blob: 6e9a209b7e1399ff5e4e56fbf50289ec3bb4f931 [file] [log] [blame]
Chris Lattnerf6e5233f2003-09-10 05:08:19 +00001//===- InductionVariable.cpp - Induction variable classification ----------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner0bbe58f2001-11-26 18:41:20 +00009//
Chris Lattnerf6e5233f2003-09-10 05:08:19 +000010// This file implements identification and classification of induction
11// variables. Induction variables must contain a PHI node that exists in a
12// loop header. Because of this, they are identified an managed by this PHI
13// node.
Chris Lattner0bbe58f2001-11-26 18:41:20 +000014//
15// Induction variables are classified into a type. Knowing that an induction
16// variable is of a specific type can constrain the values of the start and
17// step. For example, a SimpleLinear induction variable must have a start and
18// step values that are constants.
19//
20// Induction variables can be created with or without loop information. If no
21// loop information is available, induction variables cannot be recognized to be
22// more than SimpleLinear variables.
23//
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Analysis/InductionVariable.h"
27#include "llvm/Analysis/LoopInfo.h"
28#include "llvm/Analysis/Expressions.h"
Misha Brukmana2722902002-10-11 05:34:32 +000029#include "llvm/BasicBlock.h"
Chris Lattner7061dc52001-12-03 18:02:31 +000030#include "llvm/iPHINode.h"
Misha Brukmana2722902002-10-11 05:34:32 +000031#include "llvm/iOperators.h"
32#include "llvm/iTerminators.h"
Chris Lattner0bbe58f2001-11-26 18:41:20 +000033#include "llvm/Type.h"
Chris Lattner31bcdb82002-04-28 19:55:58 +000034#include "llvm/Constants.h"
Misha Brukmana2722902002-10-11 05:34:32 +000035#include "llvm/Support/CFG.h"
Chris Lattnera59cbb22002-07-27 01:12:17 +000036#include "llvm/Assembly/Writer.h"
Chris Lattner6806f562003-08-01 22:15:03 +000037#include "Support/Debug.h"
Chris Lattner0bbe58f2001-11-26 18:41:20 +000038
Brian Gaeked0fde302003-11-11 22:41:34 +000039namespace llvm {
40
Chris Lattner1b7f7dc2002-04-28 16:21:30 +000041static bool isLoopInvariant(const Value *V, const Loop *L) {
Chris Lattner36836a62003-09-10 04:49:10 +000042 if (const Instruction *I = dyn_cast<Instruction>(V))
43 return !L->contains(I->getParent());
44 // non-instructions all dominate instructions/blocks
45 return true;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000046}
47
48enum InductionVariable::iType
49InductionVariable::Classify(const Value *Start, const Value *Step,
Misha Brukmana2722902002-10-11 05:34:32 +000050 const Loop *L) {
Chris Lattner69ecd0d2003-09-10 05:24:09 +000051 // Check for canonical and simple linear expressions now...
Chris Lattner7e708292002-06-25 16:13:24 +000052 if (const ConstantInt *CStart = dyn_cast<ConstantInt>(Start))
53 if (const ConstantInt *CStep = dyn_cast<ConstantInt>(Step)) {
Chris Lattner36836a62003-09-10 04:49:10 +000054 if (CStart->isNullValue() && CStep->equalsInt(1))
Chris Lattner69ecd0d2003-09-10 05:24:09 +000055 return Canonical;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000056 else
Misha Brukmana2722902002-10-11 05:34:32 +000057 return SimpleLinear;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000058 }
59
60 // Without loop information, we cannot do any better, so bail now...
61 if (L == 0) return Unknown;
62
63 if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L))
64 return Linear;
65 return Unknown;
66}
67
68// Create an induction variable for the specified value. If it is a PHI, and
69// if it's recognizable, classify it and fill in instance variables.
70//
Misha Brukmana2722902002-10-11 05:34:32 +000071InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo): End(0) {
Chris Lattner0bbe58f2001-11-26 18:41:20 +000072 InductionType = Unknown; // Assume the worst
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000073 Phi = P;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000074
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000075 // If the PHI node has more than two predecessors, we don't know how to
Chris Lattner0bbe58f2001-11-26 18:41:20 +000076 // handle it.
77 //
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000078 if (Phi->getNumIncomingValues() != 2) return;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000079
Chris Lattner6de230a2001-12-05 06:32:30 +000080 // FIXME: Handle FP induction variables.
81 if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy)
82 return;
83
Chris Lattner0bbe58f2001-11-26 18:41:20 +000084 // If we have loop information, make sure that this PHI node is in the header
85 // of a loop...
86 //
Chris Lattner1b7f7dc2002-04-28 16:21:30 +000087 const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000088 if (L && L->getHeader() != Phi->getParent())
89 return;
90
91 Value *V1 = Phi->getIncomingValue(0);
92 Value *V2 = Phi->getIncomingValue(1);
93
94 if (L == 0) { // No loop information? Base everything on expression analysis
Chris Lattnerc74cb862002-08-30 22:53:53 +000095 ExprType E1 = ClassifyExpression(V1);
96 ExprType E2 = ClassifyExpression(V2);
Chris Lattner0bbe58f2001-11-26 18:41:20 +000097
98 if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression
Chris Lattner697954c2002-01-20 22:54:45 +000099 std::swap(E1, E2);
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000100
101 // E1 must be a constant incoming value, and E2 must be a linear expression
102 // with respect to the PHI node.
103 //
104 if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear ||
Misha Brukmana2722902002-10-11 05:34:32 +0000105 E2.Var != Phi)
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000106 return;
107
108 // Okay, we have found an induction variable. Save the start and step values
109 const Type *ETy = Phi->getType();
Chris Lattner9b625032002-05-06 16:15:30 +0000110 if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000111
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000112 Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0));
113 Step = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0));
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000114 } else {
115 // Okay, at this point, we know that we have loop information...
116
117 // Make sure that V1 is the incoming value, and V2 is from the backedge of
118 // the loop.
119 if (L->contains(Phi->getIncomingBlock(0))) // Wrong order. Swap now.
Chris Lattner697954c2002-01-20 22:54:45 +0000120 std::swap(V1, V2);
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000121
122 Start = V1; // We know that Start has to be loop invariant...
123 Step = 0;
124
125 if (V2 == Phi) { // referencing the PHI directly? Must have zero step
Chris Lattner1a18b7c2002-04-27 02:25:14 +0000126 Step = Constant::getNullValue(Phi->getType());
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000127 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) {
128 // TODO: This could be much better...
129 if (I->getOpcode() == Instruction::Add) {
Misha Brukmana2722902002-10-11 05:34:32 +0000130 if (I->getOperand(0) == Phi)
131 Step = I->getOperand(1);
132 else if (I->getOperand(1) == Phi)
133 Step = I->getOperand(0);
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000134 }
135 }
136
137 if (Step == 0) { // Unrecognized step value...
Chris Lattnerc74cb862002-08-30 22:53:53 +0000138 ExprType StepE = ClassifyExpression(V2);
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000139 if (StepE.ExprTy != ExprType::Linear ||
Misha Brukmana2722902002-10-11 05:34:32 +0000140 StepE.Var != Phi) return;
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000141
142 const Type *ETy = Phi->getType();
Chris Lattner9b625032002-05-06 16:15:30 +0000143 if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000144 Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0));
Chris Lattner621c9922001-12-04 08:12:47 +0000145 } else { // We were able to get a step value, simplify with expr analysis
Chris Lattnerc74cb862002-08-30 22:53:53 +0000146 ExprType StepE = ClassifyExpression(Step);
Chris Lattner621c9922001-12-04 08:12:47 +0000147 if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) {
148 // No offset from variable? Grab the variable
149 Step = StepE.Var;
150 } else if (StepE.ExprTy == ExprType::Constant) {
151 if (StepE.Offset)
152 Step = (Value*)StepE.Offset;
153 else
Chris Lattner1a18b7c2002-04-27 02:25:14 +0000154 Step = Constant::getNullValue(Step->getType());
Chris Lattner6de230a2001-12-05 06:32:30 +0000155 const Type *ETy = Phi->getType();
Chris Lattner9b625032002-05-06 16:15:30 +0000156 if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
Chris Lattner6de230a2001-12-05 06:32:30 +0000157 Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0));
Chris Lattner621c9922001-12-04 08:12:47 +0000158 }
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000159 }
160 }
161
162 // Classify the induction variable type now...
163 InductionType = InductionVariable::Classify(Start, Step, L);
164}
Chris Lattnera59cbb22002-07-27 01:12:17 +0000165
Misha Brukmana2722902002-10-11 05:34:32 +0000166
Chris Lattner44abf852003-09-10 14:51:49 +0000167Value *InductionVariable::getExecutionCount(LoopInfo *LoopInfo) {
168 if (InductionType != Canonical) return 0;
169
Misha Brukmana2722902002-10-11 05:34:32 +0000170 DEBUG(std::cerr << "entering getExecutionCount\n");
171
172 // Don't recompute if already available
173 if (End) {
174 DEBUG(std::cerr << "returning cached End value.\n");
175 return End;
176 }
177
178 const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
179 if (!L) {
180 DEBUG(std::cerr << "null loop. oops\n");
Chris Lattner44abf852003-09-10 14:51:49 +0000181 return 0;
Misha Brukmana2722902002-10-11 05:34:32 +0000182 }
183
184 // >1 backedge => cannot predict number of iterations
185 if (Phi->getNumIncomingValues() != 2) {
186 DEBUG(std::cerr << ">2 incoming values. oops\n");
Chris Lattner44abf852003-09-10 14:51:49 +0000187 return 0;
Misha Brukmana2722902002-10-11 05:34:32 +0000188 }
189
Misha Brukman2f2d0652003-09-11 18:14:24 +0000190 // Find final node: predecessor of the loop header that's also an exit
Chris Lattner0006bd72002-11-09 00:49:43 +0000191 BasicBlock *terminator = 0;
Chris Lattner44abf852003-09-10 14:51:49 +0000192 for (pred_iterator PI = pred_begin(L->getHeader()),
193 PE = pred_end(L->getHeader()); PI != PE; ++PI)
Misha Brukmana2722902002-10-11 05:34:32 +0000194 if (L->isLoopExit(*PI)) {
195 terminator = *PI;
196 break;
197 }
Misha Brukmana2722902002-10-11 05:34:32 +0000198
199 // Break in the loop => cannot predict number of iterations
200 // break: any block which is an exit node whose successor is not in loop,
201 // and this block is not marked as the terminator
202 //
203 const std::vector<BasicBlock*> &blocks = L->getBlocks();
Chris Lattner44abf852003-09-10 14:51:49 +0000204 for (std::vector<BasicBlock*>::const_iterator I = blocks.begin(),
205 e = blocks.end(); I != e; ++I)
206 if (L->isLoopExit(*I) && *I != terminator)
207 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
208 if (!L->contains(*SI)) {
Misha Brukmana2722902002-10-11 05:34:32 +0000209 DEBUG(std::cerr << "break found in loop");
Chris Lattner44abf852003-09-10 14:51:49 +0000210 return 0;
Misha Brukmana2722902002-10-11 05:34:32 +0000211 }
Misha Brukmana2722902002-10-11 05:34:32 +0000212
213 BranchInst *B = dyn_cast<BranchInst>(terminator->getTerminator());
214 if (!B) {
Chris Lattner44abf852003-09-10 14:51:49 +0000215 DEBUG(std::cerr << "Terminator is not a cond branch!");
216 return 0;
Misha Brukmana2722902002-10-11 05:34:32 +0000217 }
Chris Lattner2ee82e02003-04-23 16:36:11 +0000218 SetCondInst *SCI = dyn_cast<SetCondInst>(B->getCondition());
Chris Lattner44abf852003-09-10 14:51:49 +0000219 if (!SCI) {
220 DEBUG(std::cerr << "Not a cond branch on setcc!\n");
221 return 0;
Misha Brukmana2722902002-10-11 05:34:32 +0000222 }
Chris Lattner44abf852003-09-10 14:51:49 +0000223
224 DEBUG(std::cerr << "sci:" << *SCI);
225 Value *condVal0 = SCI->getOperand(0);
226 Value *condVal1 = SCI->getOperand(1);
Chris Lattner44abf852003-09-10 14:51:49 +0000227
Chris Lattnera176a8b2003-09-10 14:55:05 +0000228 // The induction variable is the one coming from the backedge
229 Value *indVar = Phi->getIncomingValue(L->contains(Phi->getIncomingBlock(1)));
Chris Lattner44abf852003-09-10 14:51:49 +0000230
231
232 // Check to see if indVar is one of the parameters in SCI and if the other is
233 // loop-invariant, it is the UB
234 if (indVar == condVal0) {
235 if (isLoopInvariant(condVal1, L))
236 End = condVal1;
237 else {
238 DEBUG(std::cerr << "not loop invariant 1\n");
239 return 0;
240 }
241 } else if (indVar == condVal1) {
242 if (isLoopInvariant(condVal0, L))
243 End = condVal0;
244 else {
245 DEBUG(std::cerr << "not loop invariant 0\n");
246 return 0;
247 }
248 } else {
249 DEBUG(std::cerr << "Loop condition doesn't directly uses indvar\n");
250 return 0;
251 }
252
253 switch (SCI->getOpcode()) {
254 case Instruction::SetLT:
255 case Instruction::SetNE: return End; // already done
256 case Instruction::SetLE:
257 // if compared to a constant int N, then predict N+1 iterations
258 if (ConstantSInt *ubSigned = dyn_cast<ConstantSInt>(End)) {
259 DEBUG(std::cerr << "signed int constant\n");
260 return ConstantSInt::get(ubSigned->getType(), ubSigned->getValue()+1);
261 } else if (ConstantUInt *ubUnsigned = dyn_cast<ConstantUInt>(End)) {
262 DEBUG(std::cerr << "unsigned int constant\n");
263 return ConstantUInt::get(ubUnsigned->getType(),
264 ubUnsigned->getValue()+1);
265 } else {
266 DEBUG(std::cerr << "symbolic bound\n");
267 // new expression N+1, insert right before the SCI. FIXME: If End is loop
268 // invariant, then so is this expression. We should insert it in the loop
269 // preheader if it exists.
270 return BinaryOperator::create(Instruction::Add, End,
271 ConstantInt::get(End->getType(), 1),
272 "tripcount", SCI);
273 }
274
275 default:
276 return 0; // cannot predict
277 }
Misha Brukmana2722902002-10-11 05:34:32 +0000278}
279
280
Chris Lattnera59cbb22002-07-27 01:12:17 +0000281void InductionVariable::print(std::ostream &o) const {
282 switch (InductionType) {
Chris Lattner69ecd0d2003-09-10 05:24:09 +0000283 case InductionVariable::Canonical: o << "Canonical "; break;
Chris Lattnera59cbb22002-07-27 01:12:17 +0000284 case InductionVariable::SimpleLinear: o << "SimpleLinear "; break;
285 case InductionVariable::Linear: o << "Linear "; break;
286 case InductionVariable::Unknown: o << "Unrecognized "; break;
287 }
Chris Lattner74493a42002-09-10 15:35:39 +0000288 o << "Induction Variable: ";
Chris Lattnera59cbb22002-07-27 01:12:17 +0000289 if (Phi) {
290 WriteAsOperand(o, Phi);
291 o << ":\n" << Phi;
292 } else {
293 o << "\n";
294 }
295 if (InductionType == InductionVariable::Unknown) return;
296
Chris Lattner74493a42002-09-10 15:35:39 +0000297 o << " Start = "; WriteAsOperand(o, Start);
298 o << " Step = " ; WriteAsOperand(o, Step);
Misha Brukmana2722902002-10-11 05:34:32 +0000299 if (End) {
300 o << " End = " ; WriteAsOperand(o, End);
301 }
Chris Lattnera59cbb22002-07-27 01:12:17 +0000302 o << "\n";
303}
Brian Gaeked0fde302003-11-11 22:41:34 +0000304
305} // End llvm namespace