blob: 6deae75488ed15919b0dacd0b5bcd2bc8fdf78a2 [file] [log] [blame]
Tim Northover72062f52013-01-31 12:12:40 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AArch64 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "aarch64-isel"
16#include "AArch64.h"
17#include "AArch64ISelLowering.h"
18#include "AArch64MachineFunctionInfo.h"
19#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
Tim Northover19254c42013-02-05 13:24:47 +000021#include "Utils/AArch64BaseInfo.h"
Tim Northover72062f52013-01-31 12:12:40 +000022#include "llvm/CodeGen/Analysis.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/IR/CallingConv.h"
29
30using namespace llvm;
31
32static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
33 const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
34
35 if (Subtarget->isTargetLinux())
36 return new AArch64LinuxTargetObjectFile();
37 if (Subtarget->isTargetELF())
38 return new TargetLoweringObjectFileELF();
39 llvm_unreachable("unknown subtarget type");
40}
41
42
43AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
44 : TargetLowering(TM, createTLOF(TM)),
45 Subtarget(&TM.getSubtarget<AArch64Subtarget>()),
46 RegInfo(TM.getRegisterInfo()),
47 Itins(TM.getInstrItineraryData()) {
48
49 // SIMD compares set the entire lane's bits to 1
50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
51
52 // Scalar register <-> type mapping
53 addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
54 addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
55 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
56 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
57 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
58 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
59
Tim Northover72062f52013-01-31 12:12:40 +000060 computeRegisterProperties();
61
Tim Northover211ffd22013-04-08 08:40:41 +000062 // We have particularly efficient implementations of atomic fences if they can
63 // be combined with nearby atomic loads and stores.
64 setShouldFoldAtomicFences(true);
Tim Northover72062f52013-01-31 12:12:40 +000065
66 // We combine OR nodes for bitfield and NEON BSL operations.
67 setTargetDAGCombine(ISD::OR);
68
69 setTargetDAGCombine(ISD::AND);
70 setTargetDAGCombine(ISD::SRA);
71
72 // AArch64 does not have i1 loads, or much of anything for i1 really.
73 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
74 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
75 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
76
77 setStackPointerRegisterToSaveRestore(AArch64::XSP);
78 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
79 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
80 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
81
82 // We'll lower globals to wrappers for selection.
83 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
84 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
85
86 // A64 instructions have the comparison predicate attached to the user of the
87 // result, but having a separate comparison is valuable for matching.
88 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
89 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
90 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
91 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
92
93 setOperationAction(ISD::SELECT, MVT::i32, Custom);
94 setOperationAction(ISD::SELECT, MVT::i64, Custom);
95 setOperationAction(ISD::SELECT, MVT::f32, Custom);
96 setOperationAction(ISD::SELECT, MVT::f64, Custom);
97
98 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
99 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
100 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
101 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
102
103 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
104
105 setOperationAction(ISD::SETCC, MVT::i32, Custom);
106 setOperationAction(ISD::SETCC, MVT::i64, Custom);
107 setOperationAction(ISD::SETCC, MVT::f32, Custom);
108 setOperationAction(ISD::SETCC, MVT::f64, Custom);
109
110 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
111 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
112 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
113
114 setOperationAction(ISD::VASTART, MVT::Other, Custom);
115 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
116 setOperationAction(ISD::VAEND, MVT::Other, Expand);
117 setOperationAction(ISD::VAARG, MVT::Other, Expand);
118
119 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
120
121 setOperationAction(ISD::ROTL, MVT::i32, Expand);
122 setOperationAction(ISD::ROTL, MVT::i64, Expand);
123
124 setOperationAction(ISD::UREM, MVT::i32, Expand);
125 setOperationAction(ISD::UREM, MVT::i64, Expand);
126 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
127 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
128
129 setOperationAction(ISD::SREM, MVT::i32, Expand);
130 setOperationAction(ISD::SREM, MVT::i64, Expand);
131 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
132 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
133
134 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
135 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
136
137 // Legal floating-point operations.
138 setOperationAction(ISD::FABS, MVT::f32, Legal);
139 setOperationAction(ISD::FABS, MVT::f64, Legal);
140
141 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
142 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
143
144 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
145 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
146
147 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
148 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
149
150 setOperationAction(ISD::FNEG, MVT::f32, Legal);
151 setOperationAction(ISD::FNEG, MVT::f64, Legal);
152
153 setOperationAction(ISD::FRINT, MVT::f32, Legal);
154 setOperationAction(ISD::FRINT, MVT::f64, Legal);
155
156 setOperationAction(ISD::FSQRT, MVT::f32, Legal);
157 setOperationAction(ISD::FSQRT, MVT::f64, Legal);
158
159 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
160 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
161
162 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
163 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
164 setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
165
166 // Illegal floating-point operations.
167 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
168 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
169
170 setOperationAction(ISD::FCOS, MVT::f32, Expand);
171 setOperationAction(ISD::FCOS, MVT::f64, Expand);
172
173 setOperationAction(ISD::FEXP, MVT::f32, Expand);
174 setOperationAction(ISD::FEXP, MVT::f64, Expand);
175
176 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
177 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
178
179 setOperationAction(ISD::FLOG, MVT::f32, Expand);
180 setOperationAction(ISD::FLOG, MVT::f64, Expand);
181
182 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
183 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
184
185 setOperationAction(ISD::FLOG10, MVT::f32, Expand);
186 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
187
188 setOperationAction(ISD::FPOW, MVT::f32, Expand);
189 setOperationAction(ISD::FPOW, MVT::f64, Expand);
190
191 setOperationAction(ISD::FPOWI, MVT::f32, Expand);
192 setOperationAction(ISD::FPOWI, MVT::f64, Expand);
193
194 setOperationAction(ISD::FREM, MVT::f32, Expand);
195 setOperationAction(ISD::FREM, MVT::f64, Expand);
196
197 setOperationAction(ISD::FSIN, MVT::f32, Expand);
198 setOperationAction(ISD::FSIN, MVT::f64, Expand);
199
Tim Northover69fe1782013-03-08 13:55:07 +0000200 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
201 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
Tim Northover72062f52013-01-31 12:12:40 +0000202
203 // Virtually no operation on f128 is legal, but LLVM can't expand them when
204 // there's a valid register class, so we need custom operations in most cases.
205 setOperationAction(ISD::FABS, MVT::f128, Expand);
206 setOperationAction(ISD::FADD, MVT::f128, Custom);
207 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
208 setOperationAction(ISD::FCOS, MVT::f128, Expand);
209 setOperationAction(ISD::FDIV, MVT::f128, Custom);
210 setOperationAction(ISD::FMA, MVT::f128, Expand);
211 setOperationAction(ISD::FMUL, MVT::f128, Custom);
212 setOperationAction(ISD::FNEG, MVT::f128, Expand);
213 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
214 setOperationAction(ISD::FP_ROUND, MVT::f128, Expand);
215 setOperationAction(ISD::FPOW, MVT::f128, Expand);
216 setOperationAction(ISD::FREM, MVT::f128, Expand);
217 setOperationAction(ISD::FRINT, MVT::f128, Expand);
218 setOperationAction(ISD::FSIN, MVT::f128, Expand);
Tim Northover69fe1782013-03-08 13:55:07 +0000219 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
Tim Northover72062f52013-01-31 12:12:40 +0000220 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
221 setOperationAction(ISD::FSUB, MVT::f128, Custom);
222 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
223 setOperationAction(ISD::SETCC, MVT::f128, Custom);
224 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
225 setOperationAction(ISD::SELECT, MVT::f128, Expand);
226 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
227 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
228
229 // Lowering for many of the conversions is actually specified by the non-f128
230 // type. The LowerXXX function will be trivial when f128 isn't involved.
231 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
232 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
233 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
234 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
235 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
236 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
237 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
238 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
239 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
240 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
241 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
242 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
243 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
244 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
245
246 // This prevents LLVM trying to compress double constants into a floating
247 // constant-pool entry and trying to load from there. It's of doubtful benefit
248 // for A64: we'd need LDR followed by FCVT, I believe.
249 setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
250 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
251 setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
252
253 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
254 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
255 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
256 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
257 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
258 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
259
260 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
261 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
262
263 setExceptionPointerRegister(AArch64::X0);
264 setExceptionSelectorRegister(AArch64::X1);
265}
266
267EVT AArch64TargetLowering::getSetCCResultType(EVT VT) const {
268 // It's reasonably important that this value matches the "natural" legal
269 // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
270 // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
271 if (!VT.isVector()) return MVT::i32;
272 return VT.changeVectorElementTypeToInteger();
273}
274
Tim Northover211ffd22013-04-08 08:40:41 +0000275static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
276 unsigned &LdrOpc,
277 unsigned &StrOpc) {
278 static unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
279 AArch64::LDXR_word, AArch64::LDXR_dword};
280 static unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
281 AArch64::LDAXR_word, AArch64::LDAXR_dword};
282 static unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
283 AArch64::STXR_word, AArch64::STXR_dword};
284 static unsigned StoreRels[] = {AArch64::STLXR_byte, AArch64::STLXR_hword,
285 AArch64::STLXR_word, AArch64::STLXR_dword};
286
287 unsigned *LoadOps, *StoreOps;
288 if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
289 LoadOps = LoadAcqs;
290 else
291 LoadOps = LoadBares;
292
293 if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
294 StoreOps = StoreRels;
295 else
296 StoreOps = StoreBares;
297
298 assert(isPowerOf2_32(Size) && Size <= 8 &&
299 "unsupported size for atomic binary op!");
300
301 LdrOpc = LoadOps[Log2_32(Size)];
302 StrOpc = StoreOps[Log2_32(Size)];
Tim Northover72062f52013-01-31 12:12:40 +0000303}
304
305MachineBasicBlock *
306AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
307 unsigned Size,
308 unsigned BinOpcode) const {
309 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
310 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
311
312 const BasicBlock *LLVM_BB = BB->getBasicBlock();
313 MachineFunction *MF = BB->getParent();
314 MachineFunction::iterator It = BB;
315 ++It;
316
317 unsigned dest = MI->getOperand(0).getReg();
318 unsigned ptr = MI->getOperand(1).getReg();
319 unsigned incr = MI->getOperand(2).getReg();
Tim Northover211ffd22013-04-08 08:40:41 +0000320 AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
Tim Northover72062f52013-01-31 12:12:40 +0000321 DebugLoc dl = MI->getDebugLoc();
322
323 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
324
325 unsigned ldrOpc, strOpc;
Tim Northover211ffd22013-04-08 08:40:41 +0000326 getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
Tim Northover72062f52013-01-31 12:12:40 +0000327
328 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
329 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
330 MF->insert(It, loopMBB);
331 MF->insert(It, exitMBB);
332
333 // Transfer the remainder of BB and its successor edges to exitMBB.
334 exitMBB->splice(exitMBB->begin(), BB,
335 llvm::next(MachineBasicBlock::iterator(MI)),
336 BB->end());
337 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
338
339 const TargetRegisterClass *TRC
340 = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
341 unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
342
343 // thisMBB:
344 // ...
345 // fallthrough --> loopMBB
346 BB->addSuccessor(loopMBB);
347
348 // loopMBB:
349 // ldxr dest, ptr
350 // <binop> scratch, dest, incr
351 // stxr stxr_status, scratch, ptr
Tim Northover279b9182013-02-28 13:52:07 +0000352 // cbnz stxr_status, loopMBB
Tim Northover72062f52013-01-31 12:12:40 +0000353 // fallthrough --> exitMBB
354 BB = loopMBB;
355 BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
356 if (BinOpcode) {
357 // All arithmetic operations we'll be creating are designed to take an extra
358 // shift or extend operand, which we can conveniently set to zero.
359
360 // Operand order needs to go the other way for NAND.
361 if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
362 BuildMI(BB, dl, TII->get(BinOpcode), scratch)
363 .addReg(incr).addReg(dest).addImm(0);
364 else
365 BuildMI(BB, dl, TII->get(BinOpcode), scratch)
366 .addReg(dest).addReg(incr).addImm(0);
367 }
368
369 // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
370 unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
371 MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
372
373 BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
Tim Northover279b9182013-02-28 13:52:07 +0000374 BuildMI(BB, dl, TII->get(AArch64::CBNZw))
375 .addReg(stxr_status).addMBB(loopMBB);
Tim Northover72062f52013-01-31 12:12:40 +0000376
377 BB->addSuccessor(loopMBB);
378 BB->addSuccessor(exitMBB);
379
380 // exitMBB:
381 // ...
382 BB = exitMBB;
383
384 MI->eraseFromParent(); // The instruction is gone now.
385
386 return BB;
387}
388
389MachineBasicBlock *
390AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
391 MachineBasicBlock *BB,
392 unsigned Size,
393 unsigned CmpOp,
394 A64CC::CondCodes Cond) const {
395 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
396
397 const BasicBlock *LLVM_BB = BB->getBasicBlock();
398 MachineFunction *MF = BB->getParent();
399 MachineFunction::iterator It = BB;
400 ++It;
401
402 unsigned dest = MI->getOperand(0).getReg();
403 unsigned ptr = MI->getOperand(1).getReg();
404 unsigned incr = MI->getOperand(2).getReg();
Tim Northover211ffd22013-04-08 08:40:41 +0000405 AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
406
Tim Northover72062f52013-01-31 12:12:40 +0000407 unsigned oldval = dest;
408 DebugLoc dl = MI->getDebugLoc();
409
410 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
411 const TargetRegisterClass *TRC, *TRCsp;
412 if (Size == 8) {
413 TRC = &AArch64::GPR64RegClass;
414 TRCsp = &AArch64::GPR64xspRegClass;
415 } else {
416 TRC = &AArch64::GPR32RegClass;
417 TRCsp = &AArch64::GPR32wspRegClass;
418 }
419
420 unsigned ldrOpc, strOpc;
Tim Northover211ffd22013-04-08 08:40:41 +0000421 getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
Tim Northover72062f52013-01-31 12:12:40 +0000422
423 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
424 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
425 MF->insert(It, loopMBB);
426 MF->insert(It, exitMBB);
427
428 // Transfer the remainder of BB and its successor edges to exitMBB.
429 exitMBB->splice(exitMBB->begin(), BB,
430 llvm::next(MachineBasicBlock::iterator(MI)),
431 BB->end());
432 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
433
434 unsigned scratch = MRI.createVirtualRegister(TRC);
435 MRI.constrainRegClass(scratch, TRCsp);
436
437 // thisMBB:
438 // ...
439 // fallthrough --> loopMBB
440 BB->addSuccessor(loopMBB);
441
442 // loopMBB:
443 // ldxr dest, ptr
444 // cmp incr, dest (, sign extend if necessary)
445 // csel scratch, dest, incr, cond
446 // stxr stxr_status, scratch, ptr
Tim Northover279b9182013-02-28 13:52:07 +0000447 // cbnz stxr_status, loopMBB
Tim Northover72062f52013-01-31 12:12:40 +0000448 // fallthrough --> exitMBB
449 BB = loopMBB;
450 BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
451
452 // Build compare and cmov instructions.
453 MRI.constrainRegClass(incr, TRCsp);
454 BuildMI(BB, dl, TII->get(CmpOp))
455 .addReg(incr).addReg(oldval).addImm(0);
456
457 BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
458 scratch)
459 .addReg(oldval).addReg(incr).addImm(Cond);
460
461 unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
462 MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
463
464 BuildMI(BB, dl, TII->get(strOpc), stxr_status)
465 .addReg(scratch).addReg(ptr);
Tim Northover279b9182013-02-28 13:52:07 +0000466 BuildMI(BB, dl, TII->get(AArch64::CBNZw))
467 .addReg(stxr_status).addMBB(loopMBB);
Tim Northover72062f52013-01-31 12:12:40 +0000468
469 BB->addSuccessor(loopMBB);
470 BB->addSuccessor(exitMBB);
471
472 // exitMBB:
473 // ...
474 BB = exitMBB;
475
476 MI->eraseFromParent(); // The instruction is gone now.
477
478 return BB;
479}
480
481MachineBasicBlock *
482AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
483 MachineBasicBlock *BB,
484 unsigned Size) const {
485 unsigned dest = MI->getOperand(0).getReg();
486 unsigned ptr = MI->getOperand(1).getReg();
487 unsigned oldval = MI->getOperand(2).getReg();
488 unsigned newval = MI->getOperand(3).getReg();
Tim Northover211ffd22013-04-08 08:40:41 +0000489 AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
Tim Northover72062f52013-01-31 12:12:40 +0000490 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
491 DebugLoc dl = MI->getDebugLoc();
492
493 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
494 const TargetRegisterClass *TRCsp;
495 TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
496
497 unsigned ldrOpc, strOpc;
Tim Northover211ffd22013-04-08 08:40:41 +0000498 getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
Tim Northover72062f52013-01-31 12:12:40 +0000499
500 MachineFunction *MF = BB->getParent();
501 const BasicBlock *LLVM_BB = BB->getBasicBlock();
502 MachineFunction::iterator It = BB;
503 ++It; // insert the new blocks after the current block
504
505 MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
506 MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
507 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
508 MF->insert(It, loop1MBB);
509 MF->insert(It, loop2MBB);
510 MF->insert(It, exitMBB);
511
512 // Transfer the remainder of BB and its successor edges to exitMBB.
513 exitMBB->splice(exitMBB->begin(), BB,
514 llvm::next(MachineBasicBlock::iterator(MI)),
515 BB->end());
516 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
517
518 // thisMBB:
519 // ...
520 // fallthrough --> loop1MBB
521 BB->addSuccessor(loop1MBB);
522
523 // loop1MBB:
524 // ldxr dest, [ptr]
525 // cmp dest, oldval
526 // b.ne exitMBB
527 BB = loop1MBB;
528 BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
529
530 unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
531 MRI.constrainRegClass(dest, TRCsp);
532 BuildMI(BB, dl, TII->get(CmpOp))
533 .addReg(dest).addReg(oldval).addImm(0);
534 BuildMI(BB, dl, TII->get(AArch64::Bcc))
535 .addImm(A64CC::NE).addMBB(exitMBB);
536 BB->addSuccessor(loop2MBB);
537 BB->addSuccessor(exitMBB);
538
539 // loop2MBB:
540 // strex stxr_status, newval, [ptr]
Tim Northover279b9182013-02-28 13:52:07 +0000541 // cbnz stxr_status, loop1MBB
Tim Northover72062f52013-01-31 12:12:40 +0000542 BB = loop2MBB;
543 unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
544 MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
545
546 BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
Tim Northover279b9182013-02-28 13:52:07 +0000547 BuildMI(BB, dl, TII->get(AArch64::CBNZw))
548 .addReg(stxr_status).addMBB(loop1MBB);
Tim Northover72062f52013-01-31 12:12:40 +0000549 BB->addSuccessor(loop1MBB);
550 BB->addSuccessor(exitMBB);
551
552 // exitMBB:
553 // ...
554 BB = exitMBB;
555
556 MI->eraseFromParent(); // The instruction is gone now.
557
558 return BB;
559}
560
561MachineBasicBlock *
562AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
563 MachineBasicBlock *MBB) const {
564 // We materialise the F128CSEL pseudo-instruction using conditional branches
565 // and loads, giving an instruciton sequence like:
566 // str q0, [sp]
567 // b.ne IfTrue
568 // b Finish
569 // IfTrue:
570 // str q1, [sp]
571 // Finish:
572 // ldr q0, [sp]
573 //
574 // Using virtual registers would probably not be beneficial since COPY
575 // instructions are expensive for f128 (there's no actual instruction to
576 // implement them).
577 //
578 // An alternative would be to do an integer-CSEL on some address. E.g.:
579 // mov x0, sp
580 // add x1, sp, #16
581 // str q0, [x0]
582 // str q1, [x1]
583 // csel x0, x0, x1, ne
584 // ldr q0, [x0]
585 //
586 // It's unclear which approach is actually optimal.
587 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
588 MachineFunction *MF = MBB->getParent();
589 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
590 DebugLoc DL = MI->getDebugLoc();
591 MachineFunction::iterator It = MBB;
592 ++It;
593
594 unsigned DestReg = MI->getOperand(0).getReg();
595 unsigned IfTrueReg = MI->getOperand(1).getReg();
596 unsigned IfFalseReg = MI->getOperand(2).getReg();
597 unsigned CondCode = MI->getOperand(3).getImm();
598 bool NZCVKilled = MI->getOperand(4).isKill();
599
600 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
601 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
602 MF->insert(It, TrueBB);
603 MF->insert(It, EndBB);
604
605 // Transfer rest of current basic-block to EndBB
606 EndBB->splice(EndBB->begin(), MBB,
607 llvm::next(MachineBasicBlock::iterator(MI)),
608 MBB->end());
609 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
610
611 // We need somewhere to store the f128 value needed.
612 int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
613
614 // [... start of incoming MBB ...]
615 // str qIFFALSE, [sp]
616 // b.cc IfTrue
617 // b Done
618 BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
619 .addReg(IfFalseReg)
620 .addFrameIndex(ScratchFI)
621 .addImm(0);
622 BuildMI(MBB, DL, TII->get(AArch64::Bcc))
623 .addImm(CondCode)
624 .addMBB(TrueBB);
625 BuildMI(MBB, DL, TII->get(AArch64::Bimm))
626 .addMBB(EndBB);
627 MBB->addSuccessor(TrueBB);
628 MBB->addSuccessor(EndBB);
629
630 // IfTrue:
631 // str qIFTRUE, [sp]
632 BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
633 .addReg(IfTrueReg)
634 .addFrameIndex(ScratchFI)
635 .addImm(0);
636
637 // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
638 // blocks.
639 TrueBB->addSuccessor(EndBB);
640
641 // Done:
642 // ldr qDEST, [sp]
643 // [... rest of incoming MBB ...]
644 if (!NZCVKilled)
645 EndBB->addLiveIn(AArch64::NZCV);
646 MachineInstr *StartOfEnd = EndBB->begin();
647 BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
648 .addFrameIndex(ScratchFI)
649 .addImm(0);
650
651 MI->eraseFromParent();
652 return EndBB;
653}
654
655MachineBasicBlock *
656AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
657 MachineBasicBlock *MBB) const {
658 switch (MI->getOpcode()) {
659 default: llvm_unreachable("Unhandled instruction with custom inserter");
660 case AArch64::F128CSEL:
661 return EmitF128CSEL(MI, MBB);
662 case AArch64::ATOMIC_LOAD_ADD_I8:
663 return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
664 case AArch64::ATOMIC_LOAD_ADD_I16:
665 return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
666 case AArch64::ATOMIC_LOAD_ADD_I32:
667 return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
668 case AArch64::ATOMIC_LOAD_ADD_I64:
669 return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
670
671 case AArch64::ATOMIC_LOAD_SUB_I8:
672 return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
673 case AArch64::ATOMIC_LOAD_SUB_I16:
674 return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
675 case AArch64::ATOMIC_LOAD_SUB_I32:
676 return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
677 case AArch64::ATOMIC_LOAD_SUB_I64:
678 return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
679
680 case AArch64::ATOMIC_LOAD_AND_I8:
681 return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
682 case AArch64::ATOMIC_LOAD_AND_I16:
683 return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
684 case AArch64::ATOMIC_LOAD_AND_I32:
685 return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
686 case AArch64::ATOMIC_LOAD_AND_I64:
687 return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
688
689 case AArch64::ATOMIC_LOAD_OR_I8:
690 return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
691 case AArch64::ATOMIC_LOAD_OR_I16:
692 return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
693 case AArch64::ATOMIC_LOAD_OR_I32:
694 return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
695 case AArch64::ATOMIC_LOAD_OR_I64:
696 return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
697
698 case AArch64::ATOMIC_LOAD_XOR_I8:
699 return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
700 case AArch64::ATOMIC_LOAD_XOR_I16:
701 return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
702 case AArch64::ATOMIC_LOAD_XOR_I32:
703 return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
704 case AArch64::ATOMIC_LOAD_XOR_I64:
705 return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
706
707 case AArch64::ATOMIC_LOAD_NAND_I8:
708 return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
709 case AArch64::ATOMIC_LOAD_NAND_I16:
710 return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
711 case AArch64::ATOMIC_LOAD_NAND_I32:
712 return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
713 case AArch64::ATOMIC_LOAD_NAND_I64:
714 return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
715
716 case AArch64::ATOMIC_LOAD_MIN_I8:
717 return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
718 case AArch64::ATOMIC_LOAD_MIN_I16:
719 return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
720 case AArch64::ATOMIC_LOAD_MIN_I32:
721 return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
722 case AArch64::ATOMIC_LOAD_MIN_I64:
723 return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
724
725 case AArch64::ATOMIC_LOAD_MAX_I8:
726 return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
727 case AArch64::ATOMIC_LOAD_MAX_I16:
728 return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
729 case AArch64::ATOMIC_LOAD_MAX_I32:
730 return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
731 case AArch64::ATOMIC_LOAD_MAX_I64:
732 return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
733
734 case AArch64::ATOMIC_LOAD_UMIN_I8:
735 return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
736 case AArch64::ATOMIC_LOAD_UMIN_I16:
737 return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
738 case AArch64::ATOMIC_LOAD_UMIN_I32:
739 return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
740 case AArch64::ATOMIC_LOAD_UMIN_I64:
741 return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
742
743 case AArch64::ATOMIC_LOAD_UMAX_I8:
744 return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
745 case AArch64::ATOMIC_LOAD_UMAX_I16:
746 return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
747 case AArch64::ATOMIC_LOAD_UMAX_I32:
748 return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
749 case AArch64::ATOMIC_LOAD_UMAX_I64:
750 return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
751
752 case AArch64::ATOMIC_SWAP_I8:
753 return emitAtomicBinary(MI, MBB, 1, 0);
754 case AArch64::ATOMIC_SWAP_I16:
755 return emitAtomicBinary(MI, MBB, 2, 0);
756 case AArch64::ATOMIC_SWAP_I32:
757 return emitAtomicBinary(MI, MBB, 4, 0);
758 case AArch64::ATOMIC_SWAP_I64:
759 return emitAtomicBinary(MI, MBB, 8, 0);
760
761 case AArch64::ATOMIC_CMP_SWAP_I8:
762 return emitAtomicCmpSwap(MI, MBB, 1);
763 case AArch64::ATOMIC_CMP_SWAP_I16:
764 return emitAtomicCmpSwap(MI, MBB, 2);
765 case AArch64::ATOMIC_CMP_SWAP_I32:
766 return emitAtomicCmpSwap(MI, MBB, 4);
767 case AArch64::ATOMIC_CMP_SWAP_I64:
768 return emitAtomicCmpSwap(MI, MBB, 8);
769 }
770}
771
772
773const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
774 switch (Opcode) {
775 case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC";
776 case AArch64ISD::Call: return "AArch64ISD::Call";
777 case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV";
778 case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad";
779 case AArch64ISD::BFI: return "AArch64ISD::BFI";
780 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
781 case AArch64ISD::Ret: return "AArch64ISD::Ret";
782 case AArch64ISD::SBFX: return "AArch64ISD::SBFX";
783 case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC";
784 case AArch64ISD::SETCC: return "AArch64ISD::SETCC";
785 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
786 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
787 case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL";
788 case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall";
789
790 default: return NULL;
791 }
792}
793
794static const uint16_t AArch64FPRArgRegs[] = {
795 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
796 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
797};
798static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
799
800static const uint16_t AArch64ArgRegs[] = {
801 AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
802 AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
803};
804static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
805
806static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
807 CCValAssign::LocInfo LocInfo,
808 ISD::ArgFlagsTy ArgFlags, CCState &State) {
809 // Mark all remaining general purpose registers as allocated. We don't
810 // backtrack: if (for example) an i128 gets put on the stack, no subsequent
811 // i64 will go in registers (C.11).
812 for (unsigned i = 0; i < NumArgRegs; ++i)
813 State.AllocateReg(AArch64ArgRegs[i]);
814
815 return false;
816}
817
818#include "AArch64GenCallingConv.inc"
819
820CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
821
822 switch(CC) {
823 default: llvm_unreachable("Unsupported calling convention");
824 case CallingConv::Fast:
825 case CallingConv::C:
826 return CC_A64_APCS;
827 }
828}
829
830void
831AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
832 DebugLoc DL, SDValue &Chain) const {
833 MachineFunction &MF = DAG.getMachineFunction();
834 MachineFrameInfo *MFI = MF.getFrameInfo();
Tim Northoverdfe076a2013-02-05 13:24:56 +0000835 AArch64MachineFunctionInfo *FuncInfo
836 = MF.getInfo<AArch64MachineFunctionInfo>();
Tim Northover72062f52013-01-31 12:12:40 +0000837
838 SmallVector<SDValue, 8> MemOps;
839
840 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
841 NumArgRegs);
842 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
843 NumFPRArgRegs);
844
845 unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
846 int GPRIdx = 0;
847 if (GPRSaveSize != 0) {
848 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
849
850 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
851
852 for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
853 unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
854 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
855 SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
856 MachinePointerInfo::getStack(i * 8),
857 false, false, 0);
858 MemOps.push_back(Store);
859 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
860 DAG.getConstant(8, getPointerTy()));
861 }
862 }
863
864 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
865 int FPRIdx = 0;
866 if (FPRSaveSize != 0) {
867 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
868
869 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
870
871 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
872 unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
873 &AArch64::FPR128RegClass);
874 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
875 SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
876 MachinePointerInfo::getStack(i * 16),
877 false, false, 0);
878 MemOps.push_back(Store);
879 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
880 DAG.getConstant(16, getPointerTy()));
881 }
882 }
883
884 int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
885
886 FuncInfo->setVariadicStackIdx(StackIdx);
887 FuncInfo->setVariadicGPRIdx(GPRIdx);
888 FuncInfo->setVariadicGPRSize(GPRSaveSize);
889 FuncInfo->setVariadicFPRIdx(FPRIdx);
890 FuncInfo->setVariadicFPRSize(FPRSaveSize);
891
892 if (!MemOps.empty()) {
893 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
894 MemOps.size());
895 }
896}
897
898
899SDValue
900AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
901 CallingConv::ID CallConv, bool isVarArg,
902 const SmallVectorImpl<ISD::InputArg> &Ins,
903 DebugLoc dl, SelectionDAG &DAG,
904 SmallVectorImpl<SDValue> &InVals) const {
905 MachineFunction &MF = DAG.getMachineFunction();
906 AArch64MachineFunctionInfo *FuncInfo
907 = MF.getInfo<AArch64MachineFunctionInfo>();
908 MachineFrameInfo *MFI = MF.getFrameInfo();
909 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
910
911 SmallVector<CCValAssign, 16> ArgLocs;
912 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
913 getTargetMachine(), ArgLocs, *DAG.getContext());
914 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
915
916 SmallVector<SDValue, 16> ArgValues;
917
918 SDValue ArgValue;
919 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
920 CCValAssign &VA = ArgLocs[i];
921 ISD::ArgFlagsTy Flags = Ins[i].Flags;
922
923 if (Flags.isByVal()) {
924 // Byval is used for small structs and HFAs in the PCS, but the system
925 // should work in a non-compliant manner for larger structs.
926 EVT PtrTy = getPointerTy();
927 int Size = Flags.getByValSize();
928 unsigned NumRegs = (Size + 7) / 8;
929
930 unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
931 VA.getLocMemOffset(),
932 false);
933 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
934 InVals.push_back(FrameIdxN);
935
936 continue;
937 } else if (VA.isRegLoc()) {
938 MVT RegVT = VA.getLocVT();
939 const TargetRegisterClass *RC = getRegClassFor(RegVT);
940 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
941
942 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
943 } else { // VA.isRegLoc()
944 assert(VA.isMemLoc());
945
946 int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
947 VA.getLocMemOffset(), true);
948
949 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
950 ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
951 MachinePointerInfo::getFixedStack(FI),
952 false, false, false, 0);
953
954
955 }
956
957 switch (VA.getLocInfo()) {
958 default: llvm_unreachable("Unknown loc info!");
959 case CCValAssign::Full: break;
960 case CCValAssign::BCvt:
961 ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
962 break;
963 case CCValAssign::SExt:
964 case CCValAssign::ZExt:
965 case CCValAssign::AExt: {
966 unsigned DestSize = VA.getValVT().getSizeInBits();
967 unsigned DestSubReg;
968
969 switch (DestSize) {
970 case 8: DestSubReg = AArch64::sub_8; break;
971 case 16: DestSubReg = AArch64::sub_16; break;
972 case 32: DestSubReg = AArch64::sub_32; break;
973 case 64: DestSubReg = AArch64::sub_64; break;
974 default: llvm_unreachable("Unexpected argument promotion");
975 }
976
977 ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
978 VA.getValVT(), ArgValue,
979 DAG.getTargetConstant(DestSubReg, MVT::i32)),
980 0);
981 break;
982 }
983 }
984
985 InVals.push_back(ArgValue);
986 }
987
988 if (isVarArg)
989 SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
990
991 unsigned StackArgSize = CCInfo.getNextStackOffset();
992 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
993 // This is a non-standard ABI so by fiat I say we're allowed to make full
994 // use of the stack area to be popped, which must be aligned to 16 bytes in
995 // any case:
996 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
997
998 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
999 // a multiple of 16.
1000 FuncInfo->setArgumentStackToRestore(StackArgSize);
1001
1002 // This realignment carries over to the available bytes below. Our own
1003 // callers will guarantee the space is free by giving an aligned value to
1004 // CALLSEQ_START.
1005 }
1006 // Even if we're not expected to free up the space, it's useful to know how
1007 // much is there while considering tail calls (because we can reuse it).
1008 FuncInfo->setBytesInStackArgArea(StackArgSize);
1009
1010 return Chain;
1011}
1012
1013SDValue
1014AArch64TargetLowering::LowerReturn(SDValue Chain,
1015 CallingConv::ID CallConv, bool isVarArg,
1016 const SmallVectorImpl<ISD::OutputArg> &Outs,
1017 const SmallVectorImpl<SDValue> &OutVals,
1018 DebugLoc dl, SelectionDAG &DAG) const {
1019 // CCValAssign - represent the assignment of the return value to a location.
1020 SmallVector<CCValAssign, 16> RVLocs;
1021
1022 // CCState - Info about the registers and stack slots.
1023 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1024 getTargetMachine(), RVLocs, *DAG.getContext());
1025
1026 // Analyze outgoing return values.
1027 CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
1028
Tim Northover72062f52013-01-31 12:12:40 +00001029 SDValue Flag;
Jakob Stoklund Olesenbaa3c502013-02-05 18:21:49 +00001030 SmallVector<SDValue, 4> RetOps(1, Chain);
Tim Northover72062f52013-01-31 12:12:40 +00001031
1032 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
Tim Northoverdfe076a2013-02-05 13:24:56 +00001033 // PCS: "If the type, T, of the result of a function is such that
1034 // void func(T arg) would require that arg be passed as a value in a
1035 // register (or set of registers) according to the rules in 5.4, then the
1036 // result is returned in the same registers as would be used for such an
1037 // argument.
Tim Northover72062f52013-01-31 12:12:40 +00001038 //
1039 // Otherwise, the caller shall reserve a block of memory of sufficient
1040 // size and alignment to hold the result. The address of the memory block
1041 // shall be passed as an additional argument to the function in x8."
1042 //
1043 // This is implemented in two places. The register-return values are dealt
1044 // with here, more complex returns are passed as an sret parameter, which
1045 // means we don't have to worry about it during actual return.
1046 CCValAssign &VA = RVLocs[i];
1047 assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
1048
1049
1050 SDValue Arg = OutVals[i];
1051
1052 // There's no convenient note in the ABI about this as there is for normal
1053 // arguments, but it says return values are passed in the same registers as
1054 // an argument would be. I believe that includes the comments about
1055 // unspecified higher bits, putting the burden of widening on the *caller*
1056 // for return values.
1057 switch (VA.getLocInfo()) {
1058 default: llvm_unreachable("Unknown loc info");
1059 case CCValAssign::Full: break;
1060 case CCValAssign::SExt:
1061 case CCValAssign::ZExt:
1062 case CCValAssign::AExt:
1063 // Floating-point values should only be extended when they're going into
1064 // memory, which can't happen here so an integer extend is acceptable.
1065 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1066 break;
1067 case CCValAssign::BCvt:
1068 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1069 break;
1070 }
1071
1072 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1073 Flag = Chain.getValue(1);
Jakob Stoklund Olesenbaa3c502013-02-05 18:21:49 +00001074 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
Tim Northover72062f52013-01-31 12:12:40 +00001075 }
1076
Jakob Stoklund Olesenbaa3c502013-02-05 18:21:49 +00001077 RetOps[0] = Chain; // Update chain.
1078
1079 // Add the flag if we have it.
1080 if (Flag.getNode())
1081 RetOps.push_back(Flag);
1082
1083 return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other,
1084 &RetOps[0], RetOps.size());
Tim Northover72062f52013-01-31 12:12:40 +00001085}
1086
1087SDValue
1088AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
1089 SmallVectorImpl<SDValue> &InVals) const {
1090 SelectionDAG &DAG = CLI.DAG;
1091 DebugLoc &dl = CLI.DL;
1092 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
1093 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
1094 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
1095 SDValue Chain = CLI.Chain;
1096 SDValue Callee = CLI.Callee;
1097 bool &IsTailCall = CLI.IsTailCall;
1098 CallingConv::ID CallConv = CLI.CallConv;
1099 bool IsVarArg = CLI.IsVarArg;
1100
1101 MachineFunction &MF = DAG.getMachineFunction();
1102 AArch64MachineFunctionInfo *FuncInfo
1103 = MF.getInfo<AArch64MachineFunctionInfo>();
1104 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1105 bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
1106 bool IsSibCall = false;
1107
1108 if (IsTailCall) {
1109 IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1110 IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1111 Outs, OutVals, Ins, DAG);
1112
1113 // A sibling call is one where we're under the usual C ABI and not planning
1114 // to change that but can still do a tail call:
1115 if (!TailCallOpt && IsTailCall)
1116 IsSibCall = true;
1117 }
1118
1119 SmallVector<CCValAssign, 16> ArgLocs;
1120 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1121 getTargetMachine(), ArgLocs, *DAG.getContext());
1122 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1123
1124 // On AArch64 (and all other architectures I'm aware of) the most this has to
1125 // do is adjust the stack pointer.
1126 unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
1127 if (IsSibCall) {
1128 // Since we're not changing the ABI to make this a tail call, the memory
1129 // operands are already available in the caller's incoming argument space.
1130 NumBytes = 0;
1131 }
1132
1133 // FPDiff is the byte offset of the call's argument area from the callee's.
1134 // Stores to callee stack arguments will be placed in FixedStackSlots offset
1135 // by this amount for a tail call. In a sibling call it must be 0 because the
1136 // caller will deallocate the entire stack and the callee still expects its
1137 // arguments to begin at SP+0. Completely unused for non-tail calls.
1138 int FPDiff = 0;
1139
1140 if (IsTailCall && !IsSibCall) {
1141 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1142
1143 // FPDiff will be negative if this tail call requires more space than we
1144 // would automatically have in our incoming argument space. Positive if we
1145 // can actually shrink the stack.
1146 FPDiff = NumReusableBytes - NumBytes;
1147
1148 // The stack pointer must be 16-byte aligned at all times it's used for a
1149 // memory operation, which in practice means at *all* times and in
1150 // particular across call boundaries. Therefore our own arguments started at
1151 // a 16-byte aligned SP and the delta applied for the tail call should
1152 // satisfy the same constraint.
1153 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
1154 }
1155
1156 if (!IsSibCall)
1157 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1158
Tim Northoverdfe076a2013-02-05 13:24:56 +00001159 SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
1160 getPointerTy());
Tim Northover72062f52013-01-31 12:12:40 +00001161
1162 SmallVector<SDValue, 8> MemOpChains;
1163 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1164
1165 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1166 CCValAssign &VA = ArgLocs[i];
1167 ISD::ArgFlagsTy Flags = Outs[i].Flags;
1168 SDValue Arg = OutVals[i];
1169
1170 // Callee does the actual widening, so all extensions just use an implicit
1171 // definition of the rest of the Loc. Aesthetically, this would be nicer as
1172 // an ANY_EXTEND, but that isn't valid for floating-point types and this
1173 // alternative works on integer types too.
1174 switch (VA.getLocInfo()) {
1175 default: llvm_unreachable("Unknown loc info!");
1176 case CCValAssign::Full: break;
1177 case CCValAssign::SExt:
1178 case CCValAssign::ZExt:
1179 case CCValAssign::AExt: {
1180 unsigned SrcSize = VA.getValVT().getSizeInBits();
1181 unsigned SrcSubReg;
1182
1183 switch (SrcSize) {
1184 case 8: SrcSubReg = AArch64::sub_8; break;
1185 case 16: SrcSubReg = AArch64::sub_16; break;
1186 case 32: SrcSubReg = AArch64::sub_32; break;
1187 case 64: SrcSubReg = AArch64::sub_64; break;
1188 default: llvm_unreachable("Unexpected argument promotion");
1189 }
1190
1191 Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
1192 VA.getLocVT(),
1193 DAG.getUNDEF(VA.getLocVT()),
1194 Arg,
1195 DAG.getTargetConstant(SrcSubReg, MVT::i32)),
1196 0);
1197
1198 break;
1199 }
1200 case CCValAssign::BCvt:
1201 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1202 break;
1203 }
1204
1205 if (VA.isRegLoc()) {
1206 // A normal register (sub-) argument. For now we just note it down because
1207 // we want to copy things into registers as late as possible to avoid
1208 // register-pressure (and possibly worse).
1209 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1210 continue;
1211 }
1212
1213 assert(VA.isMemLoc() && "unexpected argument location");
1214
1215 SDValue DstAddr;
1216 MachinePointerInfo DstInfo;
1217 if (IsTailCall) {
1218 uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
1219 VA.getLocVT().getSizeInBits();
1220 OpSize = (OpSize + 7) / 8;
1221 int32_t Offset = VA.getLocMemOffset() + FPDiff;
1222 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
1223
1224 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
1225 DstInfo = MachinePointerInfo::getFixedStack(FI);
1226
1227 // Make sure any stack arguments overlapping with where we're storing are
1228 // loaded before this eventual operation. Otherwise they'll be clobbered.
1229 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
1230 } else {
1231 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
1232
1233 DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1234 DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
1235 }
1236
1237 if (Flags.isByVal()) {
1238 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
1239 SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
1240 Flags.getByValAlign(),
1241 /*isVolatile = */ false,
1242 /*alwaysInline = */ false,
1243 DstInfo, MachinePointerInfo(0));
1244 MemOpChains.push_back(Cpy);
1245 } else {
1246 // Normal stack argument, put it where it's needed.
1247 SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
1248 false, false, 0);
1249 MemOpChains.push_back(Store);
1250 }
1251 }
1252
1253 // The loads and stores generated above shouldn't clash with each
1254 // other. Combining them with this TokenFactor notes that fact for the rest of
1255 // the backend.
1256 if (!MemOpChains.empty())
1257 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1258 &MemOpChains[0], MemOpChains.size());
1259
1260 // Most of the rest of the instructions need to be glued together; we don't
1261 // want assignments to actual registers used by a call to be rearranged by a
1262 // well-meaning scheduler.
1263 SDValue InFlag;
1264
1265 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1266 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1267 RegsToPass[i].second, InFlag);
1268 InFlag = Chain.getValue(1);
1269 }
1270
1271 // The linker is responsible for inserting veneers when necessary to put a
1272 // function call destination in range, so we don't need to bother with a
1273 // wrapper here.
1274 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1275 const GlobalValue *GV = G->getGlobal();
1276 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1277 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1278 const char *Sym = S->getSymbol();
1279 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1280 }
1281
1282 // We don't usually want to end the call-sequence here because we would tidy
1283 // the frame up *after* the call, however in the ABI-changing tail-call case
1284 // we've carefully laid out the parameters so that when sp is reset they'll be
1285 // in the correct location.
1286 if (IsTailCall && !IsSibCall) {
1287 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1288 DAG.getIntPtrConstant(0, true), InFlag);
1289 InFlag = Chain.getValue(1);
1290 }
1291
1292 // We produce the following DAG scheme for the actual call instruction:
1293 // (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
1294 //
1295 // Most arguments aren't going to be used and just keep the values live as
1296 // far as LLVM is concerned. It's expected to be selected as simply "bl
1297 // callee" (for a direct, non-tail call).
1298 std::vector<SDValue> Ops;
1299 Ops.push_back(Chain);
1300 Ops.push_back(Callee);
1301
1302 if (IsTailCall) {
1303 // Each tail call may have to adjust the stack by a different amount, so
1304 // this information must travel along with the operation for eventual
1305 // consumption by emitEpilogue.
1306 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
1307 }
1308
1309 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1310 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1311 RegsToPass[i].second.getValueType()));
1312
1313
1314 // Add a register mask operand representing the call-preserved registers. This
1315 // is used later in codegen to constrain register-allocation.
1316 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1317 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1318 assert(Mask && "Missing call preserved mask for calling convention");
1319 Ops.push_back(DAG.getRegisterMask(Mask));
1320
1321 // If we needed glue, put it in as the last argument.
1322 if (InFlag.getNode())
1323 Ops.push_back(InFlag);
1324
1325 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1326
1327 if (IsTailCall) {
1328 return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1329 }
1330
1331 Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
1332 InFlag = Chain.getValue(1);
1333
1334 // Now we can reclaim the stack, just as well do it before working out where
1335 // our return value is.
1336 if (!IsSibCall) {
1337 uint64_t CalleePopBytes
1338 = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
1339
1340 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1341 DAG.getIntPtrConstant(CalleePopBytes, true),
1342 InFlag);
1343 InFlag = Chain.getValue(1);
1344 }
1345
1346 return LowerCallResult(Chain, InFlag, CallConv,
1347 IsVarArg, Ins, dl, DAG, InVals);
1348}
1349
1350SDValue
1351AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1352 CallingConv::ID CallConv, bool IsVarArg,
1353 const SmallVectorImpl<ISD::InputArg> &Ins,
1354 DebugLoc dl, SelectionDAG &DAG,
1355 SmallVectorImpl<SDValue> &InVals) const {
1356 // Assign locations to each value returned by this call.
1357 SmallVector<CCValAssign, 16> RVLocs;
1358 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1359 getTargetMachine(), RVLocs, *DAG.getContext());
1360 CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
1361
1362 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1363 CCValAssign VA = RVLocs[i];
1364
1365 // Return values that are too big to fit into registers should use an sret
1366 // pointer, so this can be a lot simpler than the main argument code.
1367 assert(VA.isRegLoc() && "Memory locations not expected for call return");
1368
1369 SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1370 InFlag);
1371 Chain = Val.getValue(1);
1372 InFlag = Val.getValue(2);
1373
1374 switch (VA.getLocInfo()) {
1375 default: llvm_unreachable("Unknown loc info!");
1376 case CCValAssign::Full: break;
1377 case CCValAssign::BCvt:
1378 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1379 break;
1380 case CCValAssign::ZExt:
1381 case CCValAssign::SExt:
1382 case CCValAssign::AExt:
1383 // Floating-point arguments only get extended/truncated if they're going
1384 // in memory, so using the integer operation is acceptable here.
1385 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
1386 break;
1387 }
1388
1389 InVals.push_back(Val);
1390 }
1391
1392 return Chain;
1393}
1394
1395bool
1396AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1397 CallingConv::ID CalleeCC,
1398 bool IsVarArg,
1399 bool IsCalleeStructRet,
1400 bool IsCallerStructRet,
1401 const SmallVectorImpl<ISD::OutputArg> &Outs,
1402 const SmallVectorImpl<SDValue> &OutVals,
1403 const SmallVectorImpl<ISD::InputArg> &Ins,
1404 SelectionDAG& DAG) const {
1405
1406 // For CallingConv::C this function knows whether the ABI needs
1407 // changing. That's not true for other conventions so they will have to opt in
1408 // manually.
1409 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1410 return false;
1411
1412 const MachineFunction &MF = DAG.getMachineFunction();
1413 const Function *CallerF = MF.getFunction();
1414 CallingConv::ID CallerCC = CallerF->getCallingConv();
1415 bool CCMatch = CallerCC == CalleeCC;
1416
1417 // Byval parameters hand the function a pointer directly into the stack area
1418 // we want to reuse during a tail call. Working around this *is* possible (see
1419 // X86) but less efficient and uglier in LowerCall.
1420 for (Function::const_arg_iterator i = CallerF->arg_begin(),
1421 e = CallerF->arg_end(); i != e; ++i)
1422 if (i->hasByValAttr())
1423 return false;
1424
1425 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1426 if (IsTailCallConvention(CalleeCC) && CCMatch)
1427 return true;
1428 return false;
1429 }
1430
1431 // Now we search for cases where we can use a tail call without changing the
1432 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1433 // concept.
1434
1435 // I want anyone implementing a new calling convention to think long and hard
1436 // about this assert.
1437 assert((!IsVarArg || CalleeCC == CallingConv::C)
1438 && "Unexpected variadic calling convention");
1439
1440 if (IsVarArg && !Outs.empty()) {
1441 // At least two cases here: if caller is fastcc then we can't have any
1442 // memory arguments (we'd be expected to clean up the stack afterwards). If
1443 // caller is C then we could potentially use its argument area.
1444
1445 // FIXME: for now we take the most conservative of these in both cases:
1446 // disallow all variadic memory operands.
1447 SmallVector<CCValAssign, 16> ArgLocs;
1448 CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1449 getTargetMachine(), ArgLocs, *DAG.getContext());
1450
1451 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1452 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1453 if (!ArgLocs[i].isRegLoc())
1454 return false;
1455 }
1456
1457 // If the calling conventions do not match, then we'd better make sure the
1458 // results are returned in the same way as what the caller expects.
1459 if (!CCMatch) {
1460 SmallVector<CCValAssign, 16> RVLocs1;
1461 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1462 getTargetMachine(), RVLocs1, *DAG.getContext());
1463 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
1464
1465 SmallVector<CCValAssign, 16> RVLocs2;
1466 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1467 getTargetMachine(), RVLocs2, *DAG.getContext());
1468 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
1469
1470 if (RVLocs1.size() != RVLocs2.size())
1471 return false;
1472 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1473 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1474 return false;
1475 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1476 return false;
1477 if (RVLocs1[i].isRegLoc()) {
1478 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1479 return false;
1480 } else {
1481 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1482 return false;
1483 }
1484 }
1485 }
1486
1487 // Nothing more to check if the callee is taking no arguments
1488 if (Outs.empty())
1489 return true;
1490
1491 SmallVector<CCValAssign, 16> ArgLocs;
1492 CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1493 getTargetMachine(), ArgLocs, *DAG.getContext());
1494
1495 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1496
1497 const AArch64MachineFunctionInfo *FuncInfo
1498 = MF.getInfo<AArch64MachineFunctionInfo>();
1499
1500 // If the stack arguments for this call would fit into our own save area then
1501 // the call can be made tail.
1502 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
1503}
1504
1505bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
1506 bool TailCallOpt) const {
1507 return CallCC == CallingConv::Fast && TailCallOpt;
1508}
1509
1510bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
1511 return CallCC == CallingConv::Fast;
1512}
1513
1514SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
1515 SelectionDAG &DAG,
1516 MachineFrameInfo *MFI,
1517 int ClobberedFI) const {
1518 SmallVector<SDValue, 8> ArgChains;
1519 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
1520 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
1521
1522 // Include the original chain at the beginning of the list. When this is
1523 // used by target LowerCall hooks, this helps legalize find the
1524 // CALLSEQ_BEGIN node.
1525 ArgChains.push_back(Chain);
1526
1527 // Add a chain value for each stack argument corresponding
1528 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1529 UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
1530 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
1531 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
1532 if (FI->getIndex() < 0) {
1533 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
1534 int64_t InLastByte = InFirstByte;
1535 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
1536
1537 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1538 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1539 ArgChains.push_back(SDValue(L, 1));
1540 }
1541
1542 // Build a tokenfactor for all the chains.
1543 return DAG.getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
1544 &ArgChains[0], ArgChains.size());
1545}
1546
1547static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
1548 switch (CC) {
1549 case ISD::SETEQ: return A64CC::EQ;
1550 case ISD::SETGT: return A64CC::GT;
1551 case ISD::SETGE: return A64CC::GE;
1552 case ISD::SETLT: return A64CC::LT;
1553 case ISD::SETLE: return A64CC::LE;
1554 case ISD::SETNE: return A64CC::NE;
1555 case ISD::SETUGT: return A64CC::HI;
1556 case ISD::SETUGE: return A64CC::HS;
1557 case ISD::SETULT: return A64CC::LO;
1558 case ISD::SETULE: return A64CC::LS;
1559 default: llvm_unreachable("Unexpected condition code");
1560 }
1561}
1562
1563bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
1564 // icmp is implemented using adds/subs immediate, which take an unsigned
1565 // 12-bit immediate, optionally shifted left by 12 bits.
1566
1567 // Symmetric by using adds/subs
1568 if (Val < 0)
1569 Val = -Val;
1570
1571 return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
1572}
1573
1574SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
1575 ISD::CondCode CC, SDValue &A64cc,
1576 SelectionDAG &DAG, DebugLoc &dl) const {
1577 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1578 int64_t C = 0;
1579 EVT VT = RHSC->getValueType(0);
1580 bool knownInvalid = false;
1581
1582 // I'm not convinced the rest of LLVM handles these edge cases properly, but
1583 // we can at least get it right.
1584 if (isSignedIntSetCC(CC)) {
1585 C = RHSC->getSExtValue();
1586 } else if (RHSC->getZExtValue() > INT64_MAX) {
1587 // A 64-bit constant not representable by a signed 64-bit integer is far
1588 // too big to fit into a SUBS immediate anyway.
1589 knownInvalid = true;
1590 } else {
1591 C = RHSC->getZExtValue();
1592 }
1593
1594 if (!knownInvalid && !isLegalICmpImmediate(C)) {
1595 // Constant does not fit, try adjusting it by one?
1596 switch (CC) {
1597 default: break;
1598 case ISD::SETLT:
1599 case ISD::SETGE:
1600 if (isLegalICmpImmediate(C-1)) {
1601 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1602 RHS = DAG.getConstant(C-1, VT);
1603 }
1604 break;
1605 case ISD::SETULT:
1606 case ISD::SETUGE:
1607 if (isLegalICmpImmediate(C-1)) {
1608 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1609 RHS = DAG.getConstant(C-1, VT);
1610 }
1611 break;
1612 case ISD::SETLE:
1613 case ISD::SETGT:
1614 if (isLegalICmpImmediate(C+1)) {
1615 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1616 RHS = DAG.getConstant(C+1, VT);
1617 }
1618 break;
1619 case ISD::SETULE:
1620 case ISD::SETUGT:
1621 if (isLegalICmpImmediate(C+1)) {
1622 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1623 RHS = DAG.getConstant(C+1, VT);
1624 }
1625 break;
1626 }
1627 }
1628 }
1629
1630 A64CC::CondCodes CondCode = IntCCToA64CC(CC);
1631 A64cc = DAG.getConstant(CondCode, MVT::i32);
1632 return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1633 DAG.getCondCode(CC));
1634}
1635
1636static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
1637 A64CC::CondCodes &Alternative) {
1638 A64CC::CondCodes CondCode = A64CC::Invalid;
1639 Alternative = A64CC::Invalid;
1640
1641 switch (CC) {
1642 default: llvm_unreachable("Unknown FP condition!");
1643 case ISD::SETEQ:
1644 case ISD::SETOEQ: CondCode = A64CC::EQ; break;
1645 case ISD::SETGT:
1646 case ISD::SETOGT: CondCode = A64CC::GT; break;
1647 case ISD::SETGE:
1648 case ISD::SETOGE: CondCode = A64CC::GE; break;
1649 case ISD::SETOLT: CondCode = A64CC::MI; break;
1650 case ISD::SETOLE: CondCode = A64CC::LS; break;
1651 case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
1652 case ISD::SETO: CondCode = A64CC::VC; break;
1653 case ISD::SETUO: CondCode = A64CC::VS; break;
1654 case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
1655 case ISD::SETUGT: CondCode = A64CC::HI; break;
1656 case ISD::SETUGE: CondCode = A64CC::PL; break;
1657 case ISD::SETLT:
1658 case ISD::SETULT: CondCode = A64CC::LT; break;
1659 case ISD::SETLE:
1660 case ISD::SETULE: CondCode = A64CC::LE; break;
1661 case ISD::SETNE:
1662 case ISD::SETUNE: CondCode = A64CC::NE; break;
1663 }
1664 return CondCode;
1665}
1666
1667SDValue
1668AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1669 DebugLoc DL = Op.getDebugLoc();
1670 EVT PtrVT = getPointerTy();
1671 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1672
1673 assert(getTargetMachine().getCodeModel() == CodeModel::Small
1674 && "Only small code model supported at the moment");
1675
1676 // The most efficient code is PC-relative anyway for the small memory model,
1677 // so we don't need to worry about relocation model.
1678 return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
1679 DAG.getTargetBlockAddress(BA, PtrVT, 0,
1680 AArch64II::MO_NO_FLAG),
1681 DAG.getTargetBlockAddress(BA, PtrVT, 0,
1682 AArch64II::MO_LO12),
1683 DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
1684}
1685
1686
1687// (BRCOND chain, val, dest)
1688SDValue
1689AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1690 DebugLoc dl = Op.getDebugLoc();
1691 SDValue Chain = Op.getOperand(0);
1692 SDValue TheBit = Op.getOperand(1);
1693 SDValue DestBB = Op.getOperand(2);
1694
1695 // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
1696 // that as the consumer we are responsible for ignoring rubbish in higher
1697 // bits.
1698 TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
1699 DAG.getConstant(1, MVT::i32));
1700
1701 SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
1702 DAG.getConstant(0, TheBit.getValueType()),
1703 DAG.getCondCode(ISD::SETNE));
1704
1705 return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
1706 A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
1707 DestBB);
1708}
1709
1710// (BR_CC chain, condcode, lhs, rhs, dest)
1711SDValue
1712AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1713 DebugLoc dl = Op.getDebugLoc();
1714 SDValue Chain = Op.getOperand(0);
1715 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1716 SDValue LHS = Op.getOperand(2);
1717 SDValue RHS = Op.getOperand(3);
1718 SDValue DestBB = Op.getOperand(4);
1719
1720 if (LHS.getValueType() == MVT::f128) {
1721 // f128 comparisons are lowered to runtime calls by a routine which sets
1722 // LHS, RHS and CC appropriately for the rest of this function to continue.
1723 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
1724
1725 // If softenSetCCOperands returned a scalar, we need to compare the result
1726 // against zero to select between true and false values.
1727 if (RHS.getNode() == 0) {
1728 RHS = DAG.getConstant(0, LHS.getValueType());
1729 CC = ISD::SETNE;
1730 }
1731 }
1732
1733 if (LHS.getValueType().isInteger()) {
1734 SDValue A64cc;
1735
1736 // Integers are handled in a separate function because the combinations of
1737 // immediates and tests can get hairy and we may want to fiddle things.
1738 SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
1739
1740 return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1741 Chain, CmpOp, A64cc, DestBB);
1742 }
1743
1744 // Note that some LLVM floating-point CondCodes can't be lowered to a single
1745 // conditional branch, hence FPCCToA64CC can set a second test, where either
1746 // passing is sufficient.
1747 A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
1748 CondCode = FPCCToA64CC(CC, Alternative);
1749 SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
1750 SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1751 DAG.getCondCode(CC));
1752 SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1753 Chain, SetCC, A64cc, DestBB);
1754
1755 if (Alternative != A64CC::Invalid) {
1756 A64cc = DAG.getConstant(Alternative, MVT::i32);
1757 A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1758 A64BR_CC, SetCC, A64cc, DestBB);
1759
1760 }
1761
1762 return A64BR_CC;
1763}
1764
1765SDValue
1766AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
1767 RTLIB::Libcall Call) const {
1768 ArgListTy Args;
1769 ArgListEntry Entry;
1770 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
1771 EVT ArgVT = Op.getOperand(i).getValueType();
1772 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1773 Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
1774 Entry.isSExt = false;
1775 Entry.isZExt = false;
1776 Args.push_back(Entry);
1777 }
1778 SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
1779
1780 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
1781
1782 // By default, the input chain to this libcall is the entry node of the
1783 // function. If the libcall is going to be emitted as a tail call then
1784 // isUsedByReturnOnly will change it to the right chain if the return
1785 // node which is being folded has a non-entry input chain.
1786 SDValue InChain = DAG.getEntryNode();
1787
1788 // isTailCall may be true since the callee does not reference caller stack
1789 // frame. Check if it's in the right position.
1790 SDValue TCChain = InChain;
1791 bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
1792 if (isTailCall)
1793 InChain = TCChain;
1794
1795 TargetLowering::
1796 CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
1797 0, getLibcallCallingConv(Call), isTailCall,
1798 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1799 Callee, Args, DAG, Op->getDebugLoc());
1800 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
1801
1802 if (!CallInfo.second.getNode())
1803 // It's a tailcall, return the chain (which is the DAG root).
1804 return DAG.getRoot();
1805
1806 return CallInfo.first;
1807}
1808
1809SDValue
1810AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
1811 if (Op.getOperand(0).getValueType() != MVT::f128) {
1812 // It's legal except when f128 is involved
1813 return Op;
1814 }
1815
1816 RTLIB::Libcall LC;
1817 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1818
1819 SDValue SrcVal = Op.getOperand(0);
1820 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1821 /*isSigned*/ false, Op.getDebugLoc());
1822}
1823
1824SDValue
1825AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
1826 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1827
1828 RTLIB::Libcall LC;
1829 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1830
1831 return LowerF128ToCall(Op, DAG, LC);
1832}
1833
1834SDValue
1835AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1836 bool IsSigned) const {
1837 if (Op.getOperand(0).getValueType() != MVT::f128) {
1838 // It's legal except when f128 is involved
1839 return Op;
1840 }
1841
1842 RTLIB::Libcall LC;
1843 if (IsSigned)
1844 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1845 else
1846 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1847
1848 return LowerF128ToCall(Op, DAG, LC);
1849}
1850
1851SDValue
1852AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
1853 SelectionDAG &DAG) const {
1854 // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
1855 // we make that distinction here.
1856
Tim Northover8a062292013-02-06 16:43:33 +00001857 // We support the small memory model for now.
Tim Northover72062f52013-01-31 12:12:40 +00001858 assert(getTargetMachine().getCodeModel() == CodeModel::Small);
1859
1860 EVT PtrVT = getPointerTy();
1861 DebugLoc dl = Op.getDebugLoc();
1862 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
1863 const GlobalValue *GV = GN->getGlobal();
1864 unsigned Alignment = GV->getAlignment();
Tim Northover8a062292013-02-06 16:43:33 +00001865 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
Tim Northover6ff20f22013-02-28 14:36:31 +00001866 if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
1867 // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
1868 // to zero when they remain undefined. In PIC mode the GOT can take care of
1869 // this, but in absolute mode we use a constant pool load.
Tim Northover1e883932013-02-15 09:33:43 +00001870 SDValue PoolAddr;
1871 PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
1872 DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
1873 AArch64II::MO_NO_FLAG),
1874 DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
1875 AArch64II::MO_LO12),
1876 DAG.getConstant(8, MVT::i32));
Tim Northover5366ab22013-02-28 14:36:24 +00001877 SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
1878 MachinePointerInfo::getConstantPool(),
1879 /*isVolatile=*/ false,
1880 /*isNonTemporal=*/ true,
1881 /*isInvariant=*/ true, 8);
1882 if (GN->getOffset() != 0)
1883 return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
1884 DAG.getConstant(GN->getOffset(), PtrVT));
1885
1886 return GlobalAddr;
Tim Northover8a062292013-02-06 16:43:33 +00001887 }
Tim Northover72062f52013-01-31 12:12:40 +00001888
1889 if (Alignment == 0) {
1890 const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
Tim Northoverdfe076a2013-02-05 13:24:56 +00001891 if (GVPtrTy->getElementType()->isSized()) {
1892 Alignment
1893 = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
1894 } else {
Tim Northover72062f52013-01-31 12:12:40 +00001895 // Be conservative if we can't guess, not that it really matters:
1896 // functions and labels aren't valid for loads, and the methods used to
1897 // actually calculate an address work with any alignment.
1898 Alignment = 1;
1899 }
1900 }
1901
1902 unsigned char HiFixup, LoFixup;
Tim Northover72062f52013-01-31 12:12:40 +00001903 bool UseGOT = Subtarget->GVIsIndirectSymbol(GV, RelocM);
1904
1905 if (UseGOT) {
1906 HiFixup = AArch64II::MO_GOT;
1907 LoFixup = AArch64II::MO_GOT_LO12;
1908 Alignment = 8;
1909 } else {
1910 HiFixup = AArch64II::MO_NO_FLAG;
1911 LoFixup = AArch64II::MO_LO12;
1912 }
1913
1914 // AArch64's small model demands the following sequence:
1915 // ADRP x0, somewhere
1916 // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
1917 SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
1918 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1919 HiFixup),
1920 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1921 LoFixup),
1922 DAG.getConstant(Alignment, MVT::i32));
1923
1924 if (UseGOT) {
1925 GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
1926 GlobalRef);
1927 }
1928
1929 if (GN->getOffset() != 0)
1930 return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
1931 DAG.getConstant(GN->getOffset(), PtrVT));
1932
1933 return GlobalRef;
1934}
1935
1936SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
1937 SDValue DescAddr,
1938 DebugLoc DL,
1939 SelectionDAG &DAG) const {
1940 EVT PtrVT = getPointerTy();
1941
1942 // The function we need to call is simply the first entry in the GOT for this
1943 // descriptor, load it in preparation.
1944 SDValue Func, Chain;
1945 Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
1946 DescAddr);
1947
1948 // The function takes only one argument: the address of the descriptor itself
1949 // in X0.
1950 SDValue Glue;
1951 Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
1952 Glue = Chain.getValue(1);
1953
1954 // Finally, there's a special calling-convention which means that the lookup
1955 // must preserve all registers (except X0, obviously).
1956 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1957 const AArch64RegisterInfo *A64RI
1958 = static_cast<const AArch64RegisterInfo *>(TRI);
1959 const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
1960
1961 // We're now ready to populate the argument list, as with a normal call:
1962 std::vector<SDValue> Ops;
1963 Ops.push_back(Chain);
1964 Ops.push_back(Func);
1965 Ops.push_back(SymAddr);
1966 Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
1967 Ops.push_back(DAG.getRegisterMask(Mask));
1968 Ops.push_back(Glue);
1969
1970 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Tim Northoverdfe076a2013-02-05 13:24:56 +00001971 Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
1972 Ops.size());
Tim Northover72062f52013-01-31 12:12:40 +00001973 Glue = Chain.getValue(1);
1974
1975 // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
1976 // back to the generic handling code.
1977 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
1978}
1979
1980SDValue
1981AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
1982 SelectionDAG &DAG) const {
1983 assert(Subtarget->isTargetELF() &&
1984 "TLS not implemented for non-ELF targets");
1985 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1986
1987 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
1988
1989 SDValue TPOff;
1990 EVT PtrVT = getPointerTy();
1991 DebugLoc DL = Op.getDebugLoc();
1992 const GlobalValue *GV = GA->getGlobal();
1993
1994 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
1995
1996 if (Model == TLSModel::InitialExec) {
1997 TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
1998 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1999 AArch64II::MO_GOTTPREL),
2000 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2001 AArch64II::MO_GOTTPREL_LO12),
2002 DAG.getConstant(8, MVT::i32));
2003 TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2004 TPOff);
2005 } else if (Model == TLSModel::LocalExec) {
2006 SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2007 AArch64II::MO_TPREL_G1);
2008 SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2009 AArch64II::MO_TPREL_G0_NC);
2010
2011 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2012 DAG.getTargetConstant(0, MVT::i32)), 0);
Tim Northoverdfe076a2013-02-05 13:24:56 +00002013 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2014 TPOff, LoVar,
Tim Northover72062f52013-01-31 12:12:40 +00002015 DAG.getTargetConstant(0, MVT::i32)), 0);
2016 } else if (Model == TLSModel::GeneralDynamic) {
2017 // Accesses used in this sequence go via the TLS descriptor which lives in
2018 // the GOT. Prepare an address we can use to handle this.
2019 SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2020 AArch64II::MO_TLSDESC);
2021 SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2022 AArch64II::MO_TLSDESC_LO12);
2023 SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
Tim Northoverdfe076a2013-02-05 13:24:56 +00002024 HiDesc, LoDesc,
2025 DAG.getConstant(8, MVT::i32));
Tim Northover72062f52013-01-31 12:12:40 +00002026 SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
2027
2028 TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2029 } else if (Model == TLSModel::LocalDynamic) {
2030 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2031 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2032 // the beginning of the module's TLS region, followed by a DTPREL offset
2033 // calculation.
2034
2035 // These accesses will need deduplicating if there's more than one.
2036 AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
2037 .getInfo<AArch64MachineFunctionInfo>();
2038 MFI->incNumLocalDynamicTLSAccesses();
2039
2040
2041 // Get the location of _TLS_MODULE_BASE_:
2042 SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2043 AArch64II::MO_TLSDESC);
2044 SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2045 AArch64II::MO_TLSDESC_LO12);
2046 SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
Tim Northoverdfe076a2013-02-05 13:24:56 +00002047 HiDesc, LoDesc,
2048 DAG.getConstant(8, MVT::i32));
Tim Northover72062f52013-01-31 12:12:40 +00002049 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
2050
2051 ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2052
2053 // Get the variable's offset from _TLS_MODULE_BASE_
2054 SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2055 AArch64II::MO_DTPREL_G1);
2056 SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2057 AArch64II::MO_DTPREL_G0_NC);
2058
2059 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2060 DAG.getTargetConstant(0, MVT::i32)), 0);
Tim Northoverdfe076a2013-02-05 13:24:56 +00002061 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2062 TPOff, LoVar,
Tim Northover72062f52013-01-31 12:12:40 +00002063 DAG.getTargetConstant(0, MVT::i32)), 0);
2064 } else
2065 llvm_unreachable("Unsupported TLS access model");
2066
2067
2068 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2069}
2070
2071SDValue
2072AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2073 bool IsSigned) const {
2074 if (Op.getValueType() != MVT::f128) {
2075 // Legal for everything except f128.
2076 return Op;
2077 }
2078
2079 RTLIB::Libcall LC;
2080 if (IsSigned)
2081 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2082 else
2083 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2084
2085 return LowerF128ToCall(Op, DAG, LC);
2086}
2087
2088
2089SDValue
2090AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2091 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2092 DebugLoc dl = JT->getDebugLoc();
2093
2094 // When compiling PIC, jump tables get put in the code section so a static
2095 // relocation-style is acceptable for both cases.
2096 return DAG.getNode(AArch64ISD::WrapperSmall, dl, getPointerTy(),
2097 DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()),
2098 DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
2099 AArch64II::MO_LO12),
2100 DAG.getConstant(1, MVT::i32));
2101}
2102
2103// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
2104SDValue
2105AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2106 DebugLoc dl = Op.getDebugLoc();
2107 SDValue LHS = Op.getOperand(0);
2108 SDValue RHS = Op.getOperand(1);
2109 SDValue IfTrue = Op.getOperand(2);
2110 SDValue IfFalse = Op.getOperand(3);
2111 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2112
2113 if (LHS.getValueType() == MVT::f128) {
2114 // f128 comparisons are lowered to libcalls, but slot in nicely here
2115 // afterwards.
2116 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2117
2118 // If softenSetCCOperands returned a scalar, we need to compare the result
2119 // against zero to select between true and false values.
2120 if (RHS.getNode() == 0) {
2121 RHS = DAG.getConstant(0, LHS.getValueType());
2122 CC = ISD::SETNE;
2123 }
2124 }
2125
2126 if (LHS.getValueType().isInteger()) {
2127 SDValue A64cc;
2128
2129 // Integers are handled in a separate function because the combinations of
2130 // immediates and tests can get hairy and we may want to fiddle things.
2131 SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2132
2133 return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2134 CmpOp, IfTrue, IfFalse, A64cc);
2135 }
2136
2137 // Note that some LLVM floating-point CondCodes can't be lowered to a single
2138 // conditional branch, hence FPCCToA64CC can set a second test, where either
2139 // passing is sufficient.
2140 A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2141 CondCode = FPCCToA64CC(CC, Alternative);
2142 SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2143 SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2144 DAG.getCondCode(CC));
Tim Northoverdfe076a2013-02-05 13:24:56 +00002145 SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
2146 Op.getValueType(),
Tim Northover72062f52013-01-31 12:12:40 +00002147 SetCC, IfTrue, IfFalse, A64cc);
2148
2149 if (Alternative != A64CC::Invalid) {
2150 A64cc = DAG.getConstant(Alternative, MVT::i32);
2151 A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2152 SetCC, IfTrue, A64SELECT_CC, A64cc);
2153
2154 }
2155
2156 return A64SELECT_CC;
2157}
2158
2159// (SELECT testbit, iftrue, iffalse)
2160SDValue
2161AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2162 DebugLoc dl = Op.getDebugLoc();
2163 SDValue TheBit = Op.getOperand(0);
2164 SDValue IfTrue = Op.getOperand(1);
2165 SDValue IfFalse = Op.getOperand(2);
2166
2167 // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
2168 // that as the consumer we are responsible for ignoring rubbish in higher
2169 // bits.
2170 TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
2171 DAG.getConstant(1, MVT::i32));
2172 SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
2173 DAG.getConstant(0, TheBit.getValueType()),
2174 DAG.getCondCode(ISD::SETNE));
2175
2176 return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2177 A64CMP, IfTrue, IfFalse,
2178 DAG.getConstant(A64CC::NE, MVT::i32));
2179}
2180
2181// (SETCC lhs, rhs, condcode)
2182SDValue
2183AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2184 DebugLoc dl = Op.getDebugLoc();
2185 SDValue LHS = Op.getOperand(0);
2186 SDValue RHS = Op.getOperand(1);
2187 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2188 EVT VT = Op.getValueType();
2189
2190 if (LHS.getValueType() == MVT::f128) {
2191 // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
2192 // for the rest of the function (some i32 or i64 values).
2193 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2194
2195 // If softenSetCCOperands returned a scalar, use it.
2196 if (RHS.getNode() == 0) {
2197 assert(LHS.getValueType() == Op.getValueType() &&
2198 "Unexpected setcc expansion!");
2199 return LHS;
2200 }
2201 }
2202
2203 if (LHS.getValueType().isInteger()) {
2204 SDValue A64cc;
2205
2206 // Integers are handled in a separate function because the combinations of
2207 // immediates and tests can get hairy and we may want to fiddle things.
2208 SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2209
2210 return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2211 CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2212 A64cc);
2213 }
2214
2215 // Note that some LLVM floating-point CondCodes can't be lowered to a single
2216 // conditional branch, hence FPCCToA64CC can set a second test, where either
2217 // passing is sufficient.
2218 A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2219 CondCode = FPCCToA64CC(CC, Alternative);
2220 SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2221 SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2222 DAG.getCondCode(CC));
2223 SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2224 CmpOp, DAG.getConstant(1, VT),
2225 DAG.getConstant(0, VT), A64cc);
2226
2227 if (Alternative != A64CC::Invalid) {
2228 A64cc = DAG.getConstant(Alternative, MVT::i32);
2229 A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
2230 DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
2231 }
2232
2233 return A64SELECT_CC;
2234}
2235
2236SDValue
2237AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2238 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2239 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2240
2241 // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
2242 // rather than just 8.
2243 return DAG.getMemcpy(Op.getOperand(0), Op.getDebugLoc(),
2244 Op.getOperand(1), Op.getOperand(2),
2245 DAG.getConstant(32, MVT::i32), 8, false, false,
2246 MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
2247}
2248
2249SDValue
2250AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2251 // The layout of the va_list struct is specified in the AArch64 Procedure Call
2252 // Standard, section B.3.
2253 MachineFunction &MF = DAG.getMachineFunction();
Tim Northoverdfe076a2013-02-05 13:24:56 +00002254 AArch64MachineFunctionInfo *FuncInfo
2255 = MF.getInfo<AArch64MachineFunctionInfo>();
Tim Northover72062f52013-01-31 12:12:40 +00002256 DebugLoc DL = Op.getDebugLoc();
2257
2258 SDValue Chain = Op.getOperand(0);
2259 SDValue VAList = Op.getOperand(1);
2260 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2261 SmallVector<SDValue, 4> MemOps;
2262
2263 // void *__stack at offset 0
2264 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
2265 getPointerTy());
2266 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
2267 MachinePointerInfo(SV), false, false, 0));
2268
2269 // void *__gr_top at offset 8
2270 int GPRSize = FuncInfo->getVariadicGPRSize();
2271 if (GPRSize > 0) {
2272 SDValue GRTop, GRTopAddr;
2273
2274 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2275 DAG.getConstant(8, getPointerTy()));
2276
2277 GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
2278 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
2279 DAG.getConstant(GPRSize, getPointerTy()));
2280
2281 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
2282 MachinePointerInfo(SV, 8),
2283 false, false, 0));
2284 }
2285
2286 // void *__vr_top at offset 16
2287 int FPRSize = FuncInfo->getVariadicFPRSize();
2288 if (FPRSize > 0) {
2289 SDValue VRTop, VRTopAddr;
2290 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2291 DAG.getConstant(16, getPointerTy()));
2292
2293 VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
2294 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
2295 DAG.getConstant(FPRSize, getPointerTy()));
2296
2297 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
2298 MachinePointerInfo(SV, 16),
2299 false, false, 0));
2300 }
2301
2302 // int __gr_offs at offset 24
2303 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2304 DAG.getConstant(24, getPointerTy()));
2305 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
2306 GROffsAddr, MachinePointerInfo(SV, 24),
2307 false, false, 0));
2308
2309 // int __vr_offs at offset 28
2310 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2311 DAG.getConstant(28, getPointerTy()));
2312 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
2313 VROffsAddr, MachinePointerInfo(SV, 28),
2314 false, false, 0));
2315
2316 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
2317 MemOps.size());
2318}
2319
2320SDValue
2321AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2322 switch (Op.getOpcode()) {
2323 default: llvm_unreachable("Don't know how to custom lower this!");
2324 case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
2325 case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
2326 case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
2327 case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
2328 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
2329 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
2330 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
2331 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
2332 case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
2333 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
2334
2335 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2336 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
2337 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
2338 case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
2339 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2340 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2341 case ISD::SELECT: return LowerSELECT(Op, DAG);
2342 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2343 case ISD::SETCC: return LowerSETCC(Op, DAG);
2344 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
2345 case ISD::VASTART: return LowerVASTART(Op, DAG);
2346 }
2347
2348 return SDValue();
2349}
2350
2351static SDValue PerformANDCombine(SDNode *N,
2352 TargetLowering::DAGCombinerInfo &DCI) {
2353
2354 SelectionDAG &DAG = DCI.DAG;
2355 DebugLoc DL = N->getDebugLoc();
2356 EVT VT = N->getValueType(0);
2357
2358 // We're looking for an SRA/SHL pair which form an SBFX.
2359
2360 if (VT != MVT::i32 && VT != MVT::i64)
2361 return SDValue();
2362
2363 if (!isa<ConstantSDNode>(N->getOperand(1)))
2364 return SDValue();
2365
2366 uint64_t TruncMask = N->getConstantOperandVal(1);
2367 if (!isMask_64(TruncMask))
2368 return SDValue();
2369
2370 uint64_t Width = CountPopulation_64(TruncMask);
2371 SDValue Shift = N->getOperand(0);
2372
2373 if (Shift.getOpcode() != ISD::SRL)
2374 return SDValue();
2375
2376 if (!isa<ConstantSDNode>(Shift->getOperand(1)))
2377 return SDValue();
2378 uint64_t LSB = Shift->getConstantOperandVal(1);
2379
2380 if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
2381 return SDValue();
2382
2383 return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
2384 DAG.getConstant(LSB, MVT::i64),
2385 DAG.getConstant(LSB + Width - 1, MVT::i64));
2386}
2387
Tim Northover72062f52013-01-31 12:12:40 +00002388/// For a true bitfield insert, the bits getting into that contiguous mask
2389/// should come from the low part of an existing value: they must be formed from
2390/// a compatible SHL operation (unless they're already low). This function
2391/// checks that condition and returns the least-significant bit that's
2392/// intended. If the operation not a field preparation, -1 is returned.
2393static int32_t getLSBForBFI(SelectionDAG &DAG, DebugLoc DL, EVT VT,
2394 SDValue &MaskedVal, uint64_t Mask) {
2395 if (!isShiftedMask_64(Mask))
2396 return -1;
2397
2398 // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
2399 // instruction. BFI will do a left-shift by LSB before applying the mask we've
2400 // spotted, so in general we should pre-emptively "undo" that by making sure
2401 // the incoming bits have had a right-shift applied to them.
2402 //
2403 // This right shift, however, will combine with existing left/right shifts. In
2404 // the simplest case of a completely straight bitfield operation, it will be
2405 // expected to completely cancel out with an existing SHL. More complicated
2406 // cases (e.g. bitfield to bitfield copy) may still need a real shift before
2407 // the BFI.
2408
2409 uint64_t LSB = CountTrailingZeros_64(Mask);
2410 int64_t ShiftRightRequired = LSB;
2411 if (MaskedVal.getOpcode() == ISD::SHL &&
2412 isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
2413 ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
2414 MaskedVal = MaskedVal.getOperand(0);
2415 } else if (MaskedVal.getOpcode() == ISD::SRL &&
2416 isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
2417 ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
2418 MaskedVal = MaskedVal.getOperand(0);
2419 }
2420
2421 if (ShiftRightRequired > 0)
2422 MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
2423 DAG.getConstant(ShiftRightRequired, MVT::i64));
2424 else if (ShiftRightRequired < 0) {
2425 // We could actually end up with a residual left shift, for example with
2426 // "struc.bitfield = val << 1".
2427 MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
2428 DAG.getConstant(-ShiftRightRequired, MVT::i64));
2429 }
2430
2431 return LSB;
2432}
2433
2434/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
2435/// a mask and an extension. Returns true if a BFI was found and provides
2436/// information on its surroundings.
2437static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
2438 bool &Extended) {
2439 Extended = false;
2440 if (N.getOpcode() == ISD::ZERO_EXTEND) {
2441 Extended = true;
2442 N = N.getOperand(0);
2443 }
2444
2445 if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
2446 Mask = N->getConstantOperandVal(1);
2447 N = N.getOperand(0);
2448 } else {
2449 // Mask is the whole width.
Benjamin Kramer9831bf02013-02-17 17:55:32 +00002450 Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
Tim Northover72062f52013-01-31 12:12:40 +00002451 }
2452
2453 if (N.getOpcode() == AArch64ISD::BFI) {
2454 BFI = N;
2455 return true;
2456 }
2457
2458 return false;
2459}
2460
2461/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
2462/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
2463/// can often be further combined with a larger mask. Ultimately, we want mask
2464/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
2465static SDValue tryCombineToBFI(SDNode *N,
2466 TargetLowering::DAGCombinerInfo &DCI,
2467 const AArch64Subtarget *Subtarget) {
2468 SelectionDAG &DAG = DCI.DAG;
2469 DebugLoc DL = N->getDebugLoc();
2470 EVT VT = N->getValueType(0);
2471
2472 assert(N->getOpcode() == ISD::OR && "Unexpected root");
2473
2474 // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
2475 // abandon the effort.
2476 SDValue LHS = N->getOperand(0);
2477 if (LHS.getOpcode() != ISD::AND)
2478 return SDValue();
2479
2480 uint64_t LHSMask;
2481 if (isa<ConstantSDNode>(LHS.getOperand(1)))
2482 LHSMask = LHS->getConstantOperandVal(1);
2483 else
2484 return SDValue();
2485
2486 // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
2487 // is or abandon the effort.
2488 SDValue RHS = N->getOperand(1);
2489 if (RHS.getOpcode() != ISD::AND)
2490 return SDValue();
2491
2492 uint64_t RHSMask;
2493 if (isa<ConstantSDNode>(RHS.getOperand(1)))
2494 RHSMask = RHS->getConstantOperandVal(1);
2495 else
2496 return SDValue();
2497
2498 // Can't do anything if the masks are incompatible.
2499 if (LHSMask & RHSMask)
2500 return SDValue();
2501
2502 // Now we need one of the masks to be a contiguous field. Without loss of
2503 // generality that should be the RHS one.
2504 SDValue Bitfield = LHS.getOperand(0);
2505 if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
2506 // We know that LHS is a candidate new value, and RHS isn't already a better
2507 // one.
2508 std::swap(LHS, RHS);
2509 std::swap(LHSMask, RHSMask);
2510 }
2511
2512 // We've done our best to put the right operands in the right places, all we
2513 // can do now is check whether a BFI exists.
2514 Bitfield = RHS.getOperand(0);
2515 int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
2516 if (LSB == -1)
2517 return SDValue();
2518
2519 uint32_t Width = CountPopulation_64(RHSMask);
2520 assert(Width && "Expected non-zero bitfield width");
2521
2522 SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
2523 LHS.getOperand(0), Bitfield,
2524 DAG.getConstant(LSB, MVT::i64),
2525 DAG.getConstant(Width, MVT::i64));
2526
2527 // Mask is trivial
Benjamin Kramer9831bf02013-02-17 17:55:32 +00002528 if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
Tim Northover72062f52013-01-31 12:12:40 +00002529 return BFI;
2530
2531 return DAG.getNode(ISD::AND, DL, VT, BFI,
2532 DAG.getConstant(LHSMask | RHSMask, VT));
2533}
2534
2535/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
2536/// original input. This is surprisingly common because SROA splits things up
2537/// into i8 chunks, so the originally detected MaskedBFI may actually only act
2538/// on the low (say) byte of a word. This is then orred into the rest of the
2539/// word afterwards.
2540///
2541/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
2542///
2543/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
2544/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
2545/// involved.
2546static SDValue tryCombineToLargerBFI(SDNode *N,
2547 TargetLowering::DAGCombinerInfo &DCI,
2548 const AArch64Subtarget *Subtarget) {
2549 SelectionDAG &DAG = DCI.DAG;
2550 DebugLoc DL = N->getDebugLoc();
2551 EVT VT = N->getValueType(0);
2552
2553 // First job is to hunt for a MaskedBFI on either the left or right. Swap
2554 // operands if it's actually on the right.
2555 SDValue BFI;
2556 SDValue PossExtraMask;
2557 uint64_t ExistingMask = 0;
2558 bool Extended = false;
2559 if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
2560 PossExtraMask = N->getOperand(1);
2561 else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
2562 PossExtraMask = N->getOperand(0);
2563 else
2564 return SDValue();
2565
2566 // We can only combine a BFI with another compatible mask.
2567 if (PossExtraMask.getOpcode() != ISD::AND ||
2568 !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
2569 return SDValue();
2570
2571 uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
2572
2573 // Masks must be compatible.
2574 if (ExtraMask & ExistingMask)
2575 return SDValue();
2576
2577 SDValue OldBFIVal = BFI.getOperand(0);
2578 SDValue NewBFIVal = BFI.getOperand(1);
2579 if (Extended) {
2580 // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
2581 // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
2582 // need to be made compatible.
2583 assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
2584 && "Invalid types for BFI");
2585 OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
2586 NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
2587 }
2588
2589 // We need the MaskedBFI to be combined with a mask of the *same* value.
2590 if (PossExtraMask.getOperand(0) != OldBFIVal)
2591 return SDValue();
2592
2593 BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
2594 OldBFIVal, NewBFIVal,
2595 BFI.getOperand(2), BFI.getOperand(3));
2596
2597 // If the masking is trivial, we don't need to create it.
Benjamin Kramer9831bf02013-02-17 17:55:32 +00002598 if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
Tim Northover72062f52013-01-31 12:12:40 +00002599 return BFI;
2600
2601 return DAG.getNode(ISD::AND, DL, VT, BFI,
2602 DAG.getConstant(ExtraMask | ExistingMask, VT));
2603}
2604
2605/// An EXTR instruction is made up of two shifts, ORed together. This helper
2606/// searches for and classifies those shifts.
2607static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
2608 bool &FromHi) {
2609 if (N.getOpcode() == ISD::SHL)
2610 FromHi = false;
2611 else if (N.getOpcode() == ISD::SRL)
2612 FromHi = true;
2613 else
2614 return false;
2615
2616 if (!isa<ConstantSDNode>(N.getOperand(1)))
2617 return false;
2618
2619 ShiftAmount = N->getConstantOperandVal(1);
2620 Src = N->getOperand(0);
2621 return true;
2622}
2623
Joel Jones612779e2013-02-10 23:56:30 +00002624/// EXTR instruction extracts a contiguous chunk of bits from two existing
Tim Northover72062f52013-01-31 12:12:40 +00002625/// registers viewed as a high/low pair. This function looks for the pattern:
2626/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
2627/// EXTR. Can't quite be done in TableGen because the two immediates aren't
2628/// independent.
2629static SDValue tryCombineToEXTR(SDNode *N,
2630 TargetLowering::DAGCombinerInfo &DCI) {
2631 SelectionDAG &DAG = DCI.DAG;
2632 DebugLoc DL = N->getDebugLoc();
2633 EVT VT = N->getValueType(0);
2634
2635 assert(N->getOpcode() == ISD::OR && "Unexpected root");
2636
2637 if (VT != MVT::i32 && VT != MVT::i64)
2638 return SDValue();
2639
2640 SDValue LHS;
2641 uint32_t ShiftLHS = 0;
2642 bool LHSFromHi = 0;
2643 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
2644 return SDValue();
2645
2646 SDValue RHS;
2647 uint32_t ShiftRHS = 0;
2648 bool RHSFromHi = 0;
2649 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
2650 return SDValue();
2651
2652 // If they're both trying to come from the high part of the register, they're
2653 // not really an EXTR.
2654 if (LHSFromHi == RHSFromHi)
2655 return SDValue();
2656
2657 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
2658 return SDValue();
2659
2660 if (LHSFromHi) {
2661 std::swap(LHS, RHS);
2662 std::swap(ShiftLHS, ShiftRHS);
2663 }
2664
2665 return DAG.getNode(AArch64ISD::EXTR, DL, VT,
2666 LHS, RHS,
2667 DAG.getConstant(ShiftRHS, MVT::i64));
2668}
2669
2670/// Target-specific dag combine xforms for ISD::OR
2671static SDValue PerformORCombine(SDNode *N,
2672 TargetLowering::DAGCombinerInfo &DCI,
2673 const AArch64Subtarget *Subtarget) {
2674
2675 SelectionDAG &DAG = DCI.DAG;
2676 EVT VT = N->getValueType(0);
2677
2678 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2679 return SDValue();
2680
2681 // Attempt to recognise bitfield-insert operations.
2682 SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
2683 if (Res.getNode())
2684 return Res;
2685
2686 // Attempt to combine an existing MaskedBFI operation into one with a larger
2687 // mask.
2688 Res = tryCombineToLargerBFI(N, DCI, Subtarget);
2689 if (Res.getNode())
2690 return Res;
2691
2692 Res = tryCombineToEXTR(N, DCI);
2693 if (Res.getNode())
2694 return Res;
2695
2696 return SDValue();
2697}
2698
2699/// Target-specific dag combine xforms for ISD::SRA
2700static SDValue PerformSRACombine(SDNode *N,
2701 TargetLowering::DAGCombinerInfo &DCI) {
2702
2703 SelectionDAG &DAG = DCI.DAG;
2704 DebugLoc DL = N->getDebugLoc();
2705 EVT VT = N->getValueType(0);
2706
2707 // We're looking for an SRA/SHL pair which form an SBFX.
2708
2709 if (VT != MVT::i32 && VT != MVT::i64)
2710 return SDValue();
2711
2712 if (!isa<ConstantSDNode>(N->getOperand(1)))
2713 return SDValue();
2714
2715 uint64_t ExtraSignBits = N->getConstantOperandVal(1);
2716 SDValue Shift = N->getOperand(0);
2717
2718 if (Shift.getOpcode() != ISD::SHL)
2719 return SDValue();
2720
2721 if (!isa<ConstantSDNode>(Shift->getOperand(1)))
2722 return SDValue();
2723
2724 uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
2725 uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
2726 uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
2727
2728 if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
2729 return SDValue();
2730
2731 return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
2732 DAG.getConstant(LSB, MVT::i64),
2733 DAG.getConstant(LSB + Width - 1, MVT::i64));
2734}
2735
2736
2737SDValue
2738AArch64TargetLowering::PerformDAGCombine(SDNode *N,
2739 DAGCombinerInfo &DCI) const {
2740 switch (N->getOpcode()) {
2741 default: break;
2742 case ISD::AND: return PerformANDCombine(N, DCI);
Tim Northover72062f52013-01-31 12:12:40 +00002743 case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
2744 case ISD::SRA: return PerformSRACombine(N, DCI);
2745 }
2746 return SDValue();
2747}
2748
2749AArch64TargetLowering::ConstraintType
2750AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
2751 if (Constraint.size() == 1) {
2752 switch (Constraint[0]) {
2753 default: break;
2754 case 'w': // An FP/SIMD vector register
2755 return C_RegisterClass;
2756 case 'I': // Constant that can be used with an ADD instruction
2757 case 'J': // Constant that can be used with a SUB instruction
2758 case 'K': // Constant that can be used with a 32-bit logical instruction
2759 case 'L': // Constant that can be used with a 64-bit logical instruction
2760 case 'M': // Constant that can be used as a 32-bit MOV immediate
2761 case 'N': // Constant that can be used as a 64-bit MOV immediate
2762 case 'Y': // Floating point constant zero
2763 case 'Z': // Integer constant zero
2764 return C_Other;
2765 case 'Q': // A memory reference with base register and no offset
2766 return C_Memory;
2767 case 'S': // A symbolic address
2768 return C_Other;
2769 }
2770 }
2771
2772 // FIXME: Ump, Utf, Usa, Ush
Tim Northoverdfe076a2013-02-05 13:24:56 +00002773 // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
2774 // whatever they may be
Tim Northover72062f52013-01-31 12:12:40 +00002775 // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
2776 // Usa: An absolute symbolic address
2777 // Ush: The high part (bits 32:12) of a pc-relative symbolic address
2778 assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
2779 && Constraint != "Ush" && "Unimplemented constraints");
2780
2781 return TargetLowering::getConstraintType(Constraint);
2782}
2783
2784TargetLowering::ConstraintWeight
2785AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
2786 const char *Constraint) const {
2787
2788 llvm_unreachable("Constraint weight unimplemented");
2789}
2790
2791void
2792AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2793 std::string &Constraint,
2794 std::vector<SDValue> &Ops,
2795 SelectionDAG &DAG) const {
2796 SDValue Result(0, 0);
2797
2798 // Only length 1 constraints are C_Other.
2799 if (Constraint.size() != 1) return;
2800
2801 // Only C_Other constraints get lowered like this. That means constants for us
2802 // so return early if there's no hope the constraint can be lowered.
2803
2804 switch(Constraint[0]) {
2805 default: break;
2806 case 'I': case 'J': case 'K': case 'L':
2807 case 'M': case 'N': case 'Z': {
2808 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2809 if (!C)
2810 return;
2811
2812 uint64_t CVal = C->getZExtValue();
2813 uint32_t Bits;
2814
2815 switch (Constraint[0]) {
2816 default:
2817 // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
2818 // is a peculiarly useless SUB constraint.
2819 llvm_unreachable("Unimplemented C_Other constraint");
2820 case 'I':
2821 if (CVal <= 0xfff)
2822 break;
2823 return;
2824 case 'K':
2825 if (A64Imms::isLogicalImm(32, CVal, Bits))
2826 break;
2827 return;
2828 case 'L':
2829 if (A64Imms::isLogicalImm(64, CVal, Bits))
2830 break;
2831 return;
2832 case 'Z':
2833 if (CVal == 0)
2834 break;
2835 return;
2836 }
2837
2838 Result = DAG.getTargetConstant(CVal, Op.getValueType());
2839 break;
2840 }
2841 case 'S': {
2842 // An absolute symbolic address or label reference.
2843 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
2844 Result = DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getDebugLoc(),
2845 GA->getValueType(0));
Tim Northoverdfe076a2013-02-05 13:24:56 +00002846 } else if (const BlockAddressSDNode *BA
2847 = dyn_cast<BlockAddressSDNode>(Op)) {
Tim Northover72062f52013-01-31 12:12:40 +00002848 Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
2849 BA->getValueType(0));
2850 } else if (const ExternalSymbolSDNode *ES
2851 = dyn_cast<ExternalSymbolSDNode>(Op)) {
2852 Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
2853 ES->getValueType(0));
2854 } else
2855 return;
2856 break;
2857 }
2858 case 'Y':
2859 if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2860 if (CFP->isExactlyValue(0.0)) {
2861 Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
2862 break;
2863 }
2864 }
2865 return;
2866 }
2867
2868 if (Result.getNode()) {
2869 Ops.push_back(Result);
2870 return;
2871 }
2872
2873 // It's an unknown constraint for us. Let generic code have a go.
2874 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2875}
2876
2877std::pair<unsigned, const TargetRegisterClass*>
Tim Northoverdfe076a2013-02-05 13:24:56 +00002878AArch64TargetLowering::getRegForInlineAsmConstraint(
2879 const std::string &Constraint,
2880 EVT VT) const {
Tim Northover72062f52013-01-31 12:12:40 +00002881 if (Constraint.size() == 1) {
2882 switch (Constraint[0]) {
2883 case 'r':
2884 if (VT.getSizeInBits() <= 32)
2885 return std::make_pair(0U, &AArch64::GPR32RegClass);
2886 else if (VT == MVT::i64)
2887 return std::make_pair(0U, &AArch64::GPR64RegClass);
2888 break;
2889 case 'w':
2890 if (VT == MVT::f16)
2891 return std::make_pair(0U, &AArch64::FPR16RegClass);
2892 else if (VT == MVT::f32)
2893 return std::make_pair(0U, &AArch64::FPR32RegClass);
2894 else if (VT == MVT::f64)
2895 return std::make_pair(0U, &AArch64::FPR64RegClass);
2896 else if (VT.getSizeInBits() == 64)
2897 return std::make_pair(0U, &AArch64::VPR64RegClass);
2898 else if (VT == MVT::f128)
2899 return std::make_pair(0U, &AArch64::FPR128RegClass);
2900 else if (VT.getSizeInBits() == 128)
2901 return std::make_pair(0U, &AArch64::VPR128RegClass);
2902 break;
2903 }
2904 }
2905
2906 // Use the default implementation in TargetLowering to convert the register
2907 // constraint into a member of a register class.
2908 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2909}