blob: ab24083185503b0c066780a565283da13407ae4b [file] [log] [blame]
Arnold Schwaighofera70fe792007-10-12 21:53:12 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +000035#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000039#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000040using namespace llvm;
41
42X86TargetLowering::X86TargetLowering(TargetMachine &TM)
43 : TargetLowering(TM) {
44 Subtarget = &TM.getSubtarget<X86Subtarget>();
Dale Johannesene0e0fd02007-09-23 14:52:20 +000045 X86ScalarSSEf64 = Subtarget->hasSSE2();
46 X86ScalarSSEf32 = Subtarget->hasSSE1();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +000048
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049
50 RegInfo = TM.getRegisterInfo();
51
52 // Set up the TargetLowering object.
53
54 // X86 is weird, it always uses i8 for shift amounts and setcc results.
55 setShiftAmountType(MVT::i8);
56 setSetCCResultType(MVT::i8);
57 setSetCCResultContents(ZeroOrOneSetCCResult);
58 setSchedulingPreference(SchedulingForRegPressure);
59 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
60 setStackPointerRegisterToSaveRestore(X86StackPtr);
61
62 if (Subtarget->isTargetDarwin()) {
63 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
64 setUseUnderscoreSetJmp(false);
65 setUseUnderscoreLongJmp(false);
66 } else if (Subtarget->isTargetMingw()) {
67 // MS runtime is weird: it exports _setjmp, but longjmp!
68 setUseUnderscoreSetJmp(true);
69 setUseUnderscoreLongJmp(false);
70 } else {
71 setUseUnderscoreSetJmp(true);
72 setUseUnderscoreLongJmp(true);
73 }
74
75 // Set up the register classes.
76 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
77 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
78 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
79 if (Subtarget->is64Bit())
80 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
81
82 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
83
84 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
85 // operation.
86 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
87 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
88 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
89
90 if (Subtarget->is64Bit()) {
91 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
92 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
93 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +000094 if (X86ScalarSSEf64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000095 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
96 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
97 else
98 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
99 }
100
101 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
102 // this operation.
103 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
104 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
105 // SSE has no i16 to fp conversion, only i32
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000106 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000108 // f32 and f64 cases are Legal, f80 case is not
109 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
110 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000111 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
112 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
113 }
114
Dale Johannesen958b08b2007-09-19 23:55:34 +0000115 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
116 // are Legal, f80 is custom lowered.
117 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
118 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119
120 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
121 // this operation.
122 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
123 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
124
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000125 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000127 // f32 and f64 cases are Legal, f80 case is not
128 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000129 } else {
130 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
131 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
132 }
133
134 // Handle FP_TO_UINT by promoting the destination to a larger signed
135 // conversion.
136 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
137 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
138 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
139
140 if (Subtarget->is64Bit()) {
141 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
142 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
143 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000144 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145 // Expand FP_TO_UINT into a select.
146 // FIXME: We would like to use a Custom expander here eventually to do
147 // the optimal thing for SSE vs. the default expansion in the legalizer.
148 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
149 else
150 // With SSE3 we can use fisttpll to convert to a signed i64.
151 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
152 }
153
154 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000155 if (!X86ScalarSSEf64) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000156 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
157 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
158 }
159
Dan Gohman5a199552007-10-08 18:33:35 +0000160 // Scalar integer multiply, multiply-high, divide, and remainder are
161 // lowered to use operations that produce two results, to match the
162 // available instructions. This exposes the two-result form to trivial
163 // CSE, which is able to combine x/y and x%y into a single instruction,
164 // for example. The single-result multiply instructions are introduced
165 // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
166 // is not needed.
167 setOperationAction(ISD::MUL , MVT::i8 , Expand);
168 setOperationAction(ISD::MULHS , MVT::i8 , Expand);
169 setOperationAction(ISD::MULHU , MVT::i8 , Expand);
170 setOperationAction(ISD::SDIV , MVT::i8 , Expand);
171 setOperationAction(ISD::UDIV , MVT::i8 , Expand);
172 setOperationAction(ISD::SREM , MVT::i8 , Expand);
173 setOperationAction(ISD::UREM , MVT::i8 , Expand);
174 setOperationAction(ISD::MUL , MVT::i16 , Expand);
175 setOperationAction(ISD::MULHS , MVT::i16 , Expand);
176 setOperationAction(ISD::MULHU , MVT::i16 , Expand);
177 setOperationAction(ISD::SDIV , MVT::i16 , Expand);
178 setOperationAction(ISD::UDIV , MVT::i16 , Expand);
179 setOperationAction(ISD::SREM , MVT::i16 , Expand);
180 setOperationAction(ISD::UREM , MVT::i16 , Expand);
181 setOperationAction(ISD::MUL , MVT::i32 , Expand);
182 setOperationAction(ISD::MULHS , MVT::i32 , Expand);
183 setOperationAction(ISD::MULHU , MVT::i32 , Expand);
184 setOperationAction(ISD::SDIV , MVT::i32 , Expand);
185 setOperationAction(ISD::UDIV , MVT::i32 , Expand);
186 setOperationAction(ISD::SREM , MVT::i32 , Expand);
187 setOperationAction(ISD::UREM , MVT::i32 , Expand);
188 setOperationAction(ISD::MUL , MVT::i64 , Expand);
189 setOperationAction(ISD::MULHS , MVT::i64 , Expand);
190 setOperationAction(ISD::MULHU , MVT::i64 , Expand);
191 setOperationAction(ISD::SDIV , MVT::i64 , Expand);
192 setOperationAction(ISD::UDIV , MVT::i64 , Expand);
193 setOperationAction(ISD::SREM , MVT::i64 , Expand);
194 setOperationAction(ISD::UREM , MVT::i64 , Expand);
Dan Gohman242a5ba2007-09-25 18:23:27 +0000195
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
197 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
198 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
199 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
200 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
201 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
204 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000205 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
206 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
207 setOperationAction(ISD::FREM , MVT::f64 , Expand);
208
209 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
210 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
211 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
212 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
213 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
214 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
215 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
216 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
217 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
218 if (Subtarget->is64Bit()) {
219 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
220 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
221 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
222 }
223
224 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
225 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
226
227 // These should be promoted to a larger select which is supported.
228 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
229 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
230 // X86 wants to expand cmov itself.
231 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
232 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
233 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
234 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000235 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000236 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
237 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
238 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
239 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
240 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000241 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242 if (Subtarget->is64Bit()) {
243 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
244 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
245 }
246 // X86 ret instruction may pop stack.
247 setOperationAction(ISD::RET , MVT::Other, Custom);
248 if (!Subtarget->is64Bit())
249 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
250
251 // Darwin ABI issue.
252 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
253 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
254 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
255 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
256 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
257 if (Subtarget->is64Bit()) {
258 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
259 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
260 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
261 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
262 }
263 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
264 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
265 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
266 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
267 // X86 wants to expand memset / memcpy itself.
268 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
269 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
270
Dan Gohman21442852007-09-25 15:10:49 +0000271 // Use the default ISD::LOCATION expansion.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000272 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 // FIXME - use subtarget debug flags
274 if (!Subtarget->isTargetDarwin() &&
275 !Subtarget->isTargetELF() &&
276 !Subtarget->isTargetCygMing())
277 setOperationAction(ISD::LABEL, MVT::Other, Expand);
278
279 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
280 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
281 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
282 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
283 if (Subtarget->is64Bit()) {
284 // FIXME: Verify
285 setExceptionPointerRegister(X86::RAX);
286 setExceptionSelectorRegister(X86::RDX);
287 } else {
288 setExceptionPointerRegister(X86::EAX);
289 setExceptionSelectorRegister(X86::EDX);
290 }
Anton Korobeynikov23ca9c52007-09-03 00:36:06 +0000291 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292
Duncan Sands7407a9f2007-09-11 14:10:23 +0000293 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000294
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000295 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
296 setOperationAction(ISD::VASTART , MVT::Other, Custom);
297 setOperationAction(ISD::VAARG , MVT::Other, Expand);
298 setOperationAction(ISD::VAEND , MVT::Other, Expand);
299 if (Subtarget->is64Bit())
300 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
301 else
302 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
303
304 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
305 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
306 if (Subtarget->is64Bit())
307 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
308 if (Subtarget->isTargetCygMing())
309 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
310 else
311 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
312
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000313 if (X86ScalarSSEf64) {
314 // f32 and f64 use SSE.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000315 // Set up the FP register classes.
316 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
317 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
318
319 // Use ANDPD to simulate FABS.
320 setOperationAction(ISD::FABS , MVT::f64, Custom);
321 setOperationAction(ISD::FABS , MVT::f32, Custom);
322
323 // Use XORP to simulate FNEG.
324 setOperationAction(ISD::FNEG , MVT::f64, Custom);
325 setOperationAction(ISD::FNEG , MVT::f32, Custom);
326
327 // Use ANDPD and ORPD to simulate FCOPYSIGN.
328 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
329 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
330
331 // We don't support sin/cos/fmod
332 setOperationAction(ISD::FSIN , MVT::f64, Expand);
333 setOperationAction(ISD::FCOS , MVT::f64, Expand);
334 setOperationAction(ISD::FREM , MVT::f64, Expand);
335 setOperationAction(ISD::FSIN , MVT::f32, Expand);
336 setOperationAction(ISD::FCOS , MVT::f32, Expand);
337 setOperationAction(ISD::FREM , MVT::f32, Expand);
338
339 // Expand FP immediates into loads from the stack, except for the special
340 // cases we handle.
341 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
342 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000343 addLegalFPImmediate(APFloat(+0.0)); // xorpd
344 addLegalFPImmediate(APFloat(+0.0f)); // xorps
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000345
346 // Conversions to long double (in X87) go through memory.
347 setConvertAction(MVT::f32, MVT::f80, Expand);
348 setConvertAction(MVT::f64, MVT::f80, Expand);
349
350 // Conversions from long double (in X87) go through memory.
351 setConvertAction(MVT::f80, MVT::f32, Expand);
352 setConvertAction(MVT::f80, MVT::f64, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000353 } else if (X86ScalarSSEf32) {
354 // Use SSE for f32, x87 for f64.
355 // Set up the FP register classes.
356 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
357 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
358
359 // Use ANDPS to simulate FABS.
360 setOperationAction(ISD::FABS , MVT::f32, Custom);
361
362 // Use XORP to simulate FNEG.
363 setOperationAction(ISD::FNEG , MVT::f32, Custom);
364
365 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
366
367 // Use ANDPS and ORPS to simulate FCOPYSIGN.
368 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
369 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
370
371 // We don't support sin/cos/fmod
372 setOperationAction(ISD::FSIN , MVT::f32, Expand);
373 setOperationAction(ISD::FCOS , MVT::f32, Expand);
374 setOperationAction(ISD::FREM , MVT::f32, Expand);
375
376 // Expand FP immediates into loads from the stack, except for the special
377 // cases we handle.
378 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
379 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
380 addLegalFPImmediate(APFloat(+0.0f)); // xorps
381 addLegalFPImmediate(APFloat(+0.0)); // FLD0
382 addLegalFPImmediate(APFloat(+1.0)); // FLD1
383 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
384 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
385
386 // SSE->x87 conversions go through memory.
387 setConvertAction(MVT::f32, MVT::f64, Expand);
388 setConvertAction(MVT::f32, MVT::f80, Expand);
389
390 // x87->SSE truncations need to go through memory.
391 setConvertAction(MVT::f80, MVT::f32, Expand);
392 setConvertAction(MVT::f64, MVT::f32, Expand);
393 // And x87->x87 truncations also.
394 setConvertAction(MVT::f80, MVT::f64, Expand);
395
396 if (!UnsafeFPMath) {
397 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
398 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
399 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000400 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000401 // f32 and f64 in x87.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 // Set up the FP register classes.
403 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
404 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
405
406 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
407 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
408 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
409 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000410
411 // Floating truncations need to go through memory.
412 setConvertAction(MVT::f80, MVT::f32, Expand);
413 setConvertAction(MVT::f64, MVT::f32, Expand);
414 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415
416 if (!UnsafeFPMath) {
417 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
418 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
419 }
420
421 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
422 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000423 addLegalFPImmediate(APFloat(+0.0)); // FLD0
424 addLegalFPImmediate(APFloat(+1.0)); // FLD1
425 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
426 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000427 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
428 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
429 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
430 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000431 }
432
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000433 // Long double always uses X87.
434 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000435 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
436 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
437 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
Dale Johannesen7f1076b2007-09-26 21:10:55 +0000438 if (!UnsafeFPMath) {
439 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
440 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
441 }
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000442
Dan Gohman2f7b1982007-10-11 23:21:31 +0000443 // Always use a library call for pow.
444 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
445 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
446 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
447
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000448 // First set operation action for all vector types to expand. Then we
449 // will selectively turn on ones that can be effectively codegen'd.
450 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
451 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
452 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
453 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
454 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
455 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
456 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
457 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
458 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
459 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
460 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
461 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
462 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
463 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
464 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
465 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
466 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
467 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
468 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
469 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
470 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
471 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
472 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
473 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
474 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
Dan Gohman5a199552007-10-08 18:33:35 +0000475 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
476 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
477 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
478 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000479 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
Dan Gohman1d2dc2c2007-10-12 14:09:42 +0000480 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
481 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
482 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000483 }
484
485 if (Subtarget->hasMMX()) {
486 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
487 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
488 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
489 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
490
491 // FIXME: add MMX packed arithmetics
492
493 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
494 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
495 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
496 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
497
498 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
499 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
500 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
Dale Johannesen6b65c332007-10-30 01:18:38 +0000501 setOperationAction(ISD::SUB, MVT::v1i64, Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000502
503 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
504 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
505
506 setOperationAction(ISD::AND, MVT::v8i8, Promote);
507 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
508 setOperationAction(ISD::AND, MVT::v4i16, Promote);
509 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
510 setOperationAction(ISD::AND, MVT::v2i32, Promote);
511 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
512 setOperationAction(ISD::AND, MVT::v1i64, Legal);
513
514 setOperationAction(ISD::OR, MVT::v8i8, Promote);
515 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
516 setOperationAction(ISD::OR, MVT::v4i16, Promote);
517 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
518 setOperationAction(ISD::OR, MVT::v2i32, Promote);
519 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
520 setOperationAction(ISD::OR, MVT::v1i64, Legal);
521
522 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
523 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
524 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
525 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
526 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
527 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
528 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
529
530 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
531 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
532 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
533 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
534 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
535 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
536 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
537
538 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
539 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
540 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
541 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
542
543 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
544 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
545 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
546 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
547
548 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
549 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
550 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
551 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
552 }
553
554 if (Subtarget->hasSSE1()) {
555 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
556
557 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
558 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
559 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
560 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
561 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
562 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000563 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
564 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
565 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
566 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
567 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
568 }
569
570 if (Subtarget->hasSSE2()) {
571 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
572 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
573 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
574 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
575 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
576
577 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
578 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
579 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
580 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
581 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
582 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
583 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
584 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
585 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
586 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
587 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
588 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
589 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
590 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
591 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000592
593 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
594 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
595 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
596 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
597 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
598 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
599
600 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
601 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
602 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
603 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
604 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
605 }
606 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
607 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
608 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
609 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
610 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
611 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
612
613 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
614 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
615 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
616 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
617 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
618 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
619 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
620 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
621 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
622 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
623 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
624 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
625 }
626
627 // Custom lower v2i64 and v2f64 selects.
628 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
629 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
630 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
631 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
632 }
633
634 // We want to custom lower some of our intrinsics.
635 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
636
637 // We have target-specific dag combine patterns for the following nodes:
638 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
639 setTargetDAGCombine(ISD::SELECT);
640
641 computeRegisterProperties();
642
643 // FIXME: These should be based on subtarget info. Plus, the values should
644 // be smaller when we are in optimizing for size mode.
645 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
646 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
647 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
648 allowUnalignedMemoryAccesses = true; // x86 supports it!
649}
650
651
652//===----------------------------------------------------------------------===//
653// Return Value Calling Convention Implementation
654//===----------------------------------------------------------------------===//
655
656#include "X86GenCallingConv.inc"
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000657
658/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
659/// exists skip possible ISD:TokenFactor.
660static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
661 if (Chain.getOpcode()==X86ISD::TAILCALL) {
662 return Chain;
663 } else if (Chain.getOpcode()==ISD::TokenFactor) {
664 if (Chain.getNumOperands() &&
665 Chain.getOperand(0).getOpcode()==X86ISD::TAILCALL)
666 return Chain.getOperand(0);
667 }
668 return Chain;
669}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000670
671/// LowerRET - Lower an ISD::RET node.
672SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
673 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
674
675 SmallVector<CCValAssign, 16> RVLocs;
676 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
677 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
678 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
679 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000680
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681 // If this is the first return lowered for this function, add the regs to the
682 // liveout set for the function.
683 if (DAG.getMachineFunction().liveout_empty()) {
684 for (unsigned i = 0; i != RVLocs.size(); ++i)
685 if (RVLocs[i].isRegLoc())
686 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
687 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000688 SDOperand Chain = Op.getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000689
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000690 // Handle tail call return.
691 Chain = GetPossiblePreceedingTailCall(Chain);
692 if (Chain.getOpcode() == X86ISD::TAILCALL) {
693 SDOperand TailCall = Chain;
694 SDOperand TargetAddress = TailCall.getOperand(1);
695 SDOperand StackAdjustment = TailCall.getOperand(2);
696 assert ( ((TargetAddress.getOpcode() == ISD::Register &&
697 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
698 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
699 TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
700 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
701 "Expecting an global address, external symbol, or register");
702 assert( StackAdjustment.getOpcode() == ISD::Constant &&
703 "Expecting a const value");
704
705 SmallVector<SDOperand,8> Operands;
706 Operands.push_back(Chain.getOperand(0));
707 Operands.push_back(TargetAddress);
708 Operands.push_back(StackAdjustment);
709 // Copy registers used by the call. Last operand is a flag so it is not
710 // copied.
Arnold Schwaighofer10202b32007-10-16 09:05:00 +0000711 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000712 Operands.push_back(Chain.getOperand(i));
713 }
Arnold Schwaighofer10202b32007-10-16 09:05:00 +0000714 return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
715 Operands.size());
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000716 }
717
718 // Regular return.
719 SDOperand Flag;
720
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000721 // Copy the result values into the output registers.
722 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
723 RVLocs[0].getLocReg() != X86::ST0) {
724 for (unsigned i = 0; i != RVLocs.size(); ++i) {
725 CCValAssign &VA = RVLocs[i];
726 assert(VA.isRegLoc() && "Can only return in registers!");
727 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
728 Flag);
729 Flag = Chain.getValue(1);
730 }
731 } else {
732 // We need to handle a destination of ST0 specially, because it isn't really
733 // a register.
734 SDOperand Value = Op.getOperand(1);
735
736 // If this is an FP return with ScalarSSE, we need to move the value from
737 // an XMM register onto the fp-stack.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000738 if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
739 (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 SDOperand MemLoc;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000741
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 // If this is a load into a scalarsse value, don't store the loaded value
743 // back to the stack, only to reload it: just replace the scalar-sse load.
744 if (ISD::isNON_EXTLoad(Value.Val) &&
745 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
746 Chain = Value.getOperand(0);
747 MemLoc = Value.getOperand(1);
748 } else {
749 // Spill the value to memory and reload it into top of stack.
750 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
751 MachineFunction &MF = DAG.getMachineFunction();
752 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
753 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
754 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
755 }
756 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
757 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
758 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
759 Chain = Value.getValue(1);
760 }
761
762 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
763 SDOperand Ops[] = { Chain, Value };
764 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
765 Flag = Chain.getValue(1);
766 }
767
768 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
769 if (Flag.Val)
770 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
771 else
772 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
773}
774
775
776/// LowerCallResult - Lower the result values of an ISD::CALL into the
777/// appropriate copies out of appropriate physical registers. This assumes that
778/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
779/// being lowered. The returns a SDNode with the same number of values as the
780/// ISD::CALL.
781SDNode *X86TargetLowering::
782LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
783 unsigned CallingConv, SelectionDAG &DAG) {
784
785 // Assign locations to each value returned by this call.
786 SmallVector<CCValAssign, 16> RVLocs;
787 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
788 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
789 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
790
791
792 SmallVector<SDOperand, 8> ResultVals;
793
794 // Copy all of the result registers out of their specified physreg.
795 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
796 for (unsigned i = 0; i != RVLocs.size(); ++i) {
797 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
798 RVLocs[i].getValVT(), InFlag).getValue(1);
799 InFlag = Chain.getValue(2);
800 ResultVals.push_back(Chain.getValue(0));
801 }
802 } else {
803 // Copies from the FP stack are special, as ST0 isn't a valid register
804 // before the fp stackifier runs.
805
806 // Copy ST0 into an RFP register with FP_GET_RESULT.
807 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
808 SDOperand GROps[] = { Chain, InFlag };
809 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
810 Chain = RetVal.getValue(1);
811 InFlag = RetVal.getValue(2);
812
813 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
814 // an XMM register.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000815 if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
816 (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000817 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
818 // shouldn't be necessary except that RFP cannot be live across
819 // multiple blocks. When stackifier is fixed, they can be uncoupled.
820 MachineFunction &MF = DAG.getMachineFunction();
821 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
822 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
823 SDOperand Ops[] = {
824 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
825 };
826 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
827 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
828 Chain = RetVal.getValue(1);
829 }
830 ResultVals.push_back(RetVal);
831 }
832
833 // Merge everything together with a MERGE_VALUES node.
834 ResultVals.push_back(Chain);
835 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
836 &ResultVals[0], ResultVals.size()).Val;
837}
838
839
840//===----------------------------------------------------------------------===//
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000841// C & StdCall & Fast Calling Convention implementation
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000842//===----------------------------------------------------------------------===//
843// StdCall calling convention seems to be standard for many Windows' API
844// routines and around. It differs from C calling convention just a little:
845// callee should clean up the stack, not caller. Symbols should be also
846// decorated in some fancy way :) It doesn't support any vector arguments.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000847// For info on fast calling convention see Fast Calling Convention (tail call)
848// implementation LowerX86_32FastCCCallTo.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000849
850/// AddLiveIn - This helper function adds the specified physical register to the
851/// MachineFunction as a live in value. It also creates a corresponding virtual
852/// register for it.
853static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
854 const TargetRegisterClass *RC) {
855 assert(RC->contains(PReg) && "Not the correct regclass!");
856 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
857 MF.addLiveIn(PReg, VReg);
858 return VReg;
859}
860
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000861// align stack arguments according to platform alignment needed for tail calls
862unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG);
863
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000864SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
865 const CCValAssign &VA,
866 MachineFrameInfo *MFI,
867 SDOperand Root, unsigned i) {
868 // Create the nodes corresponding to a load from this parameter slot.
869 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
870 VA.getLocMemOffset());
871 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
872
873 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
874
875 if (Flags & ISD::ParamFlags::ByVal)
876 return FIN;
877 else
878 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
879}
880
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000881SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
882 bool isStdCall) {
883 unsigned NumArgs = Op.Val->getNumValues() - 1;
884 MachineFunction &MF = DAG.getMachineFunction();
885 MachineFrameInfo *MFI = MF.getFrameInfo();
886 SDOperand Root = Op.getOperand(0);
887 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000888 unsigned CC = MF.getFunction()->getCallingConv();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000889 // Assign locations to all of the incoming arguments.
890 SmallVector<CCValAssign, 16> ArgLocs;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000891 CCState CCInfo(CC, isVarArg,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000892 getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000893 // Check for possible tail call calling convention.
894 if (CC == CallingConv::Fast && PerformTailCallOpt)
895 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_TailCall);
896 else
897 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
898
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000899 SmallVector<SDOperand, 8> ArgValues;
900 unsigned LastVal = ~0U;
901 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
902 CCValAssign &VA = ArgLocs[i];
903 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
904 // places.
905 assert(VA.getValNo() != LastVal &&
906 "Don't support value assigned to multiple locs yet");
907 LastVal = VA.getValNo();
908
909 if (VA.isRegLoc()) {
910 MVT::ValueType RegVT = VA.getLocVT();
911 TargetRegisterClass *RC;
912 if (RegVT == MVT::i32)
913 RC = X86::GR32RegisterClass;
914 else {
915 assert(MVT::isVector(RegVT));
916 RC = X86::VR128RegisterClass;
917 }
918
919 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
920 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
921
922 // If this is an 8 or 16-bit value, it is really passed promoted to 32
923 // bits. Insert an assert[sz]ext to capture this, then truncate to the
924 // right size.
925 if (VA.getLocInfo() == CCValAssign::SExt)
926 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
927 DAG.getValueType(VA.getValVT()));
928 else if (VA.getLocInfo() == CCValAssign::ZExt)
929 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
930 DAG.getValueType(VA.getValVT()));
931
932 if (VA.getLocInfo() != CCValAssign::Full)
933 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
934
935 ArgValues.push_back(ArgValue);
936 } else {
937 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000938 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000939 }
940 }
941
942 unsigned StackSize = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000943 // align stack specially for tail calls
944 if (CC==CallingConv::Fast)
945 StackSize = GetAlignedArgumentStackSize(StackSize,DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000946
947 ArgValues.push_back(Root);
948
949 // If the function takes variable number of arguments, make a frame index for
950 // the start of the first vararg value... for expansion of llvm.va_start.
951 if (isVarArg)
952 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
953
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000954 // Tail call calling convention (CallingConv::Fast) does not support varargs.
955 assert( !(isVarArg && CC == CallingConv::Fast) &&
956 "CallingConv::Fast does not support varargs.");
957
958 if (isStdCall && !isVarArg &&
959 (CC==CallingConv::Fast && PerformTailCallOpt || CC!=CallingConv::Fast)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000960 BytesToPopOnReturn = StackSize; // Callee pops everything..
961 BytesCallerReserves = 0;
962 } else {
963 BytesToPopOnReturn = 0; // Callee pops nothing.
964
965 // If this is an sret function, the return should pop the hidden pointer.
966 if (NumArgs &&
967 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
968 ISD::ParamFlags::StructReturn))
969 BytesToPopOnReturn = 4;
970
971 BytesCallerReserves = StackSize;
972 }
Anton Korobeynikove844e472007-08-15 17:12:32 +0000973
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000974 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000975
Anton Korobeynikove844e472007-08-15 17:12:32 +0000976 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
977 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000978
979 // Return the new list of results.
980 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
981 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
982}
983
984SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
985 unsigned CC) {
986 SDOperand Chain = Op.getOperand(0);
987 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000988 SDOperand Callee = Op.getOperand(4);
989 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000990
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991 // Analyze operands of the call, assigning locations to each operand.
992 SmallVector<CCValAssign, 16> ArgLocs;
993 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000994 if(CC==CallingConv::Fast && PerformTailCallOpt)
995 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
996 else
997 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000998
999 // Get a count of how many bytes are to be pushed on the stack.
1000 unsigned NumBytes = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001001 if (CC==CallingConv::Fast)
1002 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003
1004 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1005
1006 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1007 SmallVector<SDOperand, 8> MemOpChains;
1008
1009 SDOperand StackPtr;
1010
1011 // Walk the register/memloc assignments, inserting copies/loads.
1012 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1013 CCValAssign &VA = ArgLocs[i];
1014 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1015
1016 // Promote the value if needed.
1017 switch (VA.getLocInfo()) {
1018 default: assert(0 && "Unknown loc info!");
1019 case CCValAssign::Full: break;
1020 case CCValAssign::SExt:
1021 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1022 break;
1023 case CCValAssign::ZExt:
1024 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1025 break;
1026 case CCValAssign::AExt:
1027 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1028 break;
1029 }
1030
1031 if (VA.isRegLoc()) {
1032 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1033 } else {
1034 assert(VA.isMemLoc());
1035 if (StackPtr.Val == 0)
1036 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001037
1038 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1039 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001040 }
1041 }
1042
1043 // If the first argument is an sret pointer, remember it.
1044 bool isSRet = NumOps &&
1045 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
1046 ISD::ParamFlags::StructReturn);
1047
1048 if (!MemOpChains.empty())
1049 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1050 &MemOpChains[0], MemOpChains.size());
1051
1052 // Build a sequence of copy-to-reg nodes chained together with token chain
1053 // and flag operands which copy the outgoing args into registers.
1054 SDOperand InFlag;
1055 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1056 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1057 InFlag);
1058 InFlag = Chain.getValue(1);
1059 }
1060
1061 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1062 // GOT pointer.
1063 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1064 Subtarget->isPICStyleGOT()) {
1065 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1066 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1067 InFlag);
1068 InFlag = Chain.getValue(1);
1069 }
1070
1071 // If the callee is a GlobalAddress node (quite common, every direct call is)
1072 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1073 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1074 // We should use extra load for direct calls to dllimported functions in
1075 // non-JIT mode.
1076 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1077 getTargetMachine(), true))
1078 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1079 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1080 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1081
1082 // Returns a chain & a flag for retval copy to use.
1083 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1084 SmallVector<SDOperand, 8> Ops;
1085 Ops.push_back(Chain);
1086 Ops.push_back(Callee);
1087
1088 // Add argument registers to the end of the list so that they are known live
1089 // into the call.
1090 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1091 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1092 RegsToPass[i].second.getValueType()));
1093
1094 // Add an implicit use GOT pointer in EBX.
1095 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1096 Subtarget->isPICStyleGOT())
1097 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1098
1099 if (InFlag.Val)
1100 Ops.push_back(InFlag);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001101
1102 Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103 InFlag = Chain.getValue(1);
1104
1105 // Create the CALLSEQ_END node.
1106 unsigned NumBytesForCalleeToPush = 0;
1107
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001108 if (CC == CallingConv::X86_StdCall ||
1109 (CC == CallingConv::Fast && PerformTailCallOpt)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001110 if (isVarArg)
1111 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1112 else
1113 NumBytesForCalleeToPush = NumBytes;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001114 assert(!(isVarArg && CC==CallingConv::Fast) &&
1115 "CallingConv::Fast does not support varargs.");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001116 } else {
1117 // If this is is a call to a struct-return function, the callee
1118 // pops the hidden struct pointer, so we have to push it back.
1119 // This is common for Darwin/X86, Linux & Mingw32 targets.
1120 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1121 }
1122
1123 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1124 Ops.clear();
1125 Ops.push_back(Chain);
1126 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1127 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1128 Ops.push_back(InFlag);
1129 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1130 InFlag = Chain.getValue(1);
1131
1132 // Handle result values, copying them out of physregs into vregs that we
1133 // return.
1134 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1135}
1136
1137
1138//===----------------------------------------------------------------------===//
1139// FastCall Calling Convention implementation
1140//===----------------------------------------------------------------------===//
1141//
1142// The X86 'fastcall' calling convention passes up to two integer arguments in
1143// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1144// and requires that the callee pop its arguments off the stack (allowing proper
1145// tail calls), and has the same return value conventions as C calling convs.
1146//
1147// This calling convention always arranges for the callee pop value to be 8n+4
1148// bytes, which is needed for tail recursion elimination and stack alignment
1149// reasons.
1150SDOperand
1151X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1152 MachineFunction &MF = DAG.getMachineFunction();
1153 MachineFrameInfo *MFI = MF.getFrameInfo();
1154 SDOperand Root = Op.getOperand(0);
1155 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1156
1157 // Assign locations to all of the incoming arguments.
1158 SmallVector<CCValAssign, 16> ArgLocs;
1159 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1160 getTargetMachine(), ArgLocs);
1161 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1162
1163 SmallVector<SDOperand, 8> ArgValues;
1164 unsigned LastVal = ~0U;
1165 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1166 CCValAssign &VA = ArgLocs[i];
1167 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1168 // places.
1169 assert(VA.getValNo() != LastVal &&
1170 "Don't support value assigned to multiple locs yet");
1171 LastVal = VA.getValNo();
1172
1173 if (VA.isRegLoc()) {
1174 MVT::ValueType RegVT = VA.getLocVT();
1175 TargetRegisterClass *RC;
1176 if (RegVT == MVT::i32)
1177 RC = X86::GR32RegisterClass;
1178 else {
1179 assert(MVT::isVector(RegVT));
1180 RC = X86::VR128RegisterClass;
1181 }
1182
1183 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1184 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1185
1186 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1187 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1188 // right size.
1189 if (VA.getLocInfo() == CCValAssign::SExt)
1190 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1191 DAG.getValueType(VA.getValVT()));
1192 else if (VA.getLocInfo() == CCValAssign::ZExt)
1193 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1194 DAG.getValueType(VA.getValVT()));
1195
1196 if (VA.getLocInfo() != CCValAssign::Full)
1197 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1198
1199 ArgValues.push_back(ArgValue);
1200 } else {
1201 assert(VA.isMemLoc());
Rafael Espindolab53ef122007-09-21 14:55:38 +00001202 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001203 }
1204 }
1205
1206 ArgValues.push_back(Root);
1207
1208 unsigned StackSize = CCInfo.getNextStackOffset();
1209
1210 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1211 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001212 // arguments and the arguments after the retaddr has been pushed are
1213 // aligned.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001214 if ((StackSize & 7) == 0)
1215 StackSize += 4;
1216 }
1217
1218 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1219 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001220 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1221 BytesCallerReserves = 0;
1222
Anton Korobeynikove844e472007-08-15 17:12:32 +00001223 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1224 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001225
1226 // Return the new list of results.
1227 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1228 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1229}
1230
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001231SDOperand
1232X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1233 const SDOperand &StackPtr,
1234 const CCValAssign &VA,
1235 SDOperand Chain,
1236 SDOperand Arg) {
1237 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1238 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1239 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1240 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1241 if (Flags & ISD::ParamFlags::ByVal) {
1242 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1243 ISD::ParamFlags::ByValAlignOffs);
1244
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001245 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1246 ISD::ParamFlags::ByValSizeOffs;
1247
1248 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1249 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
Rafael Espindola80825902007-10-19 10:41:11 +00001250 SDOperand AlwaysInline = DAG.getConstant(1, MVT::i1);
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001251
Rafael Espindola80825902007-10-19 10:41:11 +00001252 return DAG.getMemcpy(Chain, PtrOff, Arg, SizeNode, AlignNode,
1253 AlwaysInline);
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001254 } else {
1255 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1256 }
1257}
1258
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001259SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1260 unsigned CC) {
1261 SDOperand Chain = Op.getOperand(0);
1262 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1263 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1264 SDOperand Callee = Op.getOperand(4);
1265
1266 // Analyze operands of the call, assigning locations to each operand.
1267 SmallVector<CCValAssign, 16> ArgLocs;
1268 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1269 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1270
1271 // Get a count of how many bytes are to be pushed on the stack.
1272 unsigned NumBytes = CCInfo.getNextStackOffset();
1273
1274 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1275 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001276 // arguments and the arguments after the retaddr has been pushed are
1277 // aligned.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001278 if ((NumBytes & 7) == 0)
1279 NumBytes += 4;
1280 }
1281
1282 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1283
1284 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1285 SmallVector<SDOperand, 8> MemOpChains;
1286
1287 SDOperand StackPtr;
1288
1289 // Walk the register/memloc assignments, inserting copies/loads.
1290 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1291 CCValAssign &VA = ArgLocs[i];
1292 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1293
1294 // Promote the value if needed.
1295 switch (VA.getLocInfo()) {
1296 default: assert(0 && "Unknown loc info!");
1297 case CCValAssign::Full: break;
1298 case CCValAssign::SExt:
1299 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1300 break;
1301 case CCValAssign::ZExt:
1302 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1303 break;
1304 case CCValAssign::AExt:
1305 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1306 break;
1307 }
1308
1309 if (VA.isRegLoc()) {
1310 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1311 } else {
1312 assert(VA.isMemLoc());
1313 if (StackPtr.Val == 0)
1314 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001315
1316 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1317 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001318 }
1319 }
1320
1321 if (!MemOpChains.empty())
1322 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1323 &MemOpChains[0], MemOpChains.size());
1324
1325 // Build a sequence of copy-to-reg nodes chained together with token chain
1326 // and flag operands which copy the outgoing args into registers.
1327 SDOperand InFlag;
1328 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1329 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1330 InFlag);
1331 InFlag = Chain.getValue(1);
1332 }
1333
1334 // If the callee is a GlobalAddress node (quite common, every direct call is)
1335 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1336 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1337 // We should use extra load for direct calls to dllimported functions in
1338 // non-JIT mode.
1339 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1340 getTargetMachine(), true))
1341 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1342 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1343 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1344
1345 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1346 // GOT pointer.
1347 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1348 Subtarget->isPICStyleGOT()) {
1349 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1350 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1351 InFlag);
1352 InFlag = Chain.getValue(1);
1353 }
1354
1355 // Returns a chain & a flag for retval copy to use.
1356 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1357 SmallVector<SDOperand, 8> Ops;
1358 Ops.push_back(Chain);
1359 Ops.push_back(Callee);
1360
1361 // Add argument registers to the end of the list so that they are known live
1362 // into the call.
1363 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1364 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1365 RegsToPass[i].second.getValueType()));
1366
1367 // Add an implicit use GOT pointer in EBX.
1368 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1369 Subtarget->isPICStyleGOT())
1370 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1371
1372 if (InFlag.Val)
1373 Ops.push_back(InFlag);
1374
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001375 assert(isTailCall==false && "no tail call here");
1376 Chain = DAG.getNode(X86ISD::CALL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001377 NodeTys, &Ops[0], Ops.size());
1378 InFlag = Chain.getValue(1);
1379
1380 // Returns a flag for retval copy to use.
1381 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1382 Ops.clear();
1383 Ops.push_back(Chain);
1384 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1385 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1386 Ops.push_back(InFlag);
1387 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1388 InFlag = Chain.getValue(1);
1389
1390 // Handle result values, copying them out of physregs into vregs that we
1391 // return.
1392 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1393}
1394
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001395//===----------------------------------------------------------------------===//
1396// Fast Calling Convention (tail call) implementation
1397//===----------------------------------------------------------------------===//
1398
1399// Like std call, callee cleans arguments, convention except that ECX is
1400// reserved for storing the tail called function address. Only 2 registers are
1401// free for argument passing (inreg). Tail call optimization is performed
1402// provided:
1403// * tailcallopt is enabled
1404// * caller/callee are fastcc
1405// * elf/pic is disabled OR
1406// * elf/pic enabled + callee is in module + callee has
1407// visibility protected or hidden
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001408// To keep the stack aligned according to platform abi the function
1409// GetAlignedArgumentStackSize ensures that argument delta is always multiples
1410// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001411// If a tail called function callee has more arguments than the caller the
1412// caller needs to make sure that there is room to move the RETADDR to. This is
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001413// achieved by reserving an area the size of the argument delta right after the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001414// original REtADDR, but before the saved framepointer or the spilled registers
1415// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1416// stack layout:
1417// arg1
1418// arg2
1419// RETADDR
1420// [ new RETADDR
1421// move area ]
1422// (possible EBP)
1423// ESI
1424// EDI
1425// local1 ..
1426
1427/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1428/// for a 16 byte align requirement.
1429unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1430 SelectionDAG& DAG) {
1431 if (PerformTailCallOpt) {
1432 MachineFunction &MF = DAG.getMachineFunction();
1433 const TargetMachine &TM = MF.getTarget();
1434 const TargetFrameInfo &TFI = *TM.getFrameInfo();
1435 unsigned StackAlignment = TFI.getStackAlignment();
1436 uint64_t AlignMask = StackAlignment - 1;
1437 int64_t Offset = StackSize;
1438 unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1439 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1440 // Number smaller than 12 so just add the difference.
1441 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1442 } else {
1443 // Mask out lower bits, add stackalignment once plus the 12 bytes.
1444 Offset = ((~AlignMask) & Offset) + StackAlignment +
1445 (StackAlignment-SlotSize);
1446 }
1447 StackSize = Offset;
1448 }
1449 return StackSize;
1450}
1451
1452/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1453// following the call is a return. A function is eligible if caller/callee
1454// calling conventions match, currently only fastcc supports tail calls, and the
1455// function CALL is immediatly followed by a RET.
1456bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1457 SDOperand Ret,
1458 SelectionDAG& DAG) const {
1459 bool IsEligible = false;
1460
1461 // Check whether CALL node immediatly preceeds the RET node and whether the
1462 // return uses the result of the node or is a void return.
1463 if ((Ret.getNumOperands() == 1 &&
1464 (Ret.getOperand(0)== SDOperand(Call.Val,1) ||
1465 Ret.getOperand(0)== SDOperand(Call.Val,0))) ||
1466 (Ret.getOperand(0)== SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1467 Ret.getOperand(1)== SDOperand(Call.Val,0))) {
1468 MachineFunction &MF = DAG.getMachineFunction();
1469 unsigned CallerCC = MF.getFunction()->getCallingConv();
1470 unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1471 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1472 SDOperand Callee = Call.getOperand(4);
1473 // On elf/pic %ebx needs to be livein.
1474 if(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1475 Subtarget->isPICStyleGOT()) {
1476 // Can only do local tail calls with PIC.
1477 GlobalValue * GV = 0;
1478 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1479 if(G != 0 &&
1480 (GV = G->getGlobal()) &&
1481 (GV->hasHiddenVisibility() || GV->hasProtectedVisibility()))
1482 IsEligible=true;
1483 } else {
1484 IsEligible=true;
1485 }
1486 }
1487 }
1488 return IsEligible;
1489}
1490
1491SDOperand X86TargetLowering::LowerX86_TailCallTo(SDOperand Op,
1492 SelectionDAG &DAG,
1493 unsigned CC) {
1494 SDOperand Chain = Op.getOperand(0);
1495 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1496 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1497 SDOperand Callee = Op.getOperand(4);
1498 bool is64Bit = Subtarget->is64Bit();
1499
1500 assert(isTailCall && PerformTailCallOpt && "Should only emit tail calls.");
1501
1502 // Analyze operands of the call, assigning locations to each operand.
1503 SmallVector<CCValAssign, 16> ArgLocs;
1504 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1505 if (is64Bit)
1506 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1507 else
1508 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1509
1510
1511 // Lower arguments at fp - stackoffset + fpdiff.
1512 MachineFunction &MF = DAG.getMachineFunction();
1513
1514 unsigned NumBytesToBePushed =
1515 GetAlignedArgumentStackSize(CCInfo.getNextStackOffset(), DAG);
1516
1517 unsigned NumBytesCallerPushed =
1518 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1519 int FPDiff = NumBytesCallerPushed - NumBytesToBePushed;
1520
1521 // Set the delta of movement of the returnaddr stackslot.
1522 // But only set if delta is greater than previous delta.
1523 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1524 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1525
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001526 Chain = DAG.
1527 getCALLSEQ_START(Chain, DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1528
1529 // Adjust the Return address stack slot.
1530 SDOperand RetAddrFrIdx, NewRetAddrFrIdx;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001531 if (FPDiff) {
1532 MVT::ValueType VT = is64Bit ? MVT::i64 : MVT::i32;
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001533 RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1534 // Load the "old" Return address.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001535 RetAddrFrIdx =
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001536 DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1537 // Calculate the new stack slot for the return address.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001538 int SlotSize = is64Bit ? 8 : 4;
1539 int NewReturnAddrFI =
1540 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001541 NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1542 Chain = SDOperand(RetAddrFrIdx.Val, 1);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001543 }
1544
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001545 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1546 SmallVector<SDOperand, 8> MemOpChains;
1547 SmallVector<SDOperand, 8> MemOpChains2;
1548 SDOperand FramePtr, StackPtr;
1549 SDOperand PtrOff;
1550 SDOperand FIN;
1551 int FI = 0;
1552
1553 // Walk the register/memloc assignments, inserting copies/loads. Lower
1554 // arguments first to the stack slot where they would normally - in case of a
1555 // normal function call - be.
1556 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1557 CCValAssign &VA = ArgLocs[i];
1558 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1559
1560 // Promote the value if needed.
1561 switch (VA.getLocInfo()) {
1562 default: assert(0 && "Unknown loc info!");
1563 case CCValAssign::Full: break;
1564 case CCValAssign::SExt:
1565 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1566 break;
1567 case CCValAssign::ZExt:
1568 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1569 break;
1570 case CCValAssign::AExt:
1571 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1572 break;
1573 }
1574
1575 if (VA.isRegLoc()) {
1576 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1577 } else {
1578 assert(VA.isMemLoc());
1579 if (StackPtr.Val == 0)
1580 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1581
1582 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1583 Arg));
1584 }
1585 }
1586
1587 if (!MemOpChains.empty())
1588 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1589 &MemOpChains[0], MemOpChains.size());
1590
1591 // Build a sequence of copy-to-reg nodes chained together with token chain
1592 // and flag operands which copy the outgoing args into registers.
1593 SDOperand InFlag;
1594 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1595 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1596 InFlag);
1597 InFlag = Chain.getValue(1);
1598 }
1599 InFlag = SDOperand();
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001600
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001601 // Copy from stack slots to stack slot of a tail called function. This needs
1602 // to be done because if we would lower the arguments directly to their real
1603 // stack slot we might end up overwriting each other.
1604 // TODO: To make this more efficient (sometimes saving a store/load) we could
1605 // analyse the arguments and emit this store/load/store sequence only for
1606 // arguments which would be overwritten otherwise.
1607 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1608 CCValAssign &VA = ArgLocs[i];
1609 if (!VA.isRegLoc()) {
1610 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1611 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1612
1613 // Get source stack slot.
1614 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1615 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1616 // Create frame index.
1617 int32_t Offset = VA.getLocMemOffset()+FPDiff;
1618 uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1619 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1620 FIN = DAG.getFrameIndex(FI, MVT::i32);
1621 if (Flags & ISD::ParamFlags::ByVal) {
1622 // Copy relative to framepointer.
1623 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1624 ISD::ParamFlags::ByValAlignOffs);
1625
1626 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1627 ISD::ParamFlags::ByValSizeOffs;
1628
1629 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1630 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1631 // Copy relative to framepointer.
1632 MemOpChains2.push_back(DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, FIN,
1633 PtrOff, SizeNode, AlignNode));
1634 } else {
1635 SDOperand LoadedArg = DAG.getLoad(VA.getValVT(), Chain, PtrOff, NULL,0);
1636 // Store relative to framepointer.
1637 MemOpChains2.push_back(DAG.getStore(Chain, LoadedArg, FIN, NULL, 0));
1638 }
1639 }
1640 }
1641
1642 if (!MemOpChains2.empty())
1643 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1644 &MemOpChains2[0], MemOpChains.size());
1645
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001646 // Store the return address to the appropriate stack slot.
1647 if (FPDiff)
1648 Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1649
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001650 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1651 // GOT pointer.
1652 // Does not work with tail call since ebx is not restored correctly by
1653 // tailcaller. TODO: at least for x86 - verify for x86-64
1654
1655 // If the callee is a GlobalAddress node (quite common, every direct call is)
1656 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1657 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1658 // We should use extra load for direct calls to dllimported functions in
1659 // non-JIT mode.
1660 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1661 getTargetMachine(), true))
1662 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1663 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1664 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1665 else {
1666 assert(Callee.getOpcode() == ISD::LOAD &&
1667 "Function destination must be loaded into virtual register");
1668 unsigned Opc = is64Bit ? X86::R9 : X86::ECX;
1669
1670 Chain = DAG.getCopyToReg(Chain,
1671 DAG.getRegister(Opc, getPointerTy()) ,
1672 Callee,InFlag);
1673 Callee = DAG.getRegister(Opc, getPointerTy());
1674 // Add register as live out.
1675 DAG.getMachineFunction().addLiveOut(Opc);
1676 }
1677
1678 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1679 SmallVector<SDOperand, 8> Ops;
1680
1681 Ops.push_back(Chain);
1682 Ops.push_back(DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1683 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1684 if (InFlag.Val)
1685 Ops.push_back(InFlag);
1686 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1687 InFlag = Chain.getValue(1);
1688
1689 // Returns a chain & a flag for retval copy to use.
1690 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1691 Ops.clear();
1692 Ops.push_back(Chain);
1693 Ops.push_back(Callee);
1694 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1695 // Add argument registers to the end of the list so that they are known live
1696 // into the call.
1697 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1698 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1699 RegsToPass[i].second.getValueType()));
1700 if (InFlag.Val)
1701 Ops.push_back(InFlag);
1702 assert(InFlag.Val &&
1703 "Flag must be set. Depend on flag being set in LowerRET");
1704 Chain = DAG.getNode(X86ISD::TAILCALL,
1705 Op.Val->getVTList(), &Ops[0], Ops.size());
1706
1707 return SDOperand(Chain.Val, Op.ResNo);
1708}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001709
1710//===----------------------------------------------------------------------===//
1711// X86-64 C Calling Convention implementation
1712//===----------------------------------------------------------------------===//
1713
1714SDOperand
1715X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1716 MachineFunction &MF = DAG.getMachineFunction();
1717 MachineFrameInfo *MFI = MF.getFrameInfo();
1718 SDOperand Root = Op.getOperand(0);
1719 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001720 unsigned CC= MF.getFunction()->getCallingConv();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001721
1722 static const unsigned GPR64ArgRegs[] = {
1723 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1724 };
1725 static const unsigned XMMArgRegs[] = {
1726 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1727 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1728 };
1729
1730
1731 // Assign locations to all of the incoming arguments.
1732 SmallVector<CCValAssign, 16> ArgLocs;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001733 CCState CCInfo(CC, isVarArg,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001734 getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001735 if (CC == CallingConv::Fast && PerformTailCallOpt)
1736 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_TailCall);
1737 else
1738 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001739
1740 SmallVector<SDOperand, 8> ArgValues;
1741 unsigned LastVal = ~0U;
1742 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1743 CCValAssign &VA = ArgLocs[i];
1744 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1745 // places.
1746 assert(VA.getValNo() != LastVal &&
1747 "Don't support value assigned to multiple locs yet");
1748 LastVal = VA.getValNo();
1749
1750 if (VA.isRegLoc()) {
1751 MVT::ValueType RegVT = VA.getLocVT();
1752 TargetRegisterClass *RC;
1753 if (RegVT == MVT::i32)
1754 RC = X86::GR32RegisterClass;
1755 else if (RegVT == MVT::i64)
1756 RC = X86::GR64RegisterClass;
1757 else if (RegVT == MVT::f32)
1758 RC = X86::FR32RegisterClass;
1759 else if (RegVT == MVT::f64)
1760 RC = X86::FR64RegisterClass;
1761 else {
1762 assert(MVT::isVector(RegVT));
1763 if (MVT::getSizeInBits(RegVT) == 64) {
1764 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1765 RegVT = MVT::i64;
1766 } else
1767 RC = X86::VR128RegisterClass;
1768 }
1769
1770 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1771 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1772
1773 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1774 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1775 // right size.
1776 if (VA.getLocInfo() == CCValAssign::SExt)
1777 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1778 DAG.getValueType(VA.getValVT()));
1779 else if (VA.getLocInfo() == CCValAssign::ZExt)
1780 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1781 DAG.getValueType(VA.getValVT()));
1782
1783 if (VA.getLocInfo() != CCValAssign::Full)
1784 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1785
1786 // Handle MMX values passed in GPRs.
1787 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1788 MVT::getSizeInBits(RegVT) == 64)
1789 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1790
1791 ArgValues.push_back(ArgValue);
1792 } else {
1793 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001794 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001795 }
1796 }
1797
1798 unsigned StackSize = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001799 if (CC==CallingConv::Fast)
1800 StackSize =GetAlignedArgumentStackSize(StackSize, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001801
1802 // If the function takes variable number of arguments, make a frame index for
1803 // the start of the first vararg value... for expansion of llvm.va_start.
1804 if (isVarArg) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001805 assert(CC!=CallingConv::Fast
1806 && "Var arg not supported with calling convention fastcc");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001807 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1808 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1809
1810 // For X86-64, if there are vararg parameters that are passed via
1811 // registers, then we must store them to their spots on the stack so they
1812 // may be loaded by deferencing the result of va_next.
1813 VarArgsGPOffset = NumIntRegs * 8;
1814 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1815 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1816 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1817
1818 // Store the integer parameter registers.
1819 SmallVector<SDOperand, 8> MemOps;
1820 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1821 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1822 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1823 for (; NumIntRegs != 6; ++NumIntRegs) {
1824 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1825 X86::GR64RegisterClass);
1826 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1827 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1828 MemOps.push_back(Store);
1829 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1830 DAG.getConstant(8, getPointerTy()));
1831 }
1832
1833 // Now store the XMM (fp + vector) parameter registers.
1834 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1835 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1836 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1837 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1838 X86::VR128RegisterClass);
1839 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1840 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1841 MemOps.push_back(Store);
1842 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1843 DAG.getConstant(16, getPointerTy()));
1844 }
1845 if (!MemOps.empty())
1846 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1847 &MemOps[0], MemOps.size());
1848 }
1849
1850 ArgValues.push_back(Root);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001851 // Tail call convention (fastcc) needs callee pop.
Evan Cheng778fa0f2007-10-14 10:09:39 +00001852 if (CC == CallingConv::Fast && PerformTailCallOpt) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001853 BytesToPopOnReturn = StackSize; // Callee pops everything.
1854 BytesCallerReserves = 0;
1855 } else {
1856 BytesToPopOnReturn = 0; // Callee pops nothing.
1857 BytesCallerReserves = StackSize;
1858 }
Anton Korobeynikove844e472007-08-15 17:12:32 +00001859 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1860 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1861
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001862 // Return the new list of results.
1863 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1864 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1865}
1866
1867SDOperand
1868X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1869 unsigned CC) {
1870 SDOperand Chain = Op.getOperand(0);
1871 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001872 SDOperand Callee = Op.getOperand(4);
1873
1874 // Analyze operands of the call, assigning locations to each operand.
1875 SmallVector<CCValAssign, 16> ArgLocs;
1876 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
Evan Cheng778fa0f2007-10-14 10:09:39 +00001877 if (CC==CallingConv::Fast && PerformTailCallOpt)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001878 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1879 else
1880 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001881
1882 // Get a count of how many bytes are to be pushed on the stack.
1883 unsigned NumBytes = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001884 if (CC == CallingConv::Fast)
1885 NumBytes = GetAlignedArgumentStackSize(NumBytes,DAG);
1886
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001887 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1888
1889 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1890 SmallVector<SDOperand, 8> MemOpChains;
1891
1892 SDOperand StackPtr;
1893
1894 // Walk the register/memloc assignments, inserting copies/loads.
1895 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1896 CCValAssign &VA = ArgLocs[i];
1897 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1898
1899 // Promote the value if needed.
1900 switch (VA.getLocInfo()) {
1901 default: assert(0 && "Unknown loc info!");
1902 case CCValAssign::Full: break;
1903 case CCValAssign::SExt:
1904 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1905 break;
1906 case CCValAssign::ZExt:
1907 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1908 break;
1909 case CCValAssign::AExt:
1910 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1911 break;
1912 }
1913
1914 if (VA.isRegLoc()) {
1915 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1916 } else {
1917 assert(VA.isMemLoc());
1918 if (StackPtr.Val == 0)
1919 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00001920
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001921 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1922 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001923 }
1924 }
1925
1926 if (!MemOpChains.empty())
1927 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1928 &MemOpChains[0], MemOpChains.size());
1929
1930 // Build a sequence of copy-to-reg nodes chained together with token chain
1931 // and flag operands which copy the outgoing args into registers.
1932 SDOperand InFlag;
1933 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1934 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1935 InFlag);
1936 InFlag = Chain.getValue(1);
1937 }
1938
1939 if (isVarArg) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001940 assert ( CallingConv::Fast != CC &&
1941 "Var args not supported with calling convention fastcc");
1942
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001943 // From AMD64 ABI document:
1944 // For calls that may call functions that use varargs or stdargs
1945 // (prototype-less calls or calls to functions containing ellipsis (...) in
1946 // the declaration) %al is used as hidden argument to specify the number
1947 // of SSE registers used. The contents of %al do not need to match exactly
1948 // the number of registers, but must be an ubound on the number of SSE
1949 // registers used and is in the range 0 - 8 inclusive.
1950
1951 // Count the number of XMM registers allocated.
1952 static const unsigned XMMArgRegs[] = {
1953 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1954 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1955 };
1956 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1957
1958 Chain = DAG.getCopyToReg(Chain, X86::AL,
1959 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1960 InFlag = Chain.getValue(1);
1961 }
1962
1963 // If the callee is a GlobalAddress node (quite common, every direct call is)
1964 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1965 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1966 // We should use extra load for direct calls to dllimported functions in
1967 // non-JIT mode.
1968 if (getTargetMachine().getCodeModel() != CodeModel::Large
1969 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1970 getTargetMachine(), true))
1971 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1972 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1973 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1974 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1975
1976 // Returns a chain & a flag for retval copy to use.
1977 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1978 SmallVector<SDOperand, 8> Ops;
1979 Ops.push_back(Chain);
1980 Ops.push_back(Callee);
1981
1982 // Add argument registers to the end of the list so that they are known live
1983 // into the call.
1984 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1985 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1986 RegsToPass[i].second.getValueType()));
1987
1988 if (InFlag.Val)
1989 Ops.push_back(InFlag);
1990
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001991 Chain = DAG.getNode(X86ISD::CALL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001992 NodeTys, &Ops[0], Ops.size());
1993 InFlag = Chain.getValue(1);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001994 int NumBytesForCalleeToPush = 0;
Evan Cheng778fa0f2007-10-14 10:09:39 +00001995 if (CC==CallingConv::Fast && PerformTailCallOpt) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001996 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001997 } else {
1998 NumBytesForCalleeToPush = 0; // Callee pops nothing.
1999 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002000 // Returns a flag for retval copy to use.
2001 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2002 Ops.clear();
2003 Ops.push_back(Chain);
2004 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002005 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002006 Ops.push_back(InFlag);
2007 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
2008 InFlag = Chain.getValue(1);
2009
2010 // Handle result values, copying them out of physregs into vregs that we
2011 // return.
2012 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
2013}
2014
2015
2016//===----------------------------------------------------------------------===//
2017// Other Lowering Hooks
2018//===----------------------------------------------------------------------===//
2019
2020
2021SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00002022 MachineFunction &MF = DAG.getMachineFunction();
2023 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2024 int ReturnAddrIndex = FuncInfo->getRAIndex();
2025
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002026 if (ReturnAddrIndex == 0) {
2027 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002028 if (Subtarget->is64Bit())
2029 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2030 else
2031 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00002032
2033 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002034 }
2035
2036 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2037}
2038
2039
2040
2041/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2042/// specific condition code. It returns a false if it cannot do a direct
2043/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
2044/// needed.
2045static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2046 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2047 SelectionDAG &DAG) {
2048 X86CC = X86::COND_INVALID;
2049 if (!isFP) {
2050 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2051 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2052 // X > -1 -> X == 0, jump !sign.
2053 RHS = DAG.getConstant(0, RHS.getValueType());
2054 X86CC = X86::COND_NS;
2055 return true;
2056 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2057 // X < 0 -> X == 0, jump on sign.
2058 X86CC = X86::COND_S;
2059 return true;
Dan Gohman37b34262007-09-17 14:49:27 +00002060 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
2061 // X < 1 -> X <= 0
2062 RHS = DAG.getConstant(0, RHS.getValueType());
2063 X86CC = X86::COND_LE;
2064 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002065 }
2066 }
2067
2068 switch (SetCCOpcode) {
2069 default: break;
2070 case ISD::SETEQ: X86CC = X86::COND_E; break;
2071 case ISD::SETGT: X86CC = X86::COND_G; break;
2072 case ISD::SETGE: X86CC = X86::COND_GE; break;
2073 case ISD::SETLT: X86CC = X86::COND_L; break;
2074 case ISD::SETLE: X86CC = X86::COND_LE; break;
2075 case ISD::SETNE: X86CC = X86::COND_NE; break;
2076 case ISD::SETULT: X86CC = X86::COND_B; break;
2077 case ISD::SETUGT: X86CC = X86::COND_A; break;
2078 case ISD::SETULE: X86CC = X86::COND_BE; break;
2079 case ISD::SETUGE: X86CC = X86::COND_AE; break;
2080 }
2081 } else {
2082 // On a floating point condition, the flags are set as follows:
2083 // ZF PF CF op
2084 // 0 | 0 | 0 | X > Y
2085 // 0 | 0 | 1 | X < Y
2086 // 1 | 0 | 0 | X == Y
2087 // 1 | 1 | 1 | unordered
2088 bool Flip = false;
2089 switch (SetCCOpcode) {
2090 default: break;
2091 case ISD::SETUEQ:
2092 case ISD::SETEQ: X86CC = X86::COND_E; break;
2093 case ISD::SETOLT: Flip = true; // Fallthrough
2094 case ISD::SETOGT:
2095 case ISD::SETGT: X86CC = X86::COND_A; break;
2096 case ISD::SETOLE: Flip = true; // Fallthrough
2097 case ISD::SETOGE:
2098 case ISD::SETGE: X86CC = X86::COND_AE; break;
2099 case ISD::SETUGT: Flip = true; // Fallthrough
2100 case ISD::SETULT:
2101 case ISD::SETLT: X86CC = X86::COND_B; break;
2102 case ISD::SETUGE: Flip = true; // Fallthrough
2103 case ISD::SETULE:
2104 case ISD::SETLE: X86CC = X86::COND_BE; break;
2105 case ISD::SETONE:
2106 case ISD::SETNE: X86CC = X86::COND_NE; break;
2107 case ISD::SETUO: X86CC = X86::COND_P; break;
2108 case ISD::SETO: X86CC = X86::COND_NP; break;
2109 }
2110 if (Flip)
2111 std::swap(LHS, RHS);
2112 }
2113
2114 return X86CC != X86::COND_INVALID;
2115}
2116
2117/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2118/// code. Current x86 isa includes the following FP cmov instructions:
2119/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2120static bool hasFPCMov(unsigned X86CC) {
2121 switch (X86CC) {
2122 default:
2123 return false;
2124 case X86::COND_B:
2125 case X86::COND_BE:
2126 case X86::COND_E:
2127 case X86::COND_P:
2128 case X86::COND_A:
2129 case X86::COND_AE:
2130 case X86::COND_NE:
2131 case X86::COND_NP:
2132 return true;
2133 }
2134}
2135
2136/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
2137/// true if Op is undef or if its value falls within the specified range (L, H].
2138static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2139 if (Op.getOpcode() == ISD::UNDEF)
2140 return true;
2141
2142 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2143 return (Val >= Low && Val < Hi);
2144}
2145
2146/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
2147/// true if Op is undef or if its value equal to the specified value.
2148static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2149 if (Op.getOpcode() == ISD::UNDEF)
2150 return true;
2151 return cast<ConstantSDNode>(Op)->getValue() == Val;
2152}
2153
2154/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2155/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2156bool X86::isPSHUFDMask(SDNode *N) {
2157 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2158
Dan Gohman7dc19012007-08-02 21:17:01 +00002159 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002160 return false;
2161
2162 // Check if the value doesn't reference the second vector.
2163 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2164 SDOperand Arg = N->getOperand(i);
2165 if (Arg.getOpcode() == ISD::UNDEF) continue;
2166 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00002167 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002168 return false;
2169 }
2170
2171 return true;
2172}
2173
2174/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2175/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2176bool X86::isPSHUFHWMask(SDNode *N) {
2177 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2178
2179 if (N->getNumOperands() != 8)
2180 return false;
2181
2182 // Lower quadword copied in order.
2183 for (unsigned i = 0; i != 4; ++i) {
2184 SDOperand Arg = N->getOperand(i);
2185 if (Arg.getOpcode() == ISD::UNDEF) continue;
2186 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2187 if (cast<ConstantSDNode>(Arg)->getValue() != i)
2188 return false;
2189 }
2190
2191 // Upper quadword shuffled.
2192 for (unsigned i = 4; i != 8; ++i) {
2193 SDOperand Arg = N->getOperand(i);
2194 if (Arg.getOpcode() == ISD::UNDEF) continue;
2195 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2196 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2197 if (Val < 4 || Val > 7)
2198 return false;
2199 }
2200
2201 return true;
2202}
2203
2204/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2205/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2206bool X86::isPSHUFLWMask(SDNode *N) {
2207 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2208
2209 if (N->getNumOperands() != 8)
2210 return false;
2211
2212 // Upper quadword copied in order.
2213 for (unsigned i = 4; i != 8; ++i)
2214 if (!isUndefOrEqual(N->getOperand(i), i))
2215 return false;
2216
2217 // Lower quadword shuffled.
2218 for (unsigned i = 0; i != 4; ++i)
2219 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2220 return false;
2221
2222 return true;
2223}
2224
2225/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2226/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2227static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2228 if (NumElems != 2 && NumElems != 4) return false;
2229
2230 unsigned Half = NumElems / 2;
2231 for (unsigned i = 0; i < Half; ++i)
2232 if (!isUndefOrInRange(Elems[i], 0, NumElems))
2233 return false;
2234 for (unsigned i = Half; i < NumElems; ++i)
2235 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2236 return false;
2237
2238 return true;
2239}
2240
2241bool X86::isSHUFPMask(SDNode *N) {
2242 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2243 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2244}
2245
2246/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2247/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2248/// half elements to come from vector 1 (which would equal the dest.) and
2249/// the upper half to come from vector 2.
2250static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2251 if (NumOps != 2 && NumOps != 4) return false;
2252
2253 unsigned Half = NumOps / 2;
2254 for (unsigned i = 0; i < Half; ++i)
2255 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2256 return false;
2257 for (unsigned i = Half; i < NumOps; ++i)
2258 if (!isUndefOrInRange(Ops[i], 0, NumOps))
2259 return false;
2260 return true;
2261}
2262
2263static bool isCommutedSHUFP(SDNode *N) {
2264 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2265 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2266}
2267
2268/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2269/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2270bool X86::isMOVHLPSMask(SDNode *N) {
2271 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2272
2273 if (N->getNumOperands() != 4)
2274 return false;
2275
2276 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2277 return isUndefOrEqual(N->getOperand(0), 6) &&
2278 isUndefOrEqual(N->getOperand(1), 7) &&
2279 isUndefOrEqual(N->getOperand(2), 2) &&
2280 isUndefOrEqual(N->getOperand(3), 3);
2281}
2282
2283/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2284/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2285/// <2, 3, 2, 3>
2286bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2287 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2288
2289 if (N->getNumOperands() != 4)
2290 return false;
2291
2292 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2293 return isUndefOrEqual(N->getOperand(0), 2) &&
2294 isUndefOrEqual(N->getOperand(1), 3) &&
2295 isUndefOrEqual(N->getOperand(2), 2) &&
2296 isUndefOrEqual(N->getOperand(3), 3);
2297}
2298
2299/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2300/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2301bool X86::isMOVLPMask(SDNode *N) {
2302 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2303
2304 unsigned NumElems = N->getNumOperands();
2305 if (NumElems != 2 && NumElems != 4)
2306 return false;
2307
2308 for (unsigned i = 0; i < NumElems/2; ++i)
2309 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2310 return false;
2311
2312 for (unsigned i = NumElems/2; i < NumElems; ++i)
2313 if (!isUndefOrEqual(N->getOperand(i), i))
2314 return false;
2315
2316 return true;
2317}
2318
2319/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2320/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2321/// and MOVLHPS.
2322bool X86::isMOVHPMask(SDNode *N) {
2323 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2324
2325 unsigned NumElems = N->getNumOperands();
2326 if (NumElems != 2 && NumElems != 4)
2327 return false;
2328
2329 for (unsigned i = 0; i < NumElems/2; ++i)
2330 if (!isUndefOrEqual(N->getOperand(i), i))
2331 return false;
2332
2333 for (unsigned i = 0; i < NumElems/2; ++i) {
2334 SDOperand Arg = N->getOperand(i + NumElems/2);
2335 if (!isUndefOrEqual(Arg, i + NumElems))
2336 return false;
2337 }
2338
2339 return true;
2340}
2341
2342/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2343/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2344bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2345 bool V2IsSplat = false) {
2346 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2347 return false;
2348
2349 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2350 SDOperand BitI = Elts[i];
2351 SDOperand BitI1 = Elts[i+1];
2352 if (!isUndefOrEqual(BitI, j))
2353 return false;
2354 if (V2IsSplat) {
2355 if (isUndefOrEqual(BitI1, NumElts))
2356 return false;
2357 } else {
2358 if (!isUndefOrEqual(BitI1, j + NumElts))
2359 return false;
2360 }
2361 }
2362
2363 return true;
2364}
2365
2366bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2367 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2368 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2369}
2370
2371/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2372/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2373bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2374 bool V2IsSplat = false) {
2375 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2376 return false;
2377
2378 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2379 SDOperand BitI = Elts[i];
2380 SDOperand BitI1 = Elts[i+1];
2381 if (!isUndefOrEqual(BitI, j + NumElts/2))
2382 return false;
2383 if (V2IsSplat) {
2384 if (isUndefOrEqual(BitI1, NumElts))
2385 return false;
2386 } else {
2387 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2388 return false;
2389 }
2390 }
2391
2392 return true;
2393}
2394
2395bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2396 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2397 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2398}
2399
2400/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2401/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2402/// <0, 0, 1, 1>
2403bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2404 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2405
2406 unsigned NumElems = N->getNumOperands();
2407 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2408 return false;
2409
2410 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2411 SDOperand BitI = N->getOperand(i);
2412 SDOperand BitI1 = N->getOperand(i+1);
2413
2414 if (!isUndefOrEqual(BitI, j))
2415 return false;
2416 if (!isUndefOrEqual(BitI1, j))
2417 return false;
2418 }
2419
2420 return true;
2421}
2422
2423/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2424/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2425/// <2, 2, 3, 3>
2426bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2427 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2428
2429 unsigned NumElems = N->getNumOperands();
2430 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2431 return false;
2432
2433 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2434 SDOperand BitI = N->getOperand(i);
2435 SDOperand BitI1 = N->getOperand(i + 1);
2436
2437 if (!isUndefOrEqual(BitI, j))
2438 return false;
2439 if (!isUndefOrEqual(BitI1, j))
2440 return false;
2441 }
2442
2443 return true;
2444}
2445
2446/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2447/// specifies a shuffle of elements that is suitable for input to MOVSS,
2448/// MOVSD, and MOVD, i.e. setting the lowest element.
2449static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2450 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2451 return false;
2452
2453 if (!isUndefOrEqual(Elts[0], NumElts))
2454 return false;
2455
2456 for (unsigned i = 1; i < NumElts; ++i) {
2457 if (!isUndefOrEqual(Elts[i], i))
2458 return false;
2459 }
2460
2461 return true;
2462}
2463
2464bool X86::isMOVLMask(SDNode *N) {
2465 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2466 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2467}
2468
2469/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2470/// of what x86 movss want. X86 movs requires the lowest element to be lowest
2471/// element of vector 2 and the other elements to come from vector 1 in order.
2472static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2473 bool V2IsSplat = false,
2474 bool V2IsUndef = false) {
2475 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2476 return false;
2477
2478 if (!isUndefOrEqual(Ops[0], 0))
2479 return false;
2480
2481 for (unsigned i = 1; i < NumOps; ++i) {
2482 SDOperand Arg = Ops[i];
2483 if (!(isUndefOrEqual(Arg, i+NumOps) ||
2484 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2485 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2486 return false;
2487 }
2488
2489 return true;
2490}
2491
2492static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2493 bool V2IsUndef = false) {
2494 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2495 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2496 V2IsSplat, V2IsUndef);
2497}
2498
2499/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2500/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2501bool X86::isMOVSHDUPMask(SDNode *N) {
2502 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2503
2504 if (N->getNumOperands() != 4)
2505 return false;
2506
2507 // Expect 1, 1, 3, 3
2508 for (unsigned i = 0; i < 2; ++i) {
2509 SDOperand Arg = N->getOperand(i);
2510 if (Arg.getOpcode() == ISD::UNDEF) continue;
2511 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2512 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2513 if (Val != 1) return false;
2514 }
2515
2516 bool HasHi = false;
2517 for (unsigned i = 2; i < 4; ++i) {
2518 SDOperand Arg = N->getOperand(i);
2519 if (Arg.getOpcode() == ISD::UNDEF) continue;
2520 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2521 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2522 if (Val != 3) return false;
2523 HasHi = true;
2524 }
2525
2526 // Don't use movshdup if it can be done with a shufps.
2527 return HasHi;
2528}
2529
2530/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2531/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2532bool X86::isMOVSLDUPMask(SDNode *N) {
2533 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2534
2535 if (N->getNumOperands() != 4)
2536 return false;
2537
2538 // Expect 0, 0, 2, 2
2539 for (unsigned i = 0; i < 2; ++i) {
2540 SDOperand Arg = N->getOperand(i);
2541 if (Arg.getOpcode() == ISD::UNDEF) continue;
2542 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2543 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2544 if (Val != 0) return false;
2545 }
2546
2547 bool HasHi = false;
2548 for (unsigned i = 2; i < 4; ++i) {
2549 SDOperand Arg = N->getOperand(i);
2550 if (Arg.getOpcode() == ISD::UNDEF) continue;
2551 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2552 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2553 if (Val != 2) return false;
2554 HasHi = true;
2555 }
2556
2557 // Don't use movshdup if it can be done with a shufps.
2558 return HasHi;
2559}
2560
2561/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2562/// specifies a identity operation on the LHS or RHS.
2563static bool isIdentityMask(SDNode *N, bool RHS = false) {
2564 unsigned NumElems = N->getNumOperands();
2565 for (unsigned i = 0; i < NumElems; ++i)
2566 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2567 return false;
2568 return true;
2569}
2570
2571/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2572/// a splat of a single element.
2573static bool isSplatMask(SDNode *N) {
2574 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2575
2576 // This is a splat operation if each element of the permute is the same, and
2577 // if the value doesn't reference the second vector.
2578 unsigned NumElems = N->getNumOperands();
2579 SDOperand ElementBase;
2580 unsigned i = 0;
2581 for (; i != NumElems; ++i) {
2582 SDOperand Elt = N->getOperand(i);
2583 if (isa<ConstantSDNode>(Elt)) {
2584 ElementBase = Elt;
2585 break;
2586 }
2587 }
2588
2589 if (!ElementBase.Val)
2590 return false;
2591
2592 for (; i != NumElems; ++i) {
2593 SDOperand Arg = N->getOperand(i);
2594 if (Arg.getOpcode() == ISD::UNDEF) continue;
2595 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2596 if (Arg != ElementBase) return false;
2597 }
2598
2599 // Make sure it is a splat of the first vector operand.
2600 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2601}
2602
2603/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2604/// a splat of a single element and it's a 2 or 4 element mask.
2605bool X86::isSplatMask(SDNode *N) {
2606 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2607
2608 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2609 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2610 return false;
2611 return ::isSplatMask(N);
2612}
2613
2614/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2615/// specifies a splat of zero element.
2616bool X86::isSplatLoMask(SDNode *N) {
2617 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2618
2619 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2620 if (!isUndefOrEqual(N->getOperand(i), 0))
2621 return false;
2622 return true;
2623}
2624
2625/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2626/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2627/// instructions.
2628unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2629 unsigned NumOperands = N->getNumOperands();
2630 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2631 unsigned Mask = 0;
2632 for (unsigned i = 0; i < NumOperands; ++i) {
2633 unsigned Val = 0;
2634 SDOperand Arg = N->getOperand(NumOperands-i-1);
2635 if (Arg.getOpcode() != ISD::UNDEF)
2636 Val = cast<ConstantSDNode>(Arg)->getValue();
2637 if (Val >= NumOperands) Val -= NumOperands;
2638 Mask |= Val;
2639 if (i != NumOperands - 1)
2640 Mask <<= Shift;
2641 }
2642
2643 return Mask;
2644}
2645
2646/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2647/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2648/// instructions.
2649unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2650 unsigned Mask = 0;
2651 // 8 nodes, but we only care about the last 4.
2652 for (unsigned i = 7; i >= 4; --i) {
2653 unsigned Val = 0;
2654 SDOperand Arg = N->getOperand(i);
2655 if (Arg.getOpcode() != ISD::UNDEF)
2656 Val = cast<ConstantSDNode>(Arg)->getValue();
2657 Mask |= (Val - 4);
2658 if (i != 4)
2659 Mask <<= 2;
2660 }
2661
2662 return Mask;
2663}
2664
2665/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2666/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2667/// instructions.
2668unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2669 unsigned Mask = 0;
2670 // 8 nodes, but we only care about the first 4.
2671 for (int i = 3; i >= 0; --i) {
2672 unsigned Val = 0;
2673 SDOperand Arg = N->getOperand(i);
2674 if (Arg.getOpcode() != ISD::UNDEF)
2675 Val = cast<ConstantSDNode>(Arg)->getValue();
2676 Mask |= Val;
2677 if (i != 0)
2678 Mask <<= 2;
2679 }
2680
2681 return Mask;
2682}
2683
2684/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2685/// specifies a 8 element shuffle that can be broken into a pair of
2686/// PSHUFHW and PSHUFLW.
2687static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2688 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2689
2690 if (N->getNumOperands() != 8)
2691 return false;
2692
2693 // Lower quadword shuffled.
2694 for (unsigned i = 0; i != 4; ++i) {
2695 SDOperand Arg = N->getOperand(i);
2696 if (Arg.getOpcode() == ISD::UNDEF) continue;
2697 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2698 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2699 if (Val > 4)
2700 return false;
2701 }
2702
2703 // Upper quadword shuffled.
2704 for (unsigned i = 4; i != 8; ++i) {
2705 SDOperand Arg = N->getOperand(i);
2706 if (Arg.getOpcode() == ISD::UNDEF) continue;
2707 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2708 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2709 if (Val < 4 || Val > 7)
2710 return false;
2711 }
2712
2713 return true;
2714}
2715
2716/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2717/// values in ther permute mask.
2718static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2719 SDOperand &V2, SDOperand &Mask,
2720 SelectionDAG &DAG) {
2721 MVT::ValueType VT = Op.getValueType();
2722 MVT::ValueType MaskVT = Mask.getValueType();
2723 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2724 unsigned NumElems = Mask.getNumOperands();
2725 SmallVector<SDOperand, 8> MaskVec;
2726
2727 for (unsigned i = 0; i != NumElems; ++i) {
2728 SDOperand Arg = Mask.getOperand(i);
2729 if (Arg.getOpcode() == ISD::UNDEF) {
2730 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2731 continue;
2732 }
2733 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2734 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2735 if (Val < NumElems)
2736 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2737 else
2738 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2739 }
2740
2741 std::swap(V1, V2);
2742 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2743 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2744}
2745
2746/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2747/// match movhlps. The lower half elements should come from upper half of
2748/// V1 (and in order), and the upper half elements should come from the upper
2749/// half of V2 (and in order).
2750static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2751 unsigned NumElems = Mask->getNumOperands();
2752 if (NumElems != 4)
2753 return false;
2754 for (unsigned i = 0, e = 2; i != e; ++i)
2755 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2756 return false;
2757 for (unsigned i = 2; i != 4; ++i)
2758 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2759 return false;
2760 return true;
2761}
2762
2763/// isScalarLoadToVector - Returns true if the node is a scalar load that
2764/// is promoted to a vector.
2765static inline bool isScalarLoadToVector(SDNode *N) {
2766 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2767 N = N->getOperand(0).Val;
2768 return ISD::isNON_EXTLoad(N);
2769 }
2770 return false;
2771}
2772
2773/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2774/// match movlp{s|d}. The lower half elements should come from lower half of
2775/// V1 (and in order), and the upper half elements should come from the upper
2776/// half of V2 (and in order). And since V1 will become the source of the
2777/// MOVLP, it must be either a vector load or a scalar load to vector.
2778static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2779 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2780 return false;
2781 // Is V2 is a vector load, don't do this transformation. We will try to use
2782 // load folding shufps op.
2783 if (ISD::isNON_EXTLoad(V2))
2784 return false;
2785
2786 unsigned NumElems = Mask->getNumOperands();
2787 if (NumElems != 2 && NumElems != 4)
2788 return false;
2789 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2790 if (!isUndefOrEqual(Mask->getOperand(i), i))
2791 return false;
2792 for (unsigned i = NumElems/2; i != NumElems; ++i)
2793 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2794 return false;
2795 return true;
2796}
2797
2798/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2799/// all the same.
2800static bool isSplatVector(SDNode *N) {
2801 if (N->getOpcode() != ISD::BUILD_VECTOR)
2802 return false;
2803
2804 SDOperand SplatValue = N->getOperand(0);
2805 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2806 if (N->getOperand(i) != SplatValue)
2807 return false;
2808 return true;
2809}
2810
2811/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2812/// to an undef.
2813static bool isUndefShuffle(SDNode *N) {
2814 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2815 return false;
2816
2817 SDOperand V1 = N->getOperand(0);
2818 SDOperand V2 = N->getOperand(1);
2819 SDOperand Mask = N->getOperand(2);
2820 unsigned NumElems = Mask.getNumOperands();
2821 for (unsigned i = 0; i != NumElems; ++i) {
2822 SDOperand Arg = Mask.getOperand(i);
2823 if (Arg.getOpcode() != ISD::UNDEF) {
2824 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2825 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2826 return false;
2827 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2828 return false;
2829 }
2830 }
2831 return true;
2832}
2833
2834/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2835/// constant +0.0.
2836static inline bool isZeroNode(SDOperand Elt) {
2837 return ((isa<ConstantSDNode>(Elt) &&
2838 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2839 (isa<ConstantFPSDNode>(Elt) &&
Dale Johannesendf8a8312007-08-31 04:03:46 +00002840 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002841}
2842
2843/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2844/// to an zero vector.
2845static bool isZeroShuffle(SDNode *N) {
2846 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2847 return false;
2848
2849 SDOperand V1 = N->getOperand(0);
2850 SDOperand V2 = N->getOperand(1);
2851 SDOperand Mask = N->getOperand(2);
2852 unsigned NumElems = Mask.getNumOperands();
2853 for (unsigned i = 0; i != NumElems; ++i) {
2854 SDOperand Arg = Mask.getOperand(i);
2855 if (Arg.getOpcode() != ISD::UNDEF) {
2856 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2857 if (Idx < NumElems) {
2858 unsigned Opc = V1.Val->getOpcode();
2859 if (Opc == ISD::UNDEF)
2860 continue;
2861 if (Opc != ISD::BUILD_VECTOR ||
2862 !isZeroNode(V1.Val->getOperand(Idx)))
2863 return false;
2864 } else if (Idx >= NumElems) {
2865 unsigned Opc = V2.Val->getOpcode();
2866 if (Opc == ISD::UNDEF)
2867 continue;
2868 if (Opc != ISD::BUILD_VECTOR ||
2869 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2870 return false;
2871 }
2872 }
2873 }
2874 return true;
2875}
2876
2877/// getZeroVector - Returns a vector of specified type with all zero elements.
2878///
2879static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2880 assert(MVT::isVector(VT) && "Expected a vector type");
2881 unsigned NumElems = MVT::getVectorNumElements(VT);
2882 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2883 bool isFP = MVT::isFloatingPoint(EVT);
2884 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2885 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2886 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2887}
2888
2889/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2890/// that point to V2 points to its first element.
2891static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2892 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2893
2894 bool Changed = false;
2895 SmallVector<SDOperand, 8> MaskVec;
2896 unsigned NumElems = Mask.getNumOperands();
2897 for (unsigned i = 0; i != NumElems; ++i) {
2898 SDOperand Arg = Mask.getOperand(i);
2899 if (Arg.getOpcode() != ISD::UNDEF) {
2900 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2901 if (Val > NumElems) {
2902 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2903 Changed = true;
2904 }
2905 }
2906 MaskVec.push_back(Arg);
2907 }
2908
2909 if (Changed)
2910 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2911 &MaskVec[0], MaskVec.size());
2912 return Mask;
2913}
2914
2915/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2916/// operation of specified width.
2917static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2918 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2919 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2920
2921 SmallVector<SDOperand, 8> MaskVec;
2922 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2923 for (unsigned i = 1; i != NumElems; ++i)
2924 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2925 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2926}
2927
2928/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2929/// of specified width.
2930static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2931 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2932 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2933 SmallVector<SDOperand, 8> MaskVec;
2934 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2935 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2936 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2937 }
2938 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2939}
2940
2941/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2942/// of specified width.
2943static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2944 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2945 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2946 unsigned Half = NumElems/2;
2947 SmallVector<SDOperand, 8> MaskVec;
2948 for (unsigned i = 0; i != Half; ++i) {
2949 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2950 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2951 }
2952 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2953}
2954
2955/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2956///
2957static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2958 SDOperand V1 = Op.getOperand(0);
2959 SDOperand Mask = Op.getOperand(2);
2960 MVT::ValueType VT = Op.getValueType();
2961 unsigned NumElems = Mask.getNumOperands();
2962 Mask = getUnpacklMask(NumElems, DAG);
2963 while (NumElems != 4) {
2964 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2965 NumElems >>= 1;
2966 }
2967 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2968
2969 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2970 Mask = getZeroVector(MaskVT, DAG);
2971 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2972 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2973 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2974}
2975
2976/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2977/// vector of zero or undef vector.
2978static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2979 unsigned NumElems, unsigned Idx,
2980 bool isZero, SelectionDAG &DAG) {
2981 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2982 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2983 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2984 SDOperand Zero = DAG.getConstant(0, EVT);
2985 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2986 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2987 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2988 &MaskVec[0], MaskVec.size());
2989 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2990}
2991
2992/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2993///
2994static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2995 unsigned NumNonZero, unsigned NumZero,
2996 SelectionDAG &DAG, TargetLowering &TLI) {
2997 if (NumNonZero > 8)
2998 return SDOperand();
2999
3000 SDOperand V(0, 0);
3001 bool First = true;
3002 for (unsigned i = 0; i < 16; ++i) {
3003 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3004 if (ThisIsNonZero && First) {
3005 if (NumZero)
3006 V = getZeroVector(MVT::v8i16, DAG);
3007 else
3008 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3009 First = false;
3010 }
3011
3012 if ((i & 1) != 0) {
3013 SDOperand ThisElt(0, 0), LastElt(0, 0);
3014 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3015 if (LastIsNonZero) {
3016 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3017 }
3018 if (ThisIsNonZero) {
3019 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3020 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3021 ThisElt, DAG.getConstant(8, MVT::i8));
3022 if (LastIsNonZero)
3023 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3024 } else
3025 ThisElt = LastElt;
3026
3027 if (ThisElt.Val)
3028 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3029 DAG.getConstant(i/2, TLI.getPointerTy()));
3030 }
3031 }
3032
3033 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3034}
3035
3036/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3037///
3038static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3039 unsigned NumNonZero, unsigned NumZero,
3040 SelectionDAG &DAG, TargetLowering &TLI) {
3041 if (NumNonZero > 4)
3042 return SDOperand();
3043
3044 SDOperand V(0, 0);
3045 bool First = true;
3046 for (unsigned i = 0; i < 8; ++i) {
3047 bool isNonZero = (NonZeros & (1 << i)) != 0;
3048 if (isNonZero) {
3049 if (First) {
3050 if (NumZero)
3051 V = getZeroVector(MVT::v8i16, DAG);
3052 else
3053 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3054 First = false;
3055 }
3056 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3057 DAG.getConstant(i, TLI.getPointerTy()));
3058 }
3059 }
3060
3061 return V;
3062}
3063
3064SDOperand
3065X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3066 // All zero's are handled with pxor.
3067 if (ISD::isBuildVectorAllZeros(Op.Val))
3068 return Op;
3069
3070 // All one's are handled with pcmpeqd.
3071 if (ISD::isBuildVectorAllOnes(Op.Val))
3072 return Op;
3073
3074 MVT::ValueType VT = Op.getValueType();
3075 MVT::ValueType EVT = MVT::getVectorElementType(VT);
3076 unsigned EVTBits = MVT::getSizeInBits(EVT);
3077
3078 unsigned NumElems = Op.getNumOperands();
3079 unsigned NumZero = 0;
3080 unsigned NumNonZero = 0;
3081 unsigned NonZeros = 0;
Dan Gohman21463242007-07-24 22:55:08 +00003082 unsigned NumNonZeroImms = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003083 std::set<SDOperand> Values;
3084 for (unsigned i = 0; i < NumElems; ++i) {
3085 SDOperand Elt = Op.getOperand(i);
3086 if (Elt.getOpcode() != ISD::UNDEF) {
3087 Values.insert(Elt);
3088 if (isZeroNode(Elt))
3089 NumZero++;
3090 else {
3091 NonZeros |= (1 << i);
3092 NumNonZero++;
Dan Gohman21463242007-07-24 22:55:08 +00003093 if (Elt.getOpcode() == ISD::Constant ||
3094 Elt.getOpcode() == ISD::ConstantFP)
3095 NumNonZeroImms++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003096 }
3097 }
3098 }
3099
3100 if (NumNonZero == 0) {
3101 if (NumZero == 0)
3102 // All undef vector. Return an UNDEF.
3103 return DAG.getNode(ISD::UNDEF, VT);
3104 else
3105 // A mix of zero and undef. Return a zero vector.
3106 return getZeroVector(VT, DAG);
3107 }
3108
3109 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3110 if (Values.size() == 1)
3111 return SDOperand();
3112
3113 // Special case for single non-zero element.
3114 if (NumNonZero == 1) {
3115 unsigned Idx = CountTrailingZeros_32(NonZeros);
3116 SDOperand Item = Op.getOperand(Idx);
3117 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3118 if (Idx == 0)
3119 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3120 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3121 NumZero > 0, DAG);
3122
3123 if (EVTBits == 32) {
3124 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3125 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3126 DAG);
3127 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3128 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3129 SmallVector<SDOperand, 8> MaskVec;
3130 for (unsigned i = 0; i < NumElems; i++)
3131 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3132 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3133 &MaskVec[0], MaskVec.size());
3134 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3135 DAG.getNode(ISD::UNDEF, VT), Mask);
3136 }
3137 }
3138
Dan Gohman21463242007-07-24 22:55:08 +00003139 // A vector full of immediates; various special cases are already
3140 // handled, so this is best done with a single constant-pool load.
3141 if (NumNonZero == NumNonZeroImms)
3142 return SDOperand();
3143
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003144 // Let legalizer expand 2-wide build_vectors.
3145 if (EVTBits == 64)
3146 return SDOperand();
3147
3148 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3149 if (EVTBits == 8 && NumElems == 16) {
3150 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3151 *this);
3152 if (V.Val) return V;
3153 }
3154
3155 if (EVTBits == 16 && NumElems == 8) {
3156 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3157 *this);
3158 if (V.Val) return V;
3159 }
3160
3161 // If element VT is == 32 bits, turn it into a number of shuffles.
3162 SmallVector<SDOperand, 8> V;
3163 V.resize(NumElems);
3164 if (NumElems == 4 && NumZero > 0) {
3165 for (unsigned i = 0; i < 4; ++i) {
3166 bool isZero = !(NonZeros & (1 << i));
3167 if (isZero)
3168 V[i] = getZeroVector(VT, DAG);
3169 else
3170 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3171 }
3172
3173 for (unsigned i = 0; i < 2; ++i) {
3174 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3175 default: break;
3176 case 0:
3177 V[i] = V[i*2]; // Must be a zero vector.
3178 break;
3179 case 1:
3180 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3181 getMOVLMask(NumElems, DAG));
3182 break;
3183 case 2:
3184 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3185 getMOVLMask(NumElems, DAG));
3186 break;
3187 case 3:
3188 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3189 getUnpacklMask(NumElems, DAG));
3190 break;
3191 }
3192 }
3193
3194 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3195 // clears the upper bits.
3196 // FIXME: we can do the same for v4f32 case when we know both parts of
3197 // the lower half come from scalar_to_vector (loadf32). We should do
3198 // that in post legalizer dag combiner with target specific hooks.
3199 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3200 return V[0];
3201 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3202 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3203 SmallVector<SDOperand, 8> MaskVec;
3204 bool Reverse = (NonZeros & 0x3) == 2;
3205 for (unsigned i = 0; i < 2; ++i)
3206 if (Reverse)
3207 MaskVec.push_back(DAG.getConstant(1-i, EVT));
3208 else
3209 MaskVec.push_back(DAG.getConstant(i, EVT));
3210 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3211 for (unsigned i = 0; i < 2; ++i)
3212 if (Reverse)
3213 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3214 else
3215 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3216 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3217 &MaskVec[0], MaskVec.size());
3218 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3219 }
3220
3221 if (Values.size() > 2) {
3222 // Expand into a number of unpckl*.
3223 // e.g. for v4f32
3224 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3225 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3226 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3227 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3228 for (unsigned i = 0; i < NumElems; ++i)
3229 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3230 NumElems >>= 1;
3231 while (NumElems != 0) {
3232 for (unsigned i = 0; i < NumElems; ++i)
3233 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3234 UnpckMask);
3235 NumElems >>= 1;
3236 }
3237 return V[0];
3238 }
3239
3240 return SDOperand();
3241}
3242
3243SDOperand
3244X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3245 SDOperand V1 = Op.getOperand(0);
3246 SDOperand V2 = Op.getOperand(1);
3247 SDOperand PermMask = Op.getOperand(2);
3248 MVT::ValueType VT = Op.getValueType();
3249 unsigned NumElems = PermMask.getNumOperands();
3250 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3251 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3252 bool V1IsSplat = false;
3253 bool V2IsSplat = false;
3254
3255 if (isUndefShuffle(Op.Val))
3256 return DAG.getNode(ISD::UNDEF, VT);
3257
3258 if (isZeroShuffle(Op.Val))
3259 return getZeroVector(VT, DAG);
3260
3261 if (isIdentityMask(PermMask.Val))
3262 return V1;
3263 else if (isIdentityMask(PermMask.Val, true))
3264 return V2;
3265
3266 if (isSplatMask(PermMask.Val)) {
3267 if (NumElems <= 4) return Op;
3268 // Promote it to a v4i32 splat.
3269 return PromoteSplat(Op, DAG);
3270 }
3271
3272 if (X86::isMOVLMask(PermMask.Val))
3273 return (V1IsUndef) ? V2 : Op;
3274
3275 if (X86::isMOVSHDUPMask(PermMask.Val) ||
3276 X86::isMOVSLDUPMask(PermMask.Val) ||
3277 X86::isMOVHLPSMask(PermMask.Val) ||
3278 X86::isMOVHPMask(PermMask.Val) ||
3279 X86::isMOVLPMask(PermMask.Val))
3280 return Op;
3281
3282 if (ShouldXformToMOVHLPS(PermMask.Val) ||
3283 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3284 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3285
3286 bool Commuted = false;
3287 V1IsSplat = isSplatVector(V1.Val);
3288 V2IsSplat = isSplatVector(V2.Val);
3289 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3290 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3291 std::swap(V1IsSplat, V2IsSplat);
3292 std::swap(V1IsUndef, V2IsUndef);
3293 Commuted = true;
3294 }
3295
3296 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3297 if (V2IsUndef) return V1;
3298 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3299 if (V2IsSplat) {
3300 // V2 is a splat, so the mask may be malformed. That is, it may point
3301 // to any V2 element. The instruction selectior won't like this. Get
3302 // a corrected mask and commute to form a proper MOVS{S|D}.
3303 SDOperand NewMask = getMOVLMask(NumElems, DAG);
3304 if (NewMask.Val != PermMask.Val)
3305 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3306 }
3307 return Op;
3308 }
3309
3310 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3311 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3312 X86::isUNPCKLMask(PermMask.Val) ||
3313 X86::isUNPCKHMask(PermMask.Val))
3314 return Op;
3315
3316 if (V2IsSplat) {
3317 // Normalize mask so all entries that point to V2 points to its first
3318 // element then try to match unpck{h|l} again. If match, return a
3319 // new vector_shuffle with the corrected mask.
3320 SDOperand NewMask = NormalizeMask(PermMask, DAG);
3321 if (NewMask.Val != PermMask.Val) {
3322 if (X86::isUNPCKLMask(PermMask.Val, true)) {
3323 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3324 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3325 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3326 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3327 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3328 }
3329 }
3330 }
3331
3332 // Normalize the node to match x86 shuffle ops if needed
3333 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3334 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3335
3336 if (Commuted) {
3337 // Commute is back and try unpck* again.
3338 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3339 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3340 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3341 X86::isUNPCKLMask(PermMask.Val) ||
3342 X86::isUNPCKHMask(PermMask.Val))
3343 return Op;
3344 }
3345
3346 // If VT is integer, try PSHUF* first, then SHUFP*.
3347 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00003348 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3349 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3350 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3351 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003352 X86::isPSHUFHWMask(PermMask.Val) ||
3353 X86::isPSHUFLWMask(PermMask.Val)) {
3354 if (V2.getOpcode() != ISD::UNDEF)
3355 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3356 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3357 return Op;
3358 }
3359
3360 if (X86::isSHUFPMask(PermMask.Val) &&
3361 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
3362 return Op;
3363
3364 // Handle v8i16 shuffle high / low shuffle node pair.
3365 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3366 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3367 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3368 SmallVector<SDOperand, 8> MaskVec;
3369 for (unsigned i = 0; i != 4; ++i)
3370 MaskVec.push_back(PermMask.getOperand(i));
3371 for (unsigned i = 4; i != 8; ++i)
3372 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3373 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3374 &MaskVec[0], MaskVec.size());
3375 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3376 MaskVec.clear();
3377 for (unsigned i = 0; i != 4; ++i)
3378 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3379 for (unsigned i = 4; i != 8; ++i)
3380 MaskVec.push_back(PermMask.getOperand(i));
3381 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3382 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3383 }
3384 } else {
3385 // Floating point cases in the other order.
3386 if (X86::isSHUFPMask(PermMask.Val))
3387 return Op;
3388 if (X86::isPSHUFDMask(PermMask.Val) ||
3389 X86::isPSHUFHWMask(PermMask.Val) ||
3390 X86::isPSHUFLWMask(PermMask.Val)) {
3391 if (V2.getOpcode() != ISD::UNDEF)
3392 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3393 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3394 return Op;
3395 }
3396 }
3397
3398 if (NumElems == 4 &&
3399 // Don't do this for MMX.
3400 MVT::getSizeInBits(VT) != 64) {
3401 MVT::ValueType MaskVT = PermMask.getValueType();
3402 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3403 SmallVector<std::pair<int, int>, 8> Locs;
3404 Locs.reserve(NumElems);
3405 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3406 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3407 unsigned NumHi = 0;
3408 unsigned NumLo = 0;
3409 // If no more than two elements come from either vector. This can be
3410 // implemented with two shuffles. First shuffle gather the elements.
3411 // The second shuffle, which takes the first shuffle as both of its
3412 // vector operands, put the elements into the right order.
3413 for (unsigned i = 0; i != NumElems; ++i) {
3414 SDOperand Elt = PermMask.getOperand(i);
3415 if (Elt.getOpcode() == ISD::UNDEF) {
3416 Locs[i] = std::make_pair(-1, -1);
3417 } else {
3418 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3419 if (Val < NumElems) {
3420 Locs[i] = std::make_pair(0, NumLo);
3421 Mask1[NumLo] = Elt;
3422 NumLo++;
3423 } else {
3424 Locs[i] = std::make_pair(1, NumHi);
3425 if (2+NumHi < NumElems)
3426 Mask1[2+NumHi] = Elt;
3427 NumHi++;
3428 }
3429 }
3430 }
3431 if (NumLo <= 2 && NumHi <= 2) {
3432 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3433 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3434 &Mask1[0], Mask1.size()));
3435 for (unsigned i = 0; i != NumElems; ++i) {
3436 if (Locs[i].first == -1)
3437 continue;
3438 else {
3439 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3440 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3441 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3442 }
3443 }
3444
3445 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3446 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3447 &Mask2[0], Mask2.size()));
3448 }
3449
3450 // Break it into (shuffle shuffle_hi, shuffle_lo).
3451 Locs.clear();
3452 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3453 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3454 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3455 unsigned MaskIdx = 0;
3456 unsigned LoIdx = 0;
3457 unsigned HiIdx = NumElems/2;
3458 for (unsigned i = 0; i != NumElems; ++i) {
3459 if (i == NumElems/2) {
3460 MaskPtr = &HiMask;
3461 MaskIdx = 1;
3462 LoIdx = 0;
3463 HiIdx = NumElems/2;
3464 }
3465 SDOperand Elt = PermMask.getOperand(i);
3466 if (Elt.getOpcode() == ISD::UNDEF) {
3467 Locs[i] = std::make_pair(-1, -1);
3468 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3469 Locs[i] = std::make_pair(MaskIdx, LoIdx);
3470 (*MaskPtr)[LoIdx] = Elt;
3471 LoIdx++;
3472 } else {
3473 Locs[i] = std::make_pair(MaskIdx, HiIdx);
3474 (*MaskPtr)[HiIdx] = Elt;
3475 HiIdx++;
3476 }
3477 }
3478
3479 SDOperand LoShuffle =
3480 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3481 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3482 &LoMask[0], LoMask.size()));
3483 SDOperand HiShuffle =
3484 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3485 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3486 &HiMask[0], HiMask.size()));
3487 SmallVector<SDOperand, 8> MaskOps;
3488 for (unsigned i = 0; i != NumElems; ++i) {
3489 if (Locs[i].first == -1) {
3490 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3491 } else {
3492 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3493 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3494 }
3495 }
3496 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3497 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3498 &MaskOps[0], MaskOps.size()));
3499 }
3500
3501 return SDOperand();
3502}
3503
3504SDOperand
3505X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3506 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3507 return SDOperand();
3508
3509 MVT::ValueType VT = Op.getValueType();
3510 // TODO: handle v16i8.
3511 if (MVT::getSizeInBits(VT) == 16) {
3512 // Transform it so it match pextrw which produces a 32-bit result.
3513 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3514 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3515 Op.getOperand(0), Op.getOperand(1));
3516 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
3517 DAG.getValueType(VT));
3518 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3519 } else if (MVT::getSizeInBits(VT) == 32) {
3520 SDOperand Vec = Op.getOperand(0);
3521 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3522 if (Idx == 0)
3523 return Op;
3524 // SHUFPS the element to the lowest double word, then movss.
3525 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3526 SmallVector<SDOperand, 8> IdxVec;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00003527 IdxVec.
3528 push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3529 IdxVec.
3530 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3531 IdxVec.
3532 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3533 IdxVec.
3534 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003535 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3536 &IdxVec[0], IdxVec.size());
3537 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3538 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3539 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3540 DAG.getConstant(0, getPointerTy()));
3541 } else if (MVT::getSizeInBits(VT) == 64) {
3542 SDOperand Vec = Op.getOperand(0);
3543 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3544 if (Idx == 0)
3545 return Op;
3546
3547 // UNPCKHPD the element to the lowest double word, then movsd.
3548 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3549 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3550 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3551 SmallVector<SDOperand, 8> IdxVec;
3552 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00003553 IdxVec.
3554 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003555 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3556 &IdxVec[0], IdxVec.size());
3557 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3558 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3559 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3560 DAG.getConstant(0, getPointerTy()));
3561 }
3562
3563 return SDOperand();
3564}
3565
3566SDOperand
3567X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3568 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3569 // as its second argument.
3570 MVT::ValueType VT = Op.getValueType();
3571 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3572 SDOperand N0 = Op.getOperand(0);
3573 SDOperand N1 = Op.getOperand(1);
3574 SDOperand N2 = Op.getOperand(2);
3575 if (MVT::getSizeInBits(BaseVT) == 16) {
3576 if (N1.getValueType() != MVT::i32)
3577 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3578 if (N2.getValueType() != MVT::i32)
3579 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3580 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3581 } else if (MVT::getSizeInBits(BaseVT) == 32) {
3582 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3583 if (Idx == 0) {
3584 // Use a movss.
3585 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3586 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3587 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3588 SmallVector<SDOperand, 8> MaskVec;
3589 MaskVec.push_back(DAG.getConstant(4, BaseVT));
3590 for (unsigned i = 1; i <= 3; ++i)
3591 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3592 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3593 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3594 &MaskVec[0], MaskVec.size()));
3595 } else {
3596 // Use two pinsrw instructions to insert a 32 bit value.
3597 Idx <<= 1;
3598 if (MVT::isFloatingPoint(N1.getValueType())) {
Evan Cheng1eea6752007-07-31 06:21:44 +00003599 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3600 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3601 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3602 DAG.getConstant(0, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003603 }
3604 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3605 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3606 DAG.getConstant(Idx, getPointerTy()));
3607 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3608 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3609 DAG.getConstant(Idx+1, getPointerTy()));
3610 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3611 }
3612 }
3613
3614 return SDOperand();
3615}
3616
3617SDOperand
3618X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3619 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3620 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3621}
3622
3623// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3624// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3625// one of the above mentioned nodes. It has to be wrapped because otherwise
3626// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3627// be used to form addressing mode. These wrapped nodes will be selected
3628// into MOV32ri.
3629SDOperand
3630X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3631 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3632 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3633 getPointerTy(),
3634 CP->getAlignment());
3635 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3636 // With PIC, the address is actually $g + Offset.
3637 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3638 !Subtarget->isPICStyleRIPRel()) {
3639 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3640 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3641 Result);
3642 }
3643
3644 return Result;
3645}
3646
3647SDOperand
3648X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3649 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3650 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3651 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3652 // With PIC, the address is actually $g + Offset.
3653 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3654 !Subtarget->isPICStyleRIPRel()) {
3655 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3656 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3657 Result);
3658 }
3659
3660 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3661 // load the value at address GV, not the value of GV itself. This means that
3662 // the GlobalAddress must be in the base or index register of the address, not
3663 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3664 // The same applies for external symbols during PIC codegen
3665 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3666 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3667
3668 return Result;
3669}
3670
3671// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3672static SDOperand
3673LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3674 const MVT::ValueType PtrVT) {
3675 SDOperand InFlag;
3676 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3677 DAG.getNode(X86ISD::GlobalBaseReg,
3678 PtrVT), InFlag);
3679 InFlag = Chain.getValue(1);
3680
3681 // emit leal symbol@TLSGD(,%ebx,1), %eax
3682 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3683 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3684 GA->getValueType(0),
3685 GA->getOffset());
3686 SDOperand Ops[] = { Chain, TGA, InFlag };
3687 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3688 InFlag = Result.getValue(2);
3689 Chain = Result.getValue(1);
3690
3691 // call ___tls_get_addr. This function receives its argument in
3692 // the register EAX.
3693 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3694 InFlag = Chain.getValue(1);
3695
3696 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3697 SDOperand Ops1[] = { Chain,
3698 DAG.getTargetExternalSymbol("___tls_get_addr",
3699 PtrVT),
3700 DAG.getRegister(X86::EAX, PtrVT),
3701 DAG.getRegister(X86::EBX, PtrVT),
3702 InFlag };
3703 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3704 InFlag = Chain.getValue(1);
3705
3706 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3707}
3708
3709// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3710// "local exec" model.
3711static SDOperand
3712LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3713 const MVT::ValueType PtrVT) {
3714 // Get the Thread Pointer
3715 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3716 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3717 // exec)
3718 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3719 GA->getValueType(0),
3720 GA->getOffset());
3721 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3722
3723 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3724 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3725
3726 // The address of the thread local variable is the add of the thread
3727 // pointer with the offset of the variable.
3728 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3729}
3730
3731SDOperand
3732X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3733 // TODO: implement the "local dynamic" model
3734 // TODO: implement the "initial exec"model for pic executables
3735 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3736 "TLS not implemented for non-ELF and 64-bit targets");
3737 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3738 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3739 // otherwise use the "Local Exec"TLS Model
3740 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3741 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3742 else
3743 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3744}
3745
3746SDOperand
3747X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3748 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3749 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3750 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3751 // With PIC, the address is actually $g + Offset.
3752 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3753 !Subtarget->isPICStyleRIPRel()) {
3754 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3755 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3756 Result);
3757 }
3758
3759 return Result;
3760}
3761
3762SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3763 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3764 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3765 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3766 // With PIC, the address is actually $g + Offset.
3767 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3768 !Subtarget->isPICStyleRIPRel()) {
3769 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3770 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3771 Result);
3772 }
3773
3774 return Result;
3775}
3776
Chris Lattner62814a32007-10-17 06:02:13 +00003777/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
3778/// take a 2 x i32 value to shift plus a shift amount.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003779SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
Chris Lattner62814a32007-10-17 06:02:13 +00003780 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3781 "Not an i64 shift!");
3782 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3783 SDOperand ShOpLo = Op.getOperand(0);
3784 SDOperand ShOpHi = Op.getOperand(1);
3785 SDOperand ShAmt = Op.getOperand(2);
3786 SDOperand Tmp1 = isSRA ?
3787 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3788 DAG.getConstant(0, MVT::i32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003789
Chris Lattner62814a32007-10-17 06:02:13 +00003790 SDOperand Tmp2, Tmp3;
3791 if (Op.getOpcode() == ISD::SHL_PARTS) {
3792 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3793 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3794 } else {
3795 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3796 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3797 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003798
Chris Lattner62814a32007-10-17 06:02:13 +00003799 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3800 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3801 DAG.getConstant(32, MVT::i8));
3802 SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
3803 AndNode, DAG.getConstant(0, MVT::i8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003804
Chris Lattner62814a32007-10-17 06:02:13 +00003805 SDOperand Hi, Lo;
3806 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3807 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3808 SmallVector<SDOperand, 4> Ops;
3809 if (Op.getOpcode() == ISD::SHL_PARTS) {
3810 Ops.push_back(Tmp2);
3811 Ops.push_back(Tmp3);
3812 Ops.push_back(CC);
3813 Ops.push_back(Cond);
3814 Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003815
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003816 Ops.clear();
Chris Lattner62814a32007-10-17 06:02:13 +00003817 Ops.push_back(Tmp3);
3818 Ops.push_back(Tmp1);
3819 Ops.push_back(CC);
3820 Ops.push_back(Cond);
3821 Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3822 } else {
3823 Ops.push_back(Tmp2);
3824 Ops.push_back(Tmp3);
3825 Ops.push_back(CC);
3826 Ops.push_back(Cond);
3827 Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3828
3829 Ops.clear();
3830 Ops.push_back(Tmp3);
3831 Ops.push_back(Tmp1);
3832 Ops.push_back(CC);
3833 Ops.push_back(Cond);
3834 Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3835 }
3836
3837 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3838 Ops.clear();
3839 Ops.push_back(Lo);
3840 Ops.push_back(Hi);
3841 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003842}
3843
3844SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3845 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3846 Op.getOperand(0).getValueType() >= MVT::i16 &&
3847 "Unknown SINT_TO_FP to lower!");
3848
3849 SDOperand Result;
3850 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3851 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3852 MachineFunction &MF = DAG.getMachineFunction();
3853 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3854 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3855 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3856 StackSlot, NULL, 0);
3857
Dale Johannesen2fc20782007-09-14 22:26:36 +00003858 // These are really Legal; caller falls through into that case.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003859 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3860 return Result;
3861 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003862 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003863 if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3864 Subtarget->is64Bit())
3865 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003866
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003867 // Build the FILD
3868 SDVTList Tys;
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003869 bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3870 (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
Dale Johannesen2fc20782007-09-14 22:26:36 +00003871 if (useSSE)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003872 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3873 else
3874 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3875 SmallVector<SDOperand, 8> Ops;
3876 Ops.push_back(Chain);
3877 Ops.push_back(StackSlot);
3878 Ops.push_back(DAG.getValueType(SrcVT));
Dale Johannesen2fc20782007-09-14 22:26:36 +00003879 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003880 Tys, &Ops[0], Ops.size());
3881
Dale Johannesen2fc20782007-09-14 22:26:36 +00003882 if (useSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003883 Chain = Result.getValue(1);
3884 SDOperand InFlag = Result.getValue(2);
3885
3886 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3887 // shouldn't be necessary except that RFP cannot be live across
3888 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3889 MachineFunction &MF = DAG.getMachineFunction();
3890 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3891 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3892 Tys = DAG.getVTList(MVT::Other);
3893 SmallVector<SDOperand, 8> Ops;
3894 Ops.push_back(Chain);
3895 Ops.push_back(Result);
3896 Ops.push_back(StackSlot);
3897 Ops.push_back(DAG.getValueType(Op.getValueType()));
3898 Ops.push_back(InFlag);
3899 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3900 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3901 }
3902
3903 return Result;
3904}
3905
3906SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3907 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3908 "Unknown FP_TO_SINT to lower!");
Dale Johannesen2fc20782007-09-14 22:26:36 +00003909 SDOperand Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003910
Dale Johannesen2fc20782007-09-14 22:26:36 +00003911 // These are really Legal.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003912 if (Op.getValueType() == MVT::i32 &&
3913 X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
3914 return Result;
3915 if (Op.getValueType() == MVT::i32 &&
3916 X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003917 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003918 if (Subtarget->is64Bit() &&
3919 Op.getValueType() == MVT::i64 &&
3920 Op.getOperand(0).getValueType() != MVT::f80)
3921 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003922
Evan Cheng05441e62007-10-15 20:11:21 +00003923 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3924 // stack slot.
3925 MachineFunction &MF = DAG.getMachineFunction();
3926 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3927 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3928 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003929 unsigned Opc;
3930 switch (Op.getValueType()) {
3931 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3932 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3933 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3934 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3935 }
3936
3937 SDOperand Chain = DAG.getEntryNode();
3938 SDOperand Value = Op.getOperand(0);
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003939 if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3940 (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003941 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3942 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3943 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3944 SDOperand Ops[] = {
3945 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3946 };
3947 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3948 Chain = Value.getValue(1);
3949 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3950 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3951 }
3952
3953 // Build the FP_TO_INT*_IN_MEM
3954 SDOperand Ops[] = { Chain, Value, StackSlot };
3955 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3956
Chris Lattner79b8afe2007-10-17 06:17:29 +00003957 // Load the result. If this is an i64 load on an x86-32 host, expand the
3958 // load.
3959 if (Op.getValueType() != MVT::i64 || Subtarget->is64Bit())
3960 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3961
3962 SDOperand Lo = DAG.getLoad(MVT::i32, FIST, StackSlot, NULL, 0);
3963 StackSlot = DAG.getNode(ISD::ADD, StackSlot.getValueType(), StackSlot,
3964 DAG.getConstant(StackSlot.getValueType(), 4));
3965 SDOperand Hi = DAG.getLoad(MVT::i32, FIST, StackSlot, NULL, 0);
3966
3967
3968 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003969}
3970
3971SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3972 MVT::ValueType VT = Op.getValueType();
3973 MVT::ValueType EltVT = VT;
3974 if (MVT::isVector(VT))
3975 EltVT = MVT::getVectorElementType(VT);
3976 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3977 std::vector<Constant*> CV;
3978 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003979 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003980 CV.push_back(C);
3981 CV.push_back(C);
3982 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003983 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003984 CV.push_back(C);
3985 CV.push_back(C);
3986 CV.push_back(C);
3987 CV.push_back(C);
3988 }
Dan Gohman11821702007-07-27 17:16:43 +00003989 Constant *C = ConstantVector::get(CV);
3990 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3991 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3992 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003993 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3994}
3995
3996SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3997 MVT::ValueType VT = Op.getValueType();
3998 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00003999 unsigned EltNum = 1;
4000 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004001 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00004002 EltNum = MVT::getVectorNumElements(VT);
4003 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004004 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
4005 std::vector<Constant*> CV;
4006 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004007 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004008 CV.push_back(C);
4009 CV.push_back(C);
4010 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004011 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004012 CV.push_back(C);
4013 CV.push_back(C);
4014 CV.push_back(C);
4015 CV.push_back(C);
4016 }
Dan Gohman11821702007-07-27 17:16:43 +00004017 Constant *C = ConstantVector::get(CV);
4018 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4019 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4020 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00004021 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00004022 return DAG.getNode(ISD::BIT_CONVERT, VT,
4023 DAG.getNode(ISD::XOR, MVT::v2i64,
4024 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4025 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4026 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00004027 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4028 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004029}
4030
4031SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4032 SDOperand Op0 = Op.getOperand(0);
4033 SDOperand Op1 = Op.getOperand(1);
4034 MVT::ValueType VT = Op.getValueType();
4035 MVT::ValueType SrcVT = Op1.getValueType();
4036 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
4037
4038 // If second operand is smaller, extend it first.
4039 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4040 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4041 SrcVT = VT;
Dale Johannesenb9de9f02007-09-06 18:13:44 +00004042 SrcTy = MVT::getTypeForValueType(SrcVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004043 }
Dale Johannesenfb0fa912007-10-21 01:07:44 +00004044 // And if it is bigger, shrink it first.
4045 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4046 Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1);
4047 SrcVT = VT;
4048 SrcTy = MVT::getTypeForValueType(SrcVT);
4049 }
4050
4051 // At this point the operands and the result should have the same
4052 // type, and that won't be f80 since that is not custom lowered.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004053
4054 // First get the sign bit of second operand.
4055 std::vector<Constant*> CV;
4056 if (SrcVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004057 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4058 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004059 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004060 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4061 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4062 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4063 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004064 }
Dan Gohman11821702007-07-27 17:16:43 +00004065 Constant *C = ConstantVector::get(CV);
4066 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4067 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
4068 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004069 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4070
4071 // Shift sign bit right or left if the two operands have different types.
4072 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4073 // Op0 is MVT::f32, Op1 is MVT::f64.
4074 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4075 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4076 DAG.getConstant(32, MVT::i32));
4077 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4078 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4079 DAG.getConstant(0, getPointerTy()));
4080 }
4081
4082 // Clear first operand sign bit.
4083 CV.clear();
4084 if (VT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004085 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4086 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004087 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004088 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4089 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4090 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4091 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004092 }
Dan Gohman11821702007-07-27 17:16:43 +00004093 C = ConstantVector::get(CV);
4094 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4095 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4096 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004097 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4098
4099 // Or the value with the sign bit.
4100 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4101}
4102
Evan Cheng621216e2007-09-29 00:00:36 +00004103SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Evan Cheng950aac02007-09-25 01:57:46 +00004104 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
Evan Cheng6afec3d2007-09-26 00:45:55 +00004105 SDOperand Cond;
Evan Cheng950aac02007-09-25 01:57:46 +00004106 SDOperand Op0 = Op.getOperand(0);
4107 SDOperand Op1 = Op.getOperand(1);
4108 SDOperand CC = Op.getOperand(2);
4109 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4110 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4111 unsigned X86CC;
4112
Evan Cheng950aac02007-09-25 01:57:46 +00004113 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
Evan Cheng6afec3d2007-09-26 00:45:55 +00004114 Op0, Op1, DAG)) {
Evan Cheng621216e2007-09-29 00:00:36 +00004115 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4116 return DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004117 DAG.getConstant(X86CC, MVT::i8), Cond);
Evan Cheng6afec3d2007-09-26 00:45:55 +00004118 }
Evan Cheng950aac02007-09-25 01:57:46 +00004119
4120 assert(isFP && "Illegal integer SetCC!");
4121
Evan Cheng621216e2007-09-29 00:00:36 +00004122 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
Evan Cheng950aac02007-09-25 01:57:46 +00004123 switch (SetCCOpcode) {
4124 default: assert(false && "Illegal floating point SetCC!");
4125 case ISD::SETOEQ: { // !PF & ZF
Evan Cheng621216e2007-09-29 00:00:36 +00004126 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004127 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004128 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004129 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4130 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4131 }
4132 case ISD::SETUNE: { // PF | !ZF
Evan Cheng621216e2007-09-29 00:00:36 +00004133 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004134 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004135 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004136 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4137 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4138 }
4139 }
4140}
4141
4142
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004143SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4144 bool addTest = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004145 SDOperand Cond = Op.getOperand(0);
4146 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004147
4148 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00004149 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004150
Evan Cheng50d37ab2007-10-08 22:16:29 +00004151 // If condition flag is set by a X86ISD::CMP, then use it as the condition
4152 // setting operand in place of the X86ISD::SETCC.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004153 if (Cond.getOpcode() == X86ISD::SETCC) {
4154 CC = Cond.getOperand(0);
4155
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004156 SDOperand Cmp = Cond.getOperand(1);
4157 unsigned Opc = Cmp.getOpcode();
Evan Cheng50d37ab2007-10-08 22:16:29 +00004158 MVT::ValueType VT = Op.getValueType();
4159 bool IllegalFPCMov = false;
4160 if (VT == MVT::f32 && !X86ScalarSSEf32)
4161 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4162 else if (VT == MVT::f64 && !X86ScalarSSEf64)
4163 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Dale Johannesen3b955db2007-10-16 18:09:08 +00004164 else if (VT == MVT::f80)
4165 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Evan Cheng621216e2007-09-29 00:00:36 +00004166 if ((Opc == X86ISD::CMP ||
4167 Opc == X86ISD::COMI ||
4168 Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
Evan Cheng50d37ab2007-10-08 22:16:29 +00004169 Cond = Cmp;
Evan Cheng950aac02007-09-25 01:57:46 +00004170 addTest = false;
4171 }
4172 }
4173
4174 if (addTest) {
4175 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng50d37ab2007-10-08 22:16:29 +00004176 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00004177 }
4178
4179 const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4180 MVT::Flag);
4181 SmallVector<SDOperand, 4> Ops;
4182 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4183 // condition is true.
4184 Ops.push_back(Op.getOperand(2));
4185 Ops.push_back(Op.getOperand(1));
4186 Ops.push_back(CC);
4187 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004188 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
Evan Cheng950aac02007-09-25 01:57:46 +00004189}
4190
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004191SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4192 bool addTest = true;
4193 SDOperand Chain = Op.getOperand(0);
4194 SDOperand Cond = Op.getOperand(1);
4195 SDOperand Dest = Op.getOperand(2);
4196 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004197
4198 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00004199 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004200
Evan Cheng50d37ab2007-10-08 22:16:29 +00004201 // If condition flag is set by a X86ISD::CMP, then use it as the condition
4202 // setting operand in place of the X86ISD::SETCC.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004203 if (Cond.getOpcode() == X86ISD::SETCC) {
4204 CC = Cond.getOperand(0);
4205
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004206 SDOperand Cmp = Cond.getOperand(1);
4207 unsigned Opc = Cmp.getOpcode();
Evan Cheng621216e2007-09-29 00:00:36 +00004208 if (Opc == X86ISD::CMP ||
4209 Opc == X86ISD::COMI ||
4210 Opc == X86ISD::UCOMI) {
Evan Cheng50d37ab2007-10-08 22:16:29 +00004211 Cond = Cmp;
Evan Cheng950aac02007-09-25 01:57:46 +00004212 addTest = false;
4213 }
4214 }
4215
4216 if (addTest) {
4217 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00004218 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00004219 }
Evan Cheng621216e2007-09-29 00:00:36 +00004220 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
Evan Cheng950aac02007-09-25 01:57:46 +00004221 Chain, Op.getOperand(2), CC, Cond);
4222}
4223
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004224SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004225 unsigned CallingConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4226 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004227
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004228 if (Subtarget->is64Bit())
4229 if(CallingConv==CallingConv::Fast && isTailCall && PerformTailCallOpt)
4230 return LowerX86_TailCallTo(Op, DAG, CallingConv);
4231 else
4232 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004233 else
4234 switch (CallingConv) {
4235 default:
4236 assert(0 && "Unsupported calling convention");
4237 case CallingConv::Fast:
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004238 if (isTailCall && PerformTailCallOpt)
4239 return LowerX86_TailCallTo(Op, DAG, CallingConv);
4240 else
4241 return LowerCCCCallTo(Op,DAG, CallingConv);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004242 case CallingConv::C:
4243 case CallingConv::X86_StdCall:
4244 return LowerCCCCallTo(Op, DAG, CallingConv);
4245 case CallingConv::X86_FastCall:
4246 return LowerFastCCCallTo(Op, DAG, CallingConv);
4247 }
4248}
4249
4250
4251// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4252// Calls to _alloca is needed to probe the stack when allocating more than 4k
4253// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4254// that the guard pages used by the OS virtual memory manager are allocated in
4255// correct sequence.
4256SDOperand
4257X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4258 SelectionDAG &DAG) {
4259 assert(Subtarget->isTargetCygMing() &&
4260 "This should be used only on Cygwin/Mingw targets");
4261
4262 // Get the inputs.
4263 SDOperand Chain = Op.getOperand(0);
4264 SDOperand Size = Op.getOperand(1);
4265 // FIXME: Ensure alignment here
4266
4267 SDOperand Flag;
4268
4269 MVT::ValueType IntPtr = getPointerTy();
4270 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
4271
4272 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4273 Flag = Chain.getValue(1);
4274
4275 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4276 SDOperand Ops[] = { Chain,
4277 DAG.getTargetExternalSymbol("_alloca", IntPtr),
4278 DAG.getRegister(X86::EAX, IntPtr),
4279 Flag };
4280 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4281 Flag = Chain.getValue(1);
4282
4283 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4284
4285 std::vector<MVT::ValueType> Tys;
4286 Tys.push_back(SPTy);
4287 Tys.push_back(MVT::Other);
4288 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4289 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4290}
4291
4292SDOperand
4293X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4294 MachineFunction &MF = DAG.getMachineFunction();
4295 const Function* Fn = MF.getFunction();
4296 if (Fn->hasExternalLinkage() &&
4297 Subtarget->isTargetCygMing() &&
4298 Fn->getName() == "main")
4299 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
4300
4301 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4302 if (Subtarget->is64Bit())
4303 return LowerX86_64CCCArguments(Op, DAG);
4304 else
4305 switch(CC) {
4306 default:
4307 assert(0 && "Unsupported calling convention");
4308 case CallingConv::Fast:
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004309 return LowerCCCArguments(Op,DAG, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004310 // Falls through
4311 case CallingConv::C:
4312 return LowerCCCArguments(Op, DAG);
4313 case CallingConv::X86_StdCall:
4314 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
4315 return LowerCCCArguments(Op, DAG, true);
4316 case CallingConv::X86_FastCall:
4317 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
4318 return LowerFastCCArguments(Op, DAG);
4319 }
4320}
4321
4322SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4323 SDOperand InFlag(0, 0);
4324 SDOperand Chain = Op.getOperand(0);
4325 unsigned Align =
4326 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4327 if (Align == 0) Align = 1;
4328
4329 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00004330 // If not DWORD aligned or size is more than the threshold, call memset.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00004331 // The libc version is likely to be faster for these cases. It can use the
4332 // address value and run time information about the CPU.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004333 if ((Align & 3) != 0 ||
Rafael Espindola5d3e7622007-08-27 10:18:20 +00004334 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004335 MVT::ValueType IntPtr = getPointerTy();
4336 const Type *IntPtrTy = getTargetData()->getIntPtrType();
4337 TargetLowering::ArgListTy Args;
4338 TargetLowering::ArgListEntry Entry;
4339 Entry.Node = Op.getOperand(1);
4340 Entry.Ty = IntPtrTy;
4341 Args.push_back(Entry);
4342 // Extend the unsigned i8 argument to be an int value for the call.
4343 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4344 Entry.Ty = IntPtrTy;
4345 Args.push_back(Entry);
4346 Entry.Node = Op.getOperand(3);
4347 Args.push_back(Entry);
4348 std::pair<SDOperand,SDOperand> CallResult =
4349 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4350 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4351 return CallResult.second;
4352 }
4353
4354 MVT::ValueType AVT;
4355 SDOperand Count;
4356 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4357 unsigned BytesLeft = 0;
4358 bool TwoRepStos = false;
4359 if (ValC) {
4360 unsigned ValReg;
4361 uint64_t Val = ValC->getValue() & 255;
4362
4363 // If the value is a constant, then we can potentially use larger sets.
4364 switch (Align & 3) {
4365 case 2: // WORD aligned
4366 AVT = MVT::i16;
4367 ValReg = X86::AX;
4368 Val = (Val << 8) | Val;
4369 break;
4370 case 0: // DWORD aligned
4371 AVT = MVT::i32;
4372 ValReg = X86::EAX;
4373 Val = (Val << 8) | Val;
4374 Val = (Val << 16) | Val;
4375 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
4376 AVT = MVT::i64;
4377 ValReg = X86::RAX;
4378 Val = (Val << 32) | Val;
4379 }
4380 break;
4381 default: // Byte aligned
4382 AVT = MVT::i8;
4383 ValReg = X86::AL;
4384 Count = Op.getOperand(3);
4385 break;
4386 }
4387
4388 if (AVT > MVT::i8) {
4389 if (I) {
4390 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4391 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4392 BytesLeft = I->getValue() % UBytes;
4393 } else {
4394 assert(AVT >= MVT::i32 &&
4395 "Do not use rep;stos if not at least DWORD aligned");
4396 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4397 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4398 TwoRepStos = true;
4399 }
4400 }
4401
4402 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4403 InFlag);
4404 InFlag = Chain.getValue(1);
4405 } else {
4406 AVT = MVT::i8;
4407 Count = Op.getOperand(3);
4408 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4409 InFlag = Chain.getValue(1);
4410 }
4411
4412 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4413 Count, InFlag);
4414 InFlag = Chain.getValue(1);
4415 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4416 Op.getOperand(1), InFlag);
4417 InFlag = Chain.getValue(1);
4418
4419 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4420 SmallVector<SDOperand, 8> Ops;
4421 Ops.push_back(Chain);
4422 Ops.push_back(DAG.getValueType(AVT));
4423 Ops.push_back(InFlag);
4424 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4425
4426 if (TwoRepStos) {
4427 InFlag = Chain.getValue(1);
4428 Count = Op.getOperand(3);
4429 MVT::ValueType CVT = Count.getValueType();
4430 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4431 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4432 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4433 Left, InFlag);
4434 InFlag = Chain.getValue(1);
4435 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4436 Ops.clear();
4437 Ops.push_back(Chain);
4438 Ops.push_back(DAG.getValueType(MVT::i8));
4439 Ops.push_back(InFlag);
4440 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4441 } else if (BytesLeft) {
4442 // Issue stores for the last 1 - 7 bytes.
4443 SDOperand Value;
4444 unsigned Val = ValC->getValue() & 255;
4445 unsigned Offset = I->getValue() - BytesLeft;
4446 SDOperand DstAddr = Op.getOperand(1);
4447 MVT::ValueType AddrVT = DstAddr.getValueType();
4448 if (BytesLeft >= 4) {
4449 Val = (Val << 8) | Val;
4450 Val = (Val << 16) | Val;
4451 Value = DAG.getConstant(Val, MVT::i32);
4452 Chain = DAG.getStore(Chain, Value,
4453 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4454 DAG.getConstant(Offset, AddrVT)),
4455 NULL, 0);
4456 BytesLeft -= 4;
4457 Offset += 4;
4458 }
4459 if (BytesLeft >= 2) {
4460 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4461 Chain = DAG.getStore(Chain, Value,
4462 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4463 DAG.getConstant(Offset, AddrVT)),
4464 NULL, 0);
4465 BytesLeft -= 2;
4466 Offset += 2;
4467 }
4468 if (BytesLeft == 1) {
4469 Value = DAG.getConstant(Val, MVT::i8);
4470 Chain = DAG.getStore(Chain, Value,
4471 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4472 DAG.getConstant(Offset, AddrVT)),
4473 NULL, 0);
4474 }
4475 }
4476
4477 return Chain;
4478}
4479
4480SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004481 SDOperand ChainOp = Op.getOperand(0);
4482 SDOperand DestOp = Op.getOperand(1);
4483 SDOperand SourceOp = Op.getOperand(2);
4484 SDOperand CountOp = Op.getOperand(3);
4485 SDOperand AlignOp = Op.getOperand(4);
Rafael Espindola80825902007-10-19 10:41:11 +00004486 SDOperand AlwaysInlineOp = Op.getOperand(5);
4487
4488 bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004489 unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004490 if (Align == 0) Align = 1;
4491
Rafael Espindola80825902007-10-19 10:41:11 +00004492 // If size is unknown, call memcpy.
4493 ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
4494 if (!I) {
4495 assert(!AlwaysInline && "Cannot inline copy of unknown size");
4496 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4497 }
4498 unsigned Size = I->getValue();
4499
4500 if (AlwaysInline)
4501 return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
4502
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004503 // The libc version is likely to be faster for the following cases. It can
4504 // use the address value and run time information about the CPU.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00004505 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004506
4507 // If not DWORD aligned, call memcpy.
4508 if ((Align & 3) != 0)
4509 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4510
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004511 // If size is more than the threshold, call memcpy.
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004512 if (Size > Subtarget->getMinRepStrSizeThreshold())
4513 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4514
4515 return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
4516}
4517
4518SDOperand X86TargetLowering::LowerMEMCPYCall(SDOperand Chain,
4519 SDOperand Dest,
4520 SDOperand Source,
4521 SDOperand Count,
4522 SelectionDAG &DAG) {
4523 MVT::ValueType IntPtr = getPointerTy();
4524 TargetLowering::ArgListTy Args;
4525 TargetLowering::ArgListEntry Entry;
4526 Entry.Ty = getTargetData()->getIntPtrType();
4527 Entry.Node = Dest; Args.push_back(Entry);
4528 Entry.Node = Source; Args.push_back(Entry);
4529 Entry.Node = Count; Args.push_back(Entry);
4530 std::pair<SDOperand,SDOperand> CallResult =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004531 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4532 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004533 return CallResult.second;
4534}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004535
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004536SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4537 SDOperand Dest,
4538 SDOperand Source,
4539 unsigned Size,
4540 unsigned Align,
4541 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004542 MVT::ValueType AVT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004543 unsigned BytesLeft = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004544 switch (Align & 3) {
4545 case 2: // WORD aligned
4546 AVT = MVT::i16;
4547 break;
4548 case 0: // DWORD aligned
4549 AVT = MVT::i32;
4550 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
4551 AVT = MVT::i64;
4552 break;
4553 default: // Byte aligned
4554 AVT = MVT::i8;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004555 break;
4556 }
4557
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004558 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4559 SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4560 BytesLeft = Size % UBytes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004561
4562 SDOperand InFlag(0, 0);
4563 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4564 Count, InFlag);
4565 InFlag = Chain.getValue(1);
4566 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004567 Dest, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004568 InFlag = Chain.getValue(1);
4569 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004570 Source, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004571 InFlag = Chain.getValue(1);
4572
4573 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4574 SmallVector<SDOperand, 8> Ops;
4575 Ops.push_back(Chain);
4576 Ops.push_back(DAG.getValueType(AVT));
4577 Ops.push_back(InFlag);
4578 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4579
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004580 if (BytesLeft) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004581 // Issue loads and stores for the last 1 - 7 bytes.
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004582 unsigned Offset = Size - BytesLeft;
4583 SDOperand DstAddr = Dest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004584 MVT::ValueType DstVT = DstAddr.getValueType();
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004585 SDOperand SrcAddr = Source;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004586 MVT::ValueType SrcVT = SrcAddr.getValueType();
4587 SDOperand Value;
4588 if (BytesLeft >= 4) {
4589 Value = DAG.getLoad(MVT::i32, Chain,
4590 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4591 DAG.getConstant(Offset, SrcVT)),
4592 NULL, 0);
4593 Chain = Value.getValue(1);
4594 Chain = DAG.getStore(Chain, Value,
4595 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4596 DAG.getConstant(Offset, DstVT)),
4597 NULL, 0);
4598 BytesLeft -= 4;
4599 Offset += 4;
4600 }
4601 if (BytesLeft >= 2) {
4602 Value = DAG.getLoad(MVT::i16, Chain,
4603 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4604 DAG.getConstant(Offset, SrcVT)),
4605 NULL, 0);
4606 Chain = Value.getValue(1);
4607 Chain = DAG.getStore(Chain, Value,
4608 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4609 DAG.getConstant(Offset, DstVT)),
4610 NULL, 0);
4611 BytesLeft -= 2;
4612 Offset += 2;
4613 }
4614
4615 if (BytesLeft == 1) {
4616 Value = DAG.getLoad(MVT::i8, Chain,
4617 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4618 DAG.getConstant(Offset, SrcVT)),
4619 NULL, 0);
4620 Chain = Value.getValue(1);
4621 Chain = DAG.getStore(Chain, Value,
4622 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4623 DAG.getConstant(Offset, DstVT)),
4624 NULL, 0);
4625 }
4626 }
4627
4628 return Chain;
4629}
4630
4631SDOperand
4632X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4633 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4634 SDOperand TheOp = Op.getOperand(0);
4635 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4636 if (Subtarget->is64Bit()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004637 SDOperand Copy1 =
4638 DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004639 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4640 MVT::i64, Copy1.getValue(2));
4641 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4642 DAG.getConstant(32, MVT::i8));
4643 SDOperand Ops[] = {
4644 DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4645 };
4646
4647 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4648 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4649 }
4650
4651 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4652 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4653 MVT::i32, Copy1.getValue(2));
4654 SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4655 Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4656 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4657}
4658
4659SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4660 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4661
4662 if (!Subtarget->is64Bit()) {
4663 // vastart just stores the address of the VarArgsFrameIndex slot into the
4664 // memory location argument.
4665 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4666 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4667 SV->getOffset());
4668 }
4669
4670 // __va_list_tag:
4671 // gp_offset (0 - 6 * 8)
4672 // fp_offset (48 - 48 + 8 * 16)
4673 // overflow_arg_area (point to parameters coming in memory).
4674 // reg_save_area
4675 SmallVector<SDOperand, 8> MemOps;
4676 SDOperand FIN = Op.getOperand(1);
4677 // Store gp_offset
4678 SDOperand Store = DAG.getStore(Op.getOperand(0),
4679 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4680 FIN, SV->getValue(), SV->getOffset());
4681 MemOps.push_back(Store);
4682
4683 // Store fp_offset
4684 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4685 DAG.getConstant(4, getPointerTy()));
4686 Store = DAG.getStore(Op.getOperand(0),
4687 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4688 FIN, SV->getValue(), SV->getOffset());
4689 MemOps.push_back(Store);
4690
4691 // Store ptr to overflow_arg_area
4692 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4693 DAG.getConstant(4, getPointerTy()));
4694 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4695 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4696 SV->getOffset());
4697 MemOps.push_back(Store);
4698
4699 // Store ptr to reg_save_area.
4700 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4701 DAG.getConstant(8, getPointerTy()));
4702 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4703 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4704 SV->getOffset());
4705 MemOps.push_back(Store);
4706 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4707}
4708
4709SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4710 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4711 SDOperand Chain = Op.getOperand(0);
4712 SDOperand DstPtr = Op.getOperand(1);
4713 SDOperand SrcPtr = Op.getOperand(2);
4714 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4715 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4716
4717 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4718 SrcSV->getValue(), SrcSV->getOffset());
4719 Chain = SrcPtr.getValue(1);
4720 for (unsigned i = 0; i < 3; ++i) {
4721 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4722 SrcSV->getValue(), SrcSV->getOffset());
4723 Chain = Val.getValue(1);
4724 Chain = DAG.getStore(Chain, Val, DstPtr,
4725 DstSV->getValue(), DstSV->getOffset());
4726 if (i == 2)
4727 break;
4728 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4729 DAG.getConstant(8, getPointerTy()));
4730 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4731 DAG.getConstant(8, getPointerTy()));
4732 }
4733 return Chain;
4734}
4735
4736SDOperand
4737X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4738 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4739 switch (IntNo) {
4740 default: return SDOperand(); // Don't custom lower most intrinsics.
4741 // Comparison intrinsics.
4742 case Intrinsic::x86_sse_comieq_ss:
4743 case Intrinsic::x86_sse_comilt_ss:
4744 case Intrinsic::x86_sse_comile_ss:
4745 case Intrinsic::x86_sse_comigt_ss:
4746 case Intrinsic::x86_sse_comige_ss:
4747 case Intrinsic::x86_sse_comineq_ss:
4748 case Intrinsic::x86_sse_ucomieq_ss:
4749 case Intrinsic::x86_sse_ucomilt_ss:
4750 case Intrinsic::x86_sse_ucomile_ss:
4751 case Intrinsic::x86_sse_ucomigt_ss:
4752 case Intrinsic::x86_sse_ucomige_ss:
4753 case Intrinsic::x86_sse_ucomineq_ss:
4754 case Intrinsic::x86_sse2_comieq_sd:
4755 case Intrinsic::x86_sse2_comilt_sd:
4756 case Intrinsic::x86_sse2_comile_sd:
4757 case Intrinsic::x86_sse2_comigt_sd:
4758 case Intrinsic::x86_sse2_comige_sd:
4759 case Intrinsic::x86_sse2_comineq_sd:
4760 case Intrinsic::x86_sse2_ucomieq_sd:
4761 case Intrinsic::x86_sse2_ucomilt_sd:
4762 case Intrinsic::x86_sse2_ucomile_sd:
4763 case Intrinsic::x86_sse2_ucomigt_sd:
4764 case Intrinsic::x86_sse2_ucomige_sd:
4765 case Intrinsic::x86_sse2_ucomineq_sd: {
4766 unsigned Opc = 0;
4767 ISD::CondCode CC = ISD::SETCC_INVALID;
4768 switch (IntNo) {
4769 default: break;
4770 case Intrinsic::x86_sse_comieq_ss:
4771 case Intrinsic::x86_sse2_comieq_sd:
4772 Opc = X86ISD::COMI;
4773 CC = ISD::SETEQ;
4774 break;
4775 case Intrinsic::x86_sse_comilt_ss:
4776 case Intrinsic::x86_sse2_comilt_sd:
4777 Opc = X86ISD::COMI;
4778 CC = ISD::SETLT;
4779 break;
4780 case Intrinsic::x86_sse_comile_ss:
4781 case Intrinsic::x86_sse2_comile_sd:
4782 Opc = X86ISD::COMI;
4783 CC = ISD::SETLE;
4784 break;
4785 case Intrinsic::x86_sse_comigt_ss:
4786 case Intrinsic::x86_sse2_comigt_sd:
4787 Opc = X86ISD::COMI;
4788 CC = ISD::SETGT;
4789 break;
4790 case Intrinsic::x86_sse_comige_ss:
4791 case Intrinsic::x86_sse2_comige_sd:
4792 Opc = X86ISD::COMI;
4793 CC = ISD::SETGE;
4794 break;
4795 case Intrinsic::x86_sse_comineq_ss:
4796 case Intrinsic::x86_sse2_comineq_sd:
4797 Opc = X86ISD::COMI;
4798 CC = ISD::SETNE;
4799 break;
4800 case Intrinsic::x86_sse_ucomieq_ss:
4801 case Intrinsic::x86_sse2_ucomieq_sd:
4802 Opc = X86ISD::UCOMI;
4803 CC = ISD::SETEQ;
4804 break;
4805 case Intrinsic::x86_sse_ucomilt_ss:
4806 case Intrinsic::x86_sse2_ucomilt_sd:
4807 Opc = X86ISD::UCOMI;
4808 CC = ISD::SETLT;
4809 break;
4810 case Intrinsic::x86_sse_ucomile_ss:
4811 case Intrinsic::x86_sse2_ucomile_sd:
4812 Opc = X86ISD::UCOMI;
4813 CC = ISD::SETLE;
4814 break;
4815 case Intrinsic::x86_sse_ucomigt_ss:
4816 case Intrinsic::x86_sse2_ucomigt_sd:
4817 Opc = X86ISD::UCOMI;
4818 CC = ISD::SETGT;
4819 break;
4820 case Intrinsic::x86_sse_ucomige_ss:
4821 case Intrinsic::x86_sse2_ucomige_sd:
4822 Opc = X86ISD::UCOMI;
4823 CC = ISD::SETGE;
4824 break;
4825 case Intrinsic::x86_sse_ucomineq_ss:
4826 case Intrinsic::x86_sse2_ucomineq_sd:
4827 Opc = X86ISD::UCOMI;
4828 CC = ISD::SETNE;
4829 break;
4830 }
4831
4832 unsigned X86CC;
4833 SDOperand LHS = Op.getOperand(1);
4834 SDOperand RHS = Op.getOperand(2);
4835 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4836
Evan Cheng621216e2007-09-29 00:00:36 +00004837 SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4838 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4839 DAG.getConstant(X86CC, MVT::i8), Cond);
4840 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004841 }
4842 }
4843}
4844
4845SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4846 // Depths > 0 not supported yet!
4847 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4848 return SDOperand();
4849
4850 // Just load the return address
4851 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4852 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4853}
4854
4855SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4856 // Depths > 0 not supported yet!
4857 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4858 return SDOperand();
4859
4860 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4861 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4862 DAG.getConstant(4, getPointerTy()));
4863}
4864
4865SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4866 SelectionDAG &DAG) {
4867 // Is not yet supported on x86-64
4868 if (Subtarget->is64Bit())
4869 return SDOperand();
4870
4871 return DAG.getConstant(8, getPointerTy());
4872}
4873
4874SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4875{
4876 assert(!Subtarget->is64Bit() &&
4877 "Lowering of eh_return builtin is not supported yet on x86-64");
4878
4879 MachineFunction &MF = DAG.getMachineFunction();
4880 SDOperand Chain = Op.getOperand(0);
4881 SDOperand Offset = Op.getOperand(1);
4882 SDOperand Handler = Op.getOperand(2);
4883
4884 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4885 getPointerTy());
4886
4887 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4888 DAG.getConstant(-4UL, getPointerTy()));
4889 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4890 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4891 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4892 MF.addLiveOut(X86::ECX);
4893
4894 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4895 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4896}
4897
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004898SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4899 SelectionDAG &DAG) {
4900 SDOperand Root = Op.getOperand(0);
4901 SDOperand Trmp = Op.getOperand(1); // trampoline
4902 SDOperand FPtr = Op.getOperand(2); // nested function
4903 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4904
4905 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4906
4907 if (Subtarget->is64Bit()) {
4908 return SDOperand(); // not yet supported
4909 } else {
4910 Function *Func = (Function *)
4911 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4912 unsigned CC = Func->getCallingConv();
Duncan Sands466eadd2007-08-29 19:01:20 +00004913 unsigned NestReg;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004914
4915 switch (CC) {
4916 default:
4917 assert(0 && "Unsupported calling convention");
4918 case CallingConv::C:
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004919 case CallingConv::X86_StdCall: {
4920 // Pass 'nest' parameter in ECX.
4921 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004922 NestReg = X86::ECX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004923
4924 // Check that ECX wasn't needed by an 'inreg' parameter.
4925 const FunctionType *FTy = Func->getFunctionType();
4926 const ParamAttrsList *Attrs = FTy->getParamAttrs();
4927
4928 if (Attrs && !Func->isVarArg()) {
4929 unsigned InRegCount = 0;
4930 unsigned Idx = 1;
4931
4932 for (FunctionType::param_iterator I = FTy->param_begin(),
4933 E = FTy->param_end(); I != E; ++I, ++Idx)
4934 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4935 // FIXME: should only count parameters that are lowered to integers.
4936 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4937
4938 if (InRegCount > 2) {
4939 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4940 abort();
4941 }
4942 }
4943 break;
4944 }
4945 case CallingConv::X86_FastCall:
4946 // Pass 'nest' parameter in EAX.
4947 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004948 NestReg = X86::EAX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004949 break;
4950 }
4951
Duncan Sands466eadd2007-08-29 19:01:20 +00004952 const X86InstrInfo *TII =
4953 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4954
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004955 SDOperand OutChains[4];
4956 SDOperand Addr, Disp;
4957
4958 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4959 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4960
Duncan Sands466eadd2007-08-29 19:01:20 +00004961 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4962 unsigned char N86Reg = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4963 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004964 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4965
4966 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4967 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4968 TrmpSV->getOffset() + 1, false, 1);
4969
Duncan Sands466eadd2007-08-29 19:01:20 +00004970 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004971 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4972 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4973 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4974
4975 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4976 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4977 TrmpSV->getOffset() + 6, false, 1);
4978
Duncan Sands7407a9f2007-09-11 14:10:23 +00004979 SDOperand Ops[] =
4980 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4981 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004982 }
4983}
4984
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004985/// LowerOperation - Provide custom lowering hooks for some operations.
4986///
4987SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4988 switch (Op.getOpcode()) {
4989 default: assert(0 && "Should not custom lower this!");
4990 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4991 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4992 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4993 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4994 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4995 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4996 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4997 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4998 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
4999 case ISD::SHL_PARTS:
5000 case ISD::SRA_PARTS:
5001 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
5002 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
5003 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
5004 case ISD::FABS: return LowerFABS(Op, DAG);
5005 case ISD::FNEG: return LowerFNEG(Op, DAG);
5006 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
Evan Cheng621216e2007-09-29 00:00:36 +00005007 case ISD::SETCC: return LowerSETCC(Op, DAG);
5008 case ISD::SELECT: return LowerSELECT(Op, DAG);
5009 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005010 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
5011 case ISD::CALL: return LowerCALL(Op, DAG);
5012 case ISD::RET: return LowerRET(Op, DAG);
5013 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
5014 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
5015 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
5016 case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
5017 case ISD::VASTART: return LowerVASTART(Op, DAG);
5018 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
5019 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5020 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
5021 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
5022 case ISD::FRAME_TO_ARGS_OFFSET:
5023 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5024 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5025 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005026 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005027 }
5028 return SDOperand();
5029}
5030
5031const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5032 switch (Opcode) {
5033 default: return NULL;
5034 case X86ISD::SHLD: return "X86ISD::SHLD";
5035 case X86ISD::SHRD: return "X86ISD::SHRD";
5036 case X86ISD::FAND: return "X86ISD::FAND";
5037 case X86ISD::FOR: return "X86ISD::FOR";
5038 case X86ISD::FXOR: return "X86ISD::FXOR";
5039 case X86ISD::FSRL: return "X86ISD::FSRL";
5040 case X86ISD::FILD: return "X86ISD::FILD";
5041 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
5042 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5043 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5044 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5045 case X86ISD::FLD: return "X86ISD::FLD";
5046 case X86ISD::FST: return "X86ISD::FST";
5047 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
5048 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
5049 case X86ISD::CALL: return "X86ISD::CALL";
5050 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
5051 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
5052 case X86ISD::CMP: return "X86ISD::CMP";
5053 case X86ISD::COMI: return "X86ISD::COMI";
5054 case X86ISD::UCOMI: return "X86ISD::UCOMI";
5055 case X86ISD::SETCC: return "X86ISD::SETCC";
5056 case X86ISD::CMOV: return "X86ISD::CMOV";
5057 case X86ISD::BRCOND: return "X86ISD::BRCOND";
5058 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
5059 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
5060 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005061 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
5062 case X86ISD::Wrapper: return "X86ISD::Wrapper";
5063 case X86ISD::S2VEC: return "X86ISD::S2VEC";
5064 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
5065 case X86ISD::PINSRW: return "X86ISD::PINSRW";
5066 case X86ISD::FMAX: return "X86ISD::FMAX";
5067 case X86ISD::FMIN: return "X86ISD::FMIN";
5068 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
5069 case X86ISD::FRCP: return "X86ISD::FRCP";
5070 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
5071 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
5072 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00005073 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005074 }
5075}
5076
5077// isLegalAddressingMode - Return true if the addressing mode represented
5078// by AM is legal for this target, for a load/store of the specified type.
5079bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5080 const Type *Ty) const {
5081 // X86 supports extremely general addressing modes.
5082
5083 // X86 allows a sign-extended 32-bit immediate field as a displacement.
5084 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5085 return false;
5086
5087 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00005088 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005089 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5090 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00005091
5092 // X86-64 only supports addr of globals in small code model.
5093 if (Subtarget->is64Bit()) {
5094 if (getTargetMachine().getCodeModel() != CodeModel::Small)
5095 return false;
5096 // If lower 4G is not available, then we must use rip-relative addressing.
5097 if (AM.BaseOffs || AM.Scale > 1)
5098 return false;
5099 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005100 }
5101
5102 switch (AM.Scale) {
5103 case 0:
5104 case 1:
5105 case 2:
5106 case 4:
5107 case 8:
5108 // These scales always work.
5109 break;
5110 case 3:
5111 case 5:
5112 case 9:
5113 // These scales are formed with basereg+scalereg. Only accept if there is
5114 // no basereg yet.
5115 if (AM.HasBaseReg)
5116 return false;
5117 break;
5118 default: // Other stuff never works.
5119 return false;
5120 }
5121
5122 return true;
5123}
5124
5125
Evan Cheng27a820a2007-10-26 01:56:11 +00005126bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5127 if (!Ty1->isInteger() || !Ty2->isInteger())
5128 return false;
Evan Cheng7f152602007-10-29 07:57:50 +00005129 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5130 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5131 if (NumBits1 <= NumBits2)
5132 return false;
5133 return Subtarget->is64Bit() || NumBits1 < 64;
Evan Cheng27a820a2007-10-26 01:56:11 +00005134}
5135
Evan Cheng9decb332007-10-29 19:58:20 +00005136bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5137 MVT::ValueType VT2) const {
5138 if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5139 return false;
5140 unsigned NumBits1 = MVT::getSizeInBits(VT1);
5141 unsigned NumBits2 = MVT::getSizeInBits(VT2);
5142 if (NumBits1 <= NumBits2)
5143 return false;
5144 return Subtarget->is64Bit() || NumBits1 < 64;
5145}
Evan Cheng27a820a2007-10-26 01:56:11 +00005146
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005147/// isShuffleMaskLegal - Targets can use this to indicate that they only
5148/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5149/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5150/// are assumed to be legal.
5151bool
5152X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5153 // Only do shuffles on 128-bit vector types for now.
5154 if (MVT::getSizeInBits(VT) == 64) return false;
5155 return (Mask.Val->getNumOperands() <= 4 ||
5156 isIdentityMask(Mask.Val) ||
5157 isIdentityMask(Mask.Val, true) ||
5158 isSplatMask(Mask.Val) ||
5159 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5160 X86::isUNPCKLMask(Mask.Val) ||
5161 X86::isUNPCKHMask(Mask.Val) ||
5162 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5163 X86::isUNPCKH_v_undef_Mask(Mask.Val));
5164}
5165
5166bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5167 MVT::ValueType EVT,
5168 SelectionDAG &DAG) const {
5169 unsigned NumElts = BVOps.size();
5170 // Only do shuffles on 128-bit vector types for now.
5171 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5172 if (NumElts == 2) return true;
5173 if (NumElts == 4) {
5174 return (isMOVLMask(&BVOps[0], 4) ||
5175 isCommutedMOVL(&BVOps[0], 4, true) ||
5176 isSHUFPMask(&BVOps[0], 4) ||
5177 isCommutedSHUFP(&BVOps[0], 4));
5178 }
5179 return false;
5180}
5181
5182//===----------------------------------------------------------------------===//
5183// X86 Scheduler Hooks
5184//===----------------------------------------------------------------------===//
5185
5186MachineBasicBlock *
5187X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5188 MachineBasicBlock *BB) {
5189 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5190 switch (MI->getOpcode()) {
5191 default: assert(false && "Unexpected instr type to insert");
5192 case X86::CMOV_FR32:
5193 case X86::CMOV_FR64:
5194 case X86::CMOV_V4F32:
5195 case X86::CMOV_V2F64:
Evan Cheng621216e2007-09-29 00:00:36 +00005196 case X86::CMOV_V2I64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005197 // To "insert" a SELECT_CC instruction, we actually have to insert the
5198 // diamond control-flow pattern. The incoming instruction knows the
5199 // destination vreg to set, the condition code register to branch on, the
5200 // true/false values to select between, and a branch opcode to use.
5201 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5202 ilist<MachineBasicBlock>::iterator It = BB;
5203 ++It;
5204
5205 // thisMBB:
5206 // ...
5207 // TrueVal = ...
5208 // cmpTY ccX, r1, r2
5209 // bCC copy1MBB
5210 // fallthrough --> copy0MBB
5211 MachineBasicBlock *thisMBB = BB;
5212 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5213 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5214 unsigned Opc =
5215 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5216 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5217 MachineFunction *F = BB->getParent();
5218 F->getBasicBlockList().insert(It, copy0MBB);
5219 F->getBasicBlockList().insert(It, sinkMBB);
5220 // Update machine-CFG edges by first adding all successors of the current
5221 // block to the new block which will contain the Phi node for the select.
5222 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5223 e = BB->succ_end(); i != e; ++i)
5224 sinkMBB->addSuccessor(*i);
5225 // Next, remove all successors of the current block, and add the true
5226 // and fallthrough blocks as its successors.
5227 while(!BB->succ_empty())
5228 BB->removeSuccessor(BB->succ_begin());
5229 BB->addSuccessor(copy0MBB);
5230 BB->addSuccessor(sinkMBB);
5231
5232 // copy0MBB:
5233 // %FalseValue = ...
5234 // # fallthrough to sinkMBB
5235 BB = copy0MBB;
5236
5237 // Update machine-CFG edges
5238 BB->addSuccessor(sinkMBB);
5239
5240 // sinkMBB:
5241 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5242 // ...
5243 BB = sinkMBB;
5244 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5245 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5246 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5247
5248 delete MI; // The pseudo instruction is gone now.
5249 return BB;
5250 }
5251
5252 case X86::FP32_TO_INT16_IN_MEM:
5253 case X86::FP32_TO_INT32_IN_MEM:
5254 case X86::FP32_TO_INT64_IN_MEM:
5255 case X86::FP64_TO_INT16_IN_MEM:
5256 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00005257 case X86::FP64_TO_INT64_IN_MEM:
5258 case X86::FP80_TO_INT16_IN_MEM:
5259 case X86::FP80_TO_INT32_IN_MEM:
5260 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005261 // Change the floating point control register to use "round towards zero"
5262 // mode when truncating to an integer value.
5263 MachineFunction *F = BB->getParent();
5264 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5265 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5266
5267 // Load the old value of the high byte of the control word...
5268 unsigned OldCW =
5269 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5270 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5271
5272 // Set the high part to be round to zero...
5273 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5274 .addImm(0xC7F);
5275
5276 // Reload the modified control word now...
5277 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5278
5279 // Restore the memory image of control word to original value
5280 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5281 .addReg(OldCW);
5282
5283 // Get the X86 opcode to use.
5284 unsigned Opc;
5285 switch (MI->getOpcode()) {
5286 default: assert(0 && "illegal opcode!");
5287 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5288 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5289 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5290 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5291 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5292 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00005293 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5294 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5295 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005296 }
5297
5298 X86AddressMode AM;
5299 MachineOperand &Op = MI->getOperand(0);
5300 if (Op.isRegister()) {
5301 AM.BaseType = X86AddressMode::RegBase;
5302 AM.Base.Reg = Op.getReg();
5303 } else {
5304 AM.BaseType = X86AddressMode::FrameIndexBase;
5305 AM.Base.FrameIndex = Op.getFrameIndex();
5306 }
5307 Op = MI->getOperand(1);
5308 if (Op.isImmediate())
5309 AM.Scale = Op.getImm();
5310 Op = MI->getOperand(2);
5311 if (Op.isImmediate())
5312 AM.IndexReg = Op.getImm();
5313 Op = MI->getOperand(3);
5314 if (Op.isGlobalAddress()) {
5315 AM.GV = Op.getGlobal();
5316 } else {
5317 AM.Disp = Op.getImm();
5318 }
5319 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5320 .addReg(MI->getOperand(4).getReg());
5321
5322 // Reload the original control word now.
5323 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5324
5325 delete MI; // The pseudo instruction is gone now.
5326 return BB;
5327 }
5328 }
5329}
5330
5331//===----------------------------------------------------------------------===//
5332// X86 Optimization Hooks
5333//===----------------------------------------------------------------------===//
5334
5335void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5336 uint64_t Mask,
5337 uint64_t &KnownZero,
5338 uint64_t &KnownOne,
5339 const SelectionDAG &DAG,
5340 unsigned Depth) const {
5341 unsigned Opc = Op.getOpcode();
5342 assert((Opc >= ISD::BUILTIN_OP_END ||
5343 Opc == ISD::INTRINSIC_WO_CHAIN ||
5344 Opc == ISD::INTRINSIC_W_CHAIN ||
5345 Opc == ISD::INTRINSIC_VOID) &&
5346 "Should use MaskedValueIsZero if you don't know whether Op"
5347 " is a target node!");
5348
5349 KnownZero = KnownOne = 0; // Don't know anything.
5350 switch (Opc) {
5351 default: break;
5352 case X86ISD::SETCC:
5353 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5354 break;
5355 }
5356}
5357
5358/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5359/// element of the result of the vector shuffle.
5360static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5361 MVT::ValueType VT = N->getValueType(0);
5362 SDOperand PermMask = N->getOperand(2);
5363 unsigned NumElems = PermMask.getNumOperands();
5364 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5365 i %= NumElems;
5366 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5367 return (i == 0)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00005368 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005369 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5370 SDOperand Idx = PermMask.getOperand(i);
5371 if (Idx.getOpcode() == ISD::UNDEF)
5372 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5373 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5374 }
5375 return SDOperand();
5376}
5377
5378/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5379/// node is a GlobalAddress + an offset.
5380static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5381 unsigned Opc = N->getOpcode();
5382 if (Opc == X86ISD::Wrapper) {
5383 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5384 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5385 return true;
5386 }
5387 } else if (Opc == ISD::ADD) {
5388 SDOperand N1 = N->getOperand(0);
5389 SDOperand N2 = N->getOperand(1);
5390 if (isGAPlusOffset(N1.Val, GA, Offset)) {
5391 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5392 if (V) {
5393 Offset += V->getSignExtended();
5394 return true;
5395 }
5396 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5397 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5398 if (V) {
5399 Offset += V->getSignExtended();
5400 return true;
5401 }
5402 }
5403 }
5404 return false;
5405}
5406
5407/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5408/// + Dist * Size.
5409static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5410 MachineFrameInfo *MFI) {
5411 if (N->getOperand(0).Val != Base->getOperand(0).Val)
5412 return false;
5413
5414 SDOperand Loc = N->getOperand(1);
5415 SDOperand BaseLoc = Base->getOperand(1);
5416 if (Loc.getOpcode() == ISD::FrameIndex) {
5417 if (BaseLoc.getOpcode() != ISD::FrameIndex)
5418 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00005419 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
5420 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005421 int FS = MFI->getObjectSize(FI);
5422 int BFS = MFI->getObjectSize(BFI);
5423 if (FS != BFS || FS != Size) return false;
5424 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5425 } else {
5426 GlobalValue *GV1 = NULL;
5427 GlobalValue *GV2 = NULL;
5428 int64_t Offset1 = 0;
5429 int64_t Offset2 = 0;
5430 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5431 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5432 if (isGA1 && isGA2 && GV1 == GV2)
5433 return Offset1 == (Offset2 + Dist*Size);
5434 }
5435
5436 return false;
5437}
5438
5439static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5440 const X86Subtarget *Subtarget) {
5441 GlobalValue *GV;
5442 int64_t Offset;
5443 if (isGAPlusOffset(Base, GV, Offset))
5444 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5445 else {
5446 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00005447 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005448 if (BFI < 0)
5449 // Fixed objects do not specify alignment, however the offsets are known.
5450 return ((Subtarget->getStackAlignment() % 16) == 0 &&
5451 (MFI->getObjectOffset(BFI) % 16) == 0);
5452 else
5453 return MFI->getObjectAlignment(BFI) >= 16;
5454 }
5455 return false;
5456}
5457
5458
5459/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5460/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5461/// if the load addresses are consecutive, non-overlapping, and in the right
5462/// order.
5463static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5464 const X86Subtarget *Subtarget) {
5465 MachineFunction &MF = DAG.getMachineFunction();
5466 MachineFrameInfo *MFI = MF.getFrameInfo();
5467 MVT::ValueType VT = N->getValueType(0);
5468 MVT::ValueType EVT = MVT::getVectorElementType(VT);
5469 SDOperand PermMask = N->getOperand(2);
5470 int NumElems = (int)PermMask.getNumOperands();
5471 SDNode *Base = NULL;
5472 for (int i = 0; i < NumElems; ++i) {
5473 SDOperand Idx = PermMask.getOperand(i);
5474 if (Idx.getOpcode() == ISD::UNDEF) {
5475 if (!Base) return SDOperand();
5476 } else {
5477 SDOperand Arg =
5478 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5479 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5480 return SDOperand();
5481 if (!Base)
5482 Base = Arg.Val;
5483 else if (!isConsecutiveLoad(Arg.Val, Base,
5484 i, MVT::getSizeInBits(EVT)/8,MFI))
5485 return SDOperand();
5486 }
5487 }
5488
5489 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00005490 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005491 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005492 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00005493 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005494 } else {
Dan Gohman11821702007-07-27 17:16:43 +00005495 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5496 LD->getSrcValueOffset(), LD->isVolatile(),
5497 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005498 }
5499}
5500
5501/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5502static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5503 const X86Subtarget *Subtarget) {
5504 SDOperand Cond = N->getOperand(0);
5505
5506 // If we have SSE[12] support, try to form min/max nodes.
5507 if (Subtarget->hasSSE2() &&
5508 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5509 if (Cond.getOpcode() == ISD::SETCC) {
5510 // Get the LHS/RHS of the select.
5511 SDOperand LHS = N->getOperand(1);
5512 SDOperand RHS = N->getOperand(2);
5513 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5514
5515 unsigned Opcode = 0;
5516 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5517 switch (CC) {
5518 default: break;
5519 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5520 case ISD::SETULE:
5521 case ISD::SETLE:
5522 if (!UnsafeFPMath) break;
5523 // FALL THROUGH.
5524 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
5525 case ISD::SETLT:
5526 Opcode = X86ISD::FMIN;
5527 break;
5528
5529 case ISD::SETOGT: // (X > Y) ? X : Y -> max
5530 case ISD::SETUGT:
5531 case ISD::SETGT:
5532 if (!UnsafeFPMath) break;
5533 // FALL THROUGH.
5534 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
5535 case ISD::SETGE:
5536 Opcode = X86ISD::FMAX;
5537 break;
5538 }
5539 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5540 switch (CC) {
5541 default: break;
5542 case ISD::SETOGT: // (X > Y) ? Y : X -> min
5543 case ISD::SETUGT:
5544 case ISD::SETGT:
5545 if (!UnsafeFPMath) break;
5546 // FALL THROUGH.
5547 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
5548 case ISD::SETGE:
5549 Opcode = X86ISD::FMIN;
5550 break;
5551
5552 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
5553 case ISD::SETULE:
5554 case ISD::SETLE:
5555 if (!UnsafeFPMath) break;
5556 // FALL THROUGH.
5557 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
5558 case ISD::SETLT:
5559 Opcode = X86ISD::FMAX;
5560 break;
5561 }
5562 }
5563
5564 if (Opcode)
5565 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5566 }
5567
5568 }
5569
5570 return SDOperand();
5571}
5572
5573
5574SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5575 DAGCombinerInfo &DCI) const {
5576 SelectionDAG &DAG = DCI.DAG;
5577 switch (N->getOpcode()) {
5578 default: break;
5579 case ISD::VECTOR_SHUFFLE:
5580 return PerformShuffleCombine(N, DAG, Subtarget);
5581 case ISD::SELECT:
5582 return PerformSELECTCombine(N, DAG, Subtarget);
5583 }
5584
5585 return SDOperand();
5586}
5587
5588//===----------------------------------------------------------------------===//
5589// X86 Inline Assembly Support
5590//===----------------------------------------------------------------------===//
5591
5592/// getConstraintType - Given a constraint letter, return the type of
5593/// constraint it is for this target.
5594X86TargetLowering::ConstraintType
5595X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5596 if (Constraint.size() == 1) {
5597 switch (Constraint[0]) {
5598 case 'A':
5599 case 'r':
5600 case 'R':
5601 case 'l':
5602 case 'q':
5603 case 'Q':
5604 case 'x':
5605 case 'Y':
5606 return C_RegisterClass;
5607 default:
5608 break;
5609 }
5610 }
5611 return TargetLowering::getConstraintType(Constraint);
5612}
5613
Chris Lattnera531abc2007-08-25 00:47:38 +00005614/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5615/// vector. If it is invalid, don't add anything to Ops.
5616void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5617 char Constraint,
5618 std::vector<SDOperand>&Ops,
5619 SelectionDAG &DAG) {
5620 SDOperand Result(0, 0);
5621
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005622 switch (Constraint) {
5623 default: break;
5624 case 'I':
5625 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005626 if (C->getValue() <= 31) {
5627 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5628 break;
5629 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005630 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005631 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005632 case 'N':
5633 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005634 if (C->getValue() <= 255) {
5635 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5636 break;
5637 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005638 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005639 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005640 case 'i': {
5641 // Literal immediates are always ok.
Chris Lattnera531abc2007-08-25 00:47:38 +00005642 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5643 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5644 break;
5645 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005646
5647 // If we are in non-pic codegen mode, we allow the address of a global (with
5648 // an optional displacement) to be used with 'i'.
5649 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5650 int64_t Offset = 0;
5651
5652 // Match either (GA) or (GA+C)
5653 if (GA) {
5654 Offset = GA->getOffset();
5655 } else if (Op.getOpcode() == ISD::ADD) {
5656 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5657 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5658 if (C && GA) {
5659 Offset = GA->getOffset()+C->getValue();
5660 } else {
5661 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5662 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5663 if (C && GA)
5664 Offset = GA->getOffset()+C->getValue();
5665 else
5666 C = 0, GA = 0;
5667 }
5668 }
5669
5670 if (GA) {
5671 // If addressing this global requires a load (e.g. in PIC mode), we can't
5672 // match.
5673 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5674 false))
Chris Lattnera531abc2007-08-25 00:47:38 +00005675 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005676
5677 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5678 Offset);
Chris Lattnera531abc2007-08-25 00:47:38 +00005679 Result = Op;
5680 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005681 }
5682
5683 // Otherwise, not valid for this mode.
Chris Lattnera531abc2007-08-25 00:47:38 +00005684 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005685 }
5686 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005687
5688 if (Result.Val) {
5689 Ops.push_back(Result);
5690 return;
5691 }
5692 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005693}
5694
5695std::vector<unsigned> X86TargetLowering::
5696getRegClassForInlineAsmConstraint(const std::string &Constraint,
5697 MVT::ValueType VT) const {
5698 if (Constraint.size() == 1) {
5699 // FIXME: not handling fp-stack yet!
5700 switch (Constraint[0]) { // GCC X86 Constraint Letters
5701 default: break; // Unknown constraint letter
5702 case 'A': // EAX/EDX
5703 if (VT == MVT::i32 || VT == MVT::i64)
5704 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5705 break;
5706 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5707 case 'Q': // Q_REGS
5708 if (VT == MVT::i32)
5709 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5710 else if (VT == MVT::i16)
5711 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5712 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00005713 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005714 break;
5715 }
5716 }
5717
5718 return std::vector<unsigned>();
5719}
5720
5721std::pair<unsigned, const TargetRegisterClass*>
5722X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5723 MVT::ValueType VT) const {
5724 // First, see if this is a constraint that directly corresponds to an LLVM
5725 // register class.
5726 if (Constraint.size() == 1) {
5727 // GCC Constraint Letters
5728 switch (Constraint[0]) {
5729 default: break;
5730 case 'r': // GENERAL_REGS
5731 case 'R': // LEGACY_REGS
5732 case 'l': // INDEX_REGS
5733 if (VT == MVT::i64 && Subtarget->is64Bit())
5734 return std::make_pair(0U, X86::GR64RegisterClass);
5735 if (VT == MVT::i32)
5736 return std::make_pair(0U, X86::GR32RegisterClass);
5737 else if (VT == MVT::i16)
5738 return std::make_pair(0U, X86::GR16RegisterClass);
5739 else if (VT == MVT::i8)
5740 return std::make_pair(0U, X86::GR8RegisterClass);
5741 break;
5742 case 'y': // MMX_REGS if MMX allowed.
5743 if (!Subtarget->hasMMX()) break;
5744 return std::make_pair(0U, X86::VR64RegisterClass);
5745 break;
5746 case 'Y': // SSE_REGS if SSE2 allowed
5747 if (!Subtarget->hasSSE2()) break;
5748 // FALL THROUGH.
5749 case 'x': // SSE_REGS if SSE1 allowed
5750 if (!Subtarget->hasSSE1()) break;
5751
5752 switch (VT) {
5753 default: break;
5754 // Scalar SSE types.
5755 case MVT::f32:
5756 case MVT::i32:
5757 return std::make_pair(0U, X86::FR32RegisterClass);
5758 case MVT::f64:
5759 case MVT::i64:
5760 return std::make_pair(0U, X86::FR64RegisterClass);
5761 // Vector types.
5762 case MVT::v16i8:
5763 case MVT::v8i16:
5764 case MVT::v4i32:
5765 case MVT::v2i64:
5766 case MVT::v4f32:
5767 case MVT::v2f64:
5768 return std::make_pair(0U, X86::VR128RegisterClass);
5769 }
5770 break;
5771 }
5772 }
5773
5774 // Use the default implementation in TargetLowering to convert the register
5775 // constraint into a member of a register class.
5776 std::pair<unsigned, const TargetRegisterClass*> Res;
5777 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5778
5779 // Not found as a standard register?
5780 if (Res.second == 0) {
5781 // GCC calls "st(0)" just plain "st".
5782 if (StringsEqualNoCase("{st}", Constraint)) {
5783 Res.first = X86::ST0;
Chris Lattner3cfe51b2007-09-24 05:27:37 +00005784 Res.second = X86::RFP80RegisterClass;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005785 }
5786
5787 return Res;
5788 }
5789
5790 // Otherwise, check to see if this is a register class of the wrong value
5791 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5792 // turn into {ax},{dx}.
5793 if (Res.second->hasType(VT))
5794 return Res; // Correct type already, nothing to do.
5795
5796 // All of the single-register GCC register classes map their values onto
5797 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5798 // really want an 8-bit or 32-bit register, map to the appropriate register
5799 // class and return the appropriate register.
5800 if (Res.second != X86::GR16RegisterClass)
5801 return Res;
5802
5803 if (VT == MVT::i8) {
5804 unsigned DestReg = 0;
5805 switch (Res.first) {
5806 default: break;
5807 case X86::AX: DestReg = X86::AL; break;
5808 case X86::DX: DestReg = X86::DL; break;
5809 case X86::CX: DestReg = X86::CL; break;
5810 case X86::BX: DestReg = X86::BL; break;
5811 }
5812 if (DestReg) {
5813 Res.first = DestReg;
5814 Res.second = Res.second = X86::GR8RegisterClass;
5815 }
5816 } else if (VT == MVT::i32) {
5817 unsigned DestReg = 0;
5818 switch (Res.first) {
5819 default: break;
5820 case X86::AX: DestReg = X86::EAX; break;
5821 case X86::DX: DestReg = X86::EDX; break;
5822 case X86::CX: DestReg = X86::ECX; break;
5823 case X86::BX: DestReg = X86::EBX; break;
5824 case X86::SI: DestReg = X86::ESI; break;
5825 case X86::DI: DestReg = X86::EDI; break;
5826 case X86::BP: DestReg = X86::EBP; break;
5827 case X86::SP: DestReg = X86::ESP; break;
5828 }
5829 if (DestReg) {
5830 Res.first = DestReg;
5831 Res.second = Res.second = X86::GR32RegisterClass;
5832 }
5833 } else if (VT == MVT::i64) {
5834 unsigned DestReg = 0;
5835 switch (Res.first) {
5836 default: break;
5837 case X86::AX: DestReg = X86::RAX; break;
5838 case X86::DX: DestReg = X86::RDX; break;
5839 case X86::CX: DestReg = X86::RCX; break;
5840 case X86::BX: DestReg = X86::RBX; break;
5841 case X86::SI: DestReg = X86::RSI; break;
5842 case X86::DI: DestReg = X86::RDI; break;
5843 case X86::BP: DestReg = X86::RBP; break;
5844 case X86::SP: DestReg = X86::RSP; break;
5845 }
5846 if (DestReg) {
5847 Res.first = DestReg;
5848 Res.second = Res.second = X86::GR64RegisterClass;
5849 }
5850 }
5851
5852 return Res;
5853}