blob: fcbc6d50eeb957c906ee3a0abd932b8e8df0dd25 [file] [log] [blame]
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
Duncan Sands4cd2ad12010-11-23 10:50:08 +000011// that do not require creating new instructions. This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
Duncan Sandsee9a2e32010-12-20 14:47:04 +000014// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
Chris Lattner9f3c25a2009-11-09 22:57:59 +000017//
18//===----------------------------------------------------------------------===//
19
Duncan Sandsa3c44a52010-12-22 09:40:51 +000020#define DEBUG_TYPE "instsimplify"
21#include "llvm/ADT/Statistic.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000022#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/ConstantFolding.h"
Duncan Sands18450092010-11-16 12:16:38 +000024#include "llvm/Analysis/Dominators.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000025#include "llvm/Analysis/ValueTracking.h"
Chris Lattnerd06094f2009-11-10 00:55:12 +000026#include "llvm/Support/PatternMatch.h"
Duncan Sands18450092010-11-16 12:16:38 +000027#include "llvm/Support/ValueHandle.h"
Duncan Sandse60d79f2010-11-21 13:53:09 +000028#include "llvm/Target/TargetData.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000029using namespace llvm;
Chris Lattnerd06094f2009-11-10 00:55:12 +000030using namespace llvm::PatternMatch;
Chris Lattner9f3c25a2009-11-09 22:57:59 +000031
Duncan Sands124708d2011-01-01 20:08:02 +000032#define RecursionLimit 3
Duncan Sandsa74a58c2010-11-10 18:23:01 +000033
Duncan Sandsa3c44a52010-12-22 09:40:51 +000034STATISTIC(NumExpand, "Number of expansions");
35STATISTIC(NumFactor , "Number of factorizations");
36STATISTIC(NumReassoc, "Number of reassociations");
37
Duncan Sands82fdab32010-12-21 14:00:22 +000038static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
39 const DominatorTree *, unsigned);
Duncan Sandsa74a58c2010-11-10 18:23:01 +000040static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
Duncan Sands18450092010-11-16 12:16:38 +000041 const DominatorTree *, unsigned);
Duncan Sandsa74a58c2010-11-10 18:23:01 +000042static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
Duncan Sands18450092010-11-16 12:16:38 +000043 const DominatorTree *, unsigned);
Duncan Sands82fdab32010-12-21 14:00:22 +000044static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
45 const DominatorTree *, unsigned);
46static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
47 const DominatorTree *, unsigned);
Duncan Sands18450092010-11-16 12:16:38 +000048
49/// ValueDominatesPHI - Does the given value dominate the specified phi node?
50static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
51 Instruction *I = dyn_cast<Instruction>(V);
52 if (!I)
53 // Arguments and constants dominate all instructions.
54 return true;
55
56 // If we have a DominatorTree then do a precise test.
57 if (DT)
58 return DT->dominates(I, P);
59
60 // Otherwise, if the instruction is in the entry block, and is not an invoke,
61 // then it obviously dominates all phi nodes.
62 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
63 !isa<InvokeInst>(I))
64 return true;
65
66 return false;
67}
Duncan Sandsa74a58c2010-11-10 18:23:01 +000068
Duncan Sands3421d902010-12-21 13:32:22 +000069/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
70/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
71/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
72/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
73/// Returns the simplified value, or null if no simplification was performed.
74static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Benjamin Kramere21083a2010-12-28 13:52:52 +000075 unsigned OpcToExpand, const TargetData *TD,
Duncan Sands3421d902010-12-21 13:32:22 +000076 const DominatorTree *DT, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +000077 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
Duncan Sands3421d902010-12-21 13:32:22 +000078 // Recursion is always used, so bail out at once if we already hit the limit.
79 if (!MaxRecurse--)
80 return 0;
81
82 // Check whether the expression has the form "(A op' B) op C".
83 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
84 if (Op0->getOpcode() == OpcodeToExpand) {
85 // It does! Try turning it into "(A op C) op' (B op C)".
86 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
87 // Do "A op C" and "B op C" both simplify?
88 if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
89 if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
90 // They do! Return "L op' R" if it simplifies or is already available.
91 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +000092 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
93 && L == B && R == A)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +000094 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +000095 return LHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +000096 }
Duncan Sands3421d902010-12-21 13:32:22 +000097 // Otherwise return "L op' R" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +000098 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
99 MaxRecurse)) {
100 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000101 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000102 }
Duncan Sands3421d902010-12-21 13:32:22 +0000103 }
104 }
105
106 // Check whether the expression has the form "A op (B op' C)".
107 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
108 if (Op1->getOpcode() == OpcodeToExpand) {
109 // It does! Try turning it into "(A op B) op' (A op C)".
110 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
111 // Do "A op B" and "A op C" both simplify?
112 if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
113 if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
114 // They do! Return "L op' R" if it simplifies or is already available.
115 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000116 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
117 && L == C && R == B)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000118 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000119 return RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000120 }
Duncan Sands3421d902010-12-21 13:32:22 +0000121 // Otherwise return "L op' R" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000122 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
123 MaxRecurse)) {
124 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000125 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000126 }
Duncan Sands3421d902010-12-21 13:32:22 +0000127 }
128 }
129
130 return 0;
131}
132
133/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
134/// using the operation OpCodeToExtract. For example, when Opcode is Add and
135/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
136/// Returns the simplified value, or null if no simplification was performed.
137static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Benjamin Kramere21083a2010-12-28 13:52:52 +0000138 unsigned OpcToExtract, const TargetData *TD,
Duncan Sands3421d902010-12-21 13:32:22 +0000139 const DominatorTree *DT, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000140 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
Duncan Sands3421d902010-12-21 13:32:22 +0000141 // Recursion is always used, so bail out at once if we already hit the limit.
142 if (!MaxRecurse--)
143 return 0;
144
145 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
146 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
147
148 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
149 !Op1 || Op1->getOpcode() != OpcodeToExtract)
150 return 0;
151
152 // The expression has the form "(A op' B) op (C op' D)".
Duncan Sands82fdab32010-12-21 14:00:22 +0000153 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
154 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Duncan Sands3421d902010-12-21 13:32:22 +0000155
156 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
157 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
158 // commutative case, "(A op' B) op (C op' A)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000159 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
160 Value *DD = A == C ? D : C;
Duncan Sands3421d902010-12-21 13:32:22 +0000161 // Form "A op' (B op DD)" if it simplifies completely.
162 // Does "B op DD" simplify?
163 if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
164 // It does! Return "A op' V" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000165 // If V equals B then "A op' V" is just the LHS. If V equals DD then
166 // "A op' V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000167 if (V == B || V == DD) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000168 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000169 return V == B ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000170 }
Duncan Sands3421d902010-12-21 13:32:22 +0000171 // Otherwise return "A op' V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000172 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
173 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000174 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000175 }
Duncan Sands3421d902010-12-21 13:32:22 +0000176 }
177 }
178
179 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
180 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
181 // commutative case, "(A op' B) op (B op' D)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000182 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
183 Value *CC = B == D ? C : D;
Duncan Sands3421d902010-12-21 13:32:22 +0000184 // Form "(A op CC) op' B" if it simplifies completely..
185 // Does "A op CC" simplify?
186 if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
187 // It does! Return "V op' B" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000188 // If V equals A then "V op' B" is just the LHS. If V equals CC then
189 // "V op' B" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000190 if (V == A || V == CC) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000191 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000192 return V == A ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000193 }
Duncan Sands3421d902010-12-21 13:32:22 +0000194 // Otherwise return "V op' B" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000195 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
196 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000197 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000198 }
Duncan Sands3421d902010-12-21 13:32:22 +0000199 }
200 }
201
202 return 0;
203}
204
205/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
206/// operations. Returns the simpler value, or null if none was found.
Benjamin Kramere21083a2010-12-28 13:52:52 +0000207static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
Duncan Sands566edb02010-12-21 08:49:00 +0000208 const TargetData *TD,
209 const DominatorTree *DT,
210 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000211 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
Duncan Sands566edb02010-12-21 08:49:00 +0000212 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
213
214 // Recursion is always used, so bail out at once if we already hit the limit.
215 if (!MaxRecurse--)
216 return 0;
217
218 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
219 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
220
221 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
222 if (Op0 && Op0->getOpcode() == Opcode) {
223 Value *A = Op0->getOperand(0);
224 Value *B = Op0->getOperand(1);
225 Value *C = RHS;
226
227 // Does "B op C" simplify?
228 if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
229 // It does! Return "A op V" if it simplifies or is already available.
230 // If V equals B then "A op V" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000231 if (V == B) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000232 // Otherwise return "A op V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000233 if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
234 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000235 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000236 }
Duncan Sands566edb02010-12-21 08:49:00 +0000237 }
238 }
239
240 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
241 if (Op1 && Op1->getOpcode() == Opcode) {
242 Value *A = LHS;
243 Value *B = Op1->getOperand(0);
244 Value *C = Op1->getOperand(1);
245
246 // Does "A op B" simplify?
247 if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
248 // It does! Return "V op C" if it simplifies or is already available.
249 // If V equals B then "V op C" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000250 if (V == B) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000251 // Otherwise return "V op C" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000252 if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
253 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000254 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000255 }
Duncan Sands566edb02010-12-21 08:49:00 +0000256 }
257 }
258
259 // The remaining transforms require commutativity as well as associativity.
260 if (!Instruction::isCommutative(Opcode))
261 return 0;
262
263 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
264 if (Op0 && Op0->getOpcode() == Opcode) {
265 Value *A = Op0->getOperand(0);
266 Value *B = Op0->getOperand(1);
267 Value *C = RHS;
268
269 // Does "C op A" simplify?
270 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
271 // It does! Return "V op B" if it simplifies or is already available.
272 // If V equals A then "V op B" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000273 if (V == A) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000274 // Otherwise return "V op B" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000275 if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
276 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000277 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000278 }
Duncan Sands566edb02010-12-21 08:49:00 +0000279 }
280 }
281
282 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
283 if (Op1 && Op1->getOpcode() == Opcode) {
284 Value *A = LHS;
285 Value *B = Op1->getOperand(0);
286 Value *C = Op1->getOperand(1);
287
288 // Does "C op A" simplify?
289 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
290 // It does! Return "B op V" if it simplifies or is already available.
291 // If V equals C then "B op V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000292 if (V == C) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000293 // Otherwise return "B op V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000294 if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
295 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000296 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000297 }
Duncan Sands566edb02010-12-21 08:49:00 +0000298 }
299 }
300
301 return 0;
302}
303
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000304/// ThreadBinOpOverSelect - In the case of a binary operation with a select
305/// instruction as an operand, try to simplify the binop by seeing whether
306/// evaluating it on both branches of the select results in the same value.
307/// Returns the common value if so, otherwise returns null.
308static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000309 const TargetData *TD,
310 const DominatorTree *DT,
311 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000312 // Recursion is always used, so bail out at once if we already hit the limit.
313 if (!MaxRecurse--)
314 return 0;
315
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000316 SelectInst *SI;
317 if (isa<SelectInst>(LHS)) {
318 SI = cast<SelectInst>(LHS);
319 } else {
320 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
321 SI = cast<SelectInst>(RHS);
322 }
323
324 // Evaluate the BinOp on the true and false branches of the select.
325 Value *TV;
326 Value *FV;
327 if (SI == LHS) {
Duncan Sands18450092010-11-16 12:16:38 +0000328 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
329 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000330 } else {
Duncan Sands18450092010-11-16 12:16:38 +0000331 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
332 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000333 }
334
Duncan Sands7cf85e72011-01-01 16:12:09 +0000335 // If they simplified to the same value, then return the common value.
Duncan Sands124708d2011-01-01 20:08:02 +0000336 // If they both failed to simplify then return null.
337 if (TV == FV)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000338 return TV;
339
340 // If one branch simplified to undef, return the other one.
341 if (TV && isa<UndefValue>(TV))
342 return FV;
343 if (FV && isa<UndefValue>(FV))
344 return TV;
345
346 // If applying the operation did not change the true and false select values,
347 // then the result of the binop is the select itself.
Duncan Sands124708d2011-01-01 20:08:02 +0000348 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000349 return SI;
350
351 // If one branch simplified and the other did not, and the simplified
352 // value is equal to the unsimplified one, return the simplified value.
353 // For example, select (cond, X, X & Z) & Z -> X & Z.
354 if ((FV && !TV) || (TV && !FV)) {
355 // Check that the simplified value has the form "X op Y" where "op" is the
356 // same as the original operation.
357 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
358 if (Simplified && Simplified->getOpcode() == Opcode) {
359 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
360 // We already know that "op" is the same as for the simplified value. See
361 // if the operands match too. If so, return the simplified value.
362 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
363 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
364 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
Duncan Sands124708d2011-01-01 20:08:02 +0000365 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
366 Simplified->getOperand(1) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000367 return Simplified;
368 if (Simplified->isCommutative() &&
Duncan Sands124708d2011-01-01 20:08:02 +0000369 Simplified->getOperand(1) == UnsimplifiedLHS &&
370 Simplified->getOperand(0) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000371 return Simplified;
372 }
373 }
374
375 return 0;
376}
377
378/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
379/// try to simplify the comparison by seeing whether both branches of the select
380/// result in the same value. Returns the common value if so, otherwise returns
381/// null.
382static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000383 Value *RHS, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000384 const DominatorTree *DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000385 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000386 // Recursion is always used, so bail out at once if we already hit the limit.
387 if (!MaxRecurse--)
388 return 0;
389
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000390 // Make sure the select is on the LHS.
391 if (!isa<SelectInst>(LHS)) {
392 std::swap(LHS, RHS);
393 Pred = CmpInst::getSwappedPredicate(Pred);
394 }
395 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
396 SelectInst *SI = cast<SelectInst>(LHS);
397
398 // Now that we have "cmp select(cond, TV, FV), RHS", analyse it.
399 // Does "cmp TV, RHS" simplify?
Duncan Sands18450092010-11-16 12:16:38 +0000400 if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000401 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000402 // It does! Does "cmp FV, RHS" simplify?
Duncan Sands18450092010-11-16 12:16:38 +0000403 if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000404 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000405 // It does! If they simplified to the same value, then use it as the
406 // result of the original comparison.
Duncan Sands124708d2011-01-01 20:08:02 +0000407 if (TCmp == FCmp)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000408 return TCmp;
409 return 0;
410}
411
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000412/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
413/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
414/// it on the incoming phi values yields the same result for every value. If so
415/// returns the common value, otherwise returns null.
416static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000417 const TargetData *TD, const DominatorTree *DT,
418 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000419 // Recursion is always used, so bail out at once if we already hit the limit.
420 if (!MaxRecurse--)
421 return 0;
422
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000423 PHINode *PI;
424 if (isa<PHINode>(LHS)) {
425 PI = cast<PHINode>(LHS);
Duncan Sands18450092010-11-16 12:16:38 +0000426 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
427 if (!ValueDominatesPHI(RHS, PI, DT))
428 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000429 } else {
430 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
431 PI = cast<PHINode>(RHS);
Duncan Sands18450092010-11-16 12:16:38 +0000432 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
433 if (!ValueDominatesPHI(LHS, PI, DT))
434 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000435 }
436
437 // Evaluate the BinOp on the incoming phi values.
438 Value *CommonValue = 0;
439 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000440 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000441 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000442 if (Incoming == PI) continue;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000443 Value *V = PI == LHS ?
Duncan Sands18450092010-11-16 12:16:38 +0000444 SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
445 SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000446 // If the operation failed to simplify, or simplified to a different value
447 // to previously, then give up.
448 if (!V || (CommonValue && V != CommonValue))
449 return 0;
450 CommonValue = V;
451 }
452
453 return CommonValue;
454}
455
456/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
457/// try to simplify the comparison by seeing whether comparing with all of the
458/// incoming phi values yields the same result every time. If so returns the
459/// common result, otherwise returns null.
460static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000461 const TargetData *TD, const DominatorTree *DT,
462 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000463 // Recursion is always used, so bail out at once if we already hit the limit.
464 if (!MaxRecurse--)
465 return 0;
466
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000467 // Make sure the phi is on the LHS.
468 if (!isa<PHINode>(LHS)) {
469 std::swap(LHS, RHS);
470 Pred = CmpInst::getSwappedPredicate(Pred);
471 }
472 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
473 PHINode *PI = cast<PHINode>(LHS);
474
Duncan Sands18450092010-11-16 12:16:38 +0000475 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
476 if (!ValueDominatesPHI(RHS, PI, DT))
477 return 0;
478
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000479 // Evaluate the BinOp on the incoming phi values.
480 Value *CommonValue = 0;
481 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000482 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000483 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000484 if (Incoming == PI) continue;
Duncan Sands18450092010-11-16 12:16:38 +0000485 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000486 // If the operation failed to simplify, or simplified to a different value
487 // to previously, then give up.
488 if (!V || (CommonValue && V != CommonValue))
489 return 0;
490 CommonValue = V;
491 }
492
493 return CommonValue;
494}
495
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000496/// SimplifyAddInst - Given operands for an Add, see if we can
497/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000498static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
499 const TargetData *TD, const DominatorTree *DT,
500 unsigned MaxRecurse) {
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000501 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
502 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
503 Constant *Ops[] = { CLHS, CRHS };
504 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
505 Ops, 2, TD);
506 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000507
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000508 // Canonicalize the constant to the RHS.
509 std::swap(Op0, Op1);
510 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000511
Duncan Sandsfea3b212010-12-15 14:07:39 +0000512 // X + undef -> undef
513 if (isa<UndefValue>(Op1))
514 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000515
Duncan Sandsfea3b212010-12-15 14:07:39 +0000516 // X + 0 -> X
517 if (match(Op1, m_Zero()))
518 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000519
Duncan Sandsfea3b212010-12-15 14:07:39 +0000520 // X + (Y - X) -> Y
521 // (Y - X) + X -> Y
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000522 // Eg: X + -X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000523 Value *Y = 0;
524 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
525 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000526 return Y;
527
528 // X + ~X -> -1 since ~X = -X-1
Duncan Sands124708d2011-01-01 20:08:02 +0000529 if (match(Op0, m_Not(m_Specific(Op1))) ||
530 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000531 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands87689cf2010-11-19 09:20:39 +0000532
Duncan Sands82fdab32010-12-21 14:00:22 +0000533 /// i1 add -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000534 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000535 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
536 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000537
Duncan Sands566edb02010-12-21 08:49:00 +0000538 // Try some generic simplifications for associative operations.
539 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
540 MaxRecurse))
541 return V;
542
Duncan Sands3421d902010-12-21 13:32:22 +0000543 // Mul distributes over Add. Try some generic simplifications based on this.
544 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
545 TD, DT, MaxRecurse))
546 return V;
547
Duncan Sands87689cf2010-11-19 09:20:39 +0000548 // Threading Add over selects and phi nodes is pointless, so don't bother.
549 // Threading over the select in "A + select(cond, B, C)" means evaluating
550 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
551 // only if B and C are equal. If B and C are equal then (since we assume
552 // that operands have already been simplified) "select(cond, B, C)" should
553 // have been simplified to the common value of B and C already. Analysing
554 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
555 // for threading over phi nodes.
556
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000557 return 0;
558}
559
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000560Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
561 const TargetData *TD, const DominatorTree *DT) {
562 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
563}
564
Duncan Sandsfea3b212010-12-15 14:07:39 +0000565/// SimplifySubInst - Given operands for a Sub, see if we can
566/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000567static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands3421d902010-12-21 13:32:22 +0000568 const TargetData *TD, const DominatorTree *DT,
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000569 unsigned MaxRecurse) {
Duncan Sandsfea3b212010-12-15 14:07:39 +0000570 if (Constant *CLHS = dyn_cast<Constant>(Op0))
571 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
572 Constant *Ops[] = { CLHS, CRHS };
573 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
574 Ops, 2, TD);
575 }
576
577 // X - undef -> undef
578 // undef - X -> undef
579 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
580 return UndefValue::get(Op0->getType());
581
582 // X - 0 -> X
583 if (match(Op1, m_Zero()))
584 return Op0;
585
586 // X - X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000587 if (Op0 == Op1)
Duncan Sandsfea3b212010-12-15 14:07:39 +0000588 return Constant::getNullValue(Op0->getType());
589
Duncan Sandsfe02c692011-01-18 09:24:58 +0000590 // (X*2) - X -> X
591 // (X<<1) - X -> X
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000592 Value *X = 0;
Duncan Sandsfe02c692011-01-18 09:24:58 +0000593 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
594 match(Op0, m_Shl(m_Specific(Op1), m_One())))
595 return Op1;
596
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000597 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
598 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
599 Value *Y = 0, *Z = Op1;
600 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
601 // See if "V === Y - Z" simplifies.
602 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
603 // It does! Now see if "X + V" simplifies.
604 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
605 MaxRecurse-1)) {
606 // It does, we successfully reassociated!
607 ++NumReassoc;
608 return W;
609 }
610 // See if "V === X - Z" simplifies.
611 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
612 // It does! Now see if "Y + V" simplifies.
613 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
614 MaxRecurse-1)) {
615 // It does, we successfully reassociated!
616 ++NumReassoc;
617 return W;
618 }
619 }
Duncan Sands82fdab32010-12-21 14:00:22 +0000620
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000621 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
622 // For example, X - (X + 1) -> -1
623 X = Op0;
624 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
625 // See if "V === X - Y" simplifies.
626 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
627 // It does! Now see if "V - Z" simplifies.
628 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
629 MaxRecurse-1)) {
630 // It does, we successfully reassociated!
631 ++NumReassoc;
632 return W;
633 }
634 // See if "V === X - Z" simplifies.
635 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
636 // It does! Now see if "V - Y" simplifies.
637 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
638 MaxRecurse-1)) {
639 // It does, we successfully reassociated!
640 ++NumReassoc;
641 return W;
642 }
643 }
644
645 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
646 // For example, X - (X - Y) -> Y.
647 Z = Op0;
Duncan Sandsc087e202011-01-14 15:26:10 +0000648 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
649 // See if "V === Z - X" simplifies.
650 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000651 // It does! Now see if "V + Y" simplifies.
Duncan Sandsc087e202011-01-14 15:26:10 +0000652 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
653 MaxRecurse-1)) {
654 // It does, we successfully reassociated!
655 ++NumReassoc;
656 return W;
657 }
658
Duncan Sands3421d902010-12-21 13:32:22 +0000659 // Mul distributes over Sub. Try some generic simplifications based on this.
660 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
661 TD, DT, MaxRecurse))
662 return V;
663
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000664 // i1 sub -> xor.
665 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
666 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
667 return V;
668
Duncan Sandsfea3b212010-12-15 14:07:39 +0000669 // Threading Sub over selects and phi nodes is pointless, so don't bother.
670 // Threading over the select in "A - select(cond, B, C)" means evaluating
671 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
672 // only if B and C are equal. If B and C are equal then (since we assume
673 // that operands have already been simplified) "select(cond, B, C)" should
674 // have been simplified to the common value of B and C already. Analysing
675 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
676 // for threading over phi nodes.
677
678 return 0;
679}
680
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000681Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
682 const TargetData *TD, const DominatorTree *DT) {
683 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
684}
685
Duncan Sands82fdab32010-12-21 14:00:22 +0000686/// SimplifyMulInst - Given operands for a Mul, see if we can
687/// fold the result. If not, this returns null.
688static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
689 const DominatorTree *DT, unsigned MaxRecurse) {
690 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
691 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
692 Constant *Ops[] = { CLHS, CRHS };
693 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
694 Ops, 2, TD);
695 }
696
697 // Canonicalize the constant to the RHS.
698 std::swap(Op0, Op1);
699 }
700
701 // X * undef -> 0
702 if (isa<UndefValue>(Op1))
703 return Constant::getNullValue(Op0->getType());
704
705 // X * 0 -> 0
706 if (match(Op1, m_Zero()))
707 return Op1;
708
709 // X * 1 -> X
710 if (match(Op1, m_One()))
711 return Op0;
712
Duncan Sands1895e982011-01-30 18:03:50 +0000713 // (X / Y) * Y -> X if the division is exact.
714 Value *X = 0, *Y = 0;
715 if ((match(Op0, m_SDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
716 (match(Op1, m_SDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
717 BinaryOperator *SDiv = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
718 if (SDiv->isExact())
719 return X;
720 }
721
Nick Lewycky54138802011-01-29 19:55:23 +0000722 // i1 mul -> and.
Duncan Sands75d289e2010-12-21 14:48:48 +0000723 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000724 if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
725 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000726
727 // Try some generic simplifications for associative operations.
728 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
729 MaxRecurse))
730 return V;
731
732 // Mul distributes over Add. Try some generic simplifications based on this.
733 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
734 TD, DT, MaxRecurse))
735 return V;
736
737 // If the operation is with the result of a select instruction, check whether
738 // operating on either branch of the select always yields the same value.
739 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
740 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
741 MaxRecurse))
742 return V;
743
744 // If the operation is with the result of a phi instruction, check whether
745 // operating on all incoming values of the phi always yields the same value.
746 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
747 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
748 MaxRecurse))
749 return V;
750
751 return 0;
752}
753
754Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
755 const DominatorTree *DT) {
756 return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
757}
758
Duncan Sands593faa52011-01-28 16:51:11 +0000759/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
760/// fold the result. If not, this returns null.
761static Value *SimplifyDiv(unsigned Opcode, Value *Op0, Value *Op1,
762 const TargetData *TD, const DominatorTree *DT,
763 unsigned MaxRecurse) {
764 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
765 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
766 Constant *Ops[] = { C0, C1 };
767 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
768 }
769 }
770
Duncan Sandsa3e292c2011-01-28 18:50:50 +0000771 bool isSigned = Opcode == Instruction::SDiv;
772
Duncan Sands593faa52011-01-28 16:51:11 +0000773 // X / undef -> undef
774 if (isa<UndefValue>(Op1))
775 return Op1;
776
777 // undef / X -> 0
778 if (isa<UndefValue>(Op0))
779 return Constant::getNullValue(Op0->getType());
780
781 // 0 / X -> 0, we don't need to preserve faults!
782 if (match(Op0, m_Zero()))
783 return Op0;
784
785 // X / 1 -> X
786 if (match(Op1, m_One()))
787 return Op0;
788 // Vector case. TODO: Have m_One match vectors.
789 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
790 if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
791 if (X->isOne())
792 return Op0;
793 }
794
795 if (Op0->getType()->isIntegerTy(1))
796 // It can't be division by zero, hence it must be division by one.
797 return Op0;
798
799 // X / X -> 1
800 if (Op0 == Op1)
801 return ConstantInt::get(Op0->getType(), 1);
802
803 // (X * Y) / Y -> X if the multiplication does not overflow.
804 Value *X = 0, *Y = 0;
805 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
806 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
Duncan Sands79f4eea2011-01-28 18:53:08 +0000807 BinaryOperator *Mul = cast<BinaryOperator>(Op0);
Duncan Sands593faa52011-01-28 16:51:11 +0000808 // If the Mul knows it does not overflow, then we are good to go.
Duncan Sands593faa52011-01-28 16:51:11 +0000809 if ((isSigned && Mul->hasNoSignedWrap()) ||
810 (!isSigned && Mul->hasNoUnsignedWrap()))
811 return X;
812 // If X has the form X = A / Y then X * Y cannot overflow.
813 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
814 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
815 return X;
816 }
817
Duncan Sandsa3e292c2011-01-28 18:50:50 +0000818 // (X rem Y) / Y -> 0
819 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
820 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
821 return Constant::getNullValue(Op0->getType());
822
823 // If the operation is with the result of a select instruction, check whether
824 // operating on either branch of the select always yields the same value.
825 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
826 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
827 return V;
828
829 // If the operation is with the result of a phi instruction, check whether
830 // operating on all incoming values of the phi always yields the same value.
831 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
832 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
833 return V;
834
Duncan Sands593faa52011-01-28 16:51:11 +0000835 return 0;
836}
837
838/// SimplifySDivInst - Given operands for an SDiv, see if we can
839/// fold the result. If not, this returns null.
840static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
841 const DominatorTree *DT, unsigned MaxRecurse) {
842 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
843 return V;
844
Duncan Sands593faa52011-01-28 16:51:11 +0000845 return 0;
846}
847
848Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
Frits van Bommel1fca2c32011-01-29 15:26:31 +0000849 const DominatorTree *DT) {
Duncan Sands593faa52011-01-28 16:51:11 +0000850 return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
851}
852
853/// SimplifyUDivInst - Given operands for a UDiv, see if we can
854/// fold the result. If not, this returns null.
855static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
856 const DominatorTree *DT, unsigned MaxRecurse) {
857 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
858 return V;
859
Duncan Sands593faa52011-01-28 16:51:11 +0000860 return 0;
861}
862
863Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
Frits van Bommel1fca2c32011-01-29 15:26:31 +0000864 const DominatorTree *DT) {
Duncan Sands593faa52011-01-28 16:51:11 +0000865 return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
866}
867
Frits van Bommel1fca2c32011-01-29 15:26:31 +0000868static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
869 const DominatorTree *DT, unsigned MaxRecurse) {
870 // undef / X -> undef (the undef could be a snan).
871 if (isa<UndefValue>(Op0))
872 return Op0;
873
874 // X / undef -> undef
875 if (isa<UndefValue>(Op1))
876 return Op1;
877
878 return 0;
879}
880
881Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
882 const DominatorTree *DT) {
883 return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
884}
885
Duncan Sandscf80bc12011-01-14 14:44:12 +0000886/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
Duncan Sandsc43cee32011-01-14 00:37:45 +0000887/// fold the result. If not, this returns null.
Duncan Sandscf80bc12011-01-14 14:44:12 +0000888static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
889 const TargetData *TD, const DominatorTree *DT,
890 unsigned MaxRecurse) {
Duncan Sandsc43cee32011-01-14 00:37:45 +0000891 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
892 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
893 Constant *Ops[] = { C0, C1 };
Duncan Sandscf80bc12011-01-14 14:44:12 +0000894 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
Duncan Sandsc43cee32011-01-14 00:37:45 +0000895 }
896 }
897
Duncan Sandscf80bc12011-01-14 14:44:12 +0000898 // 0 shift by X -> 0
Duncan Sandsc43cee32011-01-14 00:37:45 +0000899 if (match(Op0, m_Zero()))
900 return Op0;
901
Duncan Sandscf80bc12011-01-14 14:44:12 +0000902 // X shift by 0 -> X
Duncan Sandsc43cee32011-01-14 00:37:45 +0000903 if (match(Op1, m_Zero()))
904 return Op0;
905
Duncan Sandscf80bc12011-01-14 14:44:12 +0000906 // X shift by undef -> undef because it may shift by the bitwidth.
Duncan Sandsc43cee32011-01-14 00:37:45 +0000907 if (isa<UndefValue>(Op1))
908 return Op1;
909
910 // Shifting by the bitwidth or more is undefined.
911 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
912 if (CI->getValue().getLimitedValue() >=
913 Op0->getType()->getScalarSizeInBits())
914 return UndefValue::get(Op0->getType());
915
Duncan Sandscf80bc12011-01-14 14:44:12 +0000916 // If the operation is with the result of a select instruction, check whether
917 // operating on either branch of the select always yields the same value.
918 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
919 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
920 return V;
921
922 // If the operation is with the result of a phi instruction, check whether
923 // operating on all incoming values of the phi always yields the same value.
924 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
925 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
926 return V;
927
928 return 0;
929}
930
931/// SimplifyShlInst - Given operands for an Shl, see if we can
932/// fold the result. If not, this returns null.
933static Value *SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD,
934 const DominatorTree *DT, unsigned MaxRecurse) {
935 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
936 return V;
937
938 // undef << X -> 0
939 if (isa<UndefValue>(Op0))
940 return Constant::getNullValue(Op0->getType());
941
Duncan Sandsc43cee32011-01-14 00:37:45 +0000942 return 0;
943}
944
945Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD,
946 const DominatorTree *DT) {
947 return ::SimplifyShlInst(Op0, Op1, TD, DT, RecursionLimit);
948}
949
950/// SimplifyLShrInst - Given operands for an LShr, see if we can
951/// fold the result. If not, this returns null.
952static Value *SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD,
953 const DominatorTree *DT, unsigned MaxRecurse) {
Duncan Sandscf80bc12011-01-14 14:44:12 +0000954 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
955 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +0000956
957 // undef >>l X -> 0
958 if (isa<UndefValue>(Op0))
959 return Constant::getNullValue(Op0->getType());
960
Duncan Sandsc43cee32011-01-14 00:37:45 +0000961 return 0;
962}
963
964Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD,
965 const DominatorTree *DT) {
966 return ::SimplifyLShrInst(Op0, Op1, TD, DT, RecursionLimit);
967}
968
969/// SimplifyAShrInst - Given operands for an AShr, see if we can
970/// fold the result. If not, this returns null.
971static Value *SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD,
972 const DominatorTree *DT, unsigned MaxRecurse) {
Duncan Sandscf80bc12011-01-14 14:44:12 +0000973 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
974 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +0000975
976 // all ones >>a X -> all ones
977 if (match(Op0, m_AllOnes()))
978 return Op0;
979
980 // undef >>a X -> all ones
981 if (isa<UndefValue>(Op0))
982 return Constant::getAllOnesValue(Op0->getType());
983
Duncan Sandsc43cee32011-01-14 00:37:45 +0000984 return 0;
985}
986
987Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD,
988 const DominatorTree *DT) {
989 return ::SimplifyAShrInst(Op0, Op1, TD, DT, RecursionLimit);
990}
991
Chris Lattnerd06094f2009-11-10 00:55:12 +0000992/// SimplifyAndInst - Given operands for an And, see if we can
Chris Lattner9f3c25a2009-11-09 22:57:59 +0000993/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000994static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000995 const DominatorTree *DT, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +0000996 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
997 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
998 Constant *Ops[] = { CLHS, CRHS };
999 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1000 Ops, 2, TD);
1001 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001002
Chris Lattnerd06094f2009-11-10 00:55:12 +00001003 // Canonicalize the constant to the RHS.
1004 std::swap(Op0, Op1);
1005 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001006
Chris Lattnerd06094f2009-11-10 00:55:12 +00001007 // X & undef -> 0
1008 if (isa<UndefValue>(Op1))
1009 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001010
Chris Lattnerd06094f2009-11-10 00:55:12 +00001011 // X & X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001012 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001013 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001014
Duncan Sands2b749872010-11-17 18:52:15 +00001015 // X & 0 = 0
1016 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001017 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001018
Duncan Sands2b749872010-11-17 18:52:15 +00001019 // X & -1 = X
1020 if (match(Op1, m_AllOnes()))
1021 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001022
Chris Lattnerd06094f2009-11-10 00:55:12 +00001023 // A & ~A = ~A & A = 0
Chandler Carruthe89ada92010-11-29 01:41:13 +00001024 Value *A = 0, *B = 0;
Duncan Sands124708d2011-01-01 20:08:02 +00001025 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
1026 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001027 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001028
Chris Lattnerd06094f2009-11-10 00:55:12 +00001029 // (A | ?) & A = A
1030 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001031 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001032 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001033
Chris Lattnerd06094f2009-11-10 00:55:12 +00001034 // A & (A | ?) = A
1035 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001036 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001037 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001038
Duncan Sands566edb02010-12-21 08:49:00 +00001039 // Try some generic simplifications for associative operations.
1040 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
1041 MaxRecurse))
1042 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001043
Duncan Sands3421d902010-12-21 13:32:22 +00001044 // And distributes over Or. Try some generic simplifications based on this.
1045 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1046 TD, DT, MaxRecurse))
1047 return V;
1048
1049 // And distributes over Xor. Try some generic simplifications based on this.
1050 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1051 TD, DT, MaxRecurse))
1052 return V;
1053
1054 // Or distributes over And. Try some generic simplifications based on this.
1055 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1056 TD, DT, MaxRecurse))
1057 return V;
1058
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001059 // If the operation is with the result of a select instruction, check whether
1060 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001061 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +00001062 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001063 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001064 return V;
1065
1066 // If the operation is with the result of a phi instruction, check whether
1067 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001068 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +00001069 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001070 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001071 return V;
1072
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001073 return 0;
1074}
1075
Duncan Sands18450092010-11-16 12:16:38 +00001076Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1077 const DominatorTree *DT) {
1078 return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001079}
1080
Chris Lattnerd06094f2009-11-10 00:55:12 +00001081/// SimplifyOrInst - Given operands for an Or, see if we can
1082/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001083static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +00001084 const DominatorTree *DT, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001085 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1086 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1087 Constant *Ops[] = { CLHS, CRHS };
1088 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1089 Ops, 2, TD);
1090 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001091
Chris Lattnerd06094f2009-11-10 00:55:12 +00001092 // Canonicalize the constant to the RHS.
1093 std::swap(Op0, Op1);
1094 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001095
Chris Lattnerd06094f2009-11-10 00:55:12 +00001096 // X | undef -> -1
1097 if (isa<UndefValue>(Op1))
1098 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001099
Chris Lattnerd06094f2009-11-10 00:55:12 +00001100 // X | X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001101 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001102 return Op0;
1103
Duncan Sands2b749872010-11-17 18:52:15 +00001104 // X | 0 = X
1105 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001106 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001107
Duncan Sands2b749872010-11-17 18:52:15 +00001108 // X | -1 = -1
1109 if (match(Op1, m_AllOnes()))
1110 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001111
Chris Lattnerd06094f2009-11-10 00:55:12 +00001112 // A | ~A = ~A | A = -1
Chandler Carruthe89ada92010-11-29 01:41:13 +00001113 Value *A = 0, *B = 0;
Duncan Sands124708d2011-01-01 20:08:02 +00001114 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
1115 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001116 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001117
Chris Lattnerd06094f2009-11-10 00:55:12 +00001118 // (A & ?) | A = A
1119 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001120 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001121 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001122
Chris Lattnerd06094f2009-11-10 00:55:12 +00001123 // A | (A & ?) = A
1124 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001125 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001126 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001127
Duncan Sands566edb02010-12-21 08:49:00 +00001128 // Try some generic simplifications for associative operations.
1129 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
1130 MaxRecurse))
1131 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001132
Duncan Sands3421d902010-12-21 13:32:22 +00001133 // Or distributes over And. Try some generic simplifications based on this.
1134 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1135 TD, DT, MaxRecurse))
1136 return V;
1137
1138 // And distributes over Or. Try some generic simplifications based on this.
1139 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1140 TD, DT, MaxRecurse))
1141 return V;
1142
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001143 // If the operation is with the result of a select instruction, check whether
1144 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001145 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +00001146 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001147 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001148 return V;
1149
1150 // If the operation is with the result of a phi instruction, check whether
1151 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001152 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +00001153 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001154 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001155 return V;
1156
Chris Lattnerd06094f2009-11-10 00:55:12 +00001157 return 0;
1158}
1159
Duncan Sands18450092010-11-16 12:16:38 +00001160Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1161 const DominatorTree *DT) {
1162 return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001163}
Chris Lattnerd06094f2009-11-10 00:55:12 +00001164
Duncan Sands2b749872010-11-17 18:52:15 +00001165/// SimplifyXorInst - Given operands for a Xor, see if we can
1166/// fold the result. If not, this returns null.
1167static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1168 const DominatorTree *DT, unsigned MaxRecurse) {
1169 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1170 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1171 Constant *Ops[] = { CLHS, CRHS };
1172 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1173 Ops, 2, TD);
1174 }
1175
1176 // Canonicalize the constant to the RHS.
1177 std::swap(Op0, Op1);
1178 }
1179
1180 // A ^ undef -> undef
1181 if (isa<UndefValue>(Op1))
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001182 return Op1;
Duncan Sands2b749872010-11-17 18:52:15 +00001183
1184 // A ^ 0 = A
1185 if (match(Op1, m_Zero()))
1186 return Op0;
1187
1188 // A ^ A = 0
Duncan Sands124708d2011-01-01 20:08:02 +00001189 if (Op0 == Op1)
Duncan Sands2b749872010-11-17 18:52:15 +00001190 return Constant::getNullValue(Op0->getType());
1191
1192 // A ^ ~A = ~A ^ A = -1
Duncan Sands566edb02010-12-21 08:49:00 +00001193 Value *A = 0;
Duncan Sands124708d2011-01-01 20:08:02 +00001194 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
1195 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Duncan Sands2b749872010-11-17 18:52:15 +00001196 return Constant::getAllOnesValue(Op0->getType());
1197
Duncan Sands566edb02010-12-21 08:49:00 +00001198 // Try some generic simplifications for associative operations.
1199 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
1200 MaxRecurse))
1201 return V;
Duncan Sands2b749872010-11-17 18:52:15 +00001202
Duncan Sands3421d902010-12-21 13:32:22 +00001203 // And distributes over Xor. Try some generic simplifications based on this.
1204 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1205 TD, DT, MaxRecurse))
1206 return V;
1207
Duncan Sands87689cf2010-11-19 09:20:39 +00001208 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1209 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1210 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1211 // only if B and C are equal. If B and C are equal then (since we assume
1212 // that operands have already been simplified) "select(cond, B, C)" should
1213 // have been simplified to the common value of B and C already. Analysing
1214 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1215 // for threading over phi nodes.
Duncan Sands2b749872010-11-17 18:52:15 +00001216
1217 return 0;
1218}
1219
1220Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1221 const DominatorTree *DT) {
1222 return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
1223}
1224
Chris Lattner210c5d42009-11-09 23:55:12 +00001225static const Type *GetCompareTy(Value *Op) {
1226 return CmpInst::makeCmpResultType(Op->getType());
1227}
1228
Chris Lattner9dbb4292009-11-09 23:28:39 +00001229/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1230/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001231static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001232 const TargetData *TD, const DominatorTree *DT,
1233 unsigned MaxRecurse) {
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001234 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
Chris Lattner9dbb4292009-11-09 23:28:39 +00001235 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001236
Chris Lattnerd06094f2009-11-10 00:55:12 +00001237 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner8f73dea2009-11-09 23:06:58 +00001238 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1239 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001240
1241 // If we have a constant, make sure it is on the RHS.
1242 std::swap(LHS, RHS);
1243 Pred = CmpInst::getSwappedPredicate(Pred);
1244 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001245
Duncan Sands6dc91252011-01-13 08:56:29 +00001246 const Type *ITy = GetCompareTy(LHS); // The return type.
1247 const Type *OpTy = LHS->getType(); // The operand type.
Duncan Sands12a86f52010-11-14 11:23:23 +00001248
Chris Lattner210c5d42009-11-09 23:55:12 +00001249 // icmp X, X -> true/false
Chris Lattnerc8e14b32010-03-03 19:46:03 +00001250 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1251 // because X could be 0.
Duncan Sands124708d2011-01-01 20:08:02 +00001252 if (LHS == RHS || isa<UndefValue>(RHS))
Chris Lattner210c5d42009-11-09 23:55:12 +00001253 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +00001254
Duncan Sands6dc91252011-01-13 08:56:29 +00001255 // Special case logic when the operands have i1 type.
1256 if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
1257 cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
1258 switch (Pred) {
1259 default: break;
1260 case ICmpInst::ICMP_EQ:
1261 // X == 1 -> X
1262 if (match(RHS, m_One()))
1263 return LHS;
1264 break;
1265 case ICmpInst::ICMP_NE:
1266 // X != 0 -> X
1267 if (match(RHS, m_Zero()))
1268 return LHS;
1269 break;
1270 case ICmpInst::ICMP_UGT:
1271 // X >u 0 -> X
1272 if (match(RHS, m_Zero()))
1273 return LHS;
1274 break;
1275 case ICmpInst::ICMP_UGE:
1276 // X >=u 1 -> X
1277 if (match(RHS, m_One()))
1278 return LHS;
1279 break;
1280 case ICmpInst::ICMP_SLT:
1281 // X <s 0 -> X
1282 if (match(RHS, m_Zero()))
1283 return LHS;
1284 break;
1285 case ICmpInst::ICMP_SLE:
1286 // X <=s -1 -> X
1287 if (match(RHS, m_One()))
1288 return LHS;
1289 break;
1290 }
1291 }
1292
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001293 // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1294 // different addresses, and what's more the address of a stack variable is
1295 // never null or equal to the address of a global. Note that generalizing
1296 // to the case where LHS is a global variable address or null is pointless,
1297 // since if both LHS and RHS are constants then we already constant folded
1298 // the compare, and if only one of them is then we moved it to RHS already.
1299 if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1300 isa<ConstantPointerNull>(RHS)))
1301 // We already know that LHS != LHS.
1302 return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
1303
1304 // If we are comparing with zero then try hard since this is a common case.
1305 if (match(RHS, m_Zero())) {
1306 bool LHSKnownNonNegative, LHSKnownNegative;
1307 switch (Pred) {
1308 default:
1309 assert(false && "Unknown ICmp predicate!");
1310 case ICmpInst::ICMP_ULT:
1311 return ConstantInt::getFalse(LHS->getContext());
1312 case ICmpInst::ICMP_UGE:
1313 return ConstantInt::getTrue(LHS->getContext());
1314 case ICmpInst::ICMP_EQ:
1315 case ICmpInst::ICMP_ULE:
1316 if (isKnownNonZero(LHS, TD))
1317 return ConstantInt::getFalse(LHS->getContext());
1318 break;
1319 case ICmpInst::ICMP_NE:
1320 case ICmpInst::ICMP_UGT:
1321 if (isKnownNonZero(LHS, TD))
1322 return ConstantInt::getTrue(LHS->getContext());
1323 break;
1324 case ICmpInst::ICMP_SLT:
1325 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1326 if (LHSKnownNegative)
1327 return ConstantInt::getTrue(LHS->getContext());
1328 if (LHSKnownNonNegative)
1329 return ConstantInt::getFalse(LHS->getContext());
1330 break;
1331 case ICmpInst::ICMP_SLE:
1332 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1333 if (LHSKnownNegative)
1334 return ConstantInt::getTrue(LHS->getContext());
1335 if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1336 return ConstantInt::getFalse(LHS->getContext());
1337 break;
1338 case ICmpInst::ICMP_SGE:
1339 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1340 if (LHSKnownNegative)
1341 return ConstantInt::getFalse(LHS->getContext());
1342 if (LHSKnownNonNegative)
1343 return ConstantInt::getTrue(LHS->getContext());
1344 break;
1345 case ICmpInst::ICMP_SGT:
1346 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1347 if (LHSKnownNegative)
1348 return ConstantInt::getFalse(LHS->getContext());
1349 if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1350 return ConstantInt::getTrue(LHS->getContext());
1351 break;
1352 }
1353 }
1354
1355 // See if we are doing a comparison with a constant integer.
Duncan Sands6dc91252011-01-13 08:56:29 +00001356 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1357 switch (Pred) {
1358 default: break;
1359 case ICmpInst::ICMP_UGT:
1360 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
1361 return ConstantInt::getFalse(CI->getContext());
1362 break;
1363 case ICmpInst::ICMP_UGE:
1364 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
1365 return ConstantInt::getTrue(CI->getContext());
1366 break;
1367 case ICmpInst::ICMP_ULT:
1368 if (CI->isMinValue(false)) // A <u MIN -> FALSE
1369 return ConstantInt::getFalse(CI->getContext());
1370 break;
1371 case ICmpInst::ICMP_ULE:
1372 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
1373 return ConstantInt::getTrue(CI->getContext());
1374 break;
1375 case ICmpInst::ICMP_SGT:
1376 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
1377 return ConstantInt::getFalse(CI->getContext());
1378 break;
1379 case ICmpInst::ICMP_SGE:
1380 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
1381 return ConstantInt::getTrue(CI->getContext());
1382 break;
1383 case ICmpInst::ICMP_SLT:
1384 if (CI->isMinValue(true)) // A <s MIN -> FALSE
1385 return ConstantInt::getFalse(CI->getContext());
1386 break;
1387 case ICmpInst::ICMP_SLE:
1388 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
1389 return ConstantInt::getTrue(CI->getContext());
1390 break;
1391 }
1392 }
1393
Duncan Sands9d32f602011-01-20 13:21:55 +00001394 // Compare of cast, for example (zext X) != 0 -> X != 0
1395 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1396 Instruction *LI = cast<CastInst>(LHS);
1397 Value *SrcOp = LI->getOperand(0);
1398 const Type *SrcTy = SrcOp->getType();
1399 const Type *DstTy = LI->getType();
1400
1401 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1402 // if the integer type is the same size as the pointer type.
1403 if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
1404 TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1405 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1406 // Transfer the cast to the constant.
1407 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1408 ConstantExpr::getIntToPtr(RHSC, SrcTy),
1409 TD, DT, MaxRecurse-1))
1410 return V;
1411 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1412 if (RI->getOperand(0)->getType() == SrcTy)
1413 // Compare without the cast.
1414 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1415 TD, DT, MaxRecurse-1))
1416 return V;
1417 }
1418 }
1419
1420 if (isa<ZExtInst>(LHS)) {
1421 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1422 // same type.
1423 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1424 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1425 // Compare X and Y. Note that signed predicates become unsigned.
1426 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1427 SrcOp, RI->getOperand(0), TD, DT,
1428 MaxRecurse-1))
1429 return V;
1430 }
1431 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1432 // too. If not, then try to deduce the result of the comparison.
1433 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1434 // Compute the constant that would happen if we truncated to SrcTy then
1435 // reextended to DstTy.
1436 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1437 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1438
1439 // If the re-extended constant didn't change then this is effectively
1440 // also a case of comparing two zero-extended values.
1441 if (RExt == CI && MaxRecurse)
1442 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1443 SrcOp, Trunc, TD, DT, MaxRecurse-1))
1444 return V;
1445
1446 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1447 // there. Use this to work out the result of the comparison.
1448 if (RExt != CI) {
1449 switch (Pred) {
1450 default:
1451 assert(false && "Unknown ICmp predicate!");
1452 // LHS <u RHS.
1453 case ICmpInst::ICMP_EQ:
1454 case ICmpInst::ICMP_UGT:
1455 case ICmpInst::ICMP_UGE:
1456 return ConstantInt::getFalse(CI->getContext());
1457
1458 case ICmpInst::ICMP_NE:
1459 case ICmpInst::ICMP_ULT:
1460 case ICmpInst::ICMP_ULE:
1461 return ConstantInt::getTrue(CI->getContext());
1462
1463 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
1464 // is non-negative then LHS <s RHS.
1465 case ICmpInst::ICMP_SGT:
1466 case ICmpInst::ICMP_SGE:
1467 return CI->getValue().isNegative() ?
1468 ConstantInt::getTrue(CI->getContext()) :
1469 ConstantInt::getFalse(CI->getContext());
1470
1471 case ICmpInst::ICMP_SLT:
1472 case ICmpInst::ICMP_SLE:
1473 return CI->getValue().isNegative() ?
1474 ConstantInt::getFalse(CI->getContext()) :
1475 ConstantInt::getTrue(CI->getContext());
1476 }
1477 }
1478 }
1479 }
1480
1481 if (isa<SExtInst>(LHS)) {
1482 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1483 // same type.
1484 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1485 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1486 // Compare X and Y. Note that the predicate does not change.
1487 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1488 TD, DT, MaxRecurse-1))
1489 return V;
1490 }
1491 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1492 // too. If not, then try to deduce the result of the comparison.
1493 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1494 // Compute the constant that would happen if we truncated to SrcTy then
1495 // reextended to DstTy.
1496 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1497 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1498
1499 // If the re-extended constant didn't change then this is effectively
1500 // also a case of comparing two sign-extended values.
1501 if (RExt == CI && MaxRecurse)
1502 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
1503 MaxRecurse-1))
1504 return V;
1505
1506 // Otherwise the upper bits of LHS are all equal, while RHS has varying
1507 // bits there. Use this to work out the result of the comparison.
1508 if (RExt != CI) {
1509 switch (Pred) {
1510 default:
1511 assert(false && "Unknown ICmp predicate!");
1512 case ICmpInst::ICMP_EQ:
1513 return ConstantInt::getFalse(CI->getContext());
1514 case ICmpInst::ICMP_NE:
1515 return ConstantInt::getTrue(CI->getContext());
1516
1517 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
1518 // LHS >s RHS.
1519 case ICmpInst::ICMP_SGT:
1520 case ICmpInst::ICMP_SGE:
1521 return CI->getValue().isNegative() ?
1522 ConstantInt::getTrue(CI->getContext()) :
1523 ConstantInt::getFalse(CI->getContext());
1524 case ICmpInst::ICMP_SLT:
1525 case ICmpInst::ICMP_SLE:
1526 return CI->getValue().isNegative() ?
1527 ConstantInt::getFalse(CI->getContext()) :
1528 ConstantInt::getTrue(CI->getContext());
1529
1530 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
1531 // LHS >u RHS.
1532 case ICmpInst::ICMP_UGT:
1533 case ICmpInst::ICMP_UGE:
1534 // Comparison is true iff the LHS <s 0.
1535 if (MaxRecurse)
1536 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1537 Constant::getNullValue(SrcTy),
1538 TD, DT, MaxRecurse-1))
1539 return V;
1540 break;
1541 case ICmpInst::ICMP_ULT:
1542 case ICmpInst::ICMP_ULE:
1543 // Comparison is true iff the LHS >=s 0.
1544 if (MaxRecurse)
1545 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1546 Constant::getNullValue(SrcTy),
1547 TD, DT, MaxRecurse-1))
1548 return V;
1549 break;
1550 }
1551 }
1552 }
1553 }
1554 }
1555
Duncan Sands1ac7c992010-11-07 16:12:23 +00001556 // If the comparison is with the result of a select instruction, check whether
1557 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001558 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1559 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001560 return V;
1561
1562 // If the comparison is with the result of a phi instruction, check whether
1563 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00001564 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1565 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00001566 return V;
Duncan Sands1ac7c992010-11-07 16:12:23 +00001567
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001568 return 0;
1569}
1570
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001571Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001572 const TargetData *TD, const DominatorTree *DT) {
1573 return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001574}
1575
Chris Lattner9dbb4292009-11-09 23:28:39 +00001576/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
1577/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001578static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001579 const TargetData *TD, const DominatorTree *DT,
1580 unsigned MaxRecurse) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00001581 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1582 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
1583
Chris Lattnerd06094f2009-11-10 00:55:12 +00001584 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00001585 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1586 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
Duncan Sands12a86f52010-11-14 11:23:23 +00001587
Chris Lattnerd06094f2009-11-10 00:55:12 +00001588 // If we have a constant, make sure it is on the RHS.
1589 std::swap(LHS, RHS);
1590 Pred = CmpInst::getSwappedPredicate(Pred);
1591 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001592
Chris Lattner210c5d42009-11-09 23:55:12 +00001593 // Fold trivial predicates.
1594 if (Pred == FCmpInst::FCMP_FALSE)
1595 return ConstantInt::get(GetCompareTy(LHS), 0);
1596 if (Pred == FCmpInst::FCMP_TRUE)
1597 return ConstantInt::get(GetCompareTy(LHS), 1);
1598
Chris Lattner210c5d42009-11-09 23:55:12 +00001599 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
1600 return UndefValue::get(GetCompareTy(LHS));
1601
1602 // fcmp x,x -> true/false. Not all compares are foldable.
Duncan Sands124708d2011-01-01 20:08:02 +00001603 if (LHS == RHS) {
Chris Lattner210c5d42009-11-09 23:55:12 +00001604 if (CmpInst::isTrueWhenEqual(Pred))
1605 return ConstantInt::get(GetCompareTy(LHS), 1);
1606 if (CmpInst::isFalseWhenEqual(Pred))
1607 return ConstantInt::get(GetCompareTy(LHS), 0);
1608 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001609
Chris Lattner210c5d42009-11-09 23:55:12 +00001610 // Handle fcmp with constant RHS
1611 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1612 // If the constant is a nan, see if we can fold the comparison based on it.
1613 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1614 if (CFP->getValueAPF().isNaN()) {
1615 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
1616 return ConstantInt::getFalse(CFP->getContext());
1617 assert(FCmpInst::isUnordered(Pred) &&
1618 "Comparison must be either ordered or unordered!");
1619 // True if unordered.
1620 return ConstantInt::getTrue(CFP->getContext());
1621 }
Dan Gohman6b617a72010-02-22 04:06:03 +00001622 // Check whether the constant is an infinity.
1623 if (CFP->getValueAPF().isInfinity()) {
1624 if (CFP->getValueAPF().isNegative()) {
1625 switch (Pred) {
1626 case FCmpInst::FCMP_OLT:
1627 // No value is ordered and less than negative infinity.
1628 return ConstantInt::getFalse(CFP->getContext());
1629 case FCmpInst::FCMP_UGE:
1630 // All values are unordered with or at least negative infinity.
1631 return ConstantInt::getTrue(CFP->getContext());
1632 default:
1633 break;
1634 }
1635 } else {
1636 switch (Pred) {
1637 case FCmpInst::FCMP_OGT:
1638 // No value is ordered and greater than infinity.
1639 return ConstantInt::getFalse(CFP->getContext());
1640 case FCmpInst::FCMP_ULE:
1641 // All values are unordered with and at most infinity.
1642 return ConstantInt::getTrue(CFP->getContext());
1643 default:
1644 break;
1645 }
1646 }
1647 }
Chris Lattner210c5d42009-11-09 23:55:12 +00001648 }
1649 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001650
Duncan Sands92826de2010-11-07 16:46:25 +00001651 // If the comparison is with the result of a select instruction, check whether
1652 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001653 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1654 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001655 return V;
1656
1657 // If the comparison is with the result of a phi instruction, check whether
1658 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00001659 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1660 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00001661 return V;
Duncan Sands92826de2010-11-07 16:46:25 +00001662
Chris Lattner9dbb4292009-11-09 23:28:39 +00001663 return 0;
1664}
1665
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001666Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001667 const TargetData *TD, const DominatorTree *DT) {
1668 return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001669}
1670
Chris Lattner04754262010-04-20 05:32:14 +00001671/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
1672/// the result. If not, this returns null.
Duncan Sands124708d2011-01-01 20:08:02 +00001673Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
1674 const TargetData *TD, const DominatorTree *) {
Chris Lattner04754262010-04-20 05:32:14 +00001675 // select true, X, Y -> X
1676 // select false, X, Y -> Y
1677 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
1678 return CB->getZExtValue() ? TrueVal : FalseVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00001679
Chris Lattner04754262010-04-20 05:32:14 +00001680 // select C, X, X -> X
Duncan Sands124708d2011-01-01 20:08:02 +00001681 if (TrueVal == FalseVal)
Chris Lattner04754262010-04-20 05:32:14 +00001682 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00001683
Chris Lattner04754262010-04-20 05:32:14 +00001684 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
1685 return FalseVal;
1686 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
1687 return TrueVal;
1688 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
1689 if (isa<Constant>(TrueVal))
1690 return TrueVal;
1691 return FalseVal;
1692 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001693
Chris Lattner04754262010-04-20 05:32:14 +00001694 return 0;
1695}
1696
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001697/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
1698/// fold the result. If not, this returns null.
1699Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
Duncan Sands18450092010-11-16 12:16:38 +00001700 const TargetData *TD, const DominatorTree *) {
Duncan Sands85bbff62010-11-22 13:42:49 +00001701 // The type of the GEP pointer operand.
1702 const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
1703
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001704 // getelementptr P -> P.
1705 if (NumOps == 1)
1706 return Ops[0];
1707
Duncan Sands85bbff62010-11-22 13:42:49 +00001708 if (isa<UndefValue>(Ops[0])) {
1709 // Compute the (pointer) type returned by the GEP instruction.
1710 const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1],
1711 NumOps-1);
1712 const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
1713 return UndefValue::get(GEPTy);
1714 }
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001715
Duncan Sandse60d79f2010-11-21 13:53:09 +00001716 if (NumOps == 2) {
1717 // getelementptr P, 0 -> P.
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001718 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
1719 if (C->isZero())
1720 return Ops[0];
Duncan Sandse60d79f2010-11-21 13:53:09 +00001721 // getelementptr P, N -> P if P points to a type of zero size.
1722 if (TD) {
Duncan Sands85bbff62010-11-22 13:42:49 +00001723 const Type *Ty = PtrTy->getElementType();
Duncan Sandsa63395a2010-11-22 16:32:50 +00001724 if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
Duncan Sandse60d79f2010-11-21 13:53:09 +00001725 return Ops[0];
1726 }
1727 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001728
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001729 // Check to see if this is constant foldable.
1730 for (unsigned i = 0; i != NumOps; ++i)
1731 if (!isa<Constant>(Ops[i]))
1732 return 0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001733
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001734 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
1735 (Constant *const*)Ops+1, NumOps-1);
1736}
1737
Duncan Sandsff103412010-11-17 04:30:22 +00001738/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
1739static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
1740 // If all of the PHI's incoming values are the same then replace the PHI node
1741 // with the common value.
1742 Value *CommonValue = 0;
1743 bool HasUndefInput = false;
1744 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1745 Value *Incoming = PN->getIncomingValue(i);
1746 // If the incoming value is the phi node itself, it can safely be skipped.
1747 if (Incoming == PN) continue;
1748 if (isa<UndefValue>(Incoming)) {
1749 // Remember that we saw an undef value, but otherwise ignore them.
1750 HasUndefInput = true;
1751 continue;
1752 }
1753 if (CommonValue && Incoming != CommonValue)
1754 return 0; // Not the same, bail out.
1755 CommonValue = Incoming;
1756 }
1757
1758 // If CommonValue is null then all of the incoming values were either undef or
1759 // equal to the phi node itself.
1760 if (!CommonValue)
1761 return UndefValue::get(PN->getType());
1762
1763 // If we have a PHI node like phi(X, undef, X), where X is defined by some
1764 // instruction, we cannot return X as the result of the PHI node unless it
1765 // dominates the PHI block.
1766 if (HasUndefInput)
1767 return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
1768
1769 return CommonValue;
1770}
1771
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001772
Chris Lattnerd06094f2009-11-10 00:55:12 +00001773//=== Helper functions for higher up the class hierarchy.
Chris Lattner9dbb4292009-11-09 23:28:39 +00001774
Chris Lattnerd06094f2009-11-10 00:55:12 +00001775/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
1776/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001777static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001778 const TargetData *TD, const DominatorTree *DT,
1779 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001780 switch (Opcode) {
Duncan Sandsee9a2e32010-12-20 14:47:04 +00001781 case Instruction::Add: return SimplifyAddInst(LHS, RHS, /* isNSW */ false,
1782 /* isNUW */ false, TD, DT,
1783 MaxRecurse);
1784 case Instruction::Sub: return SimplifySubInst(LHS, RHS, /* isNSW */ false,
1785 /* isNUW */ false, TD, DT,
1786 MaxRecurse);
Duncan Sands82fdab32010-12-21 14:00:22 +00001787 case Instruction::Mul: return SimplifyMulInst(LHS, RHS, TD, DT, MaxRecurse);
Duncan Sands593faa52011-01-28 16:51:11 +00001788 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
1789 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001790 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001791 case Instruction::Shl: return SimplifyShlInst(LHS, RHS, TD, DT, MaxRecurse);
1792 case Instruction::LShr: return SimplifyLShrInst(LHS, RHS, TD, DT, MaxRecurse);
1793 case Instruction::AShr: return SimplifyAShrInst(LHS, RHS, TD, DT, MaxRecurse);
Duncan Sands82fdab32010-12-21 14:00:22 +00001794 case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
1795 case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse);
1796 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001797 default:
1798 if (Constant *CLHS = dyn_cast<Constant>(LHS))
1799 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1800 Constant *COps[] = {CLHS, CRHS};
1801 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
1802 }
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001803
Duncan Sands566edb02010-12-21 08:49:00 +00001804 // If the operation is associative, try some generic simplifications.
1805 if (Instruction::isAssociative(Opcode))
1806 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
1807 MaxRecurse))
1808 return V;
1809
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001810 // If the operation is with the result of a select instruction, check whether
1811 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001812 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands18450092010-11-16 12:16:38 +00001813 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001814 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001815 return V;
1816
1817 // If the operation is with the result of a phi instruction, check whether
1818 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001819 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1820 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001821 return V;
1822
Chris Lattnerd06094f2009-11-10 00:55:12 +00001823 return 0;
1824 }
1825}
Chris Lattner9dbb4292009-11-09 23:28:39 +00001826
Duncan Sands12a86f52010-11-14 11:23:23 +00001827Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001828 const TargetData *TD, const DominatorTree *DT) {
1829 return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
Chris Lattner9dbb4292009-11-09 23:28:39 +00001830}
1831
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001832/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
1833/// fold the result.
1834static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001835 const TargetData *TD, const DominatorTree *DT,
1836 unsigned MaxRecurse) {
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001837 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
Duncan Sands18450092010-11-16 12:16:38 +00001838 return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
1839 return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001840}
1841
1842Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001843 const TargetData *TD, const DominatorTree *DT) {
1844 return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001845}
Chris Lattnere3453782009-11-10 01:08:51 +00001846
1847/// SimplifyInstruction - See if we can compute a simplified version of this
1848/// instruction. If not, this returns null.
Duncan Sandseff05812010-11-14 18:36:10 +00001849Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
1850 const DominatorTree *DT) {
Duncan Sandsd261dc62010-11-17 08:35:29 +00001851 Value *Result;
1852
Chris Lattnere3453782009-11-10 01:08:51 +00001853 switch (I->getOpcode()) {
1854 default:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001855 Result = ConstantFoldInstruction(I, TD);
1856 break;
Chris Lattner8aee8ef2009-11-27 17:42:22 +00001857 case Instruction::Add:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001858 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
1859 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1860 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1861 TD, DT);
1862 break;
Duncan Sandsfea3b212010-12-15 14:07:39 +00001863 case Instruction::Sub:
1864 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
1865 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1866 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1867 TD, DT);
1868 break;
Duncan Sands82fdab32010-12-21 14:00:22 +00001869 case Instruction::Mul:
1870 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
1871 break;
Duncan Sands593faa52011-01-28 16:51:11 +00001872 case Instruction::SDiv:
1873 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
1874 break;
1875 case Instruction::UDiv:
1876 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
1877 break;
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001878 case Instruction::FDiv:
1879 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
1880 break;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001881 case Instruction::Shl:
1882 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), TD, DT);
1883 break;
1884 case Instruction::LShr:
1885 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1886 break;
1887 case Instruction::AShr:
1888 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1889 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001890 case Instruction::And:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001891 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
1892 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001893 case Instruction::Or:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001894 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1895 break;
Duncan Sands2b749872010-11-17 18:52:15 +00001896 case Instruction::Xor:
1897 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
1898 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001899 case Instruction::ICmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001900 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
1901 I->getOperand(0), I->getOperand(1), TD, DT);
1902 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001903 case Instruction::FCmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001904 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
1905 I->getOperand(0), I->getOperand(1), TD, DT);
1906 break;
Chris Lattner04754262010-04-20 05:32:14 +00001907 case Instruction::Select:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001908 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
1909 I->getOperand(2), TD, DT);
1910 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001911 case Instruction::GetElementPtr: {
1912 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Duncan Sandsd261dc62010-11-17 08:35:29 +00001913 Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
1914 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001915 }
Duncan Sandscd6636c2010-11-14 13:30:18 +00001916 case Instruction::PHI:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001917 Result = SimplifyPHINode(cast<PHINode>(I), DT);
1918 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001919 }
Duncan Sandsd261dc62010-11-17 08:35:29 +00001920
1921 /// If called on unreachable code, the above logic may report that the
1922 /// instruction simplified to itself. Make life easier for users by
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001923 /// detecting that case here, returning a safe value instead.
1924 return Result == I ? UndefValue::get(I->getType()) : Result;
Chris Lattnere3453782009-11-10 01:08:51 +00001925}
1926
Chris Lattner40d8c282009-11-10 22:26:15 +00001927/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
1928/// delete the From instruction. In addition to a basic RAUW, this does a
1929/// recursive simplification of the newly formed instructions. This catches
1930/// things where one simplification exposes other opportunities. This only
1931/// simplifies and deletes scalar operations, it does not change the CFG.
1932///
1933void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
Duncan Sandseff05812010-11-14 18:36:10 +00001934 const TargetData *TD,
1935 const DominatorTree *DT) {
Chris Lattner40d8c282009-11-10 22:26:15 +00001936 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001937
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001938 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
1939 // we can know if it gets deleted out from under us or replaced in a
1940 // recursive simplification.
Chris Lattner40d8c282009-11-10 22:26:15 +00001941 WeakVH FromHandle(From);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001942 WeakVH ToHandle(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00001943
Chris Lattner40d8c282009-11-10 22:26:15 +00001944 while (!From->use_empty()) {
1945 // Update the instruction to use the new value.
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001946 Use &TheUse = From->use_begin().getUse();
1947 Instruction *User = cast<Instruction>(TheUse.getUser());
1948 TheUse = To;
1949
1950 // Check to see if the instruction can be folded due to the operand
1951 // replacement. For example changing (or X, Y) into (or X, -1) can replace
1952 // the 'or' with -1.
1953 Value *SimplifiedVal;
1954 {
1955 // Sanity check to make sure 'User' doesn't dangle across
1956 // SimplifyInstruction.
1957 AssertingVH<> UserHandle(User);
Duncan Sands12a86f52010-11-14 11:23:23 +00001958
Duncan Sandseff05812010-11-14 18:36:10 +00001959 SimplifiedVal = SimplifyInstruction(User, TD, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001960 if (SimplifiedVal == 0) continue;
Chris Lattner40d8c282009-11-10 22:26:15 +00001961 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001962
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001963 // Recursively simplify this user to the new value.
Duncan Sandseff05812010-11-14 18:36:10 +00001964 ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001965 From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
1966 To = ToHandle;
Duncan Sands12a86f52010-11-14 11:23:23 +00001967
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001968 assert(ToHandle && "To value deleted by recursive simplification?");
Duncan Sands12a86f52010-11-14 11:23:23 +00001969
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001970 // If the recursive simplification ended up revisiting and deleting
1971 // 'From' then we're done.
1972 if (From == 0)
1973 return;
Chris Lattner40d8c282009-11-10 22:26:15 +00001974 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001975
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001976 // If 'From' has value handles referring to it, do a real RAUW to update them.
1977 From->replaceAllUsesWith(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00001978
Chris Lattner40d8c282009-11-10 22:26:15 +00001979 From->eraseFromParent();
1980}