blob: f3c10e9de99a0c34e6b5e8dc1617d09aabcff0f7 [file] [log] [blame]
Evan Chengb1290a62008-10-02 18:29:27 +00001//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Misha Brukman2a835f92009-01-08 15:50:22 +00009//
Evan Chengb1290a62008-10-02 18:29:27 +000010// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
Misha Brukman2a835f92009-01-08 15:50:22 +000015// code is inserted and the process repeated.
Evan Chengb1290a62008-10-02 18:29:27 +000016//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
Misha Brukman2a835f92009-01-08 15:50:22 +000019// allocation see the following papers:
Evan Chengb1290a62008-10-02 18:29:27 +000020//
21// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26// architectures. In Proceedings of the Joint Conference on Languages,
27// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28// NY, USA, 139-148.
Misha Brukman2a835f92009-01-08 15:50:22 +000029//
Evan Chengb1290a62008-10-02 18:29:27 +000030// Author: Lang Hames
31// Email: lhames@gmail.com
32//
33//===----------------------------------------------------------------------===//
34
Evan Chengb1290a62008-10-02 18:29:27 +000035#define DEBUG_TYPE "regalloc"
36
37#include "PBQP.h"
38#include "VirtRegMap.h"
Evan Chengb1290a62008-10-02 18:29:27 +000039#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Lang Hames27601ef2008-11-16 12:12:54 +000040#include "llvm/CodeGen/LiveStackAnalysis.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000041#include "llvm/CodeGen/MachineFunctionPass.h"
Evan Chengb1290a62008-10-02 18:29:27 +000042#include "llvm/CodeGen/MachineLoopInfo.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000043#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/RegAllocRegistry.h"
45#include "llvm/CodeGen/RegisterCoalescer.h"
Evan Chengb1290a62008-10-02 18:29:27 +000046#include "llvm/Support/Debug.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000047#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Target/TargetMachine.h"
49#include <limits>
Evan Chengb1290a62008-10-02 18:29:27 +000050#include <map>
Misha Brukman2a835f92009-01-08 15:50:22 +000051#include <memory>
Evan Chengb1290a62008-10-02 18:29:27 +000052#include <set>
53#include <vector>
Evan Chengb1290a62008-10-02 18:29:27 +000054
55using namespace llvm;
56
57static RegisterRegAlloc
Dan Gohmanb8cab922008-10-14 20:25:08 +000058registerPBQPRepAlloc("pbqp", "PBQP register allocator",
Evan Chengb1290a62008-10-02 18:29:27 +000059 createPBQPRegisterAllocator);
60
Evan Chengb1290a62008-10-02 18:29:27 +000061namespace {
62
63 //!
64 //! PBQP based allocators solve the register allocation problem by mapping
65 //! register allocation problems to Partitioned Boolean Quadratic
66 //! Programming problems.
67 class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
68 public:
69
70 static char ID;
Misha Brukman2a835f92009-01-08 15:50:22 +000071
Evan Chengb1290a62008-10-02 18:29:27 +000072 //! Construct a PBQP register allocator.
73 PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
74
75 //! Return the pass name.
76 virtual const char* getPassName() const throw() {
77 return "PBQP Register Allocator";
78 }
79
80 //! PBQP analysis usage.
81 virtual void getAnalysisUsage(AnalysisUsage &au) const {
82 au.addRequired<LiveIntervals>();
Lang Hames27601ef2008-11-16 12:12:54 +000083 au.addRequiredTransitive<RegisterCoalescer>();
84 au.addRequired<LiveStacks>();
85 au.addPreserved<LiveStacks>();
Evan Chengb1290a62008-10-02 18:29:27 +000086 au.addRequired<MachineLoopInfo>();
Lang Hames27601ef2008-11-16 12:12:54 +000087 au.addPreserved<MachineLoopInfo>();
Evan Chengb1290a62008-10-02 18:29:27 +000088 MachineFunctionPass::getAnalysisUsage(au);
89 }
90
91 //! Perform register allocation
92 virtual bool runOnMachineFunction(MachineFunction &MF);
93
94 private:
95 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
96 typedef std::vector<const LiveInterval*> Node2LIMap;
97 typedef std::vector<unsigned> AllowedSet;
98 typedef std::vector<AllowedSet> AllowedSetMap;
Lang Hames27601ef2008-11-16 12:12:54 +000099 typedef std::set<unsigned> RegSet;
100 typedef std::pair<unsigned, unsigned> RegPair;
101 typedef std::map<RegPair, PBQPNum> CoalesceMap;
102
103 typedef std::set<LiveInterval*> LiveIntervalSet;
Evan Chengb1290a62008-10-02 18:29:27 +0000104
105 MachineFunction *mf;
106 const TargetMachine *tm;
107 const TargetRegisterInfo *tri;
108 const TargetInstrInfo *tii;
109 const MachineLoopInfo *loopInfo;
110 MachineRegisterInfo *mri;
111
Lang Hames27601ef2008-11-16 12:12:54 +0000112 LiveIntervals *lis;
113 LiveStacks *lss;
Evan Chengb1290a62008-10-02 18:29:27 +0000114 VirtRegMap *vrm;
115
116 LI2NodeMap li2Node;
117 Node2LIMap node2LI;
118 AllowedSetMap allowedSets;
Lang Hames27601ef2008-11-16 12:12:54 +0000119 LiveIntervalSet vregIntervalsToAlloc,
120 emptyVRegIntervals;
Evan Chengb1290a62008-10-02 18:29:27 +0000121
Misha Brukman2a835f92009-01-08 15:50:22 +0000122
Evan Chengb1290a62008-10-02 18:29:27 +0000123 //! Builds a PBQP cost vector.
Lang Hames27601ef2008-11-16 12:12:54 +0000124 template <typename RegContainer>
125 PBQPVector* buildCostVector(unsigned vReg,
126 const RegContainer &allowed,
127 const CoalesceMap &cealesces,
Evan Chengb1290a62008-10-02 18:29:27 +0000128 PBQPNum spillCost) const;
129
Evan Cheng17a82ea2008-10-03 17:11:58 +0000130 //! \brief Builds a PBQP interference matrix.
Evan Chengb1290a62008-10-02 18:29:27 +0000131 //!
132 //! @return Either a pointer to a non-zero PBQP matrix representing the
133 //! allocation option costs, or a null pointer for a zero matrix.
134 //!
135 //! Expects allowed sets for two interfering LiveIntervals. These allowed
136 //! sets should contain only allocable registers from the LiveInterval's
137 //! register class, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000138 template <typename RegContainer>
139 PBQPMatrix* buildInterferenceMatrix(const RegContainer &allowed1,
140 const RegContainer &allowed2) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000141
142 //!
143 //! Expects allowed sets for two potentially coalescable LiveIntervals,
144 //! and an estimated benefit due to coalescing. The allowed sets should
145 //! contain only allocable registers from the LiveInterval's register
146 //! classes, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000147 template <typename RegContainer>
148 PBQPMatrix* buildCoalescingMatrix(const RegContainer &allowed1,
149 const RegContainer &allowed2,
Evan Chengb1290a62008-10-02 18:29:27 +0000150 PBQPNum cBenefit) const;
151
Lang Hames27601ef2008-11-16 12:12:54 +0000152 //! \brief Finds coalescing opportunities and returns them as a map.
Evan Chengb1290a62008-10-02 18:29:27 +0000153 //!
Lang Hames27601ef2008-11-16 12:12:54 +0000154 //! Any entries in the map are guaranteed coalescable, even if their
155 //! corresponding live intervals overlap.
156 CoalesceMap findCoalesces();
Evan Chengb1290a62008-10-02 18:29:27 +0000157
Lang Hames27601ef2008-11-16 12:12:54 +0000158 //! \brief Finds the initial set of vreg intervals to allocate.
159 void findVRegIntervalsToAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000160
161 //! \brief Constructs a PBQP problem representation of the register
162 //! allocation problem for this function.
163 //!
164 //! @return a PBQP solver object for the register allocation problem.
165 pbqp* constructPBQPProblem();
166
Lang Hames27601ef2008-11-16 12:12:54 +0000167 //! \brief Adds a stack interval if the given live interval has been
168 //! spilled. Used to support stack slot coloring.
169 void addStackInterval(const LiveInterval *spilled, float &weight);
170
Evan Chengb1290a62008-10-02 18:29:27 +0000171 //! \brief Given a solved PBQP problem maps this solution back to a register
172 //! assignment.
Misha Brukman2a835f92009-01-08 15:50:22 +0000173 bool mapPBQPToRegAlloc(pbqp *problem);
Evan Chengb1290a62008-10-02 18:29:27 +0000174
Lang Hames27601ef2008-11-16 12:12:54 +0000175 //! \brief Postprocessing before final spilling. Sets basic block "live in"
176 //! variables.
177 void finalizeAlloc() const;
178
Evan Chengb1290a62008-10-02 18:29:27 +0000179 };
180
181 char PBQPRegAlloc::ID = 0;
182}
183
184
Lang Hames27601ef2008-11-16 12:12:54 +0000185template <typename RegContainer>
186PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
187 const RegContainer &allowed,
188 const CoalesceMap &coalesces,
Evan Chengb1290a62008-10-02 18:29:27 +0000189 PBQPNum spillCost) const {
190
Lang Hames27601ef2008-11-16 12:12:54 +0000191 typedef typename RegContainer::const_iterator AllowedItr;
192
Evan Chengb1290a62008-10-02 18:29:27 +0000193 // Allocate vector. Additional element (0th) used for spill option
194 PBQPVector *v = new PBQPVector(allowed.size() + 1);
195
196 (*v)[0] = spillCost;
197
Lang Hames27601ef2008-11-16 12:12:54 +0000198 // Iterate over the allowed registers inserting coalesce benefits if there
199 // are any.
200 unsigned ai = 0;
201 for (AllowedItr itr = allowed.begin(), end = allowed.end();
202 itr != end; ++itr, ++ai) {
203
204 unsigned pReg = *itr;
205
206 CoalesceMap::const_iterator cmItr =
207 coalesces.find(RegPair(vReg, pReg));
208
209 // No coalesce - on to the next preg.
210 if (cmItr == coalesces.end())
211 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000212
213 // We have a coalesce - insert the benefit.
214 (*v)[ai + 1] = -cmItr->second;
Lang Hames27601ef2008-11-16 12:12:54 +0000215 }
216
Evan Chengb1290a62008-10-02 18:29:27 +0000217 return v;
218}
219
Lang Hames27601ef2008-11-16 12:12:54 +0000220template <typename RegContainer>
Evan Chengb1290a62008-10-02 18:29:27 +0000221PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
Lang Hames27601ef2008-11-16 12:12:54 +0000222 const RegContainer &allowed1, const RegContainer &allowed2) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000223
Lang Hames27601ef2008-11-16 12:12:54 +0000224 typedef typename RegContainer::const_iterator RegContainerIterator;
Evan Chengb1290a62008-10-02 18:29:27 +0000225
226 // Construct a PBQP matrix representing the cost of allocation options. The
227 // rows and columns correspond to the allocation options for the two live
228 // intervals. Elements will be infinite where corresponding registers alias,
229 // since we cannot allocate aliasing registers to interfering live intervals.
230 // All other elements (non-aliasing combinations) will have zero cost. Note
231 // that the spill option (element 0,0) has zero cost, since we can allocate
232 // both intervals to memory safely (the cost for each individual allocation
233 // to memory is accounted for by the cost vectors for each live interval).
234 PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
Misha Brukman2a835f92009-01-08 15:50:22 +0000235
Evan Chengb1290a62008-10-02 18:29:27 +0000236 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
237 // between interfering live ranges with non-overlapping register sets (e.g.
238 // non-overlapping reg classes, or disjoint sets of allowed regs within the
239 // same class). The term "overlapping" is used advisedly: sets which do not
240 // intersect, but contain registers which alias, will have non-zero matrices.
241 // We optimize zero matrices away to improve solver speed.
242 bool isZeroMatrix = true;
243
244
245 // Row index. Starts at 1, since the 0th row is for the spill option, which
246 // is always zero.
Misha Brukman2a835f92009-01-08 15:50:22 +0000247 unsigned ri = 1;
Evan Chengb1290a62008-10-02 18:29:27 +0000248
Misha Brukman2a835f92009-01-08 15:50:22 +0000249 // Iterate over allowed sets, insert infinities where required.
Lang Hames27601ef2008-11-16 12:12:54 +0000250 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000251 a1Itr != a1End; ++a1Itr) {
252
253 // Column index, starts at 1 as for row index.
254 unsigned ci = 1;
255 unsigned reg1 = *a1Itr;
256
Lang Hames27601ef2008-11-16 12:12:54 +0000257 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000258 a2Itr != a2End; ++a2Itr) {
259
260 unsigned reg2 = *a2Itr;
261
262 // If the row/column regs are identical or alias insert an infinity.
263 if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
264 (*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
265 isZeroMatrix = false;
266 }
267
268 ++ci;
269 }
270
271 ++ri;
272 }
273
274 // If this turns out to be a zero matrix...
275 if (isZeroMatrix) {
276 // free it and return null.
277 delete m;
278 return 0;
279 }
280
281 // ...otherwise return the cost matrix.
282 return m;
283}
284
Lang Hames27601ef2008-11-16 12:12:54 +0000285template <typename RegContainer>
286PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
287 const RegContainer &allowed1, const RegContainer &allowed2,
288 PBQPNum cBenefit) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000289
Lang Hames27601ef2008-11-16 12:12:54 +0000290 typedef typename RegContainer::const_iterator RegContainerIterator;
291
292 // Construct a PBQP Matrix representing the benefits of coalescing. As with
293 // interference matrices the rows and columns represent allowed registers
294 // for the LiveIntervals which are (potentially) to be coalesced. The amount
295 // -cBenefit will be placed in any element representing the same register
296 // for both intervals.
297 PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
298
299 // Reset costs to zero.
300 m->reset(0);
301
302 // Assume the matrix is zero till proven otherwise. Zero matrices will be
303 // optimized away as in the interference case.
304 bool isZeroMatrix = true;
305
306 // Row index. Starts at 1, since the 0th row is for the spill option, which
307 // is always zero.
308 unsigned ri = 1;
309
310 // Iterate over the allowed sets, insert coalescing benefits where
311 // appropriate.
312 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
313 a1Itr != a1End; ++a1Itr) {
314
315 // Column index, starts at 1 as for row index.
316 unsigned ci = 1;
317 unsigned reg1 = *a1Itr;
318
319 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
320 a2Itr != a2End; ++a2Itr) {
321
322 // If the row and column represent the same register insert a beneficial
323 // cost to preference this allocation - it would allow us to eliminate a
Misha Brukman2a835f92009-01-08 15:50:22 +0000324 // move instruction.
Lang Hames27601ef2008-11-16 12:12:54 +0000325 if (reg1 == *a2Itr) {
326 (*m)[ri][ci] = -cBenefit;
327 isZeroMatrix = false;
328 }
329
330 ++ci;
331 }
332
333 ++ri;
334 }
335
336 // If this turns out to be a zero matrix...
337 if (isZeroMatrix) {
338 // ...free it and return null.
339 delete m;
340 return 0;
341 }
342
343 return m;
344}
345
346PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
347
348 typedef MachineFunction::const_iterator MFIterator;
349 typedef MachineBasicBlock::const_iterator MBBIterator;
350 typedef LiveInterval::const_vni_iterator VNIIterator;
Misha Brukman2a835f92009-01-08 15:50:22 +0000351
Lang Hames27601ef2008-11-16 12:12:54 +0000352 CoalesceMap coalescesFound;
353
354 // To find coalesces we need to iterate over the function looking for
355 // copy instructions.
356 for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000357 bbItr != bbEnd; ++bbItr) {
358
359 const MachineBasicBlock *mbb = &*bbItr;
Evan Chengb1290a62008-10-02 18:29:27 +0000360
Lang Hames27601ef2008-11-16 12:12:54 +0000361 for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
362 iItr != iEnd; ++iItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000363
364 const MachineInstr *instr = &*iItr;
Lang Hames27601ef2008-11-16 12:12:54 +0000365 unsigned srcReg, dstReg;
Evan Chengb1290a62008-10-02 18:29:27 +0000366
Lang Hames27601ef2008-11-16 12:12:54 +0000367 // If this isn't a copy then continue to the next instruction.
368 if (!tii->isMoveInstr(*instr, srcReg, dstReg))
369 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000370
Lang Hames27601ef2008-11-16 12:12:54 +0000371 // If the registers are already the same our job is nice and easy.
372 if (dstReg == srcReg)
373 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000374
Lang Hames27601ef2008-11-16 12:12:54 +0000375 bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
376 dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
377
378 // If both registers are physical then we can't coalesce.
379 if (srcRegIsPhysical && dstRegIsPhysical)
380 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000381
Lang Hames27601ef2008-11-16 12:12:54 +0000382 // If it's a copy that includes a virtual register but the source and
383 // destination classes differ then we can't coalesce, so continue with
384 // the next instruction.
385 const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
386 tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
387
388 const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
389 tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
390
391 if (srcRegClass != dstRegClass)
392 continue;
393
394 // We also need any physical regs to be allocable, coalescing with
395 // a non-allocable register is invalid.
396 if (srcRegIsPhysical) {
397 if (std::find(srcRegClass->allocation_order_begin(*mf),
398 srcRegClass->allocation_order_end(*mf), srcReg) ==
399 srcRegClass->allocation_order_end(*mf))
Evan Chengb1290a62008-10-02 18:29:27 +0000400 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000401 }
402
Lang Hames27601ef2008-11-16 12:12:54 +0000403 if (dstRegIsPhysical) {
404 if (std::find(dstRegClass->allocation_order_begin(*mf),
405 dstRegClass->allocation_order_end(*mf), dstReg) ==
406 dstRegClass->allocation_order_end(*mf))
407 continue;
408 }
409
410 // If we've made it here we have a copy with compatible register classes.
Misha Brukman2a835f92009-01-08 15:50:22 +0000411 // We can probably coalesce, but we need to consider overlap.
Lang Hames27601ef2008-11-16 12:12:54 +0000412 const LiveInterval *srcLI = &lis->getInterval(srcReg),
413 *dstLI = &lis->getInterval(dstReg);
414
415 if (srcLI->overlaps(*dstLI)) {
416 // Even in the case of an overlap we might still be able to coalesce,
417 // but we need to make sure that no definition of either range occurs
418 // while the other range is live.
419
420 // Otherwise start by assuming we're ok.
421 bool badDef = false;
422
423 // Test all defs of the source range.
Misha Brukman2a835f92009-01-08 15:50:22 +0000424 for (VNIIterator
Lang Hames27601ef2008-11-16 12:12:54 +0000425 vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
426 vniItr != vniEnd; ++vniItr) {
427
428 // If we find a def that kills the coalescing opportunity then
429 // record it and break from the loop.
430 if (dstLI->liveAt((*vniItr)->def)) {
431 badDef = true;
432 break;
433 }
434 }
435
436 // If we have a bad def give up, continue to the next instruction.
437 if (badDef)
438 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000439
Lang Hames27601ef2008-11-16 12:12:54 +0000440 // Otherwise test definitions of the destination range.
441 for (VNIIterator
442 vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
443 vniItr != vniEnd; ++vniItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000444
Lang Hames27601ef2008-11-16 12:12:54 +0000445 // We want to make sure we skip the copy instruction itself.
446 if ((*vniItr)->copy == instr)
447 continue;
448
449 if (srcLI->liveAt((*vniItr)->def)) {
450 badDef = true;
451 break;
452 }
453 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000454
Lang Hames27601ef2008-11-16 12:12:54 +0000455 // As before a bad def we give up and continue to the next instr.
456 if (badDef)
457 continue;
458 }
459
460 // If we make it to here then either the ranges didn't overlap, or they
461 // did, but none of their definitions would prevent us from coalescing.
462 // We're good to go with the coalesce.
463
464 float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000465
Lang Hames27601ef2008-11-16 12:12:54 +0000466 coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
467 coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
Evan Chengb1290a62008-10-02 18:29:27 +0000468 }
469
470 }
471
Lang Hames27601ef2008-11-16 12:12:54 +0000472 return coalescesFound;
473}
474
475void PBQPRegAlloc::findVRegIntervalsToAlloc() {
476
477 // Iterate over all live ranges.
478 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
479 itr != end; ++itr) {
480
481 // Ignore physical ones.
482 if (TargetRegisterInfo::isPhysicalRegister(itr->first))
483 continue;
484
485 LiveInterval *li = itr->second;
486
487 // If this live interval is non-empty we will use pbqp to allocate it.
488 // Empty intervals we allocate in a simple post-processing stage in
489 // finalizeAlloc.
490 if (!li->empty()) {
491 vregIntervalsToAlloc.insert(li);
492 }
493 else {
494 emptyVRegIntervals.insert(li);
495 }
496 }
Evan Chengb1290a62008-10-02 18:29:27 +0000497}
498
499pbqp* PBQPRegAlloc::constructPBQPProblem() {
500
501 typedef std::vector<const LiveInterval*> LIVector;
Lang Hames27601ef2008-11-16 12:12:54 +0000502 typedef std::vector<unsigned> RegVector;
Evan Chengb1290a62008-10-02 18:29:27 +0000503
Lang Hames27601ef2008-11-16 12:12:54 +0000504 // This will store the physical intervals for easy reference.
505 LIVector physIntervals;
Evan Chengb1290a62008-10-02 18:29:27 +0000506
507 // Start by clearing the old node <-> live interval mappings & allowed sets
508 li2Node.clear();
509 node2LI.clear();
510 allowedSets.clear();
511
Lang Hames27601ef2008-11-16 12:12:54 +0000512 // Populate physIntervals, update preg use:
513 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000514 itr != end; ++itr) {
515
Evan Chengb1290a62008-10-02 18:29:27 +0000516 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
517 physIntervals.push_back(itr->second);
518 mri->setPhysRegUsed(itr->second->reg);
519 }
Evan Chengb1290a62008-10-02 18:29:27 +0000520 }
521
Lang Hames27601ef2008-11-16 12:12:54 +0000522 // Iterate over vreg intervals, construct live interval <-> node number
523 // mappings.
Misha Brukman2a835f92009-01-08 15:50:22 +0000524 for (LiveIntervalSet::const_iterator
Lang Hames27601ef2008-11-16 12:12:54 +0000525 itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
526 itr != end; ++itr) {
527 const LiveInterval *li = *itr;
528
529 li2Node[li] = node2LI.size();
530 node2LI.push_back(li);
531 }
532
533 // Get the set of potential coalesces.
534 CoalesceMap coalesces(findCoalesces());
Evan Chengb1290a62008-10-02 18:29:27 +0000535
536 // Construct a PBQP solver for this problem
Lang Hames27601ef2008-11-16 12:12:54 +0000537 pbqp *solver = alloc_pbqp(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000538
539 // Resize allowedSets container appropriately.
Lang Hames27601ef2008-11-16 12:12:54 +0000540 allowedSets.resize(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000541
542 // Iterate over virtual register intervals to compute allowed sets...
543 for (unsigned node = 0; node < node2LI.size(); ++node) {
544
545 // Grab pointers to the interval and its register class.
546 const LiveInterval *li = node2LI[node];
547 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000548
Evan Chengb1290a62008-10-02 18:29:27 +0000549 // Start by assuming all allocable registers in the class are allowed...
Lang Hames27601ef2008-11-16 12:12:54 +0000550 RegVector liAllowed(liRC->allocation_order_begin(*mf),
551 liRC->allocation_order_end(*mf));
Evan Chengb1290a62008-10-02 18:29:27 +0000552
Lang Hames27601ef2008-11-16 12:12:54 +0000553 // Eliminate the physical registers which overlap with this range, along
554 // with all their aliases.
555 for (LIVector::iterator pItr = physIntervals.begin(),
556 pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000557
Lang Hames27601ef2008-11-16 12:12:54 +0000558 if (!li->overlaps(**pItr))
559 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000560
Lang Hames27601ef2008-11-16 12:12:54 +0000561 unsigned pReg = (*pItr)->reg;
Evan Chengb1290a62008-10-02 18:29:27 +0000562
Lang Hames27601ef2008-11-16 12:12:54 +0000563 // If we get here then the live intervals overlap, but we're still ok
564 // if they're coalescable.
565 if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
566 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000567
Lang Hames27601ef2008-11-16 12:12:54 +0000568 // If we get here then we have a genuine exclusion.
Evan Chengb1290a62008-10-02 18:29:27 +0000569
Lang Hames27601ef2008-11-16 12:12:54 +0000570 // Remove the overlapping reg...
571 RegVector::iterator eraseItr =
572 std::find(liAllowed.begin(), liAllowed.end(), pReg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000573
Lang Hames27601ef2008-11-16 12:12:54 +0000574 if (eraseItr != liAllowed.end())
575 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000576
Lang Hames27601ef2008-11-16 12:12:54 +0000577 const unsigned *aliasItr = tri->getAliasSet(pReg);
578
579 if (aliasItr != 0) {
580 // ...and its aliases.
581 for (; *aliasItr != 0; ++aliasItr) {
582 RegVector::iterator eraseItr =
583 std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
Misha Brukman2a835f92009-01-08 15:50:22 +0000584
Lang Hames27601ef2008-11-16 12:12:54 +0000585 if (eraseItr != liAllowed.end()) {
586 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000587 }
Evan Chengb1290a62008-10-02 18:29:27 +0000588 }
Evan Chengb1290a62008-10-02 18:29:27 +0000589 }
Evan Chengb1290a62008-10-02 18:29:27 +0000590 }
591
592 // Copy the allowed set into a member vector for use when constructing cost
593 // vectors & matrices, and mapping PBQP solutions back to assignments.
594 allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
595
596 // Set the spill cost to the interval weight, or epsilon if the
597 // interval weight is zero
Misha Brukman2a835f92009-01-08 15:50:22 +0000598 PBQPNum spillCost = (li->weight != 0.0) ?
Evan Chengb1290a62008-10-02 18:29:27 +0000599 li->weight : std::numeric_limits<PBQPNum>::min();
600
601 // Build a cost vector for this interval.
602 add_pbqp_nodecosts(solver, node,
Lang Hames27601ef2008-11-16 12:12:54 +0000603 buildCostVector(li->reg, allowedSets[node], coalesces,
604 spillCost));
Evan Chengb1290a62008-10-02 18:29:27 +0000605
606 }
607
Lang Hames27601ef2008-11-16 12:12:54 +0000608
Evan Chengb1290a62008-10-02 18:29:27 +0000609 // Now add the cost matrices...
610 for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
Evan Chengb1290a62008-10-02 18:29:27 +0000611 const LiveInterval *li = node2LI[node1];
612
Evan Chengb1290a62008-10-02 18:29:27 +0000613 // Test for live range overlaps and insert interference matrices.
614 for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
615 const LiveInterval *li2 = node2LI[node2];
616
Lang Hames27601ef2008-11-16 12:12:54 +0000617 CoalesceMap::const_iterator cmItr =
618 coalesces.find(RegPair(li->reg, li2->reg));
Evan Chengb1290a62008-10-02 18:29:27 +0000619
Lang Hames27601ef2008-11-16 12:12:54 +0000620 PBQPMatrix *m = 0;
Evan Chengb1290a62008-10-02 18:29:27 +0000621
Lang Hames27601ef2008-11-16 12:12:54 +0000622 if (cmItr != coalesces.end()) {
623 m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
624 cmItr->second);
625 }
626 else if (li->overlaps(*li2)) {
627 m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
628 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000629
Lang Hames27601ef2008-11-16 12:12:54 +0000630 if (m != 0) {
631 add_pbqp_edgecosts(solver, node1, node2, m);
632 delete m;
Evan Chengb1290a62008-10-02 18:29:27 +0000633 }
634 }
635 }
636
637 // We're done, PBQP problem constructed - return it.
Misha Brukman2a835f92009-01-08 15:50:22 +0000638 return solver;
Evan Chengb1290a62008-10-02 18:29:27 +0000639}
640
Lang Hames27601ef2008-11-16 12:12:54 +0000641void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled, float &weight) {
642 int stackSlot = vrm->getStackSlot(spilled->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000643
644 if (stackSlot == VirtRegMap::NO_STACK_SLOT)
Lang Hames27601ef2008-11-16 12:12:54 +0000645 return;
646
647 LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot);
648 stackInterval.weight += weight;
649
650 VNInfo *vni;
651 if (stackInterval.getNumValNums() != 0)
652 vni = stackInterval.getValNumInfo(0);
653 else
654 vni = stackInterval.getNextValue(-0U, 0, lss->getVNInfoAllocator());
655
656 LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
657 stackInterval.MergeRangesInAsValue(rhsInterval, vni);
658}
659
Evan Chengb1290a62008-10-02 18:29:27 +0000660bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000661
Evan Chengb1290a62008-10-02 18:29:27 +0000662 // Set to true if we have any spills
663 bool anotherRoundNeeded = false;
664
665 // Clear the existing allocation.
666 vrm->clearAllVirt();
Misha Brukman2a835f92009-01-08 15:50:22 +0000667
Evan Chengb1290a62008-10-02 18:29:27 +0000668 // Iterate over the nodes mapping the PBQP solution to a register assignment.
669 for (unsigned node = 0; node < node2LI.size(); ++node) {
Lang Hames27601ef2008-11-16 12:12:54 +0000670 unsigned virtReg = node2LI[node]->reg,
Evan Chengb1290a62008-10-02 18:29:27 +0000671 allocSelection = get_pbqp_solution(problem, node);
672
673 // If the PBQP solution is non-zero it's a physical register...
674 if (allocSelection != 0) {
675 // Get the physical reg, subtracting 1 to account for the spill option.
676 unsigned physReg = allowedSets[node][allocSelection - 1];
677
Lang Hames27601ef2008-11-16 12:12:54 +0000678 DOUT << "VREG " << virtReg << " -> " << tri->getName(physReg) << "\n";
679
680 assert(physReg != 0);
681
Evan Chengb1290a62008-10-02 18:29:27 +0000682 // Add to the virt reg map and update the used phys regs.
Lang Hames27601ef2008-11-16 12:12:54 +0000683 vrm->assignVirt2Phys(virtReg, physReg);
Evan Chengb1290a62008-10-02 18:29:27 +0000684 }
685 // ...Otherwise it's a spill.
686 else {
687
688 // Make sure we ignore this virtual reg on the next round
689 // of allocation
Lang Hames27601ef2008-11-16 12:12:54 +0000690 vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
Evan Chengb1290a62008-10-02 18:29:27 +0000691
Lang Hames27601ef2008-11-16 12:12:54 +0000692 float ssWeight;
Evan Chengb1290a62008-10-02 18:29:27 +0000693
694 // Insert spill ranges for this live range
Lang Hames27601ef2008-11-16 12:12:54 +0000695 const LiveInterval *spillInterval = node2LI[node];
696 double oldSpillWeight = spillInterval->weight;
Evan Chengb1290a62008-10-02 18:29:27 +0000697 SmallVector<LiveInterval*, 8> spillIs;
698 std::vector<LiveInterval*> newSpills =
Lang Hames27601ef2008-11-16 12:12:54 +0000699 lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm,
700 ssWeight);
701 addStackInterval(spillInterval, ssWeight);
702
703 DOUT << "VREG " << virtReg << " -> SPILLED (Cost: "
704 << oldSpillWeight << ", New vregs: ";
705
706 // Copy any newly inserted live intervals into the list of regs to
707 // allocate.
708 for (std::vector<LiveInterval*>::const_iterator
709 itr = newSpills.begin(), end = newSpills.end();
710 itr != end; ++itr) {
711
712 assert(!(*itr)->empty() && "Empty spill range.");
713
714 DOUT << (*itr)->reg << " ";
715
716 vregIntervalsToAlloc.insert(*itr);
717 }
718
719 DOUT << ")\n";
Evan Chengb1290a62008-10-02 18:29:27 +0000720
721 // We need another round if spill intervals were added.
722 anotherRoundNeeded |= !newSpills.empty();
723 }
724 }
725
726 return !anotherRoundNeeded;
727}
728
Lang Hames27601ef2008-11-16 12:12:54 +0000729void PBQPRegAlloc::finalizeAlloc() const {
730 typedef LiveIntervals::iterator LIIterator;
731 typedef LiveInterval::Ranges::const_iterator LRIterator;
732
733 // First allocate registers for the empty intervals.
Argyrios Kyrtzidis3713c0b2008-11-19 12:56:21 +0000734 for (LiveIntervalSet::const_iterator
Lang Hames27601ef2008-11-16 12:12:54 +0000735 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
736 itr != end; ++itr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000737 LiveInterval *li = *itr;
Lang Hames27601ef2008-11-16 12:12:54 +0000738
739 unsigned physReg = li->preference;
740
741 if (physReg == 0) {
742 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000743 physReg = *liRC->allocation_order_begin(*mf);
Lang Hames27601ef2008-11-16 12:12:54 +0000744 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000745
746 vrm->assignVirt2Phys(li->reg, physReg);
Lang Hames27601ef2008-11-16 12:12:54 +0000747 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000748
Lang Hames27601ef2008-11-16 12:12:54 +0000749 // Finally iterate over the basic blocks to compute and set the live-in sets.
750 SmallVector<MachineBasicBlock*, 8> liveInMBBs;
751 MachineBasicBlock *entryMBB = &*mf->begin();
752
753 for (LIIterator liItr = lis->begin(), liEnd = lis->end();
754 liItr != liEnd; ++liItr) {
755
756 const LiveInterval *li = liItr->second;
757 unsigned reg = 0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000758
Lang Hames27601ef2008-11-16 12:12:54 +0000759 // Get the physical register for this interval
760 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
761 reg = li->reg;
762 }
763 else if (vrm->isAssignedReg(li->reg)) {
764 reg = vrm->getPhys(li->reg);
765 }
766 else {
767 // Ranges which are assigned a stack slot only are ignored.
768 continue;
769 }
770
771 // Iterate over the ranges of the current interval...
772 for (LRIterator lrItr = li->begin(), lrEnd = li->end();
773 lrItr != lrEnd; ++lrItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000774
Lang Hames27601ef2008-11-16 12:12:54 +0000775 // Find the set of basic blocks which this range is live into...
776 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
777 // And add the physreg for this interval to their live-in sets.
778 for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
779 if (liveInMBBs[i] != entryMBB) {
780 if (!liveInMBBs[i]->isLiveIn(reg)) {
781 liveInMBBs[i]->addLiveIn(reg);
782 }
783 }
784 }
785 liveInMBBs.clear();
786 }
787 }
788 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000789
Lang Hames27601ef2008-11-16 12:12:54 +0000790}
791
Evan Chengb1290a62008-10-02 18:29:27 +0000792bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
Lang Hames27601ef2008-11-16 12:12:54 +0000793
Evan Chengb1290a62008-10-02 18:29:27 +0000794 mf = &MF;
795 tm = &mf->getTarget();
796 tri = tm->getRegisterInfo();
Lang Hames27601ef2008-11-16 12:12:54 +0000797 tii = tm->getInstrInfo();
Evan Chengb1290a62008-10-02 18:29:27 +0000798 mri = &mf->getRegInfo();
799
Lang Hames27601ef2008-11-16 12:12:54 +0000800 lis = &getAnalysis<LiveIntervals>();
801 lss = &getAnalysis<LiveStacks>();
Evan Chengb1290a62008-10-02 18:29:27 +0000802 loopInfo = &getAnalysis<MachineLoopInfo>();
803
804 std::auto_ptr<VirtRegMap> vrmAutoPtr(new VirtRegMap(*mf));
805 vrm = vrmAutoPtr.get();
806
Lang Hames27601ef2008-11-16 12:12:54 +0000807 DOUT << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n";
808
Evan Chengb1290a62008-10-02 18:29:27 +0000809 // Allocator main loop:
Misha Brukman2a835f92009-01-08 15:50:22 +0000810 //
Evan Chengb1290a62008-10-02 18:29:27 +0000811 // * Map current regalloc problem to a PBQP problem
812 // * Solve the PBQP problem
813 // * Map the solution back to a register allocation
814 // * Spill if necessary
Misha Brukman2a835f92009-01-08 15:50:22 +0000815 //
Evan Chengb1290a62008-10-02 18:29:27 +0000816 // This process is continued till no more spills are generated.
817
Lang Hames27601ef2008-11-16 12:12:54 +0000818 // Find the vreg intervals in need of allocation.
819 findVRegIntervalsToAlloc();
Misha Brukman2a835f92009-01-08 15:50:22 +0000820
Lang Hames27601ef2008-11-16 12:12:54 +0000821 // If there aren't any then we're done here.
822 if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
823 return true;
Evan Chengb1290a62008-10-02 18:29:27 +0000824
Lang Hames27601ef2008-11-16 12:12:54 +0000825 // If there are non-empty intervals allocate them using pbqp.
826 if (!vregIntervalsToAlloc.empty()) {
Evan Chengb1290a62008-10-02 18:29:27 +0000827
Lang Hames27601ef2008-11-16 12:12:54 +0000828 bool pbqpAllocComplete = false;
829 unsigned round = 0;
830
831 while (!pbqpAllocComplete) {
832 DOUT << " PBQP Regalloc round " << round << ":\n";
833
834 pbqp *problem = constructPBQPProblem();
Misha Brukman2a835f92009-01-08 15:50:22 +0000835
Lang Hames27601ef2008-11-16 12:12:54 +0000836 solve_pbqp(problem);
Misha Brukman2a835f92009-01-08 15:50:22 +0000837
Lang Hames27601ef2008-11-16 12:12:54 +0000838 pbqpAllocComplete = mapPBQPToRegAlloc(problem);
839
Misha Brukman2a835f92009-01-08 15:50:22 +0000840 free_pbqp(problem);
Lang Hames27601ef2008-11-16 12:12:54 +0000841
842 ++round;
843 }
Evan Chengb1290a62008-10-02 18:29:27 +0000844 }
845
Lang Hames27601ef2008-11-16 12:12:54 +0000846 // Finalise allocation, allocate empty ranges.
847 finalizeAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000848
Lang Hames27601ef2008-11-16 12:12:54 +0000849 vregIntervalsToAlloc.clear();
850 emptyVRegIntervals.clear();
851 li2Node.clear();
852 node2LI.clear();
853 allowedSets.clear();
854
855 DOUT << "Post alloc VirtRegMap:\n" << *vrm << "\n";
856
857 // Run spiller
Evan Chengb1290a62008-10-02 18:29:27 +0000858 std::auto_ptr<Spiller> spiller(createSpiller());
Evan Chengb1290a62008-10-02 18:29:27 +0000859 spiller->runOnMachineFunction(*mf, *vrm);
Lang Hames27601ef2008-11-16 12:12:54 +0000860
Misha Brukman2a835f92009-01-08 15:50:22 +0000861 return true;
Evan Chengb1290a62008-10-02 18:29:27 +0000862}
863
864FunctionPass* llvm::createPBQPRegisterAllocator() {
865 return new PBQPRegAlloc();
866}
867
868
869#undef DEBUG_TYPE