blob: c7aaed969e47a0d0e8285c83fc959003bc50cc5c [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// Register - You should define one instance of this class for each register
25// in the target machine. String n will become the "name" of the register.
26class Register<string n> {
27 string Namespace = "";
28 string Name = n;
29
30 // SpillSize - If this value is set to a non-zero value, it is the size in
31 // bits of the spill slot required to hold this register. If this value is
32 // set to zero, the information is inferred from any register classes the
33 // register belongs to.
34 int SpillSize = 0;
35
36 // SpillAlignment - This value is used to specify the alignment required for
37 // spilling the register. Like SpillSize, this should only be explicitly
38 // specified if the register is not in a register class.
39 int SpillAlignment = 0;
40
41 // Aliases - A list of registers that this register overlaps with. A read or
42 // modification of this register can potentially read or modify the aliased
43 // registers.
44 list<Register> Aliases = [];
45
46 // SubRegs - A list of registers that are parts of this register. Note these
47 // are "immediate" sub-registers and the registers within the list do not
48 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
49 // not [AX, AH, AL].
50 list<Register> SubRegs = [];
51
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +000052 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053 // These values can be determined by locating the <target>.h file in the
54 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
55 // order of these names correspond to the enumeration used by gcc. A value of
56 // -1 indicates that the gcc number is undefined.
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +000057 list<int> DwarfNumbers = [];
Dan Gohmanf17a25c2007-07-18 16:29:46 +000058}
59
60// RegisterWithSubRegs - This can be used to define instances of Register which
61// need to specify sub-registers.
62// List "subregs" specifies which registers are sub-registers to this one. This
63// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
64// This allows the code generator to be careful not to put two values with
65// overlapping live ranges into registers which alias.
66class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
67 let SubRegs = subregs;
68}
69
70// SubRegSet - This can be used to define a specific mapping of registers to
71// indices, for use as named subregs of a particular physical register. Each
72// register in 'subregs' becomes an addressable subregister at index 'n' of the
73// corresponding register in 'regs'.
74class SubRegSet<int n, list<Register> regs, list<Register> subregs> {
75 int index = n;
76
77 list<Register> From = regs;
78 list<Register> To = subregs;
79}
80
81// RegisterClass - Now that all of the registers are defined, and aliases
82// between registers are defined, specify which registers belong to which
83// register classes. This also defines the default allocation order of
84// registers by register allocators.
85//
86class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
87 list<Register> regList> {
88 string Namespace = namespace;
89
90 // RegType - Specify the list ValueType of the registers in this register
91 // class. Note that all registers in a register class must have the same
92 // ValueTypes. This is a list because some targets permit storing different
93 // types in same register, for example vector values with 128-bit total size,
94 // but different count/size of items, like SSE on x86.
95 //
96 list<ValueType> RegTypes = regTypes;
97
98 // Size - Specify the spill size in bits of the registers. A default value of
99 // zero lets tablgen pick an appropriate size.
100 int Size = 0;
101
102 // Alignment - Specify the alignment required of the registers when they are
103 // stored or loaded to memory.
104 //
105 int Alignment = alignment;
106
Evan Cheng77ac1822007-09-19 01:35:01 +0000107 // CopyCost - This value is used to specify the cost of copying a value
108 // between two registers in this register class. The default value is one
109 // meaning it takes a single instruction to perform the copying. A negative
110 // value means copying is extremely expensive or impossible.
111 int CopyCost = 1;
112
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000113 // MemberList - Specify which registers are in this class. If the
114 // allocation_order_* method are not specified, this also defines the order of
115 // allocation used by the register allocator.
116 //
117 list<Register> MemberList = regList;
118
119 // SubClassList - Specify which register classes correspond to subregisters
120 // of this class. The order should be by subregister set index.
121 list<RegisterClass> SubRegClassList = [];
122
123 // MethodProtos/MethodBodies - These members can be used to insert arbitrary
124 // code into a generated register class. The normal usage of this is to
125 // overload virtual methods.
126 code MethodProtos = [{}];
127 code MethodBodies = [{}];
128}
129
130
131//===----------------------------------------------------------------------===//
132// DwarfRegNum - This class provides a mapping of the llvm register enumeration
133// to the register numbering used by gcc and gdb. These values are used by a
134// debug information writer (ex. DwarfWriter) to describe where values may be
135// located during execution.
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +0000136class DwarfRegNum<list<int> Numbers> {
137 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138 // These values can be determined by locating the <target>.h file in the
139 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
140 // order of these names correspond to the enumeration used by gcc. A value of
141 // -1 indicates that the gcc number is undefined.
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +0000142 list<int> DwarfNumbers = Numbers;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000143}
144
145//===----------------------------------------------------------------------===//
146// Pull in the common support for scheduling
147//
148include "TargetSchedule.td"
149
150class Predicate; // Forward def
151
152//===----------------------------------------------------------------------===//
153// Instruction set description - These classes correspond to the C++ classes in
154// the Target/TargetInstrInfo.h file.
155//
156class Instruction {
157 string Name = ""; // The opcode string for this instruction
158 string Namespace = "";
159
Evan Chengb783fa32007-07-19 01:14:50 +0000160 dag OutOperandList; // An dag containing the MI def operand list.
161 dag InOperandList; // An dag containing the MI use operand list.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 string AsmString = ""; // The .s format to print the instruction with.
163
164 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
165 // otherwise, uninitialized.
166 list<dag> Pattern;
167
168 // The follow state will eventually be inferred automatically from the
169 // instruction pattern.
170
171 list<Register> Uses = []; // Default to using no non-operand registers
172 list<Register> Defs = []; // Default to modifying no non-operand registers
173
174 // Predicates - List of predicates which will be turned into isel matching
175 // code.
176 list<Predicate> Predicates = [];
177
178 // Code size.
179 int CodeSize = 0;
180
181 // Added complexity passed onto matching pattern.
182 int AddedComplexity = 0;
183
184 // These bits capture information about the high-level semantics of the
185 // instruction.
186 bit isReturn = 0; // Is this instruction a return instruction?
187 bit isBranch = 0; // Is this instruction a branch instruction?
188 bit isBarrier = 0; // Can control flow fall through this instruction?
189 bit isCall = 0; // Is this instruction a call instruction?
190 bit isLoad = 0; // Is this instruction a load instruction?
191 bit isStore = 0; // Is this instruction a store instruction?
192 bit isTwoAddress = 0; // Is this a two address instruction?
193 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
194 bit isCommutable = 0; // Is this 3 operand instruction commutable?
195 bit isTerminator = 0; // Is this part of the terminator for a basic block?
196 bit isReMaterializable = 0; // Is this instruction re-materializable?
197 bit isPredicable = 0; // Is this instruction predicable?
198 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
199 bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.
200 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
202
203 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
204
205 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
206
207 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
208 /// be encoded into the output machineinstr.
209 string DisableEncoding = "";
210}
211
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000212/// Predicates - These are extra conditionals which are turned into instruction
213/// selector matching code. Currently each predicate is just a string.
214class Predicate<string cond> {
215 string CondString = cond;
216}
217
218/// NoHonorSignDependentRounding - This predicate is true if support for
219/// sign-dependent-rounding is not enabled.
220def NoHonorSignDependentRounding
221 : Predicate<"!HonorSignDependentRoundingFPMath()">;
222
223class Requires<list<Predicate> preds> {
224 list<Predicate> Predicates = preds;
225}
226
227/// ops definition - This is just a simple marker used to identify the operands
Evan Chengb783fa32007-07-19 01:14:50 +0000228/// list for an instruction. outs and ins are identical both syntatically and
229/// semantically, they are used to define def operands and use operands to
230/// improve readibility. This should be used like this:
231/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000232def ops;
Evan Chengb783fa32007-07-19 01:14:50 +0000233def outs;
234def ins;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235
236/// variable_ops definition - Mark this instruction as taking a variable number
237/// of operands.
238def variable_ops;
239
240/// ptr_rc definition - Mark this operand as being a pointer value whose
241/// register class is resolved dynamically via a callback to TargetInstrInfo.
242/// FIXME: We should probably change this to a class which contain a list of
243/// flags. But currently we have but one flag.
244def ptr_rc;
245
246/// Operand Types - These provide the built-in operand types that may be used
247/// by a target. Targets can optionally provide their own operand types as
248/// needed, though this should not be needed for RISC targets.
249class Operand<ValueType ty> {
250 ValueType Type = ty;
251 string PrintMethod = "printOperand";
252 dag MIOperandInfo = (ops);
253}
254
255def i1imm : Operand<i1>;
256def i8imm : Operand<i8>;
257def i16imm : Operand<i16>;
258def i32imm : Operand<i32>;
259def i64imm : Operand<i64>;
260
261/// zero_reg definition - Special node to stand for the zero register.
262///
263def zero_reg;
264
265/// PredicateOperand - This can be used to define a predicate operand for an
266/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
267/// AlwaysVal specifies the value of this predicate when set to "always
268/// execute".
269class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
270 : Operand<ty> {
271 let MIOperandInfo = OpTypes;
272 dag DefaultOps = AlwaysVal;
273}
274
275/// OptionalDefOperand - This is used to define a optional definition operand
276/// for an instruction. DefaultOps is the register the operand represents if none
277/// is supplied, e.g. zero_reg.
278class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
279 : Operand<ty> {
280 let MIOperandInfo = OpTypes;
281 dag DefaultOps = defaultops;
282}
283
284
285// InstrInfo - This class should only be instantiated once to provide parameters
286// which are global to the the target machine.
287//
288class InstrInfo {
289 // If the target wants to associate some target-specific information with each
290 // instruction, it should provide these two lists to indicate how to assemble
291 // the target specific information into the 32 bits available.
292 //
293 list<string> TSFlagsFields = [];
294 list<int> TSFlagsShifts = [];
295
296 // Target can specify its instructions in either big or little-endian formats.
297 // For instance, while both Sparc and PowerPC are big-endian platforms, the
298 // Sparc manual specifies its instructions in the format [31..0] (big), while
299 // PowerPC specifies them using the format [0..31] (little).
300 bit isLittleEndianEncoding = 0;
301}
302
303// Standard Instructions.
304def PHI : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000305 let OutOperandList = (ops);
306 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307 let AsmString = "PHINODE";
308 let Namespace = "TargetInstrInfo";
309}
310def INLINEASM : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000311 let OutOperandList = (ops);
312 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000313 let AsmString = "";
314 let Namespace = "TargetInstrInfo";
315}
316def LABEL : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000317 let OutOperandList = (ops);
318 let InOperandList = (ops i32imm:$id);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000319 let AsmString = "";
320 let Namespace = "TargetInstrInfo";
321 let hasCtrlDep = 1;
322}
Christopher Lamb071a2a72007-07-26 07:48:21 +0000323def EXTRACT_SUBREG : Instruction {
324 let OutOperandList = (ops variable_ops);
325 let InOperandList = (ops variable_ops);
326 let AsmString = "";
327 let Namespace = "TargetInstrInfo";
328}
329def INSERT_SUBREG : Instruction {
330 let OutOperandList = (ops variable_ops);
331 let InOperandList = (ops variable_ops);
332 let AsmString = "";
333 let Namespace = "TargetInstrInfo";
334}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335
336//===----------------------------------------------------------------------===//
337// AsmWriter - This class can be implemented by targets that need to customize
338// the format of the .s file writer.
339//
340// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
341// on X86 for example).
342//
343class AsmWriter {
344 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
345 // class. Generated AsmWriter classes are always prefixed with the target
346 // name.
347 string AsmWriterClassName = "AsmPrinter";
348
349 // InstFormatName - AsmWriters can specify the name of the format string to
350 // print instructions with.
351 string InstFormatName = "AsmString";
352
353 // Variant - AsmWriters can be of multiple different variants. Variants are
354 // used to support targets that need to emit assembly code in ways that are
355 // mostly the same for different targets, but have minor differences in
356 // syntax. If the asmstring contains {|} characters in them, this integer
357 // will specify which alternative to use. For example "{x|y|z}" with Variant
358 // == 1, will expand to "y".
359 int Variant = 0;
360}
361def DefaultAsmWriter : AsmWriter;
362
363
364//===----------------------------------------------------------------------===//
365// Target - This class contains the "global" target information
366//
367class Target {
368 // InstructionSet - Instruction set description for this target.
369 InstrInfo InstructionSet;
370
371 // AssemblyWriters - The AsmWriter instances available for this target.
372 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
373}
374
375//===----------------------------------------------------------------------===//
376// SubtargetFeature - A characteristic of the chip set.
377//
378class SubtargetFeature<string n, string a, string v, string d,
379 list<SubtargetFeature> i = []> {
380 // Name - Feature name. Used by command line (-mattr=) to determine the
381 // appropriate target chip.
382 //
383 string Name = n;
384
385 // Attribute - Attribute to be set by feature.
386 //
387 string Attribute = a;
388
389 // Value - Value the attribute to be set to by feature.
390 //
391 string Value = v;
392
393 // Desc - Feature description. Used by command line (-mattr=) to display help
394 // information.
395 //
396 string Desc = d;
397
398 // Implies - Features that this feature implies are present. If one of those
399 // features isn't set, then this one shouldn't be set either.
400 //
401 list<SubtargetFeature> Implies = i;
402}
403
404//===----------------------------------------------------------------------===//
405// Processor chip sets - These values represent each of the chip sets supported
406// by the scheduler. Each Processor definition requires corresponding
407// instruction itineraries.
408//
409class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
410 // Name - Chip set name. Used by command line (-mcpu=) to determine the
411 // appropriate target chip.
412 //
413 string Name = n;
414
415 // ProcItin - The scheduling information for the target processor.
416 //
417 ProcessorItineraries ProcItin = pi;
418
419 // Features - list of
420 list<SubtargetFeature> Features = f;
421}
422
423//===----------------------------------------------------------------------===//
424// Pull in the common support for calling conventions.
425//
426include "TargetCallingConv.td"
427
428//===----------------------------------------------------------------------===//
429// Pull in the common support for DAG isel generation.
430//
431include "TargetSelectionDAG.td"