blob: 1917e626a5bac55ca8c6519f52950403ed5303e1 [file] [log] [blame]
Misha Brukmancd603132003-06-02 03:28:00 +00001//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner40ead952002-12-02 21:24:12 +00009//
10// This file contains the pass that transforms the X86 machine instructions into
11// actual executable machine code.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattnercb533582003-08-03 21:14:38 +000015#define DEBUG_TYPE "jit"
Chris Lattner40ead952002-12-02 21:24:12 +000016#include "X86TargetMachine.h"
Chris Lattnerea1ddab2002-12-03 06:34:06 +000017#include "X86.h"
Chris Lattner40ead952002-12-02 21:24:12 +000018#include "llvm/PassManager.h"
19#include "llvm/CodeGen/MachineCodeEmitter.h"
Chris Lattner5ae99fe2002-12-28 20:24:48 +000020#include "llvm/CodeGen/MachineFunctionPass.h"
Chris Lattner76041ce2002-12-02 21:44:34 +000021#include "llvm/CodeGen/MachineInstr.h"
Chris Lattnerc01d1232003-10-20 03:42:58 +000022#include "llvm/Function.h"
Chris Lattnera11136b2003-08-01 22:21:34 +000023#include "Support/Debug.h"
Chris Lattner302de592003-06-06 04:00:05 +000024#include "Support/Statistic.h"
John Criswell7a73b802003-06-30 21:59:07 +000025#include "Config/alloca.h"
Chris Lattner65b05ce2003-12-12 07:11:18 +000026using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000027
Chris Lattner40ead952002-12-02 21:24:12 +000028namespace {
Chris Lattner302de592003-06-06 04:00:05 +000029 Statistic<>
30 NumEmitted("x86-emitter", "Number of machine instructions emitted");
31
Chris Lattner04b0b302003-06-01 23:23:50 +000032 class JITResolver {
33 MachineCodeEmitter &MCE;
34
35 // LazyCodeGenMap - Keep track of call sites for functions that are to be
36 // lazily resolved.
37 std::map<unsigned, Function*> LazyCodeGenMap;
38
39 // LazyResolverMap - Keep track of the lazy resolver created for a
40 // particular function so that we can reuse them if necessary.
41 std::map<Function*, unsigned> LazyResolverMap;
42 public:
43 JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
44 unsigned getLazyResolver(Function *F);
45 unsigned addFunctionReference(unsigned Address, Function *F);
46
47 private:
48 unsigned emitStubForFunction(Function *F);
49 static void CompilationCallback();
50 unsigned resolveFunctionReference(unsigned RetAddr);
51 };
52
53 JITResolver *TheJITResolver;
54}
55
Chris Lattner1e60a912003-12-20 01:22:19 +000056void *X86JITInfo::getJITStubForFunction(Function *F, MachineCodeEmitter &MCE) {
Chris Lattner65b05ce2003-12-12 07:11:18 +000057 if (TheJITResolver == 0)
58 TheJITResolver = new JITResolver(MCE);
John Criswell52b62de2003-12-12 19:57:48 +000059 return (void*)((unsigned long)TheJITResolver->getLazyResolver(F));
Chris Lattner65b05ce2003-12-12 07:11:18 +000060}
Chris Lattner04b0b302003-06-01 23:23:50 +000061
Chris Lattner1e60a912003-12-20 01:22:19 +000062void X86JITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
63 char *OldByte = (char *) Old;
64 *OldByte++ = 0xE9; // Emit JMP opcode.
65 int32_t *OldWord = (int32_t *) OldByte;
66 int32_t NewAddr = (intptr_t) New;
67 int32_t OldAddr = (intptr_t) OldWord;
68 *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code.
69}
70
Chris Lattner04b0b302003-06-01 23:23:50 +000071/// addFunctionReference - This method is called when we need to emit the
72/// address of a function that has not yet been emitted, so we don't know the
73/// address. Instead, we emit a call to the CompilationCallback method, and
74/// keep track of where we are.
75///
76unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
77 LazyCodeGenMap[Address] = F;
78 return (intptr_t)&JITResolver::CompilationCallback;
79}
80
81unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
82 std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
83 assert(I != LazyCodeGenMap.end() && "Not in map!");
84 Function *F = I->second;
85 LazyCodeGenMap.erase(I);
86 return MCE.forceCompilationOf(F);
87}
88
89unsigned JITResolver::getLazyResolver(Function *F) {
90 std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
91 if (I != LazyResolverMap.end() && I->first == F) return I->second;
92
93//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
94
95 unsigned Stub = emitStubForFunction(F);
96 LazyResolverMap.insert(I, std::make_pair(F, Stub));
97 return Stub;
98}
99
100void JITResolver::CompilationCallback() {
101 unsigned *StackPtr = (unsigned*)__builtin_frame_address(0);
Misha Brukmanbc80b222003-06-02 04:13:58 +0000102 unsigned RetAddr = (unsigned)(intptr_t)__builtin_return_address(0);
Chris Lattner04b0b302003-06-01 23:23:50 +0000103 assert(StackPtr[1] == RetAddr &&
104 "Could not find return address on the stack!");
Chris Lattner30d002b2003-06-06 18:25:33 +0000105
106 // It's a stub if there is an interrupt marker after the call...
107 bool isStub = ((unsigned char*)(intptr_t)RetAddr)[0] == 0xCD;
Chris Lattner04b0b302003-06-01 23:23:50 +0000108
Chris Lattner302de592003-06-06 04:00:05 +0000109 // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame
110 // pointer elimination has been performed. Having a variable sized alloca
111 // disables frame pointer elimination currently, even if it's dead. This is a
112 // gross hack.
113 alloca(10+isStub);
114 // FIXME FIXME FIXME FIXME
115
Chris Lattner04b0b302003-06-01 23:23:50 +0000116 // The call instruction should have pushed the return value onto the stack...
117 RetAddr -= 4; // Backtrack to the reference itself...
118
119#if 0
120 DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
121 << " ESP=0x" << (unsigned)StackPtr << std::dec
122 << ": Resolving call to function: "
123 << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
124#endif
125
126 // Sanity check to make sure this really is a call instruction...
Chris Lattner30d002b2003-06-06 18:25:33 +0000127 assert(((unsigned char*)(intptr_t)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000128
129 unsigned NewVal = TheJITResolver->resolveFunctionReference(RetAddr);
130
131 // Rewrite the call target... so that we don't fault every time we execute
132 // the call.
Chris Lattner30d002b2003-06-06 18:25:33 +0000133 *(unsigned*)(intptr_t)RetAddr = NewVal-RetAddr-4;
Chris Lattner04b0b302003-06-01 23:23:50 +0000134
135 if (isStub) {
136 // If this is a stub, rewrite the call into an unconditional branch
137 // instruction so that two return addresses are not pushed onto the stack
138 // when the requested function finally gets called. This also makes the
139 // 0xCD byte (interrupt) dead, so the marker doesn't effect anything.
Chris Lattner30d002b2003-06-06 18:25:33 +0000140 ((unsigned char*)(intptr_t)RetAddr)[-1] = 0xE9;
Chris Lattner04b0b302003-06-01 23:23:50 +0000141 }
142
143 // Change the return address to reexecute the call instruction...
144 StackPtr[1] -= 5;
145}
146
147/// emitStubForFunction - This method is used by the JIT when it needs to emit
148/// the address of a function for a function whose code has not yet been
149/// generated. In order to do this, it generates a stub which jumps to the lazy
150/// function compiler, which will eventually get fixed to call the function
151/// directly.
152///
153unsigned JITResolver::emitStubForFunction(Function *F) {
154 MCE.startFunctionStub(*F, 6);
155 MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
156
157 unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F);
158 MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
159
160 MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
161 return (intptr_t)MCE.finishFunctionStub(*F);
162}
163
164
165
166namespace {
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000167 class Emitter : public MachineFunctionPass {
168 const X86InstrInfo *II;
Chris Lattner8f04b092002-12-02 21:56:18 +0000169 MachineCodeEmitter &MCE;
Chris Lattnerdee12632003-07-26 23:06:00 +0000170 std::map<const BasicBlock*, unsigned> BasicBlockAddrs;
171 std::vector<std::pair<const BasicBlock*, unsigned> > BBRefs;
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000172 public:
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000173 Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {}
Chris Lattner40ead952002-12-02 21:24:12 +0000174
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000175 bool runOnMachineFunction(MachineFunction &MF);
Chris Lattner76041ce2002-12-02 21:44:34 +0000176
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000177 virtual const char *getPassName() const {
178 return "X86 Machine Code Emitter";
179 }
180
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000181 private:
Chris Lattner76041ce2002-12-02 21:44:34 +0000182 void emitBasicBlock(MachineBasicBlock &MBB);
183 void emitInstruction(MachineInstr &MI);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000184
Chris Lattner04b0b302003-06-01 23:23:50 +0000185 void emitPCRelativeBlockAddress(BasicBlock *BB);
186 void emitMaybePCRelativeValue(unsigned Address, bool isPCRelative);
187 void emitGlobalAddressForCall(GlobalValue *GV);
188 void emitGlobalAddressForPtr(GlobalValue *GV);
189
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000190 void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
191 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
192 void emitConstant(unsigned Val, unsigned Size);
193
194 void emitMemModRMByte(const MachineInstr &MI,
195 unsigned Op, unsigned RegOpcodeField);
196
Chris Lattner40ead952002-12-02 21:24:12 +0000197 };
198}
199
Chris Lattner40ead952002-12-02 21:24:12 +0000200/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
Brian Gaeke45f0b6d2003-10-16 23:45:05 +0000201/// machine code emitted. This uses a MachineCodeEmitter object to handle
Chris Lattner40ead952002-12-02 21:24:12 +0000202/// actually outputting the machine code and resolving things like the address
203/// of functions. This method should returns true if machine code emission is
204/// not supported.
205///
Brian Gaeke8844a0b2003-08-13 18:17:27 +0000206bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
Chris Lattner40ead952002-12-02 21:24:12 +0000207 MachineCodeEmitter &MCE) {
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000208 PM.add(new Emitter(MCE));
Chris Lattner40ead952002-12-02 21:24:12 +0000209 return false;
210}
Chris Lattner76041ce2002-12-02 21:44:34 +0000211
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000212bool Emitter::runOnMachineFunction(MachineFunction &MF) {
213 II = &((X86TargetMachine&)MF.getTarget()).getInstrInfo();
Chris Lattner76041ce2002-12-02 21:44:34 +0000214
215 MCE.startFunction(MF);
Chris Lattnere831b6b2003-01-13 00:33:59 +0000216 MCE.emitConstantPool(MF.getConstantPool());
Chris Lattner76041ce2002-12-02 21:44:34 +0000217 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
218 emitBasicBlock(*I);
219 MCE.finishFunction(MF);
Chris Lattner04b0b302003-06-01 23:23:50 +0000220
221 // Resolve all forward branches now...
222 for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
223 unsigned Location = BasicBlockAddrs[BBRefs[i].first];
224 unsigned Ref = BBRefs[i].second;
Chris Lattner30d002b2003-06-06 18:25:33 +0000225 *(unsigned*)(intptr_t)Ref = Location-Ref-4;
Chris Lattner04b0b302003-06-01 23:23:50 +0000226 }
227 BBRefs.clear();
228 BasicBlockAddrs.clear();
Chris Lattner76041ce2002-12-02 21:44:34 +0000229 return false;
230}
231
232void Emitter::emitBasicBlock(MachineBasicBlock &MBB) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000233 if (uint64_t Addr = MCE.getCurrentPCValue())
234 BasicBlockAddrs[MBB.getBasicBlock()] = Addr;
235
Chris Lattner76041ce2002-12-02 21:44:34 +0000236 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
237 emitInstruction(**I);
238}
239
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000240
Chris Lattner04b0b302003-06-01 23:23:50 +0000241/// emitPCRelativeBlockAddress - This method emits the PC relative address of
242/// the specified basic block, or if the basic block hasn't been emitted yet
243/// (because this is a forward branch), it keeps track of the information
244/// necessary to resolve this address later (and emits a dummy value).
245///
246void Emitter::emitPCRelativeBlockAddress(BasicBlock *BB) {
247 // FIXME: Emit backward branches directly
248 BBRefs.push_back(std::make_pair(BB, MCE.getCurrentPCValue()));
249 MCE.emitWord(0); // Emit a dummy value
250}
251
252/// emitMaybePCRelativeValue - Emit a 32-bit address which may be PC relative.
253///
254void Emitter::emitMaybePCRelativeValue(unsigned Address, bool isPCRelative) {
255 if (isPCRelative)
256 MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
257 else
258 MCE.emitWord(Address);
259}
260
261/// emitGlobalAddressForCall - Emit the specified address to the code stream
262/// assuming this is part of a function call, which is PC relative.
263///
264void Emitter::emitGlobalAddressForCall(GlobalValue *GV) {
265 // Get the address from the backend...
266 unsigned Address = MCE.getGlobalValueAddress(GV);
267
Chris Lattner04b0b302003-06-01 23:23:50 +0000268 if (Address == 0) {
269 // FIXME: this is JIT specific!
270 if (TheJITResolver == 0)
271 TheJITResolver = new JITResolver(MCE);
272 Address = TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
Chris Lattnerc01d1232003-10-20 03:42:58 +0000273 cast<Function>(GV));
Chris Lattner04b0b302003-06-01 23:23:50 +0000274 }
275 emitMaybePCRelativeValue(Address, true);
276}
277
278/// emitGlobalAddress - Emit the specified address to the code stream assuming
279/// this is part of a "take the address of a global" instruction, which is not
280/// PC relative.
281///
282void Emitter::emitGlobalAddressForPtr(GlobalValue *GV) {
283 // Get the address from the backend...
284 unsigned Address = MCE.getGlobalValueAddress(GV);
285
286 // If the machine code emitter doesn't know what the address IS yet, we have
287 // to take special measures.
288 //
289 if (Address == 0) {
290 // FIXME: this is JIT specific!
291 if (TheJITResolver == 0)
292 TheJITResolver = new JITResolver(MCE);
293 Address = TheJITResolver->getLazyResolver((Function*)GV);
294 }
295
296 emitMaybePCRelativeValue(Address, false);
297}
298
299
300
Chris Lattnerff3261a2003-06-03 15:31:23 +0000301/// N86 namespace - Native X86 Register numbers... used by X86 backend.
302///
303namespace N86 {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000304 enum {
305 EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
306 };
307}
308
309
310// getX86RegNum - This function maps LLVM register identifiers to their X86
311// specific numbering, which is used in various places encoding instructions.
312//
313static unsigned getX86RegNum(unsigned RegNo) {
314 switch(RegNo) {
315 case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
316 case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
317 case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
318 case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
319 case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
320 case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
321 case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
322 case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000323
324 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
325 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
326 return RegNo-X86::ST0;
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000327 default:
328 assert(RegNo >= MRegisterInfo::FirstVirtualRegister &&
329 "Unknown physical register!");
330 assert(0 && "Register allocator hasn't allocated reg correctly yet!");
331 return 0;
332 }
333}
334
335inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
336 unsigned RM) {
337 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
338 return RM | (RegOpcode << 3) | (Mod << 6);
339}
340
341void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
342 MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
343}
344
345void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
346 // SIB byte is in the same format as the ModRMByte...
347 MCE.emitByte(ModRMByte(SS, Index, Base));
348}
349
350void Emitter::emitConstant(unsigned Val, unsigned Size) {
351 // Output the constant in little endian byte order...
352 for (unsigned i = 0; i != Size; ++i) {
353 MCE.emitByte(Val & 255);
354 Val >>= 8;
355 }
356}
357
358static bool isDisp8(int Value) {
359 return Value == (signed char)Value;
360}
361
362void Emitter::emitMemModRMByte(const MachineInstr &MI,
363 unsigned Op, unsigned RegOpcodeField) {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000364 const MachineOperand &Disp = MI.getOperand(Op+3);
365 if (MI.getOperand(Op).isConstantPoolIndex()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000366 // Emit a direct address reference [disp32] where the displacement of the
367 // constant pool entry is controlled by the MCE.
Chris Lattnere831b6b2003-01-13 00:33:59 +0000368 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
369 unsigned Index = MI.getOperand(Op).getConstantPoolIndex();
Chris Lattner04b0b302003-06-01 23:23:50 +0000370 unsigned Address = MCE.getConstantPoolEntryAddress(Index);
371 MCE.emitWord(Address+Disp.getImmedValue());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000372 return;
373 }
374
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000375 const MachineOperand &BaseReg = MI.getOperand(Op);
376 const MachineOperand &Scale = MI.getOperand(Op+1);
377 const MachineOperand &IndexReg = MI.getOperand(Op+2);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000378
379 // Is a SIB byte needed?
380 if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) {
381 if (BaseReg.getReg() == 0) { // Just a displacement?
382 // Emit special case [disp32] encoding
383 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
384 emitConstant(Disp.getImmedValue(), 4);
385 } else {
386 unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
387 if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) {
388 // Emit simple indirect register encoding... [EAX] f.e.
389 MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
390 } else if (isDisp8(Disp.getImmedValue())) {
391 // Emit the disp8 encoding... [REG+disp8]
392 MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
393 emitConstant(Disp.getImmedValue(), 1);
394 } else {
395 // Emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner20671842002-12-13 05:05:05 +0000396 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000397 emitConstant(Disp.getImmedValue(), 4);
398 }
399 }
400
401 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
402 assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
403
404 bool ForceDisp32 = false;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000405 bool ForceDisp8 = false;
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000406 if (BaseReg.getReg() == 0) {
407 // If there is no base register, we emit the special case SIB byte with
408 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
409 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
410 ForceDisp32 = true;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000411 } else if (Disp.getImmedValue() == 0 && BaseReg.getReg() != X86::EBP) {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000412 // Emit no displacement ModR/M byte
413 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
414 } else if (isDisp8(Disp.getImmedValue())) {
415 // Emit the disp8 encoding...
416 MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
Brian Gaeke95780cc2002-12-13 07:56:18 +0000417 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000418 } else {
419 // Emit the normal disp32 encoding...
420 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
421 }
422
423 // Calculate what the SS field value should be...
424 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
425 unsigned SS = SSTable[Scale.getImmedValue()];
426
427 if (BaseReg.getReg() == 0) {
428 // Handle the SIB byte for the case where there is no base. The
429 // displacement has already been output.
430 assert(IndexReg.getReg() && "Index register must be specified!");
431 emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
432 } else {
433 unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000434 unsigned IndexRegNo;
435 if (IndexReg.getReg())
436 IndexRegNo = getX86RegNum(IndexReg.getReg());
437 else
438 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000439 emitSIBByte(SS, IndexRegNo, BaseRegNo);
440 }
441
442 // Do we need to output a displacement?
Brian Gaeke95780cc2002-12-13 07:56:18 +0000443 if (Disp.getImmedValue() != 0 || ForceDisp32 || ForceDisp8) {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000444 if (!ForceDisp32 && isDisp8(Disp.getImmedValue()))
445 emitConstant(Disp.getImmedValue(), 1);
446 else
447 emitConstant(Disp.getImmedValue(), 4);
448 }
449 }
450}
451
Chris Lattner04b0b302003-06-01 23:23:50 +0000452static unsigned sizeOfPtr(const TargetInstrDescriptor &Desc) {
Chris Lattnera0f38c82002-12-13 03:51:55 +0000453 switch (Desc.TSFlags & X86II::ArgMask) {
454 case X86II::Arg8: return 1;
455 case X86II::Arg16: return 2;
456 case X86II::Arg32: return 4;
Chris Lattner5ada8df2002-12-25 05:09:21 +0000457 case X86II::ArgF32: return 4;
458 case X86II::ArgF64: return 8;
459 case X86II::ArgF80: return 10;
Chris Lattnera6a382c2002-12-13 03:50:13 +0000460 default: assert(0 && "Memory size not set!");
Chris Lattnerdf642e12002-12-20 04:12:48 +0000461 return 0;
Misha Brukman5000e432002-12-13 02:13:15 +0000462 }
463}
464
Chris Lattner76041ce2002-12-02 21:44:34 +0000465void Emitter::emitInstruction(MachineInstr &MI) {
Chris Lattner302de592003-06-06 04:00:05 +0000466 NumEmitted++; // Keep track of the # of mi's emitted
467
Chris Lattner76041ce2002-12-02 21:44:34 +0000468 unsigned Opcode = MI.getOpcode();
Chris Lattner3501fea2003-01-14 22:00:31 +0000469 const TargetInstrDescriptor &Desc = II->get(Opcode);
Chris Lattner76041ce2002-12-02 21:44:34 +0000470
Misha Brukman5560c9d2003-08-18 14:43:39 +0000471 // Emit instruction prefixes if necessary
Chris Lattner76041ce2002-12-02 21:44:34 +0000472 if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size...
Chris Lattner5ada8df2002-12-25 05:09:21 +0000473
474 switch (Desc.TSFlags & X86II::Op0Mask) {
475 case X86II::TB:
476 MCE.emitByte(0x0F); // Two-byte opcode prefix
477 break;
478 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
479 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
Chris Lattnere831b6b2003-01-13 00:33:59 +0000480 MCE.emitByte(0xD8+
481 (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8)
482 >> X86II::Op0Shift));
Chris Lattner5ada8df2002-12-25 05:09:21 +0000483 break; // Two-byte opcode prefix
Chris Lattnere831b6b2003-01-13 00:33:59 +0000484 default: assert(0 && "Invalid prefix!");
485 case 0: break; // No prefix!
Chris Lattner5ada8df2002-12-25 05:09:21 +0000486 }
Chris Lattner76041ce2002-12-02 21:44:34 +0000487
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000488 unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode);
Chris Lattner76041ce2002-12-02 21:44:34 +0000489 switch (Desc.TSFlags & X86II::FormMask) {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000490 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
Chris Lattner5ada8df2002-12-25 05:09:21 +0000491 case X86II::Pseudo:
Chris Lattner02beda12003-08-05 00:48:47 +0000492 if (Opcode != X86::IMPLICIT_USE && Opcode != X86::IMPLICIT_DEF)
Chris Lattner9dedbcc2003-05-06 21:31:47 +0000493 std::cerr << "X86 Machine Code Emitter: No 'form', not emitting: " << MI;
Chris Lattner5ada8df2002-12-25 05:09:21 +0000494 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000495
Chris Lattner76041ce2002-12-02 21:44:34 +0000496 case X86II::RawFrm:
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000497 MCE.emitByte(BaseOpcode);
Chris Lattner8f04b092002-12-02 21:56:18 +0000498 if (MI.getNumOperands() == 1) {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000499 MachineOperand &MO = MI.getOperand(0);
500 if (MO.isPCRelativeDisp()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000501 // Conditional branch... FIXME: this should use an MBB destination!
502 emitPCRelativeBlockAddress(cast<BasicBlock>(MO.getVRegValue()));
Chris Lattnere831b6b2003-01-13 00:33:59 +0000503 } else if (MO.isGlobalAddress()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000504 assert(MO.isPCRelative() && "Call target is not PC Relative?");
505 emitGlobalAddressForCall(MO.getGlobal());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000506 } else if (MO.isExternalSymbol()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000507 unsigned Address = MCE.getGlobalValueAddress(MO.getSymbolName());
508 assert(Address && "Unknown external symbol!");
509 emitMaybePCRelativeValue(Address, MO.isPCRelative());
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000510 } else {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000511 assert(0 && "Unknown RawFrm operand!");
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000512 }
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000513 }
514 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000515
516 case X86II::AddRegFrm:
517 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg()));
518 if (MI.getNumOperands() == 2) {
519 MachineOperand &MO1 = MI.getOperand(1);
520 if (MO1.isImmediate() || MO1.getVRegValueOrNull() ||
521 MO1.isGlobalAddress() || MO1.isExternalSymbol()) {
522 unsigned Size = sizeOfPtr(Desc);
523 if (Value *V = MO1.getVRegValueOrNull()) {
524 assert(Size == 4 && "Don't know how to emit non-pointer values!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000525 emitGlobalAddressForPtr(cast<GlobalValue>(V));
Chris Lattnere831b6b2003-01-13 00:33:59 +0000526 } else if (MO1.isGlobalAddress()) {
527 assert(Size == 4 && "Don't know how to emit non-pointer values!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000528 assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?");
529 emitGlobalAddressForPtr(MO1.getGlobal());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000530 } else if (MO1.isExternalSymbol()) {
531 assert(Size == 4 && "Don't know how to emit non-pointer values!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000532
533 unsigned Address = MCE.getGlobalValueAddress(MO1.getSymbolName());
534 assert(Address && "Unknown external symbol!");
535 emitMaybePCRelativeValue(Address, MO1.isPCRelative());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000536 } else {
537 emitConstant(MO1.getImmedValue(), Size);
538 }
539 }
540 }
541 break;
542
543 case X86II::MRMDestReg: {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000544 MCE.emitByte(BaseOpcode);
Chris Lattnere831b6b2003-01-13 00:33:59 +0000545 MachineOperand &SrcOp = MI.getOperand(1+II->isTwoAddrInstr(Opcode));
546 emitRegModRMByte(MI.getOperand(0).getReg(), getX86RegNum(SrcOp.getReg()));
547 if (MI.getNumOperands() == 4)
548 emitConstant(MI.getOperand(3).getImmedValue(), sizeOfPtr(Desc));
Chris Lattner9dedbcc2003-05-06 21:31:47 +0000549 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000550 }
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000551 case X86II::MRMDestMem:
552 MCE.emitByte(BaseOpcode);
553 emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg()));
554 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000555
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000556 case X86II::MRMSrcReg:
557 MCE.emitByte(BaseOpcode);
Chris Lattnerc01d1232003-10-20 03:42:58 +0000558
559 if (MI.getNumOperands() == 2) {
560 emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(),
561 getX86RegNum(MI.getOperand(0).getReg()));
562 } else if (MI.getOperand(2).isImmediate()) {
563 emitRegModRMByte(MI.getOperand(1).getReg(),
564 getX86RegNum(MI.getOperand(0).getReg()));
565
566 emitConstant(MI.getOperand(2).getImmedValue(), sizeOfPtr(Desc));
567 } else {
568 emitRegModRMByte(MI.getOperand(2).getReg(),
569 getX86RegNum(MI.getOperand(0).getReg()));
570 }
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000571 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000572
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000573 case X86II::MRMSrcMem:
574 MCE.emitByte(BaseOpcode);
575 emitMemModRMByte(MI, MI.getNumOperands()-4,
576 getX86RegNum(MI.getOperand(0).getReg()));
577 break;
578
579 case X86II::MRMS0r: case X86II::MRMS1r:
580 case X86II::MRMS2r: case X86II::MRMS3r:
581 case X86II::MRMS4r: case X86II::MRMS5r:
582 case X86II::MRMS6r: case X86II::MRMS7r:
583 MCE.emitByte(BaseOpcode);
584 emitRegModRMByte(MI.getOperand(0).getReg(),
585 (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r);
586
Chris Lattnerd9096832002-12-15 08:01:39 +0000587 if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) {
Misha Brukman5000e432002-12-13 02:13:15 +0000588 unsigned Size = sizeOfPtr(Desc);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000589 emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), Size);
590 }
591 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000592
593 case X86II::MRMS0m: case X86II::MRMS1m:
594 case X86II::MRMS2m: case X86II::MRMS3m:
595 case X86II::MRMS4m: case X86II::MRMS5m:
596 case X86II::MRMS6m: case X86II::MRMS7m:
597 MCE.emitByte(BaseOpcode);
598 emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0m);
599
600 if (MI.getNumOperands() == 5) {
601 unsigned Size = sizeOfPtr(Desc);
602 emitConstant(MI.getOperand(4).getImmedValue(), Size);
603 }
604 break;
Chris Lattner76041ce2002-12-02 21:44:34 +0000605 }
606}