blob: 9532e1e160bed1329ae36b180259a698ab40ce9f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +000017#include "llvm/ADT/StringRef.h"
Ted Kremenek109de0d2008-01-19 04:23:33 +000018#include "llvm/ADT/FoldingSet.h"
Chris Lattner89b36582008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/Support/Debug.h"
Edwin Török675d5622009-07-11 20:10:48 +000021#include "llvm/Support/ErrorHandling.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Support/MathExtras.h"
Chris Lattner1fefaac2008-08-23 22:23:09 +000023#include "llvm/Support/raw_ostream.h"
Chris Lattner89b36582008-08-17 07:19:36 +000024#include <cmath>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include <limits>
26#include <cstring>
27#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028using namespace llvm;
29
30/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000032inline static uint64_t* getClearedMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
37}
38
Eric Christopher017fc252009-08-21 04:06:45 +000039/// A utility function for allocating memory and checking for allocation
Dan Gohmanf17a25c2007-07-18 16:29:46 +000040/// failure. The content is not zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000041inline static uint64_t* getMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000042 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
45}
46
Erick Tryzelaar15a448f2009-08-21 03:15:28 +000047/// A utility function that converts a character to a digit.
48inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar5c4ea882009-08-21 06:48:37 +000049 unsigned r;
50
Erick Tryzelaar15a448f2009-08-21 03:15:28 +000051 if (radix == 16) {
Erick Tryzelaar5c4ea882009-08-21 06:48:37 +000052 r = cdigit - '0';
53 if (r <= 9)
54 return r;
55
56 r = cdigit - 'A';
57 if (r <= 5)
58 return r + 10;
59
60 r = cdigit - 'a';
61 if (r <= 5)
62 return r + 10;
Erick Tryzelaar15a448f2009-08-21 03:15:28 +000063 }
64
Erick Tryzelaar5c4ea882009-08-21 06:48:37 +000065 r = cdigit - '0';
66 if (r < radix)
67 return r;
68
69 return -1U;
Erick Tryzelaar15a448f2009-08-21 03:15:28 +000070}
71
72
Chris Lattneree5417c2009-01-21 18:09:24 +000073void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner84886852008-08-20 17:02:31 +000074 pVal = getClearedMemory(getNumWords());
75 pVal[0] = val;
Eric Christopher017fc252009-08-21 04:06:45 +000076 if (isSigned && int64_t(val) < 0)
Chris Lattner84886852008-08-20 17:02:31 +000077 for (unsigned i = 1; i < getNumWords(); ++i)
78 pVal[i] = -1ULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000079}
80
Chris Lattnera1f63bb2008-10-11 22:07:19 +000081void APInt::initSlowCase(const APInt& that) {
82 pVal = getMemory(getNumWords());
83 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
84}
85
86
Chris Lattneree5417c2009-01-21 18:09:24 +000087APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner1fefaac2008-08-23 22:23:09 +000088 : BitWidth(numBits), VAL(0) {
Erick Tryzelaara3c44c92009-08-21 03:15:14 +000089 assert(BitWidth && "Bitwidth too small");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090 assert(bigVal && "Null pointer detected!");
91 if (isSingleWord())
92 VAL = bigVal[0];
93 else {
94 // Get memory, cleared to 0
95 pVal = getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
Chris Lattneree5417c2009-01-21 18:09:24 +000097 unsigned words = std::min<unsigned>(numWords, getNumWords());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000098 // Copy the words from bigVal to pVal
99 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
100 }
101 // Make sure unused high bits are cleared
102 clearUnusedBits();
103}
104
Eric Christopher017fc252009-08-21 04:06:45 +0000105APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000106 : BitWidth(numbits), VAL(0) {
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000107 assert(BitWidth && "Bitwidth too small");
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000108 fromString(numbits, Str, radix);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109}
110
Chris Lattner84886852008-08-20 17:02:31 +0000111APInt& APInt::AssignSlowCase(const APInt& RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000112 // Don't do anything for X = X
113 if (this == &RHS)
114 return *this;
115
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner84886852008-08-20 17:02:31 +0000117 // assume same bit-width single-word case is already handled
118 assert(!isSingleWord());
119 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120 return *this;
121 }
122
Chris Lattner84886852008-08-20 17:02:31 +0000123 if (isSingleWord()) {
124 // assume case where both are single words is already handled
125 assert(!RHS.isSingleWord());
126 VAL = 0;
127 pVal = getMemory(RHS.getNumWords());
128 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Eric Christopher017fc252009-08-21 04:06:45 +0000129 } else if (getNumWords() == RHS.getNumWords())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000130 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
131 else if (RHS.isSingleWord()) {
132 delete [] pVal;
133 VAL = RHS.VAL;
134 } else {
135 delete [] pVal;
136 pVal = getMemory(RHS.getNumWords());
137 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
138 }
139 BitWidth = RHS.BitWidth;
140 return clearUnusedBits();
141}
142
143APInt& APInt::operator=(uint64_t RHS) {
Eric Christopher017fc252009-08-21 04:06:45 +0000144 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145 VAL = RHS;
146 else {
147 pVal[0] = RHS;
148 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
149 }
150 return clearUnusedBits();
151}
152
Ted Kremenek109de0d2008-01-19 04:23:33 +0000153/// Profile - This method 'profiles' an APInt for use with FoldingSet.
154void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek79f65912008-02-19 20:50:41 +0000155 ID.AddInteger(BitWidth);
Eric Christopher017fc252009-08-21 04:06:45 +0000156
Ted Kremenek109de0d2008-01-19 04:23:33 +0000157 if (isSingleWord()) {
158 ID.AddInteger(VAL);
159 return;
160 }
161
Chris Lattneree5417c2009-01-21 18:09:24 +0000162 unsigned NumWords = getNumWords();
Ted Kremenek109de0d2008-01-19 04:23:33 +0000163 for (unsigned i = 0; i < NumWords; ++i)
164 ID.AddInteger(pVal[i]);
165}
166
Eric Christopher017fc252009-08-21 04:06:45 +0000167/// add_1 - This function adds a single "digit" integer, y, to the multiple
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000168/// "digit" integer array, x[]. x[] is modified to reflect the addition and
169/// 1 is returned if there is a carry out, otherwise 0 is returned.
170/// @returns the carry of the addition.
Chris Lattneree5417c2009-01-21 18:09:24 +0000171static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
172 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000173 dest[i] = y + x[i];
174 if (dest[i] < y)
175 y = 1; // Carry one to next digit.
176 else {
177 y = 0; // No need to carry so exit early
178 break;
179 }
180 }
181 return y;
182}
183
184/// @brief Prefix increment operator. Increments the APInt by one.
185APInt& APInt::operator++() {
Eric Christopher017fc252009-08-21 04:06:45 +0000186 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187 ++VAL;
188 else
189 add_1(pVal, pVal, getNumWords(), 1);
190 return clearUnusedBits();
191}
192
Eric Christopher017fc252009-08-21 04:06:45 +0000193/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
194/// the multi-digit integer array, x[], propagating the borrowed 1 value until
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000195/// no further borrowing is neeeded or it runs out of "digits" in x. The result
196/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
197/// In other words, if y > x then this function returns 1, otherwise 0.
198/// @returns the borrow out of the subtraction
Chris Lattneree5417c2009-01-21 18:09:24 +0000199static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
200 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201 uint64_t X = x[i];
202 x[i] -= y;
Eric Christopher017fc252009-08-21 04:06:45 +0000203 if (y > X)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000204 y = 1; // We have to "borrow 1" from next "digit"
205 else {
206 y = 0; // No need to borrow
207 break; // Remaining digits are unchanged so exit early
208 }
209 }
210 return bool(y);
211}
212
213/// @brief Prefix decrement operator. Decrements the APInt by one.
214APInt& APInt::operator--() {
Eric Christopher017fc252009-08-21 04:06:45 +0000215 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 --VAL;
217 else
218 sub_1(pVal, getNumWords(), 1);
219 return clearUnusedBits();
220}
221
222/// add - This function adds the integer array x to the integer array Y and
Eric Christopher017fc252009-08-21 04:06:45 +0000223/// places the result in dest.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224/// @returns the carry out from the addition
225/// @brief General addition of 64-bit integer arrays
Eric Christopher017fc252009-08-21 04:06:45 +0000226static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000227 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000229 for (unsigned i = 0; i< len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000230 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
231 dest[i] = x[i] + y[i] + carry;
232 carry = dest[i] < limit || (carry && dest[i] == limit);
233 }
234 return carry;
235}
236
237/// Adds the RHS APint to this APInt.
238/// @returns this, after addition of RHS.
Eric Christopher017fc252009-08-21 04:06:45 +0000239/// @brief Addition assignment operator.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240APInt& APInt::operator+=(const APInt& RHS) {
241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher017fc252009-08-21 04:06:45 +0000242 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 VAL += RHS.VAL;
244 else {
245 add(pVal, pVal, RHS.pVal, getNumWords());
246 }
247 return clearUnusedBits();
248}
249
Eric Christopher017fc252009-08-21 04:06:45 +0000250/// Subtracts the integer array y from the integer array x
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000251/// @returns returns the borrow out.
252/// @brief Generalized subtraction of 64-bit integer arrays.
Eric Christopher017fc252009-08-21 04:06:45 +0000253static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000254 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000255 bool borrow = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000256 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000257 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
258 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
259 dest[i] = x_tmp - y[i];
260 }
261 return borrow;
262}
263
264/// Subtracts the RHS APInt from this APInt
265/// @returns this, after subtraction
Eric Christopher017fc252009-08-21 04:06:45 +0000266/// @brief Subtraction assignment operator.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267APInt& APInt::operator-=(const APInt& RHS) {
268 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher017fc252009-08-21 04:06:45 +0000269 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000270 VAL -= RHS.VAL;
271 else
272 sub(pVal, pVal, RHS.pVal, getNumWords());
273 return clearUnusedBits();
274}
275
276/// Multiplies an integer array, x by a a uint64_t integer and places the result
Eric Christopher017fc252009-08-21 04:06:45 +0000277/// into dest.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278/// @returns the carry out of the multiplication.
279/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattneree5417c2009-01-21 18:09:24 +0000280static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000281 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
282 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
283 uint64_t carry = 0;
284
285 // For each digit of x.
Chris Lattneree5417c2009-01-21 18:09:24 +0000286 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000287 // Split x into high and low words
288 uint64_t lx = x[i] & 0xffffffffULL;
289 uint64_t hx = x[i] >> 32;
290 // hasCarry - A flag to indicate if there is a carry to the next digit.
291 // hasCarry == 0, no carry
292 // hasCarry == 1, has carry
293 // hasCarry == 2, no carry and the calculation result == 0.
294 uint8_t hasCarry = 0;
295 dest[i] = carry + lx * ly;
296 // Determine if the add above introduces carry.
297 hasCarry = (dest[i] < carry) ? 1 : 0;
298 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
Eric Christopher017fc252009-08-21 04:06:45 +0000299 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000300 // (2^32 - 1) + 2^32 = 2^64.
301 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
302
303 carry += (lx * hy) & 0xffffffffULL;
304 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
Eric Christopher017fc252009-08-21 04:06:45 +0000305 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000306 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
307 }
308 return carry;
309}
310
Eric Christopher017fc252009-08-21 04:06:45 +0000311/// Multiplies integer array x by integer array y and stores the result into
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000312/// the integer array dest. Note that dest's size must be >= xlen + ylen.
313/// @brief Generalized multiplicate of integer arrays.
Chris Lattneree5417c2009-01-21 18:09:24 +0000314static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
315 unsigned ylen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000316 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattneree5417c2009-01-21 18:09:24 +0000317 for (unsigned i = 1; i < ylen; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000318 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
319 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +0000320 for (unsigned j = 0; j < xlen; ++j) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321 lx = x[j] & 0xffffffffULL;
322 hx = x[j] >> 32;
323 // hasCarry - A flag to indicate if has carry.
324 // hasCarry == 0, no carry
325 // hasCarry == 1, has carry
326 // hasCarry == 2, no carry and the calculation result == 0.
327 uint8_t hasCarry = 0;
328 uint64_t resul = carry + lx * ly;
329 hasCarry = (resul < carry) ? 1 : 0;
330 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
331 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
332
333 carry += (lx * hy) & 0xffffffffULL;
334 resul = (carry << 32) | (resul & 0xffffffffULL);
335 dest[i+j] += resul;
336 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
Eric Christopher017fc252009-08-21 04:06:45 +0000337 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338 ((lx * hy) >> 32) + hx * hy;
339 }
340 dest[i+xlen] = carry;
341 }
342}
343
344APInt& APInt::operator*=(const APInt& RHS) {
345 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
346 if (isSingleWord()) {
347 VAL *= RHS.VAL;
348 clearUnusedBits();
349 return *this;
350 }
351
352 // Get some bit facts about LHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000353 unsigned lhsBits = getActiveBits();
354 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Eric Christopher017fc252009-08-21 04:06:45 +0000355 if (!lhsWords)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000356 // 0 * X ===> 0
357 return *this;
358
359 // Get some bit facts about RHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000360 unsigned rhsBits = RHS.getActiveBits();
361 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362 if (!rhsWords) {
363 // X * 0 ===> 0
364 clear();
365 return *this;
366 }
367
368 // Allocate space for the result
Chris Lattneree5417c2009-01-21 18:09:24 +0000369 unsigned destWords = rhsWords + lhsWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000370 uint64_t *dest = getMemory(destWords);
371
372 // Perform the long multiply
373 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
374
375 // Copy result back into *this
376 clear();
Chris Lattneree5417c2009-01-21 18:09:24 +0000377 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000378 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
379
380 // delete dest array and return
381 delete[] dest;
382 return *this;
383}
384
385APInt& APInt::operator&=(const APInt& RHS) {
386 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
387 if (isSingleWord()) {
388 VAL &= RHS.VAL;
389 return *this;
390 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000391 unsigned numWords = getNumWords();
392 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393 pVal[i] &= RHS.pVal[i];
394 return *this;
395}
396
397APInt& APInt::operator|=(const APInt& RHS) {
398 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
399 if (isSingleWord()) {
400 VAL |= RHS.VAL;
401 return *this;
402 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000403 unsigned numWords = getNumWords();
404 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 pVal[i] |= RHS.pVal[i];
406 return *this;
407}
408
409APInt& APInt::operator^=(const APInt& RHS) {
410 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
411 if (isSingleWord()) {
412 VAL ^= RHS.VAL;
413 this->clearUnusedBits();
414 return *this;
Eric Christopher017fc252009-08-21 04:06:45 +0000415 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000416 unsigned numWords = getNumWords();
417 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 pVal[i] ^= RHS.pVal[i];
419 return clearUnusedBits();
420}
421
Chris Lattner84886852008-08-20 17:02:31 +0000422APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000423 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000424 uint64_t* val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000425 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 val[i] = pVal[i] & RHS.pVal[i];
427 return APInt(val, getBitWidth());
428}
429
Chris Lattner84886852008-08-20 17:02:31 +0000430APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000431 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000433 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434 val[i] = pVal[i] | RHS.pVal[i];
435 return APInt(val, getBitWidth());
436}
437
Chris Lattner84886852008-08-20 17:02:31 +0000438APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000439 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000441 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442 val[i] = pVal[i] ^ RHS.pVal[i];
443
444 // 0^0==1 so clear the high bits in case they got set.
445 return APInt(val, getBitWidth()).clearUnusedBits();
446}
447
448bool APInt::operator !() const {
449 if (isSingleWord())
450 return !VAL;
451
Chris Lattneree5417c2009-01-21 18:09:24 +0000452 for (unsigned i = 0; i < getNumWords(); ++i)
Eric Christopher017fc252009-08-21 04:06:45 +0000453 if (pVal[i])
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000454 return false;
455 return true;
456}
457
458APInt APInt::operator*(const APInt& RHS) const {
459 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
460 if (isSingleWord())
461 return APInt(BitWidth, VAL * RHS.VAL);
462 APInt Result(*this);
463 Result *= RHS;
464 return Result.clearUnusedBits();
465}
466
467APInt APInt::operator+(const APInt& RHS) const {
468 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
469 if (isSingleWord())
470 return APInt(BitWidth, VAL + RHS.VAL);
471 APInt Result(BitWidth, 0);
472 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
473 return Result.clearUnusedBits();
474}
475
476APInt APInt::operator-(const APInt& RHS) const {
477 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
478 if (isSingleWord())
479 return APInt(BitWidth, VAL - RHS.VAL);
480 APInt Result(BitWidth, 0);
481 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
482 return Result.clearUnusedBits();
483}
484
Chris Lattneree5417c2009-01-21 18:09:24 +0000485bool APInt::operator[](unsigned bitPosition) const {
Eric Christopher017fc252009-08-21 04:06:45 +0000486 return (maskBit(bitPosition) &
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000487 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
488}
489
Chris Lattner84886852008-08-20 17:02:31 +0000490bool APInt::EqualSlowCase(const APInt& RHS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000491 // Get some facts about the number of bits used in the two operands.
Chris Lattneree5417c2009-01-21 18:09:24 +0000492 unsigned n1 = getActiveBits();
493 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000494
495 // If the number of bits isn't the same, they aren't equal
Eric Christopher017fc252009-08-21 04:06:45 +0000496 if (n1 != n2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000497 return false;
498
499 // If the number of bits fits in a word, we only need to compare the low word.
500 if (n1 <= APINT_BITS_PER_WORD)
501 return pVal[0] == RHS.pVal[0];
502
503 // Otherwise, compare everything
504 for (int i = whichWord(n1 - 1); i >= 0; --i)
Eric Christopher017fc252009-08-21 04:06:45 +0000505 if (pVal[i] != RHS.pVal[i])
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000506 return false;
507 return true;
508}
509
Chris Lattner84886852008-08-20 17:02:31 +0000510bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000511 unsigned n = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000512 if (n <= APINT_BITS_PER_WORD)
513 return pVal[0] == Val;
514 else
515 return false;
516}
517
518bool APInt::ult(const APInt& RHS) const {
519 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
520 if (isSingleWord())
521 return VAL < RHS.VAL;
522
523 // Get active bit length of both operands
Chris Lattneree5417c2009-01-21 18:09:24 +0000524 unsigned n1 = getActiveBits();
525 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000526
527 // If magnitude of LHS is less than RHS, return true.
528 if (n1 < n2)
529 return true;
530
531 // If magnitude of RHS is greather than LHS, return false.
532 if (n2 < n1)
533 return false;
534
535 // If they bot fit in a word, just compare the low order word
536 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
537 return pVal[0] < RHS.pVal[0];
538
539 // Otherwise, compare all words
Chris Lattneree5417c2009-01-21 18:09:24 +0000540 unsigned topWord = whichWord(std::max(n1,n2)-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000541 for (int i = topWord; i >= 0; --i) {
Eric Christopher017fc252009-08-21 04:06:45 +0000542 if (pVal[i] > RHS.pVal[i])
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543 return false;
Eric Christopher017fc252009-08-21 04:06:45 +0000544 if (pVal[i] < RHS.pVal[i])
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000545 return true;
546 }
547 return false;
548}
549
550bool APInt::slt(const APInt& RHS) const {
551 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
552 if (isSingleWord()) {
553 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
554 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
555 return lhsSext < rhsSext;
556 }
557
558 APInt lhs(*this);
559 APInt rhs(RHS);
560 bool lhsNeg = isNegative();
561 bool rhsNeg = rhs.isNegative();
562 if (lhsNeg) {
563 // Sign bit is set so perform two's complement to make it positive
564 lhs.flip();
565 lhs++;
566 }
567 if (rhsNeg) {
568 // Sign bit is set so perform two's complement to make it positive
569 rhs.flip();
570 rhs++;
571 }
572
573 // Now we have unsigned values to compare so do the comparison if necessary
574 // based on the negativeness of the values.
575 if (lhsNeg)
576 if (rhsNeg)
577 return lhs.ugt(rhs);
578 else
579 return true;
580 else if (rhsNeg)
581 return false;
Eric Christopher017fc252009-08-21 04:06:45 +0000582 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000583 return lhs.ult(rhs);
584}
585
Chris Lattneree5417c2009-01-21 18:09:24 +0000586APInt& APInt::set(unsigned bitPosition) {
Eric Christopher017fc252009-08-21 04:06:45 +0000587 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000588 VAL |= maskBit(bitPosition);
Eric Christopher017fc252009-08-21 04:06:45 +0000589 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000590 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
591 return *this;
592}
593
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000594/// Set the given bit to 0 whose position is given as "bitPosition".
595/// @brief Set a given bit to 0.
Chris Lattneree5417c2009-01-21 18:09:24 +0000596APInt& APInt::clear(unsigned bitPosition) {
Eric Christopher017fc252009-08-21 04:06:45 +0000597 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000598 VAL &= ~maskBit(bitPosition);
Eric Christopher017fc252009-08-21 04:06:45 +0000599 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000600 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
601 return *this;
602}
603
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000604/// @brief Toggle every bit to its opposite value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000605
Eric Christopher017fc252009-08-21 04:06:45 +0000606/// Toggle a given bit to its opposite value whose position is given
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000607/// as "bitPosition".
608/// @brief Toggles a given bit to its opposite value.
Chris Lattneree5417c2009-01-21 18:09:24 +0000609APInt& APInt::flip(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000610 assert(bitPosition < BitWidth && "Out of the bit-width range!");
611 if ((*this)[bitPosition]) clear(bitPosition);
612 else set(bitPosition);
613 return *this;
614}
615
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000616unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) {
617 assert(!str.empty() && "Invalid string length");
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000618 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
619 "Radix should be 2, 8, 10, or 16!");
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000620
621 size_t slen = str.size();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000622
Eric Christopher9a7fc4f2009-08-21 04:10:31 +0000623 // Each computation below needs to know if it's negative.
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000624 StringRef::iterator p = str.begin();
Eric Christopher9a7fc4f2009-08-21 04:10:31 +0000625 unsigned isNegative = *p == '-';
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000626 if (*p == '-' || *p == '+') {
627 p++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000628 slen--;
Eric Christopher9a7fc4f2009-08-21 04:10:31 +0000629 assert(slen && "String is only a sign, needs a value.");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000630 }
Eric Christopher9a7fc4f2009-08-21 04:10:31 +0000631
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000632 // For radixes of power-of-two values, the bits required is accurately and
633 // easily computed
634 if (radix == 2)
635 return slen + isNegative;
636 if (radix == 8)
637 return slen * 3 + isNegative;
638 if (radix == 16)
639 return slen * 4 + isNegative;
640
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000641 // This is grossly inefficient but accurate. We could probably do something
642 // with a computation of roughly slen*64/20 and then adjust by the value of
643 // the first few digits. But, I'm not sure how accurate that could be.
644
645 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaar15a448f2009-08-21 03:15:28 +0000646 // be too large. This avoids the assertion in the constructor. This
647 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
648 // bits in that case.
649 unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000650
651 // Convert to the actual binary value.
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000652 APInt tmp(sufficient, StringRef(p, slen), radix);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000653
Erick Tryzelaar15a448f2009-08-21 03:15:28 +0000654 // Compute how many bits are required. If the log is infinite, assume we need
655 // just bit.
656 unsigned log = tmp.logBase2();
657 if (log == (unsigned)-1) {
658 return isNegative + 1;
659 } else {
660 return isNegative + log + 1;
661 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000662}
663
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000664// From http://www.burtleburtle.net, byBob Jenkins.
665// When targeting x86, both GCC and LLVM seem to recognize this as a
666// rotate instruction.
667#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000668
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000669// From http://www.burtleburtle.net, by Bob Jenkins.
670#define mix(a,b,c) \
671 { \
672 a -= c; a ^= rot(c, 4); c += b; \
673 b -= a; b ^= rot(a, 6); a += c; \
674 c -= b; c ^= rot(b, 8); b += a; \
675 a -= c; a ^= rot(c,16); c += b; \
676 b -= a; b ^= rot(a,19); a += c; \
677 c -= b; c ^= rot(b, 4); b += a; \
678 }
679
680// From http://www.burtleburtle.net, by Bob Jenkins.
681#define final(a,b,c) \
682 { \
683 c ^= b; c -= rot(b,14); \
684 a ^= c; a -= rot(c,11); \
685 b ^= a; b -= rot(a,25); \
686 c ^= b; c -= rot(b,16); \
687 a ^= c; a -= rot(c,4); \
688 b ^= a; b -= rot(a,14); \
689 c ^= b; c -= rot(b,24); \
690 }
691
692// hashword() was adapted from http://www.burtleburtle.net, by Bob
693// Jenkins. k is a pointer to an array of uint32_t values; length is
694// the length of the key, in 32-bit chunks. This version only handles
695// keys that are a multiple of 32 bits in size.
696static inline uint32_t hashword(const uint64_t *k64, size_t length)
697{
698 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
699 uint32_t a,b,c;
700
701 /* Set up the internal state */
702 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
703
704 /*------------------------------------------------- handle most of the key */
705 while (length > 3)
706 {
707 a += k[0];
708 b += k[1];
709 c += k[2];
710 mix(a,b,c);
711 length -= 3;
712 k += 3;
713 }
714
715 /*------------------------------------------- handle the last 3 uint32_t's */
Mike Stump7134bb52009-05-13 23:23:20 +0000716 switch (length) { /* all the case statements fall through */
717 case 3 : c+=k[2];
718 case 2 : b+=k[1];
719 case 1 : a+=k[0];
720 final(a,b,c);
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000721 case 0: /* case 0: nothing left to add */
722 break;
723 }
724 /*------------------------------------------------------ report the result */
725 return c;
726}
727
728// hashword8() was adapted from http://www.burtleburtle.net, by Bob
729// Jenkins. This computes a 32-bit hash from one 64-bit word. When
730// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
731// function into about 35 instructions when inlined.
732static inline uint32_t hashword8(const uint64_t k64)
733{
734 uint32_t a,b,c;
735 a = b = c = 0xdeadbeef + 4;
736 b += k64 >> 32;
737 a += k64 & 0xffffffff;
738 final(a,b,c);
739 return c;
740}
741#undef final
742#undef mix
743#undef rot
744
745uint64_t APInt::getHashValue() const {
746 uint64_t hash;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000747 if (isSingleWord())
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000748 hash = hashword8(VAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000749 else
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000750 hash = hashword(pVal, getNumWords()*2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000751 return hash;
752}
753
754/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000755APInt APInt::getHiBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000756 return APIntOps::lshr(*this, BitWidth - numBits);
757}
758
759/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000760APInt APInt::getLoBits(unsigned numBits) const {
Eric Christopher017fc252009-08-21 04:06:45 +0000761 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000762 BitWidth - numBits);
763}
764
765bool APInt::isPowerOf2() const {
766 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
767}
768
Chris Lattneree5417c2009-01-21 18:09:24 +0000769unsigned APInt::countLeadingZerosSlowCase() const {
770 unsigned Count = 0;
771 for (unsigned i = getNumWords(); i > 0u; --i) {
Chris Lattner84886852008-08-20 17:02:31 +0000772 if (pVal[i-1] == 0)
773 Count += APINT_BITS_PER_WORD;
774 else {
775 Count += CountLeadingZeros_64(pVal[i-1]);
776 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000777 }
778 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000779 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000780 if (remainder)
781 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner00b08ce2007-11-23 22:42:31 +0000782 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000783}
784
Chris Lattneree5417c2009-01-21 18:09:24 +0000785static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
786 unsigned Count = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 if (skip)
788 V <<= skip;
789 while (V && (V & (1ULL << 63))) {
790 Count++;
791 V <<= 1;
792 }
793 return Count;
794}
795
Chris Lattneree5417c2009-01-21 18:09:24 +0000796unsigned APInt::countLeadingOnes() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000797 if (isSingleWord())
798 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
799
Chris Lattneree5417c2009-01-21 18:09:24 +0000800 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
edwinb95462a2009-01-27 18:06:03 +0000801 unsigned shift;
802 if (!highWordBits) {
803 highWordBits = APINT_BITS_PER_WORD;
804 shift = 0;
805 } else {
806 shift = APINT_BITS_PER_WORD - highWordBits;
807 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000808 int i = getNumWords() - 1;
Chris Lattneree5417c2009-01-21 18:09:24 +0000809 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000810 if (Count == highWordBits) {
811 for (i--; i >= 0; --i) {
812 if (pVal[i] == -1ULL)
813 Count += APINT_BITS_PER_WORD;
814 else {
815 Count += countLeadingOnes_64(pVal[i], 0);
816 break;
817 }
818 }
819 }
820 return Count;
821}
822
Chris Lattneree5417c2009-01-21 18:09:24 +0000823unsigned APInt::countTrailingZeros() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000824 if (isSingleWord())
Chris Lattneree5417c2009-01-21 18:09:24 +0000825 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
826 unsigned Count = 0;
827 unsigned i = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000828 for (; i < getNumWords() && pVal[i] == 0; ++i)
829 Count += APINT_BITS_PER_WORD;
830 if (i < getNumWords())
831 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000832 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000833}
834
Chris Lattneree5417c2009-01-21 18:09:24 +0000835unsigned APInt::countTrailingOnesSlowCase() const {
836 unsigned Count = 0;
837 unsigned i = 0;
Dan Gohmane4428412008-02-14 22:38:45 +0000838 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohmanf550d412008-02-13 21:11:05 +0000839 Count += APINT_BITS_PER_WORD;
840 if (i < getNumWords())
841 Count += CountTrailingOnes_64(pVal[i]);
842 return std::min(Count, BitWidth);
843}
844
Chris Lattneree5417c2009-01-21 18:09:24 +0000845unsigned APInt::countPopulationSlowCase() const {
846 unsigned Count = 0;
847 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000848 Count += CountPopulation_64(pVal[i]);
849 return Count;
850}
851
852APInt APInt::byteSwap() const {
853 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
854 if (BitWidth == 16)
855 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
856 else if (BitWidth == 32)
Chris Lattneree5417c2009-01-21 18:09:24 +0000857 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000858 else if (BitWidth == 48) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000859 unsigned Tmp1 = unsigned(VAL >> 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 Tmp1 = ByteSwap_32(Tmp1);
861 uint16_t Tmp2 = uint16_t(VAL);
862 Tmp2 = ByteSwap_16(Tmp2);
863 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
864 } else if (BitWidth == 64)
865 return APInt(BitWidth, ByteSwap_64(VAL));
866 else {
867 APInt Result(BitWidth, 0);
868 char *pByte = (char*)Result.pVal;
Chris Lattneree5417c2009-01-21 18:09:24 +0000869 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000870 char Tmp = pByte[i];
871 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
872 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
873 }
874 return Result;
875 }
876}
877
Eric Christopher017fc252009-08-21 04:06:45 +0000878APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000879 const APInt& API2) {
880 APInt A = API1, B = API2;
881 while (!!B) {
882 APInt T = B;
883 B = APIntOps::urem(A, B);
884 A = T;
885 }
886 return A;
887}
888
Chris Lattneree5417c2009-01-21 18:09:24 +0000889APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000890 union {
891 double D;
892 uint64_t I;
893 } T;
894 T.D = Double;
895
896 // Get the sign bit from the highest order bit
897 bool isNeg = T.I >> 63;
898
899 // Get the 11-bit exponent and adjust for the 1023 bit bias
900 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
901
902 // If the exponent is negative, the value is < 0 so just return 0.
903 if (exp < 0)
904 return APInt(width, 0u);
905
906 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
907 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
908
909 // If the exponent doesn't shift all bits out of the mantissa
910 if (exp < 52)
Eric Christopher017fc252009-08-21 04:06:45 +0000911 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000912 APInt(width, mantissa >> (52 - exp));
913
914 // If the client didn't provide enough bits for us to shift the mantissa into
915 // then the result is undefined, just return 0
916 if (width <= exp - 52)
917 return APInt(width, 0);
918
919 // Otherwise, we have to shift the mantissa bits up to the right location
920 APInt Tmp(width, mantissa);
Chris Lattneree5417c2009-01-21 18:09:24 +0000921 Tmp = Tmp.shl((unsigned)exp - 52);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000922 return isNeg ? -Tmp : Tmp;
923}
924
Dale Johannesene326f252009-08-12 18:04:11 +0000925/// RoundToDouble - This function converts this APInt to a double.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000926/// The layout for double is as following (IEEE Standard 754):
927/// --------------------------------------
928/// | Sign Exponent Fraction Bias |
929/// |-------------------------------------- |
930/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopher017fc252009-08-21 04:06:45 +0000931/// --------------------------------------
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000932double APInt::roundToDouble(bool isSigned) const {
933
934 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesene326f252009-08-12 18:04:11 +0000935 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000936 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
937 if (isSigned) {
Dale Johannesen25210cd2009-08-12 17:42:34 +0000938 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000939 return double(sext);
940 } else
Dale Johannesen25210cd2009-08-12 17:42:34 +0000941 return double(getWord(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000942 }
943
944 // Determine if the value is negative.
945 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
946
947 // Construct the absolute value if we're negative.
948 APInt Tmp(isNeg ? -(*this) : (*this));
949
950 // Figure out how many bits we're using.
Chris Lattneree5417c2009-01-21 18:09:24 +0000951 unsigned n = Tmp.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000952
953 // The exponent (without bias normalization) is just the number of bits
954 // we are using. Note that the sign bit is gone since we constructed the
955 // absolute value.
956 uint64_t exp = n;
957
958 // Return infinity for exponent overflow
959 if (exp > 1023) {
960 if (!isSigned || !isNeg)
961 return std::numeric_limits<double>::infinity();
Eric Christopher017fc252009-08-21 04:06:45 +0000962 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000963 return -std::numeric_limits<double>::infinity();
964 }
965 exp += 1023; // Increment for 1023 bias
966
967 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
968 // extract the high 52 bits from the correct words in pVal.
969 uint64_t mantissa;
970 unsigned hiWord = whichWord(n-1);
971 if (hiWord == 0) {
972 mantissa = Tmp.pVal[0];
973 if (n > 52)
974 mantissa >>= n - 52; // shift down, we want the top 52 bits.
975 } else {
976 assert(hiWord > 0 && "huh?");
977 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
978 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
979 mantissa = hibits | lobits;
980 }
981
982 // The leading bit of mantissa is implicit, so get rid of it.
983 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
984 union {
985 double D;
986 uint64_t I;
987 } T;
988 T.I = sign | (exp << 52) | mantissa;
989 return T.D;
990}
991
992// Truncate to new width.
Chris Lattneree5417c2009-01-21 18:09:24 +0000993APInt &APInt::trunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000994 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner84886852008-08-20 17:02:31 +0000995 assert(width && "Can't truncate to 0 bits");
Chris Lattneree5417c2009-01-21 18:09:24 +0000996 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000997 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +0000998 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000999 if (wordsBefore != wordsAfter) {
1000 if (wordsAfter == 1) {
1001 uint64_t *tmp = pVal;
1002 VAL = pVal[0];
1003 delete [] tmp;
1004 } else {
1005 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattneree5417c2009-01-21 18:09:24 +00001006 for (unsigned i = 0; i < wordsAfter; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001007 newVal[i] = pVal[i];
1008 delete [] pVal;
1009 pVal = newVal;
1010 }
1011 }
1012 return clearUnusedBits();
1013}
1014
1015// Sign extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +00001016APInt &APInt::sext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001017 assert(width > BitWidth && "Invalid APInt SignExtend request");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 // If the sign bit isn't set, this is the same as zext.
1019 if (!isNegative()) {
1020 zext(width);
1021 return *this;
1022 }
1023
1024 // The sign bit is set. First, get some facts
Chris Lattneree5417c2009-01-21 18:09:24 +00001025 unsigned wordsBefore = getNumWords();
1026 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001027 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +00001028 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029
1030 // Mask the high order word appropriately
1031 if (wordsBefore == wordsAfter) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001032 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033 // The extension is contained to the wordsBefore-1th word.
1034 uint64_t mask = ~0ULL;
1035 if (newWordBits)
1036 mask >>= APINT_BITS_PER_WORD - newWordBits;
1037 mask <<= wordBits;
1038 if (wordsBefore == 1)
1039 VAL |= mask;
1040 else
1041 pVal[wordsBefore-1] |= mask;
1042 return clearUnusedBits();
1043 }
1044
1045 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1046 uint64_t *newVal = getMemory(wordsAfter);
1047 if (wordsBefore == 1)
1048 newVal[0] = VAL | mask;
1049 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001050 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001051 newVal[i] = pVal[i];
1052 newVal[wordsBefore-1] |= mask;
1053 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001054 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001055 newVal[i] = -1ULL;
1056 if (wordsBefore != 1)
1057 delete [] pVal;
1058 pVal = newVal;
1059 return clearUnusedBits();
1060}
1061
1062// Zero extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +00001063APInt &APInt::zext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001064 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattneree5417c2009-01-21 18:09:24 +00001065 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001066 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +00001067 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001068 if (wordsBefore != wordsAfter) {
1069 uint64_t *newVal = getClearedMemory(wordsAfter);
1070 if (wordsBefore == 1)
1071 newVal[0] = VAL;
Eric Christopher017fc252009-08-21 04:06:45 +00001072 else
Chris Lattneree5417c2009-01-21 18:09:24 +00001073 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001074 newVal[i] = pVal[i];
1075 if (wordsBefore != 1)
1076 delete [] pVal;
1077 pVal = newVal;
1078 }
1079 return *this;
1080}
1081
Chris Lattneree5417c2009-01-21 18:09:24 +00001082APInt &APInt::zextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001083 if (BitWidth < width)
1084 return zext(width);
1085 if (BitWidth > width)
1086 return trunc(width);
1087 return *this;
1088}
1089
Chris Lattneree5417c2009-01-21 18:09:24 +00001090APInt &APInt::sextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001091 if (BitWidth < width)
1092 return sext(width);
1093 if (BitWidth > width)
1094 return trunc(width);
1095 return *this;
1096}
1097
1098/// Arithmetic right-shift this APInt by shiftAmt.
1099/// @brief Arithmetic right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001100APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001101 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001102}
1103
1104/// Arithmetic right-shift this APInt by shiftAmt.
1105/// @brief Arithmetic right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001106APInt APInt::ashr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001107 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1108 // Handle a degenerate case
1109 if (shiftAmt == 0)
1110 return *this;
1111
1112 // Handle single word shifts with built-in ashr
1113 if (isSingleWord()) {
1114 if (shiftAmt == BitWidth)
1115 return APInt(BitWidth, 0); // undefined
1116 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001117 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Eric Christopher017fc252009-08-21 04:06:45 +00001118 return APInt(BitWidth,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001119 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1120 }
1121 }
1122
1123 // If all the bits were shifted out, the result is, technically, undefined.
1124 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1125 // issues in the algorithm below.
1126 if (shiftAmt == BitWidth) {
1127 if (isNegative())
Zhou Sheng3f7ab5c2008-06-05 13:27:38 +00001128 return APInt(BitWidth, -1ULL, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001129 else
1130 return APInt(BitWidth, 0);
1131 }
1132
1133 // Create some space for the result.
1134 uint64_t * val = new uint64_t[getNumWords()];
1135
1136 // Compute some values needed by the following shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001137 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1138 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1139 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1140 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001141 if (bitsInWord == 0)
1142 bitsInWord = APINT_BITS_PER_WORD;
1143
1144 // If we are shifting whole words, just move whole words
1145 if (wordShift == 0) {
1146 // Move the words containing significant bits
Chris Lattneree5417c2009-01-21 18:09:24 +00001147 for (unsigned i = 0; i <= breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001148 val[i] = pVal[i+offset]; // move whole word
1149
1150 // Adjust the top significant word for sign bit fill, if negative
1151 if (isNegative())
1152 if (bitsInWord < APINT_BITS_PER_WORD)
1153 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1154 } else {
Eric Christopher017fc252009-08-21 04:06:45 +00001155 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001156 for (unsigned i = 0; i < breakWord; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001157 // This combines the shifted corresponding word with the low bits from
1158 // the next word (shifted into this word's high bits).
Eric Christopher017fc252009-08-21 04:06:45 +00001159 val[i] = (pVal[i+offset] >> wordShift) |
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001160 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1161 }
1162
1163 // Shift the break word. In this case there are no bits from the next word
1164 // to include in this word.
1165 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1166
1167 // Deal with sign extenstion in the break word, and possibly the word before
1168 // it.
1169 if (isNegative()) {
1170 if (wordShift > bitsInWord) {
1171 if (breakWord > 0)
Eric Christopher017fc252009-08-21 04:06:45 +00001172 val[breakWord-1] |=
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001173 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1174 val[breakWord] |= ~0ULL;
Eric Christopher017fc252009-08-21 04:06:45 +00001175 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001176 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1177 }
1178 }
1179
1180 // Remaining words are 0 or -1, just assign them.
1181 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattneree5417c2009-01-21 18:09:24 +00001182 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001183 val[i] = fillValue;
1184 return APInt(val, BitWidth).clearUnusedBits();
1185}
1186
1187/// Logical right-shift this APInt by shiftAmt.
1188/// @brief Logical right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001189APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001190 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001191}
1192
1193/// Logical right-shift this APInt by shiftAmt.
1194/// @brief Logical right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001195APInt APInt::lshr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001196 if (isSingleWord()) {
1197 if (shiftAmt == BitWidth)
1198 return APInt(BitWidth, 0);
Eric Christopher017fc252009-08-21 04:06:45 +00001199 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001200 return APInt(BitWidth, this->VAL >> shiftAmt);
1201 }
1202
1203 // If all the bits were shifted out, the result is 0. This avoids issues
1204 // with shifting by the size of the integer type, which produces undefined
1205 // results. We define these "undefined results" to always be 0.
1206 if (shiftAmt == BitWidth)
1207 return APInt(BitWidth, 0);
1208
1209 // If none of the bits are shifted out, the result is *this. This avoids
Eric Christopher017fc252009-08-21 04:06:45 +00001210 // issues with shifting by the size of the integer type, which produces
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001211 // undefined results in the code below. This is also an optimization.
1212 if (shiftAmt == 0)
1213 return *this;
1214
1215 // Create some space for the result.
1216 uint64_t * val = new uint64_t[getNumWords()];
1217
1218 // If we are shifting less than a word, compute the shift with a simple carry
1219 if (shiftAmt < APINT_BITS_PER_WORD) {
1220 uint64_t carry = 0;
1221 for (int i = getNumWords()-1; i >= 0; --i) {
1222 val[i] = (pVal[i] >> shiftAmt) | carry;
1223 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1224 }
1225 return APInt(val, BitWidth).clearUnusedBits();
1226 }
1227
1228 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001229 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1230 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001231
1232 // If we are shifting whole words, just move whole words
1233 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001234 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001235 val[i] = pVal[i+offset];
Chris Lattneree5417c2009-01-21 18:09:24 +00001236 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001237 val[i] = 0;
1238 return APInt(val,BitWidth).clearUnusedBits();
1239 }
1240
Eric Christopher017fc252009-08-21 04:06:45 +00001241 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001242 unsigned breakWord = getNumWords() - offset -1;
1243 for (unsigned i = 0; i < breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244 val[i] = (pVal[i+offset] >> wordShift) |
1245 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1246 // Shift the break word.
1247 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1248
1249 // Remaining words are 0
Chris Lattneree5417c2009-01-21 18:09:24 +00001250 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001251 val[i] = 0;
1252 return APInt(val, BitWidth).clearUnusedBits();
1253}
1254
1255/// Left-shift this APInt by shiftAmt.
1256/// @brief Left-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001257APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001258 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattneree5417c2009-01-21 18:09:24 +00001259 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001260}
1261
Chris Lattneree5417c2009-01-21 18:09:24 +00001262APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001263 // If all the bits were shifted out, the result is 0. This avoids issues
1264 // with shifting by the size of the integer type, which produces undefined
1265 // results. We define these "undefined results" to always be 0.
1266 if (shiftAmt == BitWidth)
1267 return APInt(BitWidth, 0);
1268
1269 // If none of the bits are shifted out, the result is *this. This avoids a
1270 // lshr by the words size in the loop below which can produce incorrect
1271 // results. It also avoids the expensive computation below for a common case.
1272 if (shiftAmt == 0)
1273 return *this;
1274
1275 // Create some space for the result.
1276 uint64_t * val = new uint64_t[getNumWords()];
1277
1278 // If we are shifting less than a word, do it the easy way
1279 if (shiftAmt < APINT_BITS_PER_WORD) {
1280 uint64_t carry = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001281 for (unsigned i = 0; i < getNumWords(); i++) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001282 val[i] = pVal[i] << shiftAmt | carry;
1283 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1284 }
1285 return APInt(val, BitWidth).clearUnusedBits();
1286 }
1287
1288 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001289 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1290 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001291
1292 // If we are shifting whole words, just move whole words
1293 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001294 for (unsigned i = 0; i < offset; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001295 val[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001296 for (unsigned i = offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001297 val[i] = pVal[i-offset];
1298 return APInt(val,BitWidth).clearUnusedBits();
1299 }
1300
1301 // Copy whole words from this to Result.
Chris Lattneree5417c2009-01-21 18:09:24 +00001302 unsigned i = getNumWords() - 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001303 for (; i > offset; --i)
1304 val[i] = pVal[i-offset] << wordShift |
1305 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1306 val[offset] = pVal[0] << wordShift;
1307 for (i = 0; i < offset; ++i)
1308 val[i] = 0;
1309 return APInt(val, BitWidth).clearUnusedBits();
1310}
1311
Dan Gohman625ff8d2008-02-29 01:40:47 +00001312APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001313 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001314}
1315
Chris Lattneree5417c2009-01-21 18:09:24 +00001316APInt APInt::rotl(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001317 if (rotateAmt == 0)
1318 return *this;
1319 // Don't get too fancy, just use existing shift/or facilities
1320 APInt hi(*this);
1321 APInt lo(*this);
1322 hi.shl(rotateAmt);
1323 lo.lshr(BitWidth - rotateAmt);
1324 return hi | lo;
1325}
1326
Dan Gohman625ff8d2008-02-29 01:40:47 +00001327APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001328 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001329}
1330
Chris Lattneree5417c2009-01-21 18:09:24 +00001331APInt APInt::rotr(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001332 if (rotateAmt == 0)
1333 return *this;
1334 // Don't get too fancy, just use existing shift/or facilities
1335 APInt hi(*this);
1336 APInt lo(*this);
1337 lo.lshr(rotateAmt);
1338 hi.shl(BitWidth - rotateAmt);
1339 return hi | lo;
1340}
1341
1342// Square Root - this method computes and returns the square root of "this".
1343// Three mechanisms are used for computation. For small values (<= 5 bits),
1344// a table lookup is done. This gets some performance for common cases. For
1345// values using less than 52 bits, the value is converted to double and then
1346// the libc sqrt function is called. The result is rounded and then converted
1347// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopher017fc252009-08-21 04:06:45 +00001348// the Babylonian method for computing square roots is used.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001349APInt APInt::sqrt() const {
1350
1351 // Determine the magnitude of the value.
Chris Lattneree5417c2009-01-21 18:09:24 +00001352 unsigned magnitude = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001353
1354 // Use a fast table for some small values. This also gets rid of some
1355 // rounding errors in libc sqrt for small values.
1356 if (magnitude <= 5) {
1357 static const uint8_t results[32] = {
1358 /* 0 */ 0,
1359 /* 1- 2 */ 1, 1,
Eric Christopher017fc252009-08-21 04:06:45 +00001360 /* 3- 6 */ 2, 2, 2, 2,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001361 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1362 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1363 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1364 /* 31 */ 6
1365 };
1366 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1367 }
1368
1369 // If the magnitude of the value fits in less than 52 bits (the precision of
1370 // an IEEE double precision floating point value), then we can use the
1371 // libc sqrt function which will probably use a hardware sqrt computation.
1372 // This should be faster than the algorithm below.
1373 if (magnitude < 52) {
1374#ifdef _MSC_VER
1375 // Amazingly, VC++ doesn't have round().
Eric Christopher017fc252009-08-21 04:06:45 +00001376 return APInt(BitWidth,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001377 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1378#else
Eric Christopher017fc252009-08-21 04:06:45 +00001379 return APInt(BitWidth,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001380 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1381#endif
1382 }
1383
1384 // Okay, all the short cuts are exhausted. We must compute it. The following
1385 // is a classical Babylonian method for computing the square root. This code
1386 // was adapted to APINt from a wikipedia article on such computations.
1387 // See http://www.wikipedia.org/ and go to the page named
Eric Christopher017fc252009-08-21 04:06:45 +00001388 // Calculate_an_integer_square_root.
Chris Lattneree5417c2009-01-21 18:09:24 +00001389 unsigned nbits = BitWidth, i = 4;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001390 APInt testy(BitWidth, 16);
1391 APInt x_old(BitWidth, 1);
1392 APInt x_new(BitWidth, 0);
1393 APInt two(BitWidth, 2);
1394
1395 // Select a good starting value using binary logarithms.
Eric Christopher017fc252009-08-21 04:06:45 +00001396 for (;; i += 2, testy = testy.shl(2))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001397 if (i >= nbits || this->ule(testy)) {
1398 x_old = x_old.shl(i / 2);
1399 break;
1400 }
1401
Eric Christopher017fc252009-08-21 04:06:45 +00001402 // Use the Babylonian method to arrive at the integer square root:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001403 for (;;) {
1404 x_new = (this->udiv(x_old) + x_old).udiv(two);
1405 if (x_old.ule(x_new))
1406 break;
1407 x_old = x_new;
1408 }
1409
1410 // Make sure we return the closest approximation
Eric Christopher017fc252009-08-21 04:06:45 +00001411 // NOTE: The rounding calculation below is correct. It will produce an
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001412 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopher017fc252009-08-21 04:06:45 +00001413 // determined to be a rounding issue with pari/gp as it begins to use a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001414 // floating point representation after 192 bits. There are no discrepancies
1415 // between this algorithm and pari/gp for bit widths < 192 bits.
1416 APInt square(x_old * x_old);
1417 APInt nextSquare((x_old + 1) * (x_old +1));
1418 if (this->ult(square))
1419 return x_old;
1420 else if (this->ule(nextSquare)) {
1421 APInt midpoint((nextSquare - square).udiv(two));
1422 APInt offset(*this - square);
1423 if (offset.ult(midpoint))
1424 return x_old;
1425 else
1426 return x_old + 1;
1427 } else
Edwin Törökbd448e32009-07-14 16:55:14 +00001428 llvm_unreachable("Error in APInt::sqrt computation");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001429 return x_old + 1;
1430}
1431
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001432/// Computes the multiplicative inverse of this APInt for a given modulo. The
1433/// iterative extended Euclidean algorithm is used to solve for this value,
1434/// however we simplify it to speed up calculating only the inverse, and take
1435/// advantage of div+rem calculations. We also use some tricks to avoid copying
1436/// (potentially large) APInts around.
1437APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1438 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1439
1440 // Using the properties listed at the following web page (accessed 06/21/08):
1441 // http://www.numbertheory.org/php/euclid.html
1442 // (especially the properties numbered 3, 4 and 9) it can be proved that
1443 // BitWidth bits suffice for all the computations in the algorithm implemented
1444 // below. More precisely, this number of bits suffice if the multiplicative
1445 // inverse exists, but may not suffice for the general extended Euclidean
1446 // algorithm.
1447
1448 APInt r[2] = { modulo, *this };
1449 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1450 APInt q(BitWidth, 0);
Eric Christopher017fc252009-08-21 04:06:45 +00001451
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001452 unsigned i;
1453 for (i = 0; r[i^1] != 0; i ^= 1) {
1454 // An overview of the math without the confusing bit-flipping:
1455 // q = r[i-2] / r[i-1]
1456 // r[i] = r[i-2] % r[i-1]
1457 // t[i] = t[i-2] - t[i-1] * q
1458 udivrem(r[i], r[i^1], q, r[i]);
1459 t[i] -= t[i^1] * q;
1460 }
1461
1462 // If this APInt and the modulo are not coprime, there is no multiplicative
1463 // inverse, so return 0. We check this by looking at the next-to-last
1464 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1465 // algorithm.
1466 if (r[i] != 1)
1467 return APInt(BitWidth, 0);
1468
1469 // The next-to-last t is the multiplicative inverse. However, we are
1470 // interested in a positive inverse. Calcuate a positive one from a negative
1471 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00001472 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001473 return t[i].isNegative() ? t[i] + modulo : t[i];
1474}
1475
Jay Foad56b11f92009-04-30 10:15:35 +00001476/// Calculate the magic numbers required to implement a signed integer division
1477/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1478/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1479/// Warren, Jr., chapter 10.
1480APInt::ms APInt::magic() const {
1481 const APInt& d = *this;
1482 unsigned p;
1483 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foad56b11f92009-04-30 10:15:35 +00001484 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foad56b11f92009-04-30 10:15:35 +00001485 struct ms mag;
Eric Christopher017fc252009-08-21 04:06:45 +00001486
Jay Foad56b11f92009-04-30 10:15:35 +00001487 ad = d.abs();
1488 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1489 anc = t - 1 - t.urem(ad); // absolute value of nc
1490 p = d.getBitWidth() - 1; // initialize p
1491 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1492 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1493 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1494 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1495 do {
1496 p = p + 1;
1497 q1 = q1<<1; // update q1 = 2p/abs(nc)
1498 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1499 if (r1.uge(anc)) { // must be unsigned comparison
1500 q1 = q1 + 1;
1501 r1 = r1 - anc;
1502 }
1503 q2 = q2<<1; // update q2 = 2p/abs(d)
1504 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1505 if (r2.uge(ad)) { // must be unsigned comparison
1506 q2 = q2 + 1;
1507 r2 = r2 - ad;
1508 }
1509 delta = ad - r2;
1510 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
Eric Christopher017fc252009-08-21 04:06:45 +00001511
Jay Foad56b11f92009-04-30 10:15:35 +00001512 mag.m = q2 + 1;
1513 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1514 mag.s = p - d.getBitWidth(); // resulting shift
1515 return mag;
1516}
1517
1518/// Calculate the magic numbers required to implement an unsigned integer
1519/// division by a constant as a sequence of multiplies, adds and shifts.
1520/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1521/// S. Warren, Jr., chapter 10.
1522APInt::mu APInt::magicu() const {
1523 const APInt& d = *this;
1524 unsigned p;
1525 APInt nc, delta, q1, r1, q2, r2;
1526 struct mu magu;
1527 magu.a = 0; // initialize "add" indicator
1528 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1529 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1530 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1531
1532 nc = allOnes - (-d).urem(d);
1533 p = d.getBitWidth() - 1; // initialize p
1534 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1535 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1536 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1537 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1538 do {
1539 p = p + 1;
1540 if (r1.uge(nc - r1)) {
1541 q1 = q1 + q1 + 1; // update q1
1542 r1 = r1 + r1 - nc; // update r1
1543 }
1544 else {
1545 q1 = q1+q1; // update q1
1546 r1 = r1+r1; // update r1
1547 }
1548 if ((r2 + 1).uge(d - r2)) {
1549 if (q2.uge(signedMax)) magu.a = 1;
1550 q2 = q2+q2 + 1; // update q2
1551 r2 = r2+r2 + 1 - d; // update r2
1552 }
1553 else {
1554 if (q2.uge(signedMin)) magu.a = 1;
1555 q2 = q2+q2; // update q2
1556 r2 = r2+r2 + 1; // update r2
1557 }
1558 delta = d - 1 - r2;
1559 } while (p < d.getBitWidth()*2 &&
1560 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1561 magu.m = q2 + 1; // resulting magic number
1562 magu.s = p - d.getBitWidth(); // resulting shift
1563 return magu;
1564}
1565
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001566/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1567/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1568/// variables here have the same names as in the algorithm. Comments explain
1569/// the algorithm and any deviation from it.
Chris Lattneree5417c2009-01-21 18:09:24 +00001570static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1571 unsigned m, unsigned n) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001572 assert(u && "Must provide dividend");
1573 assert(v && "Must provide divisor");
1574 assert(q && "Must provide quotient");
1575 assert(u != v && u != q && v != q && "Must us different memory");
1576 assert(n>1 && "n must be > 1");
1577
1578 // Knuth uses the value b as the base of the number system. In our case b
1579 // is 2^31 so we just set it to -1u.
1580 uint64_t b = uint64_t(1) << 32;
1581
Chris Lattner89b36582008-08-17 07:19:36 +00001582#if 0
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001583 DEBUG(errs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1584 DEBUG(errs() << "KnuthDiv: original:");
1585 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1586 DEBUG(errs() << " by");
1587 DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
1588 DEBUG(errs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001589#endif
Eric Christopher017fc252009-08-21 04:06:45 +00001590 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1591 // u and v by d. Note that we have taken Knuth's advice here to use a power
1592 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1593 // 2 allows us to shift instead of multiply and it is easy to determine the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001594 // shift amount from the leading zeros. We are basically normalizing the u
1595 // and v so that its high bits are shifted to the top of v's range without
1596 // overflow. Note that this can require an extra word in u so that u must
1597 // be of length m+n+1.
Chris Lattneree5417c2009-01-21 18:09:24 +00001598 unsigned shift = CountLeadingZeros_32(v[n-1]);
1599 unsigned v_carry = 0;
1600 unsigned u_carry = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001601 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001602 for (unsigned i = 0; i < m+n; ++i) {
1603 unsigned u_tmp = u[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001604 u[i] = (u[i] << shift) | u_carry;
1605 u_carry = u_tmp;
1606 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001607 for (unsigned i = 0; i < n; ++i) {
1608 unsigned v_tmp = v[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001609 v[i] = (v[i] << shift) | v_carry;
1610 v_carry = v_tmp;
1611 }
1612 }
1613 u[m+n] = u_carry;
Chris Lattner89b36582008-08-17 07:19:36 +00001614#if 0
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001615 DEBUG(errs() << "KnuthDiv: normal:");
1616 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1617 DEBUG(errs() << " by");
1618 DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
1619 DEBUG(errs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001620#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001621
1622 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1623 int j = m;
1624 do {
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001625 DEBUG(errs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopher017fc252009-08-21 04:06:45 +00001626 // D3. [Calculate q'.].
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001627 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1628 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1629 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1630 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1631 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopher017fc252009-08-21 04:06:45 +00001632 // value qp is one too large, and it eliminates all cases where qp is two
1633 // too large.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001634 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001635 DEBUG(errs() << "KnuthDiv: dividend == " << dividend << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001636 uint64_t qp = dividend / v[n-1];
1637 uint64_t rp = dividend % v[n-1];
1638 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1639 qp--;
1640 rp += v[n-1];
1641 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1642 qp--;
1643 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001644 DEBUG(errs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001645
1646 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1647 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1648 // consists of a simple multiplication by a one-place number, combined with
Eric Christopher017fc252009-08-21 04:06:45 +00001649 // a subtraction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001650 bool isNeg = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001651 for (unsigned i = 0; i < n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001652 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1653 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1654 bool borrow = subtrahend > u_tmp;
Eric Christopher017fc252009-08-21 04:06:45 +00001655 DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001656 << ", subtrahend == " << subtrahend
1657 << ", borrow = " << borrow << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001658
1659 uint64_t result = u_tmp - subtrahend;
Chris Lattneree5417c2009-01-21 18:09:24 +00001660 unsigned k = j + i;
1661 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1662 u[k++] = (unsigned)(result >> 32); // subtract high word
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001663 while (borrow && k <= m+n) { // deal with borrow to the left
1664 borrow = u[k] == 0;
1665 u[k]--;
1666 k++;
1667 }
1668 isNeg |= borrow;
Eric Christopher017fc252009-08-21 04:06:45 +00001669 DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1670 u[j+i+1] << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001671 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001672 DEBUG(errs() << "KnuthDiv: after subtraction:");
1673 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1674 DEBUG(errs() << '\n');
Eric Christopher017fc252009-08-21 04:06:45 +00001675 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1676 // this step is actually negative, (u[j+n]...u[j]) should be left as the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001677 // true value plus b**(n+1), namely as the b's complement of
1678 // the true value, and a "borrow" to the left should be remembered.
1679 //
1680 if (isNeg) {
1681 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattneree5417c2009-01-21 18:09:24 +00001682 for (unsigned i = 0; i <= m+n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001683 u[i] = ~u[i] + carry; // b's complement
1684 carry = carry && u[i] == 0;
1685 }
1686 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001687 DEBUG(errs() << "KnuthDiv: after complement:");
1688 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1689 DEBUG(errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001690
Eric Christopher017fc252009-08-21 04:06:45 +00001691 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001692 // negative, go to step D6; otherwise go on to step D7.
Chris Lattneree5417c2009-01-21 18:09:24 +00001693 q[j] = (unsigned)qp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001694 if (isNeg) {
Eric Christopher017fc252009-08-21 04:06:45 +00001695 // D6. [Add back]. The probability that this step is necessary is very
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001696 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopher017fc252009-08-21 04:06:45 +00001697 // this possibility. Decrease q[j] by 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001698 q[j]--;
Eric Christopher017fc252009-08-21 04:06:45 +00001699 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1700 // A carry will occur to the left of u[j+n], and it should be ignored
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001701 // since it cancels with the borrow that occurred in D4.
1702 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001703 for (unsigned i = 0; i < n; i++) {
1704 unsigned limit = std::min(u[j+i],v[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001705 u[j+i] += v[i] + carry;
1706 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1707 }
1708 u[j+n] += carry;
1709 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001710 DEBUG(errs() << "KnuthDiv: after correction:");
1711 DEBUG(for (int i = m+n; i >=0; i--) errs() <<" " << u[i]);
1712 DEBUG(errs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001713
1714 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1715 } while (--j >= 0);
1716
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001717 DEBUG(errs() << "KnuthDiv: quotient:");
1718 DEBUG(for (int i = m; i >=0; i--) errs() <<" " << q[i]);
1719 DEBUG(errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001720
1721 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1722 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1723 // compute the remainder (urem uses this).
1724 if (r) {
1725 // The value d is expressed by the "shift" value above since we avoided
1726 // multiplication by d by using a shift left. So, all we have to do is
1727 // shift right here. In order to mak
1728 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001729 unsigned carry = 0;
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001730 DEBUG(errs() << "KnuthDiv: remainder:");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001731 for (int i = n-1; i >= 0; i--) {
1732 r[i] = (u[i] >> shift) | carry;
1733 carry = u[i] << (32 - shift);
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001734 DEBUG(errs() << " " << r[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001735 }
1736 } else {
1737 for (int i = n-1; i >= 0; i--) {
1738 r[i] = u[i];
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001739 DEBUG(errs() << " " << r[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001740 }
1741 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001742 DEBUG(errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001743 }
Chris Lattner89b36582008-08-17 07:19:36 +00001744#if 0
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001745 DEBUG(errs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001746#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001747}
1748
Chris Lattneree5417c2009-01-21 18:09:24 +00001749void APInt::divide(const APInt LHS, unsigned lhsWords,
1750 const APInt &RHS, unsigned rhsWords,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001751 APInt *Quotient, APInt *Remainder)
1752{
1753 assert(lhsWords >= rhsWords && "Fractional result");
1754
Eric Christopher017fc252009-08-21 04:06:45 +00001755 // First, compose the values into an array of 32-bit words instead of
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001756 // 64-bit words. This is a necessity of both the "short division" algorithm
Eric Christopher017fc252009-08-21 04:06:45 +00001757 // and the the Knuth "classical algorithm" which requires there to be native
1758 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1759 // can't use 64-bit operands here because we don't have native results of
1760 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001761 // work on large-endian machines.
Dan Gohmand06cad62009-04-01 18:45:54 +00001762 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattneree5417c2009-01-21 18:09:24 +00001763 unsigned n = rhsWords * 2;
1764 unsigned m = (lhsWords * 2) - n;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001765
1766 // Allocate space for the temporary values we need either on the stack, if
1767 // it will fit, or on the heap if it won't.
Chris Lattneree5417c2009-01-21 18:09:24 +00001768 unsigned SPACE[128];
1769 unsigned *U = 0;
1770 unsigned *V = 0;
1771 unsigned *Q = 0;
1772 unsigned *R = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001773 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1774 U = &SPACE[0];
1775 V = &SPACE[m+n+1];
1776 Q = &SPACE[(m+n+1) + n];
1777 if (Remainder)
1778 R = &SPACE[(m+n+1) + n + (m+n)];
1779 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001780 U = new unsigned[m + n + 1];
1781 V = new unsigned[n];
1782 Q = new unsigned[m+n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001783 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001784 R = new unsigned[n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001785 }
1786
1787 // Initialize the dividend
Chris Lattneree5417c2009-01-21 18:09:24 +00001788 memset(U, 0, (m+n+1)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001789 for (unsigned i = 0; i < lhsWords; ++i) {
1790 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001791 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmand06cad62009-04-01 18:45:54 +00001792 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001793 }
1794 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1795
1796 // Initialize the divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001797 memset(V, 0, (n)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001798 for (unsigned i = 0; i < rhsWords; ++i) {
1799 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001800 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmand06cad62009-04-01 18:45:54 +00001801 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001802 }
1803
1804 // initialize the quotient and remainder
Chris Lattneree5417c2009-01-21 18:09:24 +00001805 memset(Q, 0, (m+n) * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001806 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001807 memset(R, 0, n * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001808
Eric Christopher017fc252009-08-21 04:06:45 +00001809 // Now, adjust m and n for the Knuth division. n is the number of words in
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001810 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopher017fc252009-08-21 04:06:45 +00001811 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001812 // contain any zero words or the Knuth algorithm fails.
1813 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1814 n--;
1815 m++;
1816 }
1817 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1818 m--;
1819
1820 // If we're left with only a single word for the divisor, Knuth doesn't work
1821 // so we implement the short division algorithm here. This is much simpler
1822 // and faster because we are certain that we can divide a 64-bit quantity
1823 // by a 32-bit quantity at hardware speed and short division is simply a
1824 // series of such operations. This is just like doing short division but we
1825 // are using base 2^32 instead of base 10.
1826 assert(n != 0 && "Divide by zero?");
1827 if (n == 1) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001828 unsigned divisor = V[0];
1829 unsigned remainder = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001830 for (int i = m+n-1; i >= 0; i--) {
1831 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1832 if (partial_dividend == 0) {
1833 Q[i] = 0;
1834 remainder = 0;
1835 } else if (partial_dividend < divisor) {
1836 Q[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001837 remainder = (unsigned)partial_dividend;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001838 } else if (partial_dividend == divisor) {
1839 Q[i] = 1;
1840 remainder = 0;
1841 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001842 Q[i] = (unsigned)(partial_dividend / divisor);
1843 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001844 }
1845 }
1846 if (R)
1847 R[0] = remainder;
1848 } else {
1849 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1850 // case n > 1.
1851 KnuthDiv(U, V, Q, R, m, n);
1852 }
1853
1854 // If the caller wants the quotient
1855 if (Quotient) {
1856 // Set up the Quotient value's memory.
1857 if (Quotient->BitWidth != LHS.BitWidth) {
1858 if (Quotient->isSingleWord())
1859 Quotient->VAL = 0;
1860 else
1861 delete [] Quotient->pVal;
1862 Quotient->BitWidth = LHS.BitWidth;
1863 if (!Quotient->isSingleWord())
1864 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1865 } else
1866 Quotient->clear();
1867
Eric Christopher017fc252009-08-21 04:06:45 +00001868 // The quotient is in Q. Reconstitute the quotient into Quotient's low
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001869 // order words.
1870 if (lhsWords == 1) {
Eric Christopher017fc252009-08-21 04:06:45 +00001871 uint64_t tmp =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001872 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1873 if (Quotient->isSingleWord())
1874 Quotient->VAL = tmp;
1875 else
1876 Quotient->pVal[0] = tmp;
1877 } else {
1878 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1879 for (unsigned i = 0; i < lhsWords; ++i)
Eric Christopher017fc252009-08-21 04:06:45 +00001880 Quotient->pVal[i] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001881 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1882 }
1883 }
1884
1885 // If the caller wants the remainder
1886 if (Remainder) {
1887 // Set up the Remainder value's memory.
1888 if (Remainder->BitWidth != RHS.BitWidth) {
1889 if (Remainder->isSingleWord())
1890 Remainder->VAL = 0;
1891 else
1892 delete [] Remainder->pVal;
1893 Remainder->BitWidth = RHS.BitWidth;
1894 if (!Remainder->isSingleWord())
1895 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1896 } else
1897 Remainder->clear();
1898
1899 // The remainder is in R. Reconstitute the remainder into Remainder's low
1900 // order words.
1901 if (rhsWords == 1) {
Eric Christopher017fc252009-08-21 04:06:45 +00001902 uint64_t tmp =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001903 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1904 if (Remainder->isSingleWord())
1905 Remainder->VAL = tmp;
1906 else
1907 Remainder->pVal[0] = tmp;
1908 } else {
1909 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1910 for (unsigned i = 0; i < rhsWords; ++i)
Eric Christopher017fc252009-08-21 04:06:45 +00001911 Remainder->pVal[i] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001912 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1913 }
1914 }
1915
1916 // Clean up the memory we allocated.
1917 if (U != &SPACE[0]) {
1918 delete [] U;
1919 delete [] V;
1920 delete [] Q;
1921 delete [] R;
1922 }
1923}
1924
1925APInt APInt::udiv(const APInt& RHS) const {
1926 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1927
1928 // First, deal with the easy case
1929 if (isSingleWord()) {
1930 assert(RHS.VAL != 0 && "Divide by zero?");
1931 return APInt(BitWidth, VAL / RHS.VAL);
1932 }
1933
1934 // Get some facts about the LHS and RHS number of bits and words
Chris Lattneree5417c2009-01-21 18:09:24 +00001935 unsigned rhsBits = RHS.getActiveBits();
1936 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001937 assert(rhsWords && "Divided by zero???");
Chris Lattneree5417c2009-01-21 18:09:24 +00001938 unsigned lhsBits = this->getActiveBits();
1939 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001940
1941 // Deal with some degenerate cases
Eric Christopher017fc252009-08-21 04:06:45 +00001942 if (!lhsWords)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001943 // 0 / X ===> 0
Eric Christopher017fc252009-08-21 04:06:45 +00001944 return APInt(BitWidth, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001945 else if (lhsWords < rhsWords || this->ult(RHS)) {
1946 // X / Y ===> 0, iff X < Y
1947 return APInt(BitWidth, 0);
1948 } else if (*this == RHS) {
1949 // X / X ===> 1
1950 return APInt(BitWidth, 1);
1951 } else if (lhsWords == 1 && rhsWords == 1) {
1952 // All high words are zero, just use native divide
1953 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1954 }
1955
1956 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1957 APInt Quotient(1,0); // to hold result.
1958 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1959 return Quotient;
1960}
1961
1962APInt APInt::urem(const APInt& RHS) const {
1963 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1964 if (isSingleWord()) {
1965 assert(RHS.VAL != 0 && "Remainder by zero?");
1966 return APInt(BitWidth, VAL % RHS.VAL);
1967 }
1968
1969 // Get some facts about the LHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001970 unsigned lhsBits = getActiveBits();
1971 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001972
1973 // Get some facts about the RHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001974 unsigned rhsBits = RHS.getActiveBits();
1975 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001976 assert(rhsWords && "Performing remainder operation by zero ???");
1977
1978 // Check the degenerate cases
1979 if (lhsWords == 0) {
1980 // 0 % Y ===> 0
1981 return APInt(BitWidth, 0);
1982 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1983 // X % Y ===> X, iff X < Y
1984 return *this;
1985 } else if (*this == RHS) {
1986 // X % X == 0;
1987 return APInt(BitWidth, 0);
1988 } else if (lhsWords == 1) {
1989 // All high words are zero, just use native remainder
1990 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1991 }
1992
1993 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1994 APInt Remainder(1,0);
1995 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1996 return Remainder;
1997}
1998
Eric Christopher017fc252009-08-21 04:06:45 +00001999void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002000 APInt &Quotient, APInt &Remainder) {
2001 // Get some size facts about the dividend and divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00002002 unsigned lhsBits = LHS.getActiveBits();
2003 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2004 unsigned rhsBits = RHS.getActiveBits();
2005 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002006
2007 // Check the degenerate cases
Eric Christopher017fc252009-08-21 04:06:45 +00002008 if (lhsWords == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002009 Quotient = 0; // 0 / Y ===> 0
2010 Remainder = 0; // 0 % Y ===> 0
2011 return;
Eric Christopher017fc252009-08-21 04:06:45 +00002012 }
2013
2014 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002015 Remainder = LHS; // X % Y ===> X, iff X < Y
John McCall38768292009-12-24 08:52:06 +00002016 Quotient = 0; // X / Y ===> 0, iff X < Y
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002017 return;
Eric Christopher017fc252009-08-21 04:06:45 +00002018 }
2019
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002020 if (LHS == RHS) {
2021 Quotient = 1; // X / X ===> 1
2022 Remainder = 0; // X % X ===> 0;
2023 return;
Eric Christopher017fc252009-08-21 04:06:45 +00002024 }
2025
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002026 if (lhsWords == 1 && rhsWords == 1) {
2027 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00002028 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2029 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2030 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2031 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002032 return;
2033 }
2034
2035 // Okay, lets do it the long way
2036 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2037}
2038
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002039void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002040 // Check our assumptions here
Erick Tryzelaara3c44c92009-08-21 03:15:14 +00002041 assert(!str.empty() && "Invalid string length");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002042 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2043 "Radix should be 2, 8, 10, or 16!");
Erick Tryzelaara3c44c92009-08-21 03:15:14 +00002044
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002045 StringRef::iterator p = str.begin();
2046 size_t slen = str.size();
2047 bool isNeg = *p == '-';
Erick Tryzelaara3c44c92009-08-21 03:15:14 +00002048 if (*p == '-' || *p == '+') {
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002049 p++;
2050 slen--;
Eric Christopher9a7fc4f2009-08-21 04:10:31 +00002051 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002052 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002053 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner981440e2009-04-25 18:34:04 +00002054 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2055 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Eric Christopher017fc252009-08-21 04:06:45 +00002056 assert((((slen-1)*64)/22 <= numbits || radix != 10)
Daniel Dunbar3be44e62009-09-20 02:20:51 +00002057 && "Insufficient bit width");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002058
2059 // Allocate memory
2060 if (!isSingleWord())
2061 pVal = getClearedMemory(getNumWords());
2062
2063 // Figure out if we can shift instead of multiply
Chris Lattneree5417c2009-01-21 18:09:24 +00002064 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002065
2066 // Set up an APInt for the digit to add outside the loop so we don't
2067 // constantly construct/destruct it.
2068 APInt apdigit(getBitWidth(), 0);
2069 APInt apradix(getBitWidth(), radix);
2070
2071 // Enter digit traversal loop
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002072 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaar15a448f2009-08-21 03:15:28 +00002073 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar5c4ea882009-08-21 06:48:37 +00002074 assert(digit < radix && "Invalid character in digit string");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002075
2076 // Shift or multiply the value by the radix
Chris Lattner981440e2009-04-25 18:34:04 +00002077 if (slen > 1) {
2078 if (shift)
2079 *this <<= shift;
2080 else
2081 *this *= apradix;
2082 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002083
2084 // Add in the digit we just interpreted
2085 if (apdigit.isSingleWord())
2086 apdigit.VAL = digit;
2087 else
2088 apdigit.pVal[0] = digit;
2089 *this += apdigit;
2090 }
2091 // If its negative, put it in two's complement form
2092 if (isNeg) {
2093 (*this)--;
2094 this->flip();
2095 }
2096}
2097
Chris Lattner89b36582008-08-17 07:19:36 +00002098void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2099 bool Signed) const {
2100 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002101 "Radix should be 2, 8, 10, or 16!");
Eric Christopher017fc252009-08-21 04:06:45 +00002102
Chris Lattner89b36582008-08-17 07:19:36 +00002103 // First, check for a zero value and just short circuit the logic below.
2104 if (*this == 0) {
2105 Str.push_back('0');
2106 return;
2107 }
Eric Christopher017fc252009-08-21 04:06:45 +00002108
Chris Lattner89b36582008-08-17 07:19:36 +00002109 static const char Digits[] = "0123456789ABCDEF";
Eric Christopher017fc252009-08-21 04:06:45 +00002110
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002111 if (isSingleWord()) {
Chris Lattner89b36582008-08-17 07:19:36 +00002112 char Buffer[65];
2113 char *BufPtr = Buffer+65;
Eric Christopher017fc252009-08-21 04:06:45 +00002114
Chris Lattner89b36582008-08-17 07:19:36 +00002115 uint64_t N;
2116 if (Signed) {
2117 int64_t I = getSExtValue();
2118 if (I < 0) {
2119 Str.push_back('-');
2120 I = -I;
2121 }
2122 N = I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002123 } else {
Chris Lattner89b36582008-08-17 07:19:36 +00002124 N = getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002125 }
Eric Christopher017fc252009-08-21 04:06:45 +00002126
Chris Lattner89b36582008-08-17 07:19:36 +00002127 while (N) {
2128 *--BufPtr = Digits[N % Radix];
2129 N /= Radix;
2130 }
2131 Str.append(BufPtr, Buffer+65);
2132 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002133 }
2134
Chris Lattner89b36582008-08-17 07:19:36 +00002135 APInt Tmp(*this);
Eric Christopher017fc252009-08-21 04:06:45 +00002136
Chris Lattner89b36582008-08-17 07:19:36 +00002137 if (Signed && isNegative()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002138 // They want to print the signed version and it is a negative value
2139 // Flip the bits and add one to turn it into the equivalent positive
2140 // value and put a '-' in the result.
Chris Lattner89b36582008-08-17 07:19:36 +00002141 Tmp.flip();
2142 Tmp++;
2143 Str.push_back('-');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002144 }
Eric Christopher017fc252009-08-21 04:06:45 +00002145
Chris Lattner89b36582008-08-17 07:19:36 +00002146 // We insert the digits backward, then reverse them to get the right order.
2147 unsigned StartDig = Str.size();
Eric Christopher017fc252009-08-21 04:06:45 +00002148
2149 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2150 // because the number of bits per digit (1, 3 and 4 respectively) divides
Chris Lattner89b36582008-08-17 07:19:36 +00002151 // equaly. We just shift until the value is zero.
2152 if (Radix != 10) {
2153 // Just shift tmp right for each digit width until it becomes zero
2154 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2155 unsigned MaskAmt = Radix - 1;
Eric Christopher017fc252009-08-21 04:06:45 +00002156
Chris Lattner89b36582008-08-17 07:19:36 +00002157 while (Tmp != 0) {
2158 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2159 Str.push_back(Digits[Digit]);
2160 Tmp = Tmp.lshr(ShiftAmt);
2161 }
2162 } else {
2163 APInt divisor(4, 10);
2164 while (Tmp != 0) {
2165 APInt APdigit(1, 0);
2166 APInt tmp2(Tmp.getBitWidth(), 0);
Eric Christopher017fc252009-08-21 04:06:45 +00002167 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
Chris Lattner89b36582008-08-17 07:19:36 +00002168 &APdigit);
Chris Lattneree5417c2009-01-21 18:09:24 +00002169 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner89b36582008-08-17 07:19:36 +00002170 assert(Digit < Radix && "divide failed");
2171 Str.push_back(Digits[Digit]);
2172 Tmp = tmp2;
2173 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002174 }
Eric Christopher017fc252009-08-21 04:06:45 +00002175
Chris Lattner89b36582008-08-17 07:19:36 +00002176 // Reverse the digits before returning.
2177 std::reverse(Str.begin()+StartDig, Str.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002178}
2179
Chris Lattner89b36582008-08-17 07:19:36 +00002180/// toString - This returns the APInt as a std::string. Note that this is an
2181/// inefficient method. It is better to pass in a SmallVector/SmallString
2182/// to the methods above.
2183std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2184 SmallString<40> S;
2185 toString(S, Radix, Signed);
Daniel Dunbar768e97d2009-08-19 20:07:03 +00002186 return S.str();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002187}
Chris Lattner73cde982007-08-16 15:56:55 +00002188
Chris Lattner89b36582008-08-17 07:19:36 +00002189
2190void APInt::dump() const {
2191 SmallString<40> S, U;
2192 this->toStringUnsigned(U);
2193 this->toStringSigned(S);
Daniel Dunbar768e97d2009-08-19 20:07:03 +00002194 errs() << "APInt(" << BitWidth << "b, "
2195 << U.str() << "u " << S.str() << "s)";
Chris Lattner89b36582008-08-17 07:19:36 +00002196}
2197
Chris Lattner1fefaac2008-08-23 22:23:09 +00002198void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner89b36582008-08-17 07:19:36 +00002199 SmallString<40> S;
2200 this->toString(S, 10, isSigned);
Daniel Dunbar768e97d2009-08-19 20:07:03 +00002201 OS << S.str();
Chris Lattner89b36582008-08-17 07:19:36 +00002202}
2203
Chris Lattner73cde982007-08-16 15:56:55 +00002204// This implements a variety of operations on a representation of
2205// arbitrary precision, two's-complement, bignum integer values.
2206
Chris Lattnera8f744b2009-08-23 23:11:28 +00002207// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2208// and unrestricting assumption.
Chris Lattner12e44312008-08-17 04:58:58 +00002209#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerdb80e212007-08-20 22:49:32 +00002210COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002211
2212/* Some handy functions local to this file. */
2213namespace {
2214
Chris Lattnerdb80e212007-08-20 22:49:32 +00002215 /* Returns the integer part with the least significant BITS set.
2216 BITS cannot be zero. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002217 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002218 lowBitMask(unsigned int bits)
2219 {
2220 assert (bits != 0 && bits <= integerPartWidth);
2221
2222 return ~(integerPart) 0 >> (integerPartWidth - bits);
2223 }
2224
Neil Booth58ffb232007-10-06 00:43:45 +00002225 /* Returns the value of the lower half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002226 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002227 lowHalf(integerPart part)
2228 {
2229 return part & lowBitMask(integerPartWidth / 2);
2230 }
2231
Neil Booth58ffb232007-10-06 00:43:45 +00002232 /* Returns the value of the upper half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002233 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002234 highHalf(integerPart part)
2235 {
2236 return part >> (integerPartWidth / 2);
2237 }
2238
Neil Booth58ffb232007-10-06 00:43:45 +00002239 /* Returns the bit number of the most significant set bit of a part.
2240 If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002241 static unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002242 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002243 {
2244 unsigned int n, msb;
2245
2246 if (value == 0)
2247 return -1U;
2248
2249 n = integerPartWidth / 2;
2250
2251 msb = 0;
2252 do {
2253 if (value >> n) {
2254 value >>= n;
2255 msb += n;
2256 }
2257
2258 n >>= 1;
2259 } while (n);
2260
2261 return msb;
2262 }
2263
Neil Booth58ffb232007-10-06 00:43:45 +00002264 /* Returns the bit number of the least significant set bit of a
2265 part. If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002266 static unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002267 partLSB(integerPart value)
2268 {
2269 unsigned int n, lsb;
2270
2271 if (value == 0)
2272 return -1U;
2273
2274 lsb = integerPartWidth - 1;
2275 n = integerPartWidth / 2;
2276
2277 do {
2278 if (value << n) {
2279 value <<= n;
2280 lsb -= n;
2281 }
2282
2283 n >>= 1;
2284 } while (n);
2285
2286 return lsb;
2287 }
2288}
2289
2290/* Sets the least significant part of a bignum to the input value, and
2291 zeroes out higher parts. */
2292void
2293APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2294{
2295 unsigned int i;
2296
Neil Bootha0f524a2007-10-08 13:47:12 +00002297 assert (parts > 0);
2298
Chris Lattner73cde982007-08-16 15:56:55 +00002299 dst[0] = part;
2300 for(i = 1; i < parts; i++)
2301 dst[i] = 0;
2302}
2303
2304/* Assign one bignum to another. */
2305void
2306APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2307{
2308 unsigned int i;
2309
2310 for(i = 0; i < parts; i++)
2311 dst[i] = src[i];
2312}
2313
2314/* Returns true if a bignum is zero, false otherwise. */
2315bool
2316APInt::tcIsZero(const integerPart *src, unsigned int parts)
2317{
2318 unsigned int i;
2319
2320 for(i = 0; i < parts; i++)
2321 if (src[i])
2322 return false;
2323
2324 return true;
2325}
2326
2327/* Extract the given bit of a bignum; returns 0 or 1. */
2328int
2329APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2330{
2331 return(parts[bit / integerPartWidth]
2332 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2333}
2334
2335/* Set the given bit of a bignum. */
2336void
2337APInt::tcSetBit(integerPart *parts, unsigned int bit)
2338{
2339 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2340}
2341
Neil Booth58ffb232007-10-06 00:43:45 +00002342/* Returns the bit number of the least significant set bit of a
2343 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002344unsigned int
2345APInt::tcLSB(const integerPart *parts, unsigned int n)
2346{
2347 unsigned int i, lsb;
2348
2349 for(i = 0; i < n; i++) {
2350 if (parts[i] != 0) {
2351 lsb = partLSB(parts[i]);
2352
2353 return lsb + i * integerPartWidth;
2354 }
2355 }
2356
2357 return -1U;
2358}
2359
Neil Booth58ffb232007-10-06 00:43:45 +00002360/* Returns the bit number of the most significant set bit of a number.
2361 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002362unsigned int
2363APInt::tcMSB(const integerPart *parts, unsigned int n)
2364{
2365 unsigned int msb;
2366
2367 do {
2368 --n;
2369
2370 if (parts[n] != 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002371 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002372
2373 return msb + n * integerPartWidth;
2374 }
2375 } while (n);
2376
2377 return -1U;
2378}
2379
Neil Bootha0f524a2007-10-08 13:47:12 +00002380/* Copy the bit vector of width srcBITS from SRC, starting at bit
2381 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2382 the least significant bit of DST. All high bits above srcBITS in
2383 DST are zero-filled. */
2384void
Evan Chengc257df32009-05-21 23:47:47 +00002385APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Bootha0f524a2007-10-08 13:47:12 +00002386 unsigned int srcBits, unsigned int srcLSB)
2387{
2388 unsigned int firstSrcPart, dstParts, shift, n;
2389
2390 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2391 assert (dstParts <= dstCount);
2392
2393 firstSrcPart = srcLSB / integerPartWidth;
2394 tcAssign (dst, src + firstSrcPart, dstParts);
2395
2396 shift = srcLSB % integerPartWidth;
2397 tcShiftRight (dst, dstParts, shift);
2398
2399 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2400 in DST. If this is less that srcBits, append the rest, else
2401 clear the high bits. */
2402 n = dstParts * integerPartWidth - shift;
2403 if (n < srcBits) {
2404 integerPart mask = lowBitMask (srcBits - n);
2405 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2406 << n % integerPartWidth);
2407 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002408 if (srcBits % integerPartWidth)
2409 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002410 }
2411
2412 /* Clear high parts. */
2413 while (dstParts < dstCount)
2414 dst[dstParts++] = 0;
2415}
2416
Chris Lattner73cde982007-08-16 15:56:55 +00002417/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2418integerPart
2419APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2420 integerPart c, unsigned int parts)
2421{
2422 unsigned int i;
2423
2424 assert(c <= 1);
2425
2426 for(i = 0; i < parts; i++) {
2427 integerPart l;
2428
2429 l = dst[i];
2430 if (c) {
2431 dst[i] += rhs[i] + 1;
2432 c = (dst[i] <= l);
2433 } else {
2434 dst[i] += rhs[i];
2435 c = (dst[i] < l);
2436 }
2437 }
2438
2439 return c;
2440}
2441
2442/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2443integerPart
2444APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2445 integerPart c, unsigned int parts)
2446{
2447 unsigned int i;
2448
2449 assert(c <= 1);
2450
2451 for(i = 0; i < parts; i++) {
2452 integerPart l;
2453
2454 l = dst[i];
2455 if (c) {
2456 dst[i] -= rhs[i] + 1;
2457 c = (dst[i] >= l);
2458 } else {
2459 dst[i] -= rhs[i];
2460 c = (dst[i] > l);
2461 }
2462 }
2463
2464 return c;
2465}
2466
2467/* Negate a bignum in-place. */
2468void
2469APInt::tcNegate(integerPart *dst, unsigned int parts)
2470{
2471 tcComplement(dst, parts);
2472 tcIncrement(dst, parts);
2473}
2474
Neil Booth58ffb232007-10-06 00:43:45 +00002475/* DST += SRC * MULTIPLIER + CARRY if add is true
2476 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002477
2478 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2479 they must start at the same point, i.e. DST == SRC.
2480
2481 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2482 returned. Otherwise DST is filled with the least significant
2483 DSTPARTS parts of the result, and if all of the omitted higher
2484 parts were zero return zero, otherwise overflow occurred and
2485 return one. */
2486int
2487APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2488 integerPart multiplier, integerPart carry,
2489 unsigned int srcParts, unsigned int dstParts,
2490 bool add)
2491{
2492 unsigned int i, n;
2493
2494 /* Otherwise our writes of DST kill our later reads of SRC. */
2495 assert(dst <= src || dst >= src + srcParts);
2496 assert(dstParts <= srcParts + 1);
2497
2498 /* N loops; minimum of dstParts and srcParts. */
2499 n = dstParts < srcParts ? dstParts: srcParts;
2500
2501 for(i = 0; i < n; i++) {
2502 integerPart low, mid, high, srcPart;
2503
2504 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2505
2506 This cannot overflow, because
2507
2508 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2509
2510 which is less than n^2. */
2511
2512 srcPart = src[i];
2513
2514 if (multiplier == 0 || srcPart == 0) {
2515 low = carry;
2516 high = 0;
2517 } else {
2518 low = lowHalf(srcPart) * lowHalf(multiplier);
2519 high = highHalf(srcPart) * highHalf(multiplier);
2520
2521 mid = lowHalf(srcPart) * highHalf(multiplier);
2522 high += highHalf(mid);
2523 mid <<= integerPartWidth / 2;
2524 if (low + mid < low)
2525 high++;
2526 low += mid;
2527
2528 mid = highHalf(srcPart) * lowHalf(multiplier);
2529 high += highHalf(mid);
2530 mid <<= integerPartWidth / 2;
2531 if (low + mid < low)
2532 high++;
2533 low += mid;
2534
2535 /* Now add carry. */
2536 if (low + carry < low)
2537 high++;
2538 low += carry;
2539 }
2540
2541 if (add) {
2542 /* And now DST[i], and store the new low part there. */
2543 if (low + dst[i] < low)
2544 high++;
2545 dst[i] += low;
2546 } else
2547 dst[i] = low;
2548
2549 carry = high;
2550 }
2551
2552 if (i < dstParts) {
2553 /* Full multiplication, there is no overflow. */
2554 assert(i + 1 == dstParts);
2555 dst[i] = carry;
2556 return 0;
2557 } else {
2558 /* We overflowed if there is carry. */
2559 if (carry)
2560 return 1;
2561
2562 /* We would overflow if any significant unwritten parts would be
2563 non-zero. This is true if any remaining src parts are non-zero
2564 and the multiplier is non-zero. */
2565 if (multiplier)
2566 for(; i < srcParts; i++)
2567 if (src[i])
2568 return 1;
2569
2570 /* We fitted in the narrow destination. */
2571 return 0;
2572 }
2573}
2574
2575/* DST = LHS * RHS, where DST has the same width as the operands and
2576 is filled with the least significant parts of the result. Returns
2577 one if overflow occurred, otherwise zero. DST must be disjoint
2578 from both operands. */
2579int
2580APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2581 const integerPart *rhs, unsigned int parts)
2582{
2583 unsigned int i;
2584 int overflow;
2585
2586 assert(dst != lhs && dst != rhs);
2587
2588 overflow = 0;
2589 tcSet(dst, 0, parts);
2590
2591 for(i = 0; i < parts; i++)
2592 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2593 parts - i, true);
2594
2595 return overflow;
2596}
2597
Neil Booth004e9f42007-10-06 00:24:48 +00002598/* DST = LHS * RHS, where DST has width the sum of the widths of the
2599 operands. No overflow occurs. DST must be disjoint from both
2600 operands. Returns the number of parts required to hold the
2601 result. */
2602unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002603APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002604 const integerPart *rhs, unsigned int lhsParts,
2605 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002606{
Neil Booth004e9f42007-10-06 00:24:48 +00002607 /* Put the narrower number on the LHS for less loops below. */
2608 if (lhsParts > rhsParts) {
2609 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2610 } else {
2611 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002612
Neil Booth004e9f42007-10-06 00:24:48 +00002613 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002614
Neil Booth004e9f42007-10-06 00:24:48 +00002615 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002616
Neil Booth004e9f42007-10-06 00:24:48 +00002617 for(n = 0; n < lhsParts; n++)
2618 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002619
Neil Booth004e9f42007-10-06 00:24:48 +00002620 n = lhsParts + rhsParts;
2621
2622 return n - (dst[n - 1] == 0);
2623 }
Chris Lattner73cde982007-08-16 15:56:55 +00002624}
2625
2626/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2627 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2628 set REMAINDER to the remainder, return zero. i.e.
2629
2630 OLD_LHS = RHS * LHS + REMAINDER
2631
2632 SCRATCH is a bignum of the same size as the operands and result for
2633 use by the routine; its contents need not be initialized and are
2634 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2635*/
2636int
2637APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2638 integerPart *remainder, integerPart *srhs,
2639 unsigned int parts)
2640{
2641 unsigned int n, shiftCount;
2642 integerPart mask;
2643
2644 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2645
Chris Lattnerdb80e212007-08-20 22:49:32 +00002646 shiftCount = tcMSB(rhs, parts) + 1;
2647 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002648 return true;
2649
Chris Lattnerdb80e212007-08-20 22:49:32 +00002650 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002651 n = shiftCount / integerPartWidth;
2652 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2653
2654 tcAssign(srhs, rhs, parts);
2655 tcShiftLeft(srhs, parts, shiftCount);
2656 tcAssign(remainder, lhs, parts);
2657 tcSet(lhs, 0, parts);
2658
2659 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2660 the total. */
2661 for(;;) {
2662 int compare;
2663
2664 compare = tcCompare(remainder, srhs, parts);
2665 if (compare >= 0) {
2666 tcSubtract(remainder, srhs, 0, parts);
2667 lhs[n] |= mask;
2668 }
2669
2670 if (shiftCount == 0)
2671 break;
2672 shiftCount--;
2673 tcShiftRight(srhs, parts, 1);
2674 if ((mask >>= 1) == 0)
2675 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2676 }
2677
2678 return false;
2679}
2680
2681/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2682 There are no restrictions on COUNT. */
2683void
2684APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2685{
Neil Bootha0f524a2007-10-08 13:47:12 +00002686 if (count) {
2687 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002688
Neil Bootha0f524a2007-10-08 13:47:12 +00002689 /* Jump is the inter-part jump; shift is is intra-part shift. */
2690 jump = count / integerPartWidth;
2691 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002692
Neil Bootha0f524a2007-10-08 13:47:12 +00002693 while (parts > jump) {
2694 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002695
Neil Bootha0f524a2007-10-08 13:47:12 +00002696 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002697
Neil Bootha0f524a2007-10-08 13:47:12 +00002698 /* dst[i] comes from the two parts src[i - jump] and, if we have
2699 an intra-part shift, src[i - jump - 1]. */
2700 part = dst[parts - jump];
2701 if (shift) {
2702 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002703 if (parts >= jump + 1)
2704 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2705 }
2706
Neil Bootha0f524a2007-10-08 13:47:12 +00002707 dst[parts] = part;
2708 }
Chris Lattner73cde982007-08-16 15:56:55 +00002709
Neil Bootha0f524a2007-10-08 13:47:12 +00002710 while (parts > 0)
2711 dst[--parts] = 0;
2712 }
Chris Lattner73cde982007-08-16 15:56:55 +00002713}
2714
2715/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2716 zero. There are no restrictions on COUNT. */
2717void
2718APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2719{
Neil Bootha0f524a2007-10-08 13:47:12 +00002720 if (count) {
2721 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002722
Neil Bootha0f524a2007-10-08 13:47:12 +00002723 /* Jump is the inter-part jump; shift is is intra-part shift. */
2724 jump = count / integerPartWidth;
2725 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002726
Neil Bootha0f524a2007-10-08 13:47:12 +00002727 /* Perform the shift. This leaves the most significant COUNT bits
2728 of the result at zero. */
2729 for(i = 0; i < parts; i++) {
2730 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002731
Neil Bootha0f524a2007-10-08 13:47:12 +00002732 if (i + jump >= parts) {
2733 part = 0;
2734 } else {
2735 part = dst[i + jump];
2736 if (shift) {
2737 part >>= shift;
2738 if (i + jump + 1 < parts)
2739 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2740 }
Chris Lattner73cde982007-08-16 15:56:55 +00002741 }
Chris Lattner73cde982007-08-16 15:56:55 +00002742
Neil Bootha0f524a2007-10-08 13:47:12 +00002743 dst[i] = part;
2744 }
Chris Lattner73cde982007-08-16 15:56:55 +00002745 }
2746}
2747
2748/* Bitwise and of two bignums. */
2749void
2750APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2751{
2752 unsigned int i;
2753
2754 for(i = 0; i < parts; i++)
2755 dst[i] &= rhs[i];
2756}
2757
2758/* Bitwise inclusive or of two bignums. */
2759void
2760APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2761{
2762 unsigned int i;
2763
2764 for(i = 0; i < parts; i++)
2765 dst[i] |= rhs[i];
2766}
2767
2768/* Bitwise exclusive or of two bignums. */
2769void
2770APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2771{
2772 unsigned int i;
2773
2774 for(i = 0; i < parts; i++)
2775 dst[i] ^= rhs[i];
2776}
2777
2778/* Complement a bignum in-place. */
2779void
2780APInt::tcComplement(integerPart *dst, unsigned int parts)
2781{
2782 unsigned int i;
2783
2784 for(i = 0; i < parts; i++)
2785 dst[i] = ~dst[i];
2786}
2787
2788/* Comparison (unsigned) of two bignums. */
2789int
2790APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2791 unsigned int parts)
2792{
2793 while (parts) {
2794 parts--;
2795 if (lhs[parts] == rhs[parts])
2796 continue;
2797
2798 if (lhs[parts] > rhs[parts])
2799 return 1;
2800 else
2801 return -1;
2802 }
2803
2804 return 0;
2805}
2806
2807/* Increment a bignum in-place, return the carry flag. */
2808integerPart
2809APInt::tcIncrement(integerPart *dst, unsigned int parts)
2810{
2811 unsigned int i;
2812
2813 for(i = 0; i < parts; i++)
2814 if (++dst[i] != 0)
2815 break;
2816
2817 return i == parts;
2818}
2819
2820/* Set the least significant BITS bits of a bignum, clear the
2821 rest. */
2822void
2823APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2824 unsigned int bits)
2825{
2826 unsigned int i;
2827
2828 i = 0;
2829 while (bits > integerPartWidth) {
2830 dst[i++] = ~(integerPart) 0;
2831 bits -= integerPartWidth;
2832 }
2833
2834 if (bits)
2835 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2836
2837 while (i < parts)
2838 dst[i++] = 0;
2839}