7313operations. These allow efficient code generation for some algorithms.
7314
7315'``llvm.bswap.*``' Intrinsics
7316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7317
7318Syntax:
7319"""""""
7320
7321This is an overloaded intrinsic function. You can use bswap on any
7322integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7323
7324::
7325
7326 declare i16 @llvm.bswap.i16(i16 <id>)
7327 declare i32 @llvm.bswap.i32(i32 <id>)
7328 declare i64 @llvm.bswap.i64(i64 <id>)
7329
7330Overview:
7331"""""""""
7332
7333The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7334values with an even number of bytes (positive multiple of 16 bits).
7335These are useful for performing operations on data that is not in the
7336target's native byte order.
7337
7338Semantics:
7339""""""""""
7340
7341The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7342and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7343intrinsic returns an i32 value that has the four bytes of the input i32
7344swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7345returned i32 will have its bytes in 3, 2, 1, 0 order. The
7346``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7347concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7348respectively).
7349
7350'``llvm.ctpop.*``' Intrinsic
7351^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7352
7353Syntax:
7354"""""""
7355
7356This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7357bit width, or on any vector with integer elements. Not all targets
7358support all bit widths or vector types, however.
7359
7360::
7361
7362 declare i8 @llvm.ctpop.i8(i8 <src>)
7363 declare i16 @llvm.ctpop.i16(i16 <src>)
7364 declare i32 @llvm.ctpop.i32(i32 <src>)
7365 declare i64 @llvm.ctpop.i64(i64 <src>)
7366 declare i256 @llvm.ctpop.i256(i256 <src>)
7367 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7368
7369Overview:
7370"""""""""
7371
7372The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7373in a value.
7374
7375Arguments:
7376""""""""""
7377
7378The only argument is the value to be counted. The argument may be of any
7379integer type, or a vector with integer elements. The return type must
7380match the argument type.
7381
7382Semantics:
7383""""""""""
7384
7385The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7386each element of a vector.
7387
7388'``llvm.ctlz.*``' Intrinsic
7389^^^^^^^^^^^^^^^^^^^^^^^^^^^
7390
7391Syntax:
7392"""""""
7393
7394This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7395integer bit width, or any vector whose elements are integers. Not all
7396targets support all bit widths or vector types, however.
7397
7398::
7399
7400 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7401 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7402 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7403 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7404 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7405 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7406
7407Overview:
7408"""""""""
7409
7410The '``llvm.ctlz``' family of intrinsic functions counts the number of
7411leading zeros in a variable.
7412
7413Arguments:
7414""""""""""
7415
7416The first argument is the value to be counted. This argument may be of
7417any integer type, or a vectory with integer element type. The return
7418type must match the first argument type.
7419
7420The second argument must be a constant and is a flag to indicate whether
7421the intrinsic should ensure that a zero as the first argument produces a
7422defined result. Historically some architectures did not provide a
7423defined result for zero values as efficiently, and many algorithms are
7424now predicated on avoiding zero-value inputs.
7425
7426Semantics:
7427""""""""""
7428
7429The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7430zeros in a variable, or within each element of the vector. If
7431``src == 0`` then the result is the size in bits of the type of ``src``
7432if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7433``llvm.ctlz(i32 2) = 30``.
7434
7435'``llvm.cttz.*``' Intrinsic
7436^^^^^^^^^^^^^^^^^^^^^^^^^^^
7437
7438Syntax:
7439"""""""
7440
7441This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7442integer bit width, or any vector of integer elements. Not all targets
7443support all bit widths or vector types, however.
7444
7445::
7446
7447 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7448 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7449 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7450 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7451 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7452 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7453
7454Overview:
7455"""""""""
7456
7457The '``llvm.cttz``' family of intrinsic functions counts the number of
7458trailing zeros.
7459
7460Arguments:
7461""""""""""
7462
7463The first argument is the value to be counted. This argument may be of
7464any integer type, or a vectory with integer element type. The return
7465type must match the first argument type.
7466
7467The second argument must be a constant and is a flag to indicate whether
7468the intrinsic should ensure that a zero as the first argument produces a
7469defined result. Historically some architectures did not provide a
7470defined result for zero values as efficiently, and many algorithms are
7471now predicated on avoiding zero-value inputs.
7472
7473Semantics:
7474""""""""""
7475
7476The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7477zeros in a variable, or within each element of a vector. If ``src == 0``
7478then the result is the size in bits of the type of ``src`` if
7479``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7480``llvm.cttz(2) = 1``.
7481
7482Arithmetic with Overflow Intrinsics
7483-----------------------------------
7484
7485LLVM provides intrinsics for some arithmetic with overflow operations.
7486
7487'``llvm.sadd.with.overflow.*``' Intrinsics
7488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7489
7490Syntax:
7491"""""""
7492
7493This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7494on any integer bit width.
7495
7496::
7497
7498 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7499 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7500 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7501
7502Overview:
7503"""""""""
7504
7505The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7506a signed addition of the two arguments, and indicate whether an overflow
7507occurred during the signed summation.
7508
7509Arguments:
7510""""""""""
7511
7512The arguments (%a and %b) and the first element of the result structure
7513may be of integer types of any bit width, but they must have the same
7514bit width. The second element of the result structure must be of type
7515``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7516addition.
7517
7518Semantics:
7519""""""""""
7520
7521The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007522a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007523first element of which is the signed summation, and the second element
7524of which is a bit specifying if the signed summation resulted in an
7525overflow.
7526
7527Examples:
7528"""""""""
7529
7530.. code-block:: llvm
7531
7532 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7533 %sum = extractvalue {i32, i1} %res, 0
7534 %obit = extractvalue {i32, i1} %res, 1
7535 br i1 %obit, label %overflow, label %normal
7536
7537'``llvm.uadd.with.overflow.*``' Intrinsics
7538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7539
7540Syntax:
7541"""""""
7542
7543This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7544on any integer bit width.
7545
7546::
7547
7548 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7549 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7550 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7551
7552Overview:
7553"""""""""
7554
7555The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7556an unsigned addition of the two arguments, and indicate whether a carry
7557occurred during the unsigned summation.
7558
7559Arguments:
7560""""""""""
7561
7562The arguments (%a and %b) and the first element of the result structure
7563may be of integer types of any bit width, but they must have the same
7564bit width. The second element of the result structure must be of type
7565``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7566addition.
7567
7568Semantics:
7569""""""""""
7570
7571The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007572an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007573first element of which is the sum, and the second element of which is a
7574bit specifying if the unsigned summation resulted in a carry.
7575
7576Examples:
7577"""""""""
7578
7579.. code-block:: llvm
7580
7581 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7582 %sum = extractvalue {i32, i1} %res, 0
7583 %obit = extractvalue {i32, i1} %res, 1
7584 br i1 %obit, label %carry, label %normal
7585
7586'``llvm.ssub.with.overflow.*``' Intrinsics
7587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7588
7589Syntax:
7590"""""""
7591
7592This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7593on any integer bit width.
7594
7595::
7596
7597 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7598 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7599 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7600
7601Overview:
7602"""""""""
7603
7604The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7605a signed subtraction of the two arguments, and indicate whether an
7606overflow occurred during the signed subtraction.
7607
7608Arguments:
7609""""""""""
7610
7611The arguments (%a and %b) and the first element of the result structure
7612may be of integer types of any bit width, but they must have the same
7613bit width. The second element of the result structure must be of type
7614``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7615subtraction.
7616
7617Semantics:
7618""""""""""
7619
7620The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007621a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007622first element of which is the subtraction, and the second element of
7623which is a bit specifying if the signed subtraction resulted in an
7624overflow.
7625
7626Examples:
7627"""""""""
7628
7629.. code-block:: llvm
7630
7631 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7632 %sum = extractvalue {i32, i1} %res, 0
7633 %obit = extractvalue {i32, i1} %res, 1
7634 br i1 %obit, label %overflow, label %normal
7635
7636'``llvm.usub.with.overflow.*``' Intrinsics
7637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7638
7639Syntax:
7640"""""""
7641
7642This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7643on any integer bit width.
7644
7645::
7646
7647 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7648 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7649 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7650
7651Overview:
7652"""""""""
7653
7654The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7655an unsigned subtraction of the two arguments, and indicate whether an
7656overflow occurred during the unsigned subtraction.
7657
7658Arguments:
7659""""""""""
7660
7661The arguments (%a and %b) and the first element of the result structure
7662may be of integer types of any bit width, but they must have the same
7663bit width. The second element of the result structure must be of type
7664``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7665subtraction.
7666
7667Semantics:
7668""""""""""
7669
7670The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007671an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007672the first element of which is the subtraction, and the second element of
7673which is a bit specifying if the unsigned subtraction resulted in an
7674overflow.
7675
7676Examples:
7677"""""""""
7678
7679.. code-block:: llvm
7680
7681 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7682 %sum = extractvalue {i32, i1} %res, 0
7683 %obit = extractvalue {i32, i1} %res, 1
7684 br i1 %obit, label %overflow, label %normal
7685
7686'``llvm.smul.with.overflow.*``' Intrinsics
7687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7688
7689Syntax:
7690"""""""
7691
7692This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7693on any integer bit width.
7694
7695::
7696
7697 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7698 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7699 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7700
7701Overview:
7702"""""""""
7703
7704The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7705a signed multiplication of the two arguments, and indicate whether an
7706overflow occurred during the signed multiplication.
7707
7708Arguments:
7709""""""""""
7710
7711The arguments (%a and %b) and the first element of the result structure
7712may be of integer types of any bit width, but they must have the same
7713bit width. The second element of the result structure must be of type
7714``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7715multiplication.
7716
7717Semantics:
7718""""""""""
7719
7720The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007721a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007722the first element of which is the multiplication, and the second element
7723of which is a bit specifying if the signed multiplication resulted in an
7724overflow.
7725
7726Examples:
7727"""""""""
7728
7729.. code-block:: llvm
7730
7731 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7732 %sum = extractvalue {i32, i1} %res, 0
7733 %obit = extractvalue {i32, i1} %res, 1
7734 br i1 %obit, label %overflow, label %normal
7735
7736'``llvm.umul.with.overflow.*``' Intrinsics
7737^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7738
7739Syntax:
7740"""""""
7741
7742This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7743on any integer bit width.
7744
7745::
7746
7747 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7748 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7749 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7750
7751Overview:
7752"""""""""
7753
7754The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7755a unsigned multiplication of the two arguments, and indicate whether an
7756overflow occurred during the unsigned multiplication.
7757
7758Arguments:
7759""""""""""
7760
7761The arguments (%a and %b) and the first element of the result structure
7762may be of integer types of any bit width, but they must have the same
7763bit width. The second element of the result structure must be of type
7764``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7765multiplication.
7766
7767Semantics:
7768""""""""""
7769
7770The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007771an unsigned multiplication of the two arguments. They return a structure ---
7772the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007773element of which is a bit specifying if the unsigned multiplication
7774resulted in an overflow.
7775
7776Examples:
7777"""""""""
7778
7779.. code-block:: llvm
7780
7781 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7782 %sum = extractvalue {i32, i1} %res, 0
7783 %obit = extractvalue {i32, i1} %res, 1
7784 br i1 %obit, label %overflow, label %normal
7785
7786Specialised Arithmetic Intrinsics
7787---------------------------------
7788
7789'``llvm.fmuladd.*``' Intrinsic
7790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7791
7792Syntax:
7793"""""""
7794
7795::
7796
7797 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7798 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7799
7800Overview:
7801"""""""""
7802
7803The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00007804expressions that can be fused if the code generator determines that (a) the
7805target instruction set has support for a fused operation, and (b) that the
7806fused operation is more efficient than the equivalent, separate pair of mul
7807and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00007808
7809Arguments:
7810""""""""""
7811
7812The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7813multiplicands, a and b, and an addend c.
7814
7815Semantics:
7816""""""""""
7817
7818The expression:
7819
7820::
7821
7822 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7823
7824is equivalent to the expression a \* b + c, except that rounding will
7825not be performed between the multiplication and addition steps if the
7826code generator fuses the operations. Fusion is not guaranteed, even if
7827the target platform supports it. If a fused multiply-add is required the
7828corresponding llvm.fma.\* intrinsic function should be used instead.
7829
7830Examples:
7831"""""""""
7832
7833.. code-block:: llvm
7834
7835 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7836
7837Half Precision Floating Point Intrinsics
7838----------------------------------------
7839
7840For most target platforms, half precision floating point is a
7841storage-only format. This means that it is a dense encoding (in memory)
7842but does not support computation in the format.
7843
7844This means that code must first load the half-precision floating point
7845value as an i16, then convert it to float with
7846:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7847then be performed on the float value (including extending to double
7848etc). To store the value back to memory, it is first converted to float
7849if needed, then converted to i16 with
7850:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7851i16 value.
7852
7853.. _int_convert_to_fp16:
7854
7855'``llvm.convert.to.fp16``' Intrinsic
7856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7857
7858Syntax:
7859"""""""
7860
7861::
7862
7863 declare i16 @llvm.convert.to.fp16(f32 %a)
7864
7865Overview:
7866"""""""""
7867
7868The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7869from single precision floating point format to half precision floating
7870point format.
7871
7872Arguments:
7873""""""""""
7874
7875The intrinsic function contains single argument - the value to be
7876converted.
7877
7878Semantics:
7879""""""""""
7880
7881The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7882from single precision floating point format to half precision floating
7883point format. The return value is an ``i16`` which contains the
7884converted number.
7885
7886Examples:
7887"""""""""
7888
7889.. code-block:: llvm
7890
7891 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7892 store i16 %res, i16* @x, align 2
7893
7894.. _int_convert_from_fp16:
7895
7896'``llvm.convert.from.fp16``' Intrinsic
7897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7898
7899Syntax:
7900"""""""
7901
7902::
7903
7904 declare f32 @llvm.convert.from.fp16(i16 %a)
7905
7906Overview:
7907"""""""""
7908
7909The '``llvm.convert.from.fp16``' intrinsic function performs a
7910conversion from half precision floating point format to single precision
7911floating point format.
7912
7913Arguments:
7914""""""""""
7915
7916The intrinsic function contains single argument - the value to be
7917converted.
7918
7919Semantics:
7920""""""""""
7921
7922The '``llvm.convert.from.fp16``' intrinsic function performs a
7923conversion from half single precision floating point format to single
7924precision floating point format. The input half-float value is
7925represented by an ``i16`` value.
7926
7927Examples:
7928"""""""""
7929
7930.. code-block:: llvm
7931
7932 %a = load i16* @x, align 2
7933 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7934
7935Debugger Intrinsics
7936-------------------
7937
7938The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
7939prefix), are described in the `LLVM Source Level
7940Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
7941document.
7942
7943Exception Handling Intrinsics
7944-----------------------------
7945
7946The LLVM exception handling intrinsics (which all start with
7947``llvm.eh.`` prefix), are described in the `LLVM Exception
7948Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
7949
7950.. _int_trampoline:
7951
7952Trampoline Intrinsics
7953---------------------
7954
7955These intrinsics make it possible to excise one parameter, marked with
7956the :ref:`nest <nest>` attribute, from a function. The result is a
7957callable function pointer lacking the nest parameter - the caller does
7958not need to provide a value for it. Instead, the value to use is stored
7959in advance in a "trampoline", a block of memory usually allocated on the
7960stack, which also contains code to splice the nest value into the
7961argument list. This is used to implement the GCC nested function address
7962extension.
7963
7964For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
7965then the resulting function pointer has signature ``i32 (i32, i32)*``.
7966It can be created as follows:
7967
7968.. code-block:: llvm
7969
7970 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7971 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7972 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7973 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
7974 %fp = bitcast i8* %p to i32 (i32, i32)*
7975
7976The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
7977``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
7978
7979.. _int_it:
7980
7981'``llvm.init.trampoline``' Intrinsic
7982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7983
7984Syntax:
7985"""""""
7986
7987::
7988
7989 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
7990
7991Overview:
7992"""""""""
7993
7994This fills the memory pointed to by ``tramp`` with executable code,
7995turning it into a trampoline.
7996
7997Arguments:
7998""""""""""
7999
8000The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8001pointers. The ``tramp`` argument must point to a sufficiently large and
8002sufficiently aligned block of memory; this memory is written to by the
8003intrinsic. Note that the size and the alignment are target-specific -
8004LLVM currently provides no portable way of determining them, so a
8005front-end that generates this intrinsic needs to have some
8006target-specific knowledge. The ``func`` argument must hold a function
8007bitcast to an ``i8*``.
8008
8009Semantics:
8010""""""""""
8011
8012The block of memory pointed to by ``tramp`` is filled with target
8013dependent code, turning it into a function. Then ``tramp`` needs to be
8014passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8015be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8016function's signature is the same as that of ``func`` with any arguments
8017marked with the ``nest`` attribute removed. At most one such ``nest``
8018argument is allowed, and it must be of pointer type. Calling the new
8019function is equivalent to calling ``func`` with the same argument list,
8020but with ``nval`` used for the missing ``nest`` argument. If, after
8021calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8022modified, then the effect of any later call to the returned function
8023pointer is undefined.
8024
8025.. _int_at:
8026
8027'``llvm.adjust.trampoline``' Intrinsic
8028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8029
8030Syntax:
8031"""""""
8032
8033::
8034
8035 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8036
8037Overview:
8038"""""""""
8039
8040This performs any required machine-specific adjustment to the address of
8041a trampoline (passed as ``tramp``).
8042
8043Arguments:
8044""""""""""
8045
8046``tramp`` must point to a block of memory which already has trampoline
8047code filled in by a previous call to
8048:ref:`llvm.init.trampoline <int_it>`.
8049
8050Semantics:
8051""""""""""
8052
8053On some architectures the address of the code to be executed needs to be
8054different to the address where the trampoline is actually stored. This
8055intrinsic returns the executable address corresponding to ``tramp``
8056after performing the required machine specific adjustments. The pointer
8057returned can then be :ref:`bitcast and executed <int_trampoline>`.
8058
8059Memory Use Markers
8060------------------
8061
8062This class of intrinsics exists to information about the lifetime of
8063memory objects and ranges where variables are immutable.
8064
8065'``llvm.lifetime.start``' Intrinsic
8066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8067
8068Syntax:
8069"""""""
8070
8071::
8072
8073 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8074
8075Overview:
8076"""""""""
8077
8078The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8079object's lifetime.
8080
8081Arguments:
8082""""""""""
8083
8084The first argument is a constant integer representing the size of the
8085object, or -1 if it is variable sized. The second argument is a pointer
8086to the object.
8087
8088Semantics:
8089""""""""""
8090
8091This intrinsic indicates that before this point in the code, the value
8092of the memory pointed to by ``ptr`` is dead. This means that it is known
8093to never be used and has an undefined value. A load from the pointer
8094that precedes this intrinsic can be replaced with ``'undef'``.
8095
8096'``llvm.lifetime.end``' Intrinsic
8097^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8098
8099Syntax:
8100"""""""
8101
8102::
8103
8104 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8105
8106Overview:
8107"""""""""
8108
8109The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8110object's lifetime.
8111
8112Arguments:
8113""""""""""
8114
8115The first argument is a constant integer representing the size of the
8116object, or -1 if it is variable sized. The second argument is a pointer
8117to the object.
8118
8119Semantics:
8120""""""""""
8121
8122This intrinsic indicates that after this point in the code, the value of
8123the memory pointed to by ``ptr`` is dead. This means that it is known to
8124never be used and has an undefined value. Any stores into the memory
8125object following this intrinsic may be removed as dead.
8126
8127'``llvm.invariant.start``' Intrinsic
8128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8129
8130Syntax:
8131"""""""
8132
8133::
8134
8135 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8136
8137Overview:
8138"""""""""
8139
8140The '``llvm.invariant.start``' intrinsic specifies that the contents of
8141a memory object will not change.
8142
8143Arguments:
8144""""""""""
8145
8146The first argument is a constant integer representing the size of the
8147object, or -1 if it is variable sized. The second argument is a pointer
8148to the object.
8149
8150Semantics:
8151""""""""""
8152
8153This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8154the return value, the referenced memory location is constant and
8155unchanging.
8156
8157'``llvm.invariant.end``' Intrinsic
8158^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8159
8160Syntax:
8161"""""""
8162
8163::
8164
8165 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8166
8167Overview:
8168"""""""""
8169
8170The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8171memory object are mutable.
8172
8173Arguments:
8174""""""""""
8175
8176The first argument is the matching ``llvm.invariant.start`` intrinsic.
8177The second argument is a constant integer representing the size of the
8178object, or -1 if it is variable sized and the third argument is a
8179pointer to the object.
8180
8181Semantics:
8182""""""""""
8183
8184This intrinsic indicates that the memory is mutable again.
8185
8186General Intrinsics
8187------------------
8188
8189This class of intrinsics is designed to be generic and has no specific
8190purpose.
8191
8192'``llvm.var.annotation``' Intrinsic
8193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8194
8195Syntax:
8196"""""""
8197
8198::
8199
8200 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8201
8202Overview:
8203"""""""""
8204
8205The '``llvm.var.annotation``' intrinsic.
8206
8207Arguments:
8208""""""""""
8209
8210The first argument is a pointer to a value, the second is a pointer to a
8211global string, the third is a pointer to a global string which is the
8212source file name, and the last argument is the line number.
8213
8214Semantics:
8215""""""""""
8216
8217This intrinsic allows annotation of local variables with arbitrary
8218strings. This can be useful for special purpose optimizations that want
8219to look for these annotations. These have no other defined use; they are
8220ignored by code generation and optimization.
8221
8222'``llvm.annotation.*``' Intrinsic
8223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8224
8225Syntax:
8226"""""""
8227
8228This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8229any integer bit width.
8230
8231::
8232
8233 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8234 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8235 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8236 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8237 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8238
8239Overview:
8240"""""""""
8241
8242The '``llvm.annotation``' intrinsic.
8243
8244Arguments:
8245""""""""""
8246
8247The first argument is an integer value (result of some expression), the
8248second is a pointer to a global string, the third is a pointer to a
8249global string which is the source file name, and the last argument is
8250the line number. It returns the value of the first argument.
8251
8252Semantics:
8253""""""""""
8254
8255This intrinsic allows annotations to be put on arbitrary expressions
8256with arbitrary strings. This can be useful for special purpose
8257optimizations that want to look for these annotations. These have no
8258other defined use; they are ignored by code generation and optimization.
8259
8260'``llvm.trap``' Intrinsic
8261^^^^^^^^^^^^^^^^^^^^^^^^^
8262
8263Syntax:
8264"""""""
8265
8266::
8267
8268 declare void @llvm.trap() noreturn nounwind
8269
8270Overview:
8271"""""""""
8272
8273The '``llvm.trap``' intrinsic.
8274
8275Arguments:
8276""""""""""
8277
8278None.
8279
8280Semantics:
8281""""""""""
8282
8283This intrinsic is lowered to the target dependent trap instruction. If
8284the target does not have a trap instruction, this intrinsic will be
8285lowered to a call of the ``abort()`` function.
8286
8287'``llvm.debugtrap``' Intrinsic
8288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8289
8290Syntax:
8291"""""""
8292
8293::
8294
8295 declare void @llvm.debugtrap() nounwind
8296
8297Overview:
8298"""""""""
8299
8300The '``llvm.debugtrap``' intrinsic.
8301
8302Arguments:
8303""""""""""
8304
8305None.
8306
8307Semantics:
8308""""""""""
8309
8310This intrinsic is lowered to code which is intended to cause an
8311execution trap with the intention of requesting the attention of a
8312debugger.
8313
8314'``llvm.stackprotector``' Intrinsic
8315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8316
8317Syntax:
8318"""""""
8319
8320::
8321
8322 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8323
8324Overview:
8325"""""""""
8326
8327The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8328onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8329is placed on the stack before local variables.
8330
8331Arguments:
8332""""""""""
8333
8334The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8335The first argument is the value loaded from the stack guard
8336``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8337enough space to hold the value of the guard.
8338
8339Semantics:
8340""""""""""
8341
8342This intrinsic causes the prologue/epilogue inserter to force the
8343position of the ``AllocaInst`` stack slot to be before local variables
8344on the stack. This is to ensure that if a local variable on the stack is
8345overwritten, it will destroy the value of the guard. When the function
8346exits, the guard on the stack is checked against the original guard. If
8347they are different, then the program aborts by calling the
8348``__stack_chk_fail()`` function.
8349
8350'``llvm.objectsize``' Intrinsic
8351^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8352
8353Syntax:
8354"""""""
8355
8356::
8357
8358 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8359 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8360
8361Overview:
8362"""""""""
8363
8364The ``llvm.objectsize`` intrinsic is designed to provide information to
8365the optimizers to determine at compile time whether a) an operation
8366(like memcpy) will overflow a buffer that corresponds to an object, or
8367b) that a runtime check for overflow isn't necessary. An object in this
8368context means an allocation of a specific class, structure, array, or
8369other object.
8370
8371Arguments:
8372""""""""""
8373
8374The ``llvm.objectsize`` intrinsic takes two arguments. The first
8375argument is a pointer to or into the ``object``. The second argument is
8376a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8377or -1 (if false) when the object size is unknown. The second argument
8378only accepts constants.
8379
8380Semantics:
8381""""""""""
8382
8383The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8384the size of the object concerned. If the size cannot be determined at
8385compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8386on the ``min`` argument).
8387
8388'``llvm.expect``' Intrinsic
8389^^^^^^^^^^^^^^^^^^^^^^^^^^^
8390
8391Syntax:
8392"""""""
8393
8394::
8395
8396 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8397 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8398
8399Overview:
8400"""""""""
8401
8402The ``llvm.expect`` intrinsic provides information about expected (the
8403most probable) value of ``val``, which can be used by optimizers.
8404
8405Arguments:
8406""""""""""
8407
8408The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8409a value. The second argument is an expected value, this needs to be a
8410constant value, variables are not allowed.
8411
8412Semantics:
8413""""""""""
8414
8415This intrinsic is lowered to the ``val``.
8416
8417'``llvm.donothing``' Intrinsic
8418^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8419
8420Syntax:
8421"""""""
8422
8423::
8424
8425 declare void @llvm.donothing() nounwind readnone
8426
8427Overview:
8428"""""""""
8429
8430The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8431only intrinsic that can be called with an invoke instruction.
8432
8433Arguments:
8434""""""""""
8435
8436None.
8437
8438Semantics:
8439""""""""""
8440
8441This intrinsic does nothing, and it's removed by optimizers and ignored
8442by codegen.