blob: 9dc4dd69c2c7883917537f7268fb6ab6f0afc824 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
Evan Cheng950aac02007-09-25 01:57:46 +000034#include "llvm/Support/CommandLine.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000035#include "llvm/Support/MathExtras.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000038#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039using namespace llvm;
40
41X86TargetLowering::X86TargetLowering(TargetMachine &TM)
42 : TargetLowering(TM) {
43 Subtarget = &TM.getSubtarget<X86Subtarget>();
Dale Johannesene0e0fd02007-09-23 14:52:20 +000044 X86ScalarSSEf64 = Subtarget->hasSSE2();
45 X86ScalarSSEf32 = Subtarget->hasSSE1();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000046 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
47
48 RegInfo = TM.getRegisterInfo();
49
50 // Set up the TargetLowering object.
51
52 // X86 is weird, it always uses i8 for shift amounts and setcc results.
53 setShiftAmountType(MVT::i8);
54 setSetCCResultType(MVT::i8);
55 setSetCCResultContents(ZeroOrOneSetCCResult);
56 setSchedulingPreference(SchedulingForRegPressure);
57 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
58 setStackPointerRegisterToSaveRestore(X86StackPtr);
59
60 if (Subtarget->isTargetDarwin()) {
61 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
62 setUseUnderscoreSetJmp(false);
63 setUseUnderscoreLongJmp(false);
64 } else if (Subtarget->isTargetMingw()) {
65 // MS runtime is weird: it exports _setjmp, but longjmp!
66 setUseUnderscoreSetJmp(true);
67 setUseUnderscoreLongJmp(false);
68 } else {
69 setUseUnderscoreSetJmp(true);
70 setUseUnderscoreLongJmp(true);
71 }
72
73 // Set up the register classes.
74 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
75 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
76 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
77 if (Subtarget->is64Bit())
78 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
79
80 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
81
82 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
83 // operation.
84 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
85 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
86 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
87
88 if (Subtarget->is64Bit()) {
89 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
90 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
91 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +000092 if (X86ScalarSSEf64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000093 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
94 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
95 else
96 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
97 }
98
99 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
100 // this operation.
101 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
102 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
103 // SSE has no i16 to fp conversion, only i32
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000104 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000105 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000106 // f32 and f64 cases are Legal, f80 case is not
107 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
108 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
110 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
111 }
112
Dale Johannesen958b08b2007-09-19 23:55:34 +0000113 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
114 // are Legal, f80 is custom lowered.
115 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
116 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117
118 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
119 // this operation.
120 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
121 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
122
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000123 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000125 // f32 and f64 cases are Legal, f80 case is not
126 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 } else {
128 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
129 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
130 }
131
132 // Handle FP_TO_UINT by promoting the destination to a larger signed
133 // conversion.
134 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
135 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
136 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
137
138 if (Subtarget->is64Bit()) {
139 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
140 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
141 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000142 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000143 // Expand FP_TO_UINT into a select.
144 // FIXME: We would like to use a Custom expander here eventually to do
145 // the optimal thing for SSE vs. the default expansion in the legalizer.
146 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
147 else
148 // With SSE3 we can use fisttpll to convert to a signed i64.
149 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
150 }
151
152 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000153 if (!X86ScalarSSEf64) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000154 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
155 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
156 }
157
Dan Gohman242a5ba2007-09-25 18:23:27 +0000158 // Divide and remainder are lowered to use div or idiv in legalize in
159 // order to expose the intermediate computations to trivial CSE. This is
160 // most noticeable when both x/y and x%y are being computed; they can be
161 // done with a single div or idiv.
162 setOperationAction(ISD::SDIV , MVT::i8 , Custom);
163 setOperationAction(ISD::UDIV , MVT::i8 , Custom);
164 setOperationAction(ISD::SREM , MVT::i8 , Custom);
165 setOperationAction(ISD::UREM , MVT::i8 , Custom);
166 setOperationAction(ISD::SDIV , MVT::i16 , Custom);
167 setOperationAction(ISD::UDIV , MVT::i16 , Custom);
168 setOperationAction(ISD::SREM , MVT::i16 , Custom);
169 setOperationAction(ISD::UREM , MVT::i16 , Custom);
170 setOperationAction(ISD::SDIV , MVT::i32 , Custom);
171 setOperationAction(ISD::UDIV , MVT::i32 , Custom);
172 setOperationAction(ISD::SREM , MVT::i32 , Custom);
173 setOperationAction(ISD::UREM , MVT::i32 , Custom);
174 setOperationAction(ISD::SDIV , MVT::i64 , Custom);
175 setOperationAction(ISD::UDIV , MVT::i64 , Custom);
176 setOperationAction(ISD::SREM , MVT::i64 , Custom);
177 setOperationAction(ISD::UREM , MVT::i64 , Custom);
178
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000179 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
180 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
181 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
182 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
183 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
184 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
186 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
189 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
190 setOperationAction(ISD::FREM , MVT::f64 , Expand);
191
192 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
193 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
194 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
195 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
196 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
197 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
198 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
199 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
200 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
201 if (Subtarget->is64Bit()) {
202 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
203 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
204 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
205 }
206
207 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
208 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
209
210 // These should be promoted to a larger select which is supported.
211 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
212 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
213 // X86 wants to expand cmov itself.
214 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
215 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
216 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
217 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000218 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
220 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
221 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
222 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
223 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000224 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000225 if (Subtarget->is64Bit()) {
226 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
227 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
228 }
229 // X86 ret instruction may pop stack.
230 setOperationAction(ISD::RET , MVT::Other, Custom);
231 if (!Subtarget->is64Bit())
232 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
233
234 // Darwin ABI issue.
235 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
236 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
237 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
238 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
239 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
240 if (Subtarget->is64Bit()) {
241 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
242 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
243 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
244 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
245 }
246 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
247 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
248 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
249 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
250 // X86 wants to expand memset / memcpy itself.
251 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
252 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
253
Dan Gohman21442852007-09-25 15:10:49 +0000254 // Use the default ISD::LOCATION expansion.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000255 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000256 // FIXME - use subtarget debug flags
257 if (!Subtarget->isTargetDarwin() &&
258 !Subtarget->isTargetELF() &&
259 !Subtarget->isTargetCygMing())
260 setOperationAction(ISD::LABEL, MVT::Other, Expand);
261
262 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
263 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
264 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
265 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
266 if (Subtarget->is64Bit()) {
267 // FIXME: Verify
268 setExceptionPointerRegister(X86::RAX);
269 setExceptionSelectorRegister(X86::RDX);
270 } else {
271 setExceptionPointerRegister(X86::EAX);
272 setExceptionSelectorRegister(X86::EDX);
273 }
Anton Korobeynikov23ca9c52007-09-03 00:36:06 +0000274 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000275
Duncan Sands7407a9f2007-09-11 14:10:23 +0000276 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000277
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
279 setOperationAction(ISD::VASTART , MVT::Other, Custom);
280 setOperationAction(ISD::VAARG , MVT::Other, Expand);
281 setOperationAction(ISD::VAEND , MVT::Other, Expand);
282 if (Subtarget->is64Bit())
283 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
284 else
285 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
286
287 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
288 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
289 if (Subtarget->is64Bit())
290 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
291 if (Subtarget->isTargetCygMing())
292 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
293 else
294 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
295
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000296 if (X86ScalarSSEf64) {
297 // f32 and f64 use SSE.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000298 // Set up the FP register classes.
299 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
300 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
301
302 // Use ANDPD to simulate FABS.
303 setOperationAction(ISD::FABS , MVT::f64, Custom);
304 setOperationAction(ISD::FABS , MVT::f32, Custom);
305
306 // Use XORP to simulate FNEG.
307 setOperationAction(ISD::FNEG , MVT::f64, Custom);
308 setOperationAction(ISD::FNEG , MVT::f32, Custom);
309
310 // Use ANDPD and ORPD to simulate FCOPYSIGN.
311 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
312 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
313
314 // We don't support sin/cos/fmod
315 setOperationAction(ISD::FSIN , MVT::f64, Expand);
316 setOperationAction(ISD::FCOS , MVT::f64, Expand);
317 setOperationAction(ISD::FREM , MVT::f64, Expand);
318 setOperationAction(ISD::FSIN , MVT::f32, Expand);
319 setOperationAction(ISD::FCOS , MVT::f32, Expand);
320 setOperationAction(ISD::FREM , MVT::f32, Expand);
321
322 // Expand FP immediates into loads from the stack, except for the special
323 // cases we handle.
324 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
325 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000326 addLegalFPImmediate(APFloat(+0.0)); // xorpd
327 addLegalFPImmediate(APFloat(+0.0f)); // xorps
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000328
329 // Conversions to long double (in X87) go through memory.
330 setConvertAction(MVT::f32, MVT::f80, Expand);
331 setConvertAction(MVT::f64, MVT::f80, Expand);
332
333 // Conversions from long double (in X87) go through memory.
334 setConvertAction(MVT::f80, MVT::f32, Expand);
335 setConvertAction(MVT::f80, MVT::f64, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000336 } else if (X86ScalarSSEf32) {
337 // Use SSE for f32, x87 for f64.
338 // Set up the FP register classes.
339 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
340 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
341
342 // Use ANDPS to simulate FABS.
343 setOperationAction(ISD::FABS , MVT::f32, Custom);
344
345 // Use XORP to simulate FNEG.
346 setOperationAction(ISD::FNEG , MVT::f32, Custom);
347
348 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
349
350 // Use ANDPS and ORPS to simulate FCOPYSIGN.
351 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
352 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
353
354 // We don't support sin/cos/fmod
355 setOperationAction(ISD::FSIN , MVT::f32, Expand);
356 setOperationAction(ISD::FCOS , MVT::f32, Expand);
357 setOperationAction(ISD::FREM , MVT::f32, Expand);
358
359 // Expand FP immediates into loads from the stack, except for the special
360 // cases we handle.
361 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
362 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
363 addLegalFPImmediate(APFloat(+0.0f)); // xorps
364 addLegalFPImmediate(APFloat(+0.0)); // FLD0
365 addLegalFPImmediate(APFloat(+1.0)); // FLD1
366 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
367 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
368
369 // SSE->x87 conversions go through memory.
370 setConvertAction(MVT::f32, MVT::f64, Expand);
371 setConvertAction(MVT::f32, MVT::f80, Expand);
372
373 // x87->SSE truncations need to go through memory.
374 setConvertAction(MVT::f80, MVT::f32, Expand);
375 setConvertAction(MVT::f64, MVT::f32, Expand);
376 // And x87->x87 truncations also.
377 setConvertAction(MVT::f80, MVT::f64, Expand);
378
379 if (!UnsafeFPMath) {
380 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
381 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
382 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000383 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000384 // f32 and f64 in x87.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000385 // Set up the FP register classes.
386 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
387 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
388
389 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
390 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
391 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
392 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000393
394 // Floating truncations need to go through memory.
395 setConvertAction(MVT::f80, MVT::f32, Expand);
396 setConvertAction(MVT::f64, MVT::f32, Expand);
397 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398
399 if (!UnsafeFPMath) {
400 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
401 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
402 }
403
404 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
405 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000406 addLegalFPImmediate(APFloat(+0.0)); // FLD0
407 addLegalFPImmediate(APFloat(+1.0)); // FLD1
408 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
409 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000410 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
411 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
412 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
413 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000414 }
415
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000416 // Long double always uses X87.
417 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000418 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
419 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
420 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
Dale Johannesen7f1076b2007-09-26 21:10:55 +0000421 if (!UnsafeFPMath) {
422 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
423 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
424 }
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000425
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 // First set operation action for all vector types to expand. Then we
427 // will selectively turn on ones that can be effectively codegen'd.
428 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
429 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
430 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
431 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
432 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
433 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
434 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
435 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
436 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
437 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
438 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
439 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
440 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
441 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
442 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
443 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
444 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
445 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
446 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
447 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
448 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
449 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
450 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
451 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
452 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
453 }
454
455 if (Subtarget->hasMMX()) {
456 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
457 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
458 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
459 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
460
461 // FIXME: add MMX packed arithmetics
462
463 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
464 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
465 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
466 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
467
468 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
469 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
470 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
471
472 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
473 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
474
475 setOperationAction(ISD::AND, MVT::v8i8, Promote);
476 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
477 setOperationAction(ISD::AND, MVT::v4i16, Promote);
478 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
479 setOperationAction(ISD::AND, MVT::v2i32, Promote);
480 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
481 setOperationAction(ISD::AND, MVT::v1i64, Legal);
482
483 setOperationAction(ISD::OR, MVT::v8i8, Promote);
484 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
485 setOperationAction(ISD::OR, MVT::v4i16, Promote);
486 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
487 setOperationAction(ISD::OR, MVT::v2i32, Promote);
488 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
489 setOperationAction(ISD::OR, MVT::v1i64, Legal);
490
491 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
492 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
493 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
494 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
495 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
496 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
497 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
498
499 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
500 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
501 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
502 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
503 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
504 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
505 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
506
507 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
508 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
509 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
510 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
511
512 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
513 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
514 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
515 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
516
517 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
518 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
519 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
520 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
521 }
522
523 if (Subtarget->hasSSE1()) {
524 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
525
526 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
527 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
528 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
529 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
530 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
531 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000532 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
533 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
534 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
535 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
536 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
537 }
538
539 if (Subtarget->hasSSE2()) {
540 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
541 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
542 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
543 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
544 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
545
546 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
547 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
548 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
549 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
550 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
551 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
552 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
553 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
554 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
555 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
556 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
557 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
558 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
559 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
560 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000561
562 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
563 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
564 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
565 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
566 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
567 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
568
569 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
570 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
571 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
572 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
574 }
575 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
576 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
577 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
578 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
579 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
580 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
581
582 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
583 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
584 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
585 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
586 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
587 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
588 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
589 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
590 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
591 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
592 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
593 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
594 }
595
596 // Custom lower v2i64 and v2f64 selects.
597 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
598 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
599 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
600 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
601 }
602
603 // We want to custom lower some of our intrinsics.
604 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
605
606 // We have target-specific dag combine patterns for the following nodes:
607 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
608 setTargetDAGCombine(ISD::SELECT);
609
610 computeRegisterProperties();
611
612 // FIXME: These should be based on subtarget info. Plus, the values should
613 // be smaller when we are in optimizing for size mode.
614 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
615 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
616 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
617 allowUnalignedMemoryAccesses = true; // x86 supports it!
618}
619
620
621//===----------------------------------------------------------------------===//
622// Return Value Calling Convention Implementation
623//===----------------------------------------------------------------------===//
624
625#include "X86GenCallingConv.inc"
626
627/// LowerRET - Lower an ISD::RET node.
628SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
629 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
630
631 SmallVector<CCValAssign, 16> RVLocs;
632 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
633 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
634 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
635 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
636
637
638 // If this is the first return lowered for this function, add the regs to the
639 // liveout set for the function.
640 if (DAG.getMachineFunction().liveout_empty()) {
641 for (unsigned i = 0; i != RVLocs.size(); ++i)
642 if (RVLocs[i].isRegLoc())
643 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
644 }
645
646 SDOperand Chain = Op.getOperand(0);
647 SDOperand Flag;
648
649 // Copy the result values into the output registers.
650 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
651 RVLocs[0].getLocReg() != X86::ST0) {
652 for (unsigned i = 0; i != RVLocs.size(); ++i) {
653 CCValAssign &VA = RVLocs[i];
654 assert(VA.isRegLoc() && "Can only return in registers!");
655 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
656 Flag);
657 Flag = Chain.getValue(1);
658 }
659 } else {
660 // We need to handle a destination of ST0 specially, because it isn't really
661 // a register.
662 SDOperand Value = Op.getOperand(1);
663
664 // If this is an FP return with ScalarSSE, we need to move the value from
665 // an XMM register onto the fp-stack.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000666 if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
667 (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000668 SDOperand MemLoc;
669
670 // If this is a load into a scalarsse value, don't store the loaded value
671 // back to the stack, only to reload it: just replace the scalar-sse load.
672 if (ISD::isNON_EXTLoad(Value.Val) &&
673 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
674 Chain = Value.getOperand(0);
675 MemLoc = Value.getOperand(1);
676 } else {
677 // Spill the value to memory and reload it into top of stack.
678 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
679 MachineFunction &MF = DAG.getMachineFunction();
680 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
681 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
682 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
683 }
684 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
685 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
686 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
687 Chain = Value.getValue(1);
688 }
689
690 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
691 SDOperand Ops[] = { Chain, Value };
692 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
693 Flag = Chain.getValue(1);
694 }
695
696 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
697 if (Flag.Val)
698 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
699 else
700 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
701}
702
703
704/// LowerCallResult - Lower the result values of an ISD::CALL into the
705/// appropriate copies out of appropriate physical registers. This assumes that
706/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
707/// being lowered. The returns a SDNode with the same number of values as the
708/// ISD::CALL.
709SDNode *X86TargetLowering::
710LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
711 unsigned CallingConv, SelectionDAG &DAG) {
712
713 // Assign locations to each value returned by this call.
714 SmallVector<CCValAssign, 16> RVLocs;
715 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
716 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
717 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
718
719
720 SmallVector<SDOperand, 8> ResultVals;
721
722 // Copy all of the result registers out of their specified physreg.
723 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
724 for (unsigned i = 0; i != RVLocs.size(); ++i) {
725 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
726 RVLocs[i].getValVT(), InFlag).getValue(1);
727 InFlag = Chain.getValue(2);
728 ResultVals.push_back(Chain.getValue(0));
729 }
730 } else {
731 // Copies from the FP stack are special, as ST0 isn't a valid register
732 // before the fp stackifier runs.
733
734 // Copy ST0 into an RFP register with FP_GET_RESULT.
735 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
736 SDOperand GROps[] = { Chain, InFlag };
737 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
738 Chain = RetVal.getValue(1);
739 InFlag = RetVal.getValue(2);
740
741 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
742 // an XMM register.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000743 if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
744 (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
746 // shouldn't be necessary except that RFP cannot be live across
747 // multiple blocks. When stackifier is fixed, they can be uncoupled.
748 MachineFunction &MF = DAG.getMachineFunction();
749 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
750 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
751 SDOperand Ops[] = {
752 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
753 };
754 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
755 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
756 Chain = RetVal.getValue(1);
757 }
758 ResultVals.push_back(RetVal);
759 }
760
761 // Merge everything together with a MERGE_VALUES node.
762 ResultVals.push_back(Chain);
763 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
764 &ResultVals[0], ResultVals.size()).Val;
765}
766
767
768//===----------------------------------------------------------------------===//
769// C & StdCall Calling Convention implementation
770//===----------------------------------------------------------------------===//
771// StdCall calling convention seems to be standard for many Windows' API
772// routines and around. It differs from C calling convention just a little:
773// callee should clean up the stack, not caller. Symbols should be also
774// decorated in some fancy way :) It doesn't support any vector arguments.
775
776/// AddLiveIn - This helper function adds the specified physical register to the
777/// MachineFunction as a live in value. It also creates a corresponding virtual
778/// register for it.
779static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
780 const TargetRegisterClass *RC) {
781 assert(RC->contains(PReg) && "Not the correct regclass!");
782 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
783 MF.addLiveIn(PReg, VReg);
784 return VReg;
785}
786
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000787SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
788 const CCValAssign &VA,
789 MachineFrameInfo *MFI,
790 SDOperand Root, unsigned i) {
791 // Create the nodes corresponding to a load from this parameter slot.
792 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
793 VA.getLocMemOffset());
794 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
795
796 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
797
798 if (Flags & ISD::ParamFlags::ByVal)
799 return FIN;
800 else
801 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
802}
803
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000804SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
805 bool isStdCall) {
806 unsigned NumArgs = Op.Val->getNumValues() - 1;
807 MachineFunction &MF = DAG.getMachineFunction();
808 MachineFrameInfo *MFI = MF.getFrameInfo();
809 SDOperand Root = Op.getOperand(0);
810 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
811
812 // Assign locations to all of the incoming arguments.
813 SmallVector<CCValAssign, 16> ArgLocs;
814 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
815 getTargetMachine(), ArgLocs);
816 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
817
818 SmallVector<SDOperand, 8> ArgValues;
819 unsigned LastVal = ~0U;
820 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
821 CCValAssign &VA = ArgLocs[i];
822 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
823 // places.
824 assert(VA.getValNo() != LastVal &&
825 "Don't support value assigned to multiple locs yet");
826 LastVal = VA.getValNo();
827
828 if (VA.isRegLoc()) {
829 MVT::ValueType RegVT = VA.getLocVT();
830 TargetRegisterClass *RC;
831 if (RegVT == MVT::i32)
832 RC = X86::GR32RegisterClass;
833 else {
834 assert(MVT::isVector(RegVT));
835 RC = X86::VR128RegisterClass;
836 }
837
838 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
839 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
840
841 // If this is an 8 or 16-bit value, it is really passed promoted to 32
842 // bits. Insert an assert[sz]ext to capture this, then truncate to the
843 // right size.
844 if (VA.getLocInfo() == CCValAssign::SExt)
845 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
846 DAG.getValueType(VA.getValVT()));
847 else if (VA.getLocInfo() == CCValAssign::ZExt)
848 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
849 DAG.getValueType(VA.getValVT()));
850
851 if (VA.getLocInfo() != CCValAssign::Full)
852 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
853
854 ArgValues.push_back(ArgValue);
855 } else {
856 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000857 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000858 }
859 }
860
861 unsigned StackSize = CCInfo.getNextStackOffset();
862
863 ArgValues.push_back(Root);
864
865 // If the function takes variable number of arguments, make a frame index for
866 // the start of the first vararg value... for expansion of llvm.va_start.
867 if (isVarArg)
868 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
869
870 if (isStdCall && !isVarArg) {
871 BytesToPopOnReturn = StackSize; // Callee pops everything..
872 BytesCallerReserves = 0;
873 } else {
874 BytesToPopOnReturn = 0; // Callee pops nothing.
875
876 // If this is an sret function, the return should pop the hidden pointer.
877 if (NumArgs &&
878 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
879 ISD::ParamFlags::StructReturn))
880 BytesToPopOnReturn = 4;
881
882 BytesCallerReserves = StackSize;
883 }
Anton Korobeynikove844e472007-08-15 17:12:32 +0000884
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000885 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000886
Anton Korobeynikove844e472007-08-15 17:12:32 +0000887 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
888 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000889
890 // Return the new list of results.
891 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
892 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
893}
894
895SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
896 unsigned CC) {
897 SDOperand Chain = Op.getOperand(0);
898 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
899 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
900 SDOperand Callee = Op.getOperand(4);
901 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
902
903 // Analyze operands of the call, assigning locations to each operand.
904 SmallVector<CCValAssign, 16> ArgLocs;
905 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
906 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
907
908 // Get a count of how many bytes are to be pushed on the stack.
909 unsigned NumBytes = CCInfo.getNextStackOffset();
910
911 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
912
913 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
914 SmallVector<SDOperand, 8> MemOpChains;
915
916 SDOperand StackPtr;
917
918 // Walk the register/memloc assignments, inserting copies/loads.
919 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
920 CCValAssign &VA = ArgLocs[i];
921 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
922
923 // Promote the value if needed.
924 switch (VA.getLocInfo()) {
925 default: assert(0 && "Unknown loc info!");
926 case CCValAssign::Full: break;
927 case CCValAssign::SExt:
928 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
929 break;
930 case CCValAssign::ZExt:
931 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
932 break;
933 case CCValAssign::AExt:
934 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
935 break;
936 }
937
938 if (VA.isRegLoc()) {
939 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
940 } else {
941 assert(VA.isMemLoc());
942 if (StackPtr.Val == 0)
943 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +0000944
945 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
946 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000947 }
948 }
949
950 // If the first argument is an sret pointer, remember it.
951 bool isSRet = NumOps &&
952 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
953 ISD::ParamFlags::StructReturn);
954
955 if (!MemOpChains.empty())
956 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
957 &MemOpChains[0], MemOpChains.size());
958
959 // Build a sequence of copy-to-reg nodes chained together with token chain
960 // and flag operands which copy the outgoing args into registers.
961 SDOperand InFlag;
962 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
963 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
964 InFlag);
965 InFlag = Chain.getValue(1);
966 }
967
968 // ELF / PIC requires GOT in the EBX register before function calls via PLT
969 // GOT pointer.
970 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
971 Subtarget->isPICStyleGOT()) {
972 Chain = DAG.getCopyToReg(Chain, X86::EBX,
973 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
974 InFlag);
975 InFlag = Chain.getValue(1);
976 }
977
978 // If the callee is a GlobalAddress node (quite common, every direct call is)
979 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
980 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
981 // We should use extra load for direct calls to dllimported functions in
982 // non-JIT mode.
983 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
984 getTargetMachine(), true))
985 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
986 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
987 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
988
989 // Returns a chain & a flag for retval copy to use.
990 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
991 SmallVector<SDOperand, 8> Ops;
992 Ops.push_back(Chain);
993 Ops.push_back(Callee);
994
995 // Add argument registers to the end of the list so that they are known live
996 // into the call.
997 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
998 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
999 RegsToPass[i].second.getValueType()));
1000
1001 // Add an implicit use GOT pointer in EBX.
1002 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1003 Subtarget->isPICStyleGOT())
1004 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1005
1006 if (InFlag.Val)
1007 Ops.push_back(InFlag);
1008
1009 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1010 NodeTys, &Ops[0], Ops.size());
1011 InFlag = Chain.getValue(1);
1012
1013 // Create the CALLSEQ_END node.
1014 unsigned NumBytesForCalleeToPush = 0;
1015
1016 if (CC == CallingConv::X86_StdCall) {
1017 if (isVarArg)
1018 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1019 else
1020 NumBytesForCalleeToPush = NumBytes;
1021 } else {
1022 // If this is is a call to a struct-return function, the callee
1023 // pops the hidden struct pointer, so we have to push it back.
1024 // This is common for Darwin/X86, Linux & Mingw32 targets.
1025 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1026 }
1027
1028 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1029 Ops.clear();
1030 Ops.push_back(Chain);
1031 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1032 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1033 Ops.push_back(InFlag);
1034 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1035 InFlag = Chain.getValue(1);
1036
1037 // Handle result values, copying them out of physregs into vregs that we
1038 // return.
1039 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1040}
1041
1042
1043//===----------------------------------------------------------------------===//
1044// FastCall Calling Convention implementation
1045//===----------------------------------------------------------------------===//
1046//
1047// The X86 'fastcall' calling convention passes up to two integer arguments in
1048// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1049// and requires that the callee pop its arguments off the stack (allowing proper
1050// tail calls), and has the same return value conventions as C calling convs.
1051//
1052// This calling convention always arranges for the callee pop value to be 8n+4
1053// bytes, which is needed for tail recursion elimination and stack alignment
1054// reasons.
1055SDOperand
1056X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1057 MachineFunction &MF = DAG.getMachineFunction();
1058 MachineFrameInfo *MFI = MF.getFrameInfo();
1059 SDOperand Root = Op.getOperand(0);
1060 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1061
1062 // Assign locations to all of the incoming arguments.
1063 SmallVector<CCValAssign, 16> ArgLocs;
1064 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1065 getTargetMachine(), ArgLocs);
1066 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1067
1068 SmallVector<SDOperand, 8> ArgValues;
1069 unsigned LastVal = ~0U;
1070 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1071 CCValAssign &VA = ArgLocs[i];
1072 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1073 // places.
1074 assert(VA.getValNo() != LastVal &&
1075 "Don't support value assigned to multiple locs yet");
1076 LastVal = VA.getValNo();
1077
1078 if (VA.isRegLoc()) {
1079 MVT::ValueType RegVT = VA.getLocVT();
1080 TargetRegisterClass *RC;
1081 if (RegVT == MVT::i32)
1082 RC = X86::GR32RegisterClass;
1083 else {
1084 assert(MVT::isVector(RegVT));
1085 RC = X86::VR128RegisterClass;
1086 }
1087
1088 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1089 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1090
1091 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1092 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1093 // right size.
1094 if (VA.getLocInfo() == CCValAssign::SExt)
1095 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1096 DAG.getValueType(VA.getValVT()));
1097 else if (VA.getLocInfo() == CCValAssign::ZExt)
1098 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1099 DAG.getValueType(VA.getValVT()));
1100
1101 if (VA.getLocInfo() != CCValAssign::Full)
1102 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1103
1104 ArgValues.push_back(ArgValue);
1105 } else {
1106 assert(VA.isMemLoc());
Rafael Espindolab53ef122007-09-21 14:55:38 +00001107 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001108 }
1109 }
1110
1111 ArgValues.push_back(Root);
1112
1113 unsigned StackSize = CCInfo.getNextStackOffset();
1114
1115 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1116 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1117 // arguments and the arguments after the retaddr has been pushed are aligned.
1118 if ((StackSize & 7) == 0)
1119 StackSize += 4;
1120 }
1121
1122 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1123 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001124 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1125 BytesCallerReserves = 0;
1126
Anton Korobeynikove844e472007-08-15 17:12:32 +00001127 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1128 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001129
1130 // Return the new list of results.
1131 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1132 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1133}
1134
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001135SDOperand
1136X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1137 const SDOperand &StackPtr,
1138 const CCValAssign &VA,
1139 SDOperand Chain,
1140 SDOperand Arg) {
1141 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1142 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1143 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1144 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1145 if (Flags & ISD::ParamFlags::ByVal) {
1146 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1147 ISD::ParamFlags::ByValAlignOffs);
1148
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001149 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1150 ISD::ParamFlags::ByValSizeOffs;
1151
1152 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1153 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1154
1155 return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1156 AlignNode);
1157 } else {
1158 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1159 }
1160}
1161
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001162SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1163 unsigned CC) {
1164 SDOperand Chain = Op.getOperand(0);
1165 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1166 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1167 SDOperand Callee = Op.getOperand(4);
1168
1169 // Analyze operands of the call, assigning locations to each operand.
1170 SmallVector<CCValAssign, 16> ArgLocs;
1171 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1172 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1173
1174 // Get a count of how many bytes are to be pushed on the stack.
1175 unsigned NumBytes = CCInfo.getNextStackOffset();
1176
1177 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1178 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1179 // arguments and the arguments after the retaddr has been pushed are aligned.
1180 if ((NumBytes & 7) == 0)
1181 NumBytes += 4;
1182 }
1183
1184 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1185
1186 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1187 SmallVector<SDOperand, 8> MemOpChains;
1188
1189 SDOperand StackPtr;
1190
1191 // Walk the register/memloc assignments, inserting copies/loads.
1192 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1193 CCValAssign &VA = ArgLocs[i];
1194 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1195
1196 // Promote the value if needed.
1197 switch (VA.getLocInfo()) {
1198 default: assert(0 && "Unknown loc info!");
1199 case CCValAssign::Full: break;
1200 case CCValAssign::SExt:
1201 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1202 break;
1203 case CCValAssign::ZExt:
1204 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1205 break;
1206 case CCValAssign::AExt:
1207 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1208 break;
1209 }
1210
1211 if (VA.isRegLoc()) {
1212 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1213 } else {
1214 assert(VA.isMemLoc());
1215 if (StackPtr.Val == 0)
1216 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001217
1218 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1219 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001220 }
1221 }
1222
1223 if (!MemOpChains.empty())
1224 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1225 &MemOpChains[0], MemOpChains.size());
1226
1227 // Build a sequence of copy-to-reg nodes chained together with token chain
1228 // and flag operands which copy the outgoing args into registers.
1229 SDOperand InFlag;
1230 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1231 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1232 InFlag);
1233 InFlag = Chain.getValue(1);
1234 }
1235
1236 // If the callee is a GlobalAddress node (quite common, every direct call is)
1237 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1238 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1239 // We should use extra load for direct calls to dllimported functions in
1240 // non-JIT mode.
1241 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1242 getTargetMachine(), true))
1243 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1244 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1245 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1246
1247 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1248 // GOT pointer.
1249 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1250 Subtarget->isPICStyleGOT()) {
1251 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1252 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1253 InFlag);
1254 InFlag = Chain.getValue(1);
1255 }
1256
1257 // Returns a chain & a flag for retval copy to use.
1258 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1259 SmallVector<SDOperand, 8> Ops;
1260 Ops.push_back(Chain);
1261 Ops.push_back(Callee);
1262
1263 // Add argument registers to the end of the list so that they are known live
1264 // into the call.
1265 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1266 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1267 RegsToPass[i].second.getValueType()));
1268
1269 // Add an implicit use GOT pointer in EBX.
1270 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1271 Subtarget->isPICStyleGOT())
1272 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1273
1274 if (InFlag.Val)
1275 Ops.push_back(InFlag);
1276
1277 // FIXME: Do not generate X86ISD::TAILCALL for now.
1278 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1279 NodeTys, &Ops[0], Ops.size());
1280 InFlag = Chain.getValue(1);
1281
1282 // Returns a flag for retval copy to use.
1283 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1284 Ops.clear();
1285 Ops.push_back(Chain);
1286 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1287 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1288 Ops.push_back(InFlag);
1289 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1290 InFlag = Chain.getValue(1);
1291
1292 // Handle result values, copying them out of physregs into vregs that we
1293 // return.
1294 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1295}
1296
1297
1298//===----------------------------------------------------------------------===//
1299// X86-64 C Calling Convention implementation
1300//===----------------------------------------------------------------------===//
1301
1302SDOperand
1303X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1304 MachineFunction &MF = DAG.getMachineFunction();
1305 MachineFrameInfo *MFI = MF.getFrameInfo();
1306 SDOperand Root = Op.getOperand(0);
1307 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1308
1309 static const unsigned GPR64ArgRegs[] = {
1310 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1311 };
1312 static const unsigned XMMArgRegs[] = {
1313 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1314 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1315 };
1316
1317
1318 // Assign locations to all of the incoming arguments.
1319 SmallVector<CCValAssign, 16> ArgLocs;
1320 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1321 getTargetMachine(), ArgLocs);
1322 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1323
1324 SmallVector<SDOperand, 8> ArgValues;
1325 unsigned LastVal = ~0U;
1326 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1327 CCValAssign &VA = ArgLocs[i];
1328 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1329 // places.
1330 assert(VA.getValNo() != LastVal &&
1331 "Don't support value assigned to multiple locs yet");
1332 LastVal = VA.getValNo();
1333
1334 if (VA.isRegLoc()) {
1335 MVT::ValueType RegVT = VA.getLocVT();
1336 TargetRegisterClass *RC;
1337 if (RegVT == MVT::i32)
1338 RC = X86::GR32RegisterClass;
1339 else if (RegVT == MVT::i64)
1340 RC = X86::GR64RegisterClass;
1341 else if (RegVT == MVT::f32)
1342 RC = X86::FR32RegisterClass;
1343 else if (RegVT == MVT::f64)
1344 RC = X86::FR64RegisterClass;
1345 else {
1346 assert(MVT::isVector(RegVT));
1347 if (MVT::getSizeInBits(RegVT) == 64) {
1348 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1349 RegVT = MVT::i64;
1350 } else
1351 RC = X86::VR128RegisterClass;
1352 }
1353
1354 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1355 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1356
1357 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1358 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1359 // right size.
1360 if (VA.getLocInfo() == CCValAssign::SExt)
1361 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1362 DAG.getValueType(VA.getValVT()));
1363 else if (VA.getLocInfo() == CCValAssign::ZExt)
1364 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1365 DAG.getValueType(VA.getValVT()));
1366
1367 if (VA.getLocInfo() != CCValAssign::Full)
1368 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1369
1370 // Handle MMX values passed in GPRs.
1371 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1372 MVT::getSizeInBits(RegVT) == 64)
1373 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1374
1375 ArgValues.push_back(ArgValue);
1376 } else {
1377 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001378 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001379 }
1380 }
1381
1382 unsigned StackSize = CCInfo.getNextStackOffset();
1383
1384 // If the function takes variable number of arguments, make a frame index for
1385 // the start of the first vararg value... for expansion of llvm.va_start.
1386 if (isVarArg) {
1387 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1388 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1389
1390 // For X86-64, if there are vararg parameters that are passed via
1391 // registers, then we must store them to their spots on the stack so they
1392 // may be loaded by deferencing the result of va_next.
1393 VarArgsGPOffset = NumIntRegs * 8;
1394 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1395 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1396 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1397
1398 // Store the integer parameter registers.
1399 SmallVector<SDOperand, 8> MemOps;
1400 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1401 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1402 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1403 for (; NumIntRegs != 6; ++NumIntRegs) {
1404 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1405 X86::GR64RegisterClass);
1406 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1407 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1408 MemOps.push_back(Store);
1409 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1410 DAG.getConstant(8, getPointerTy()));
1411 }
1412
1413 // Now store the XMM (fp + vector) parameter registers.
1414 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1415 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1416 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1417 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1418 X86::VR128RegisterClass);
1419 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1420 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1421 MemOps.push_back(Store);
1422 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1423 DAG.getConstant(16, getPointerTy()));
1424 }
1425 if (!MemOps.empty())
1426 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1427 &MemOps[0], MemOps.size());
1428 }
1429
1430 ArgValues.push_back(Root);
1431
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001432 BytesToPopOnReturn = 0; // Callee pops nothing.
1433 BytesCallerReserves = StackSize;
1434
Anton Korobeynikove844e472007-08-15 17:12:32 +00001435 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1436 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1437
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001438 // Return the new list of results.
1439 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1440 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1441}
1442
1443SDOperand
1444X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1445 unsigned CC) {
1446 SDOperand Chain = Op.getOperand(0);
1447 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1448 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1449 SDOperand Callee = Op.getOperand(4);
1450
1451 // Analyze operands of the call, assigning locations to each operand.
1452 SmallVector<CCValAssign, 16> ArgLocs;
1453 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1454 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1455
1456 // Get a count of how many bytes are to be pushed on the stack.
1457 unsigned NumBytes = CCInfo.getNextStackOffset();
1458 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1459
1460 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1461 SmallVector<SDOperand, 8> MemOpChains;
1462
1463 SDOperand StackPtr;
1464
1465 // Walk the register/memloc assignments, inserting copies/loads.
1466 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1467 CCValAssign &VA = ArgLocs[i];
1468 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1469
1470 // Promote the value if needed.
1471 switch (VA.getLocInfo()) {
1472 default: assert(0 && "Unknown loc info!");
1473 case CCValAssign::Full: break;
1474 case CCValAssign::SExt:
1475 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1476 break;
1477 case CCValAssign::ZExt:
1478 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1479 break;
1480 case CCValAssign::AExt:
1481 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1482 break;
1483 }
1484
1485 if (VA.isRegLoc()) {
1486 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1487 } else {
1488 assert(VA.isMemLoc());
1489 if (StackPtr.Val == 0)
1490 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00001491
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001492 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1493 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494 }
1495 }
1496
1497 if (!MemOpChains.empty())
1498 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1499 &MemOpChains[0], MemOpChains.size());
1500
1501 // Build a sequence of copy-to-reg nodes chained together with token chain
1502 // and flag operands which copy the outgoing args into registers.
1503 SDOperand InFlag;
1504 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1505 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1506 InFlag);
1507 InFlag = Chain.getValue(1);
1508 }
1509
1510 if (isVarArg) {
1511 // From AMD64 ABI document:
1512 // For calls that may call functions that use varargs or stdargs
1513 // (prototype-less calls or calls to functions containing ellipsis (...) in
1514 // the declaration) %al is used as hidden argument to specify the number
1515 // of SSE registers used. The contents of %al do not need to match exactly
1516 // the number of registers, but must be an ubound on the number of SSE
1517 // registers used and is in the range 0 - 8 inclusive.
1518
1519 // Count the number of XMM registers allocated.
1520 static const unsigned XMMArgRegs[] = {
1521 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1522 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1523 };
1524 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1525
1526 Chain = DAG.getCopyToReg(Chain, X86::AL,
1527 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1528 InFlag = Chain.getValue(1);
1529 }
1530
1531 // If the callee is a GlobalAddress node (quite common, every direct call is)
1532 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1533 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1534 // We should use extra load for direct calls to dllimported functions in
1535 // non-JIT mode.
1536 if (getTargetMachine().getCodeModel() != CodeModel::Large
1537 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1538 getTargetMachine(), true))
1539 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1540 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1541 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1542 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1543
1544 // Returns a chain & a flag for retval copy to use.
1545 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1546 SmallVector<SDOperand, 8> Ops;
1547 Ops.push_back(Chain);
1548 Ops.push_back(Callee);
1549
1550 // Add argument registers to the end of the list so that they are known live
1551 // into the call.
1552 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1553 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1554 RegsToPass[i].second.getValueType()));
1555
1556 if (InFlag.Val)
1557 Ops.push_back(InFlag);
1558
1559 // FIXME: Do not generate X86ISD::TAILCALL for now.
1560 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1561 NodeTys, &Ops[0], Ops.size());
1562 InFlag = Chain.getValue(1);
1563
1564 // Returns a flag for retval copy to use.
1565 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1566 Ops.clear();
1567 Ops.push_back(Chain);
1568 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1569 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1570 Ops.push_back(InFlag);
1571 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1572 InFlag = Chain.getValue(1);
1573
1574 // Handle result values, copying them out of physregs into vregs that we
1575 // return.
1576 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1577}
1578
1579
1580//===----------------------------------------------------------------------===//
1581// Other Lowering Hooks
1582//===----------------------------------------------------------------------===//
1583
1584
1585SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00001586 MachineFunction &MF = DAG.getMachineFunction();
1587 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1588 int ReturnAddrIndex = FuncInfo->getRAIndex();
1589
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001590 if (ReturnAddrIndex == 0) {
1591 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001592 if (Subtarget->is64Bit())
1593 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1594 else
1595 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00001596
1597 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001598 }
1599
1600 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1601}
1602
1603
1604
1605/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1606/// specific condition code. It returns a false if it cannot do a direct
1607/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
1608/// needed.
1609static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1610 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1611 SelectionDAG &DAG) {
1612 X86CC = X86::COND_INVALID;
1613 if (!isFP) {
1614 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1615 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1616 // X > -1 -> X == 0, jump !sign.
1617 RHS = DAG.getConstant(0, RHS.getValueType());
1618 X86CC = X86::COND_NS;
1619 return true;
1620 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1621 // X < 0 -> X == 0, jump on sign.
1622 X86CC = X86::COND_S;
1623 return true;
Dan Gohman37b34262007-09-17 14:49:27 +00001624 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1625 // X < 1 -> X <= 0
1626 RHS = DAG.getConstant(0, RHS.getValueType());
1627 X86CC = X86::COND_LE;
1628 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001629 }
1630 }
1631
1632 switch (SetCCOpcode) {
1633 default: break;
1634 case ISD::SETEQ: X86CC = X86::COND_E; break;
1635 case ISD::SETGT: X86CC = X86::COND_G; break;
1636 case ISD::SETGE: X86CC = X86::COND_GE; break;
1637 case ISD::SETLT: X86CC = X86::COND_L; break;
1638 case ISD::SETLE: X86CC = X86::COND_LE; break;
1639 case ISD::SETNE: X86CC = X86::COND_NE; break;
1640 case ISD::SETULT: X86CC = X86::COND_B; break;
1641 case ISD::SETUGT: X86CC = X86::COND_A; break;
1642 case ISD::SETULE: X86CC = X86::COND_BE; break;
1643 case ISD::SETUGE: X86CC = X86::COND_AE; break;
1644 }
1645 } else {
1646 // On a floating point condition, the flags are set as follows:
1647 // ZF PF CF op
1648 // 0 | 0 | 0 | X > Y
1649 // 0 | 0 | 1 | X < Y
1650 // 1 | 0 | 0 | X == Y
1651 // 1 | 1 | 1 | unordered
1652 bool Flip = false;
1653 switch (SetCCOpcode) {
1654 default: break;
1655 case ISD::SETUEQ:
1656 case ISD::SETEQ: X86CC = X86::COND_E; break;
1657 case ISD::SETOLT: Flip = true; // Fallthrough
1658 case ISD::SETOGT:
1659 case ISD::SETGT: X86CC = X86::COND_A; break;
1660 case ISD::SETOLE: Flip = true; // Fallthrough
1661 case ISD::SETOGE:
1662 case ISD::SETGE: X86CC = X86::COND_AE; break;
1663 case ISD::SETUGT: Flip = true; // Fallthrough
1664 case ISD::SETULT:
1665 case ISD::SETLT: X86CC = X86::COND_B; break;
1666 case ISD::SETUGE: Flip = true; // Fallthrough
1667 case ISD::SETULE:
1668 case ISD::SETLE: X86CC = X86::COND_BE; break;
1669 case ISD::SETONE:
1670 case ISD::SETNE: X86CC = X86::COND_NE; break;
1671 case ISD::SETUO: X86CC = X86::COND_P; break;
1672 case ISD::SETO: X86CC = X86::COND_NP; break;
1673 }
1674 if (Flip)
1675 std::swap(LHS, RHS);
1676 }
1677
1678 return X86CC != X86::COND_INVALID;
1679}
1680
1681/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1682/// code. Current x86 isa includes the following FP cmov instructions:
1683/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1684static bool hasFPCMov(unsigned X86CC) {
1685 switch (X86CC) {
1686 default:
1687 return false;
1688 case X86::COND_B:
1689 case X86::COND_BE:
1690 case X86::COND_E:
1691 case X86::COND_P:
1692 case X86::COND_A:
1693 case X86::COND_AE:
1694 case X86::COND_NE:
1695 case X86::COND_NP:
1696 return true;
1697 }
1698}
1699
1700/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
1701/// true if Op is undef or if its value falls within the specified range (L, H].
1702static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1703 if (Op.getOpcode() == ISD::UNDEF)
1704 return true;
1705
1706 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1707 return (Val >= Low && Val < Hi);
1708}
1709
1710/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
1711/// true if Op is undef or if its value equal to the specified value.
1712static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1713 if (Op.getOpcode() == ISD::UNDEF)
1714 return true;
1715 return cast<ConstantSDNode>(Op)->getValue() == Val;
1716}
1717
1718/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1719/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1720bool X86::isPSHUFDMask(SDNode *N) {
1721 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1722
Dan Gohman7dc19012007-08-02 21:17:01 +00001723 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001724 return false;
1725
1726 // Check if the value doesn't reference the second vector.
1727 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1728 SDOperand Arg = N->getOperand(i);
1729 if (Arg.getOpcode() == ISD::UNDEF) continue;
1730 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00001731 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001732 return false;
1733 }
1734
1735 return true;
1736}
1737
1738/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1739/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1740bool X86::isPSHUFHWMask(SDNode *N) {
1741 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1742
1743 if (N->getNumOperands() != 8)
1744 return false;
1745
1746 // Lower quadword copied in order.
1747 for (unsigned i = 0; i != 4; ++i) {
1748 SDOperand Arg = N->getOperand(i);
1749 if (Arg.getOpcode() == ISD::UNDEF) continue;
1750 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1751 if (cast<ConstantSDNode>(Arg)->getValue() != i)
1752 return false;
1753 }
1754
1755 // Upper quadword shuffled.
1756 for (unsigned i = 4; i != 8; ++i) {
1757 SDOperand Arg = N->getOperand(i);
1758 if (Arg.getOpcode() == ISD::UNDEF) continue;
1759 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1760 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1761 if (Val < 4 || Val > 7)
1762 return false;
1763 }
1764
1765 return true;
1766}
1767
1768/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1769/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1770bool X86::isPSHUFLWMask(SDNode *N) {
1771 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1772
1773 if (N->getNumOperands() != 8)
1774 return false;
1775
1776 // Upper quadword copied in order.
1777 for (unsigned i = 4; i != 8; ++i)
1778 if (!isUndefOrEqual(N->getOperand(i), i))
1779 return false;
1780
1781 // Lower quadword shuffled.
1782 for (unsigned i = 0; i != 4; ++i)
1783 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1784 return false;
1785
1786 return true;
1787}
1788
1789/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1790/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1791static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1792 if (NumElems != 2 && NumElems != 4) return false;
1793
1794 unsigned Half = NumElems / 2;
1795 for (unsigned i = 0; i < Half; ++i)
1796 if (!isUndefOrInRange(Elems[i], 0, NumElems))
1797 return false;
1798 for (unsigned i = Half; i < NumElems; ++i)
1799 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1800 return false;
1801
1802 return true;
1803}
1804
1805bool X86::isSHUFPMask(SDNode *N) {
1806 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1807 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1808}
1809
1810/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1811/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1812/// half elements to come from vector 1 (which would equal the dest.) and
1813/// the upper half to come from vector 2.
1814static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1815 if (NumOps != 2 && NumOps != 4) return false;
1816
1817 unsigned Half = NumOps / 2;
1818 for (unsigned i = 0; i < Half; ++i)
1819 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1820 return false;
1821 for (unsigned i = Half; i < NumOps; ++i)
1822 if (!isUndefOrInRange(Ops[i], 0, NumOps))
1823 return false;
1824 return true;
1825}
1826
1827static bool isCommutedSHUFP(SDNode *N) {
1828 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1829 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1830}
1831
1832/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1833/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1834bool X86::isMOVHLPSMask(SDNode *N) {
1835 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1836
1837 if (N->getNumOperands() != 4)
1838 return false;
1839
1840 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1841 return isUndefOrEqual(N->getOperand(0), 6) &&
1842 isUndefOrEqual(N->getOperand(1), 7) &&
1843 isUndefOrEqual(N->getOperand(2), 2) &&
1844 isUndefOrEqual(N->getOperand(3), 3);
1845}
1846
1847/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1848/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1849/// <2, 3, 2, 3>
1850bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1851 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1852
1853 if (N->getNumOperands() != 4)
1854 return false;
1855
1856 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1857 return isUndefOrEqual(N->getOperand(0), 2) &&
1858 isUndefOrEqual(N->getOperand(1), 3) &&
1859 isUndefOrEqual(N->getOperand(2), 2) &&
1860 isUndefOrEqual(N->getOperand(3), 3);
1861}
1862
1863/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1864/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1865bool X86::isMOVLPMask(SDNode *N) {
1866 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1867
1868 unsigned NumElems = N->getNumOperands();
1869 if (NumElems != 2 && NumElems != 4)
1870 return false;
1871
1872 for (unsigned i = 0; i < NumElems/2; ++i)
1873 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1874 return false;
1875
1876 for (unsigned i = NumElems/2; i < NumElems; ++i)
1877 if (!isUndefOrEqual(N->getOperand(i), i))
1878 return false;
1879
1880 return true;
1881}
1882
1883/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1884/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1885/// and MOVLHPS.
1886bool X86::isMOVHPMask(SDNode *N) {
1887 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1888
1889 unsigned NumElems = N->getNumOperands();
1890 if (NumElems != 2 && NumElems != 4)
1891 return false;
1892
1893 for (unsigned i = 0; i < NumElems/2; ++i)
1894 if (!isUndefOrEqual(N->getOperand(i), i))
1895 return false;
1896
1897 for (unsigned i = 0; i < NumElems/2; ++i) {
1898 SDOperand Arg = N->getOperand(i + NumElems/2);
1899 if (!isUndefOrEqual(Arg, i + NumElems))
1900 return false;
1901 }
1902
1903 return true;
1904}
1905
1906/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1907/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1908bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1909 bool V2IsSplat = false) {
1910 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1911 return false;
1912
1913 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1914 SDOperand BitI = Elts[i];
1915 SDOperand BitI1 = Elts[i+1];
1916 if (!isUndefOrEqual(BitI, j))
1917 return false;
1918 if (V2IsSplat) {
1919 if (isUndefOrEqual(BitI1, NumElts))
1920 return false;
1921 } else {
1922 if (!isUndefOrEqual(BitI1, j + NumElts))
1923 return false;
1924 }
1925 }
1926
1927 return true;
1928}
1929
1930bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1931 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1932 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1933}
1934
1935/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1936/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1937bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1938 bool V2IsSplat = false) {
1939 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1940 return false;
1941
1942 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1943 SDOperand BitI = Elts[i];
1944 SDOperand BitI1 = Elts[i+1];
1945 if (!isUndefOrEqual(BitI, j + NumElts/2))
1946 return false;
1947 if (V2IsSplat) {
1948 if (isUndefOrEqual(BitI1, NumElts))
1949 return false;
1950 } else {
1951 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1952 return false;
1953 }
1954 }
1955
1956 return true;
1957}
1958
1959bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1960 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1961 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1962}
1963
1964/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1965/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1966/// <0, 0, 1, 1>
1967bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1968 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1969
1970 unsigned NumElems = N->getNumOperands();
1971 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1972 return false;
1973
1974 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1975 SDOperand BitI = N->getOperand(i);
1976 SDOperand BitI1 = N->getOperand(i+1);
1977
1978 if (!isUndefOrEqual(BitI, j))
1979 return false;
1980 if (!isUndefOrEqual(BitI1, j))
1981 return false;
1982 }
1983
1984 return true;
1985}
1986
1987/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1988/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1989/// <2, 2, 3, 3>
1990bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1991 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1992
1993 unsigned NumElems = N->getNumOperands();
1994 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1995 return false;
1996
1997 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1998 SDOperand BitI = N->getOperand(i);
1999 SDOperand BitI1 = N->getOperand(i + 1);
2000
2001 if (!isUndefOrEqual(BitI, j))
2002 return false;
2003 if (!isUndefOrEqual(BitI1, j))
2004 return false;
2005 }
2006
2007 return true;
2008}
2009
2010/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2011/// specifies a shuffle of elements that is suitable for input to MOVSS,
2012/// MOVSD, and MOVD, i.e. setting the lowest element.
2013static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2014 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2015 return false;
2016
2017 if (!isUndefOrEqual(Elts[0], NumElts))
2018 return false;
2019
2020 for (unsigned i = 1; i < NumElts; ++i) {
2021 if (!isUndefOrEqual(Elts[i], i))
2022 return false;
2023 }
2024
2025 return true;
2026}
2027
2028bool X86::isMOVLMask(SDNode *N) {
2029 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2030 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2031}
2032
2033/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2034/// of what x86 movss want. X86 movs requires the lowest element to be lowest
2035/// element of vector 2 and the other elements to come from vector 1 in order.
2036static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2037 bool V2IsSplat = false,
2038 bool V2IsUndef = false) {
2039 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2040 return false;
2041
2042 if (!isUndefOrEqual(Ops[0], 0))
2043 return false;
2044
2045 for (unsigned i = 1; i < NumOps; ++i) {
2046 SDOperand Arg = Ops[i];
2047 if (!(isUndefOrEqual(Arg, i+NumOps) ||
2048 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2049 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2050 return false;
2051 }
2052
2053 return true;
2054}
2055
2056static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2057 bool V2IsUndef = false) {
2058 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2059 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2060 V2IsSplat, V2IsUndef);
2061}
2062
2063/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2064/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2065bool X86::isMOVSHDUPMask(SDNode *N) {
2066 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2067
2068 if (N->getNumOperands() != 4)
2069 return false;
2070
2071 // Expect 1, 1, 3, 3
2072 for (unsigned i = 0; i < 2; ++i) {
2073 SDOperand Arg = N->getOperand(i);
2074 if (Arg.getOpcode() == ISD::UNDEF) continue;
2075 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2076 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2077 if (Val != 1) return false;
2078 }
2079
2080 bool HasHi = false;
2081 for (unsigned i = 2; i < 4; ++i) {
2082 SDOperand Arg = N->getOperand(i);
2083 if (Arg.getOpcode() == ISD::UNDEF) continue;
2084 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2085 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2086 if (Val != 3) return false;
2087 HasHi = true;
2088 }
2089
2090 // Don't use movshdup if it can be done with a shufps.
2091 return HasHi;
2092}
2093
2094/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2095/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2096bool X86::isMOVSLDUPMask(SDNode *N) {
2097 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2098
2099 if (N->getNumOperands() != 4)
2100 return false;
2101
2102 // Expect 0, 0, 2, 2
2103 for (unsigned i = 0; i < 2; ++i) {
2104 SDOperand Arg = N->getOperand(i);
2105 if (Arg.getOpcode() == ISD::UNDEF) continue;
2106 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2107 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2108 if (Val != 0) return false;
2109 }
2110
2111 bool HasHi = false;
2112 for (unsigned i = 2; i < 4; ++i) {
2113 SDOperand Arg = N->getOperand(i);
2114 if (Arg.getOpcode() == ISD::UNDEF) continue;
2115 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2116 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2117 if (Val != 2) return false;
2118 HasHi = true;
2119 }
2120
2121 // Don't use movshdup if it can be done with a shufps.
2122 return HasHi;
2123}
2124
2125/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2126/// specifies a identity operation on the LHS or RHS.
2127static bool isIdentityMask(SDNode *N, bool RHS = false) {
2128 unsigned NumElems = N->getNumOperands();
2129 for (unsigned i = 0; i < NumElems; ++i)
2130 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2131 return false;
2132 return true;
2133}
2134
2135/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2136/// a splat of a single element.
2137static bool isSplatMask(SDNode *N) {
2138 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2139
2140 // This is a splat operation if each element of the permute is the same, and
2141 // if the value doesn't reference the second vector.
2142 unsigned NumElems = N->getNumOperands();
2143 SDOperand ElementBase;
2144 unsigned i = 0;
2145 for (; i != NumElems; ++i) {
2146 SDOperand Elt = N->getOperand(i);
2147 if (isa<ConstantSDNode>(Elt)) {
2148 ElementBase = Elt;
2149 break;
2150 }
2151 }
2152
2153 if (!ElementBase.Val)
2154 return false;
2155
2156 for (; i != NumElems; ++i) {
2157 SDOperand Arg = N->getOperand(i);
2158 if (Arg.getOpcode() == ISD::UNDEF) continue;
2159 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2160 if (Arg != ElementBase) return false;
2161 }
2162
2163 // Make sure it is a splat of the first vector operand.
2164 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2165}
2166
2167/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2168/// a splat of a single element and it's a 2 or 4 element mask.
2169bool X86::isSplatMask(SDNode *N) {
2170 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2171
2172 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2173 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2174 return false;
2175 return ::isSplatMask(N);
2176}
2177
2178/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2179/// specifies a splat of zero element.
2180bool X86::isSplatLoMask(SDNode *N) {
2181 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2182
2183 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2184 if (!isUndefOrEqual(N->getOperand(i), 0))
2185 return false;
2186 return true;
2187}
2188
2189/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2190/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2191/// instructions.
2192unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2193 unsigned NumOperands = N->getNumOperands();
2194 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2195 unsigned Mask = 0;
2196 for (unsigned i = 0; i < NumOperands; ++i) {
2197 unsigned Val = 0;
2198 SDOperand Arg = N->getOperand(NumOperands-i-1);
2199 if (Arg.getOpcode() != ISD::UNDEF)
2200 Val = cast<ConstantSDNode>(Arg)->getValue();
2201 if (Val >= NumOperands) Val -= NumOperands;
2202 Mask |= Val;
2203 if (i != NumOperands - 1)
2204 Mask <<= Shift;
2205 }
2206
2207 return Mask;
2208}
2209
2210/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2211/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2212/// instructions.
2213unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2214 unsigned Mask = 0;
2215 // 8 nodes, but we only care about the last 4.
2216 for (unsigned i = 7; i >= 4; --i) {
2217 unsigned Val = 0;
2218 SDOperand Arg = N->getOperand(i);
2219 if (Arg.getOpcode() != ISD::UNDEF)
2220 Val = cast<ConstantSDNode>(Arg)->getValue();
2221 Mask |= (Val - 4);
2222 if (i != 4)
2223 Mask <<= 2;
2224 }
2225
2226 return Mask;
2227}
2228
2229/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2230/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2231/// instructions.
2232unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2233 unsigned Mask = 0;
2234 // 8 nodes, but we only care about the first 4.
2235 for (int i = 3; i >= 0; --i) {
2236 unsigned Val = 0;
2237 SDOperand Arg = N->getOperand(i);
2238 if (Arg.getOpcode() != ISD::UNDEF)
2239 Val = cast<ConstantSDNode>(Arg)->getValue();
2240 Mask |= Val;
2241 if (i != 0)
2242 Mask <<= 2;
2243 }
2244
2245 return Mask;
2246}
2247
2248/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2249/// specifies a 8 element shuffle that can be broken into a pair of
2250/// PSHUFHW and PSHUFLW.
2251static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2252 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2253
2254 if (N->getNumOperands() != 8)
2255 return false;
2256
2257 // Lower quadword shuffled.
2258 for (unsigned i = 0; i != 4; ++i) {
2259 SDOperand Arg = N->getOperand(i);
2260 if (Arg.getOpcode() == ISD::UNDEF) continue;
2261 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2262 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2263 if (Val > 4)
2264 return false;
2265 }
2266
2267 // Upper quadword shuffled.
2268 for (unsigned i = 4; i != 8; ++i) {
2269 SDOperand Arg = N->getOperand(i);
2270 if (Arg.getOpcode() == ISD::UNDEF) continue;
2271 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2272 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2273 if (Val < 4 || Val > 7)
2274 return false;
2275 }
2276
2277 return true;
2278}
2279
2280/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2281/// values in ther permute mask.
2282static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2283 SDOperand &V2, SDOperand &Mask,
2284 SelectionDAG &DAG) {
2285 MVT::ValueType VT = Op.getValueType();
2286 MVT::ValueType MaskVT = Mask.getValueType();
2287 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2288 unsigned NumElems = Mask.getNumOperands();
2289 SmallVector<SDOperand, 8> MaskVec;
2290
2291 for (unsigned i = 0; i != NumElems; ++i) {
2292 SDOperand Arg = Mask.getOperand(i);
2293 if (Arg.getOpcode() == ISD::UNDEF) {
2294 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2295 continue;
2296 }
2297 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2298 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2299 if (Val < NumElems)
2300 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2301 else
2302 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2303 }
2304
2305 std::swap(V1, V2);
2306 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2307 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2308}
2309
2310/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2311/// match movhlps. The lower half elements should come from upper half of
2312/// V1 (and in order), and the upper half elements should come from the upper
2313/// half of V2 (and in order).
2314static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2315 unsigned NumElems = Mask->getNumOperands();
2316 if (NumElems != 4)
2317 return false;
2318 for (unsigned i = 0, e = 2; i != e; ++i)
2319 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2320 return false;
2321 for (unsigned i = 2; i != 4; ++i)
2322 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2323 return false;
2324 return true;
2325}
2326
2327/// isScalarLoadToVector - Returns true if the node is a scalar load that
2328/// is promoted to a vector.
2329static inline bool isScalarLoadToVector(SDNode *N) {
2330 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2331 N = N->getOperand(0).Val;
2332 return ISD::isNON_EXTLoad(N);
2333 }
2334 return false;
2335}
2336
2337/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2338/// match movlp{s|d}. The lower half elements should come from lower half of
2339/// V1 (and in order), and the upper half elements should come from the upper
2340/// half of V2 (and in order). And since V1 will become the source of the
2341/// MOVLP, it must be either a vector load or a scalar load to vector.
2342static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2343 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2344 return false;
2345 // Is V2 is a vector load, don't do this transformation. We will try to use
2346 // load folding shufps op.
2347 if (ISD::isNON_EXTLoad(V2))
2348 return false;
2349
2350 unsigned NumElems = Mask->getNumOperands();
2351 if (NumElems != 2 && NumElems != 4)
2352 return false;
2353 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2354 if (!isUndefOrEqual(Mask->getOperand(i), i))
2355 return false;
2356 for (unsigned i = NumElems/2; i != NumElems; ++i)
2357 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2358 return false;
2359 return true;
2360}
2361
2362/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2363/// all the same.
2364static bool isSplatVector(SDNode *N) {
2365 if (N->getOpcode() != ISD::BUILD_VECTOR)
2366 return false;
2367
2368 SDOperand SplatValue = N->getOperand(0);
2369 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2370 if (N->getOperand(i) != SplatValue)
2371 return false;
2372 return true;
2373}
2374
2375/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2376/// to an undef.
2377static bool isUndefShuffle(SDNode *N) {
2378 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2379 return false;
2380
2381 SDOperand V1 = N->getOperand(0);
2382 SDOperand V2 = N->getOperand(1);
2383 SDOperand Mask = N->getOperand(2);
2384 unsigned NumElems = Mask.getNumOperands();
2385 for (unsigned i = 0; i != NumElems; ++i) {
2386 SDOperand Arg = Mask.getOperand(i);
2387 if (Arg.getOpcode() != ISD::UNDEF) {
2388 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2389 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2390 return false;
2391 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2392 return false;
2393 }
2394 }
2395 return true;
2396}
2397
2398/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2399/// constant +0.0.
2400static inline bool isZeroNode(SDOperand Elt) {
2401 return ((isa<ConstantSDNode>(Elt) &&
2402 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2403 (isa<ConstantFPSDNode>(Elt) &&
Dale Johannesendf8a8312007-08-31 04:03:46 +00002404 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002405}
2406
2407/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2408/// to an zero vector.
2409static bool isZeroShuffle(SDNode *N) {
2410 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2411 return false;
2412
2413 SDOperand V1 = N->getOperand(0);
2414 SDOperand V2 = N->getOperand(1);
2415 SDOperand Mask = N->getOperand(2);
2416 unsigned NumElems = Mask.getNumOperands();
2417 for (unsigned i = 0; i != NumElems; ++i) {
2418 SDOperand Arg = Mask.getOperand(i);
2419 if (Arg.getOpcode() != ISD::UNDEF) {
2420 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2421 if (Idx < NumElems) {
2422 unsigned Opc = V1.Val->getOpcode();
2423 if (Opc == ISD::UNDEF)
2424 continue;
2425 if (Opc != ISD::BUILD_VECTOR ||
2426 !isZeroNode(V1.Val->getOperand(Idx)))
2427 return false;
2428 } else if (Idx >= NumElems) {
2429 unsigned Opc = V2.Val->getOpcode();
2430 if (Opc == ISD::UNDEF)
2431 continue;
2432 if (Opc != ISD::BUILD_VECTOR ||
2433 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2434 return false;
2435 }
2436 }
2437 }
2438 return true;
2439}
2440
2441/// getZeroVector - Returns a vector of specified type with all zero elements.
2442///
2443static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2444 assert(MVT::isVector(VT) && "Expected a vector type");
2445 unsigned NumElems = MVT::getVectorNumElements(VT);
2446 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2447 bool isFP = MVT::isFloatingPoint(EVT);
2448 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2449 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2450 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2451}
2452
2453/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2454/// that point to V2 points to its first element.
2455static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2456 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2457
2458 bool Changed = false;
2459 SmallVector<SDOperand, 8> MaskVec;
2460 unsigned NumElems = Mask.getNumOperands();
2461 for (unsigned i = 0; i != NumElems; ++i) {
2462 SDOperand Arg = Mask.getOperand(i);
2463 if (Arg.getOpcode() != ISD::UNDEF) {
2464 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2465 if (Val > NumElems) {
2466 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2467 Changed = true;
2468 }
2469 }
2470 MaskVec.push_back(Arg);
2471 }
2472
2473 if (Changed)
2474 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2475 &MaskVec[0], MaskVec.size());
2476 return Mask;
2477}
2478
2479/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2480/// operation of specified width.
2481static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2482 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2483 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2484
2485 SmallVector<SDOperand, 8> MaskVec;
2486 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2487 for (unsigned i = 1; i != NumElems; ++i)
2488 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2489 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2490}
2491
2492/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2493/// of specified width.
2494static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2495 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2496 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2497 SmallVector<SDOperand, 8> MaskVec;
2498 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2499 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2500 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2501 }
2502 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2503}
2504
2505/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2506/// of specified width.
2507static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2508 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2509 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2510 unsigned Half = NumElems/2;
2511 SmallVector<SDOperand, 8> MaskVec;
2512 for (unsigned i = 0; i != Half; ++i) {
2513 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2514 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2515 }
2516 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2517}
2518
2519/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2520///
2521static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2522 SDOperand V1 = Op.getOperand(0);
2523 SDOperand Mask = Op.getOperand(2);
2524 MVT::ValueType VT = Op.getValueType();
2525 unsigned NumElems = Mask.getNumOperands();
2526 Mask = getUnpacklMask(NumElems, DAG);
2527 while (NumElems != 4) {
2528 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2529 NumElems >>= 1;
2530 }
2531 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2532
2533 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2534 Mask = getZeroVector(MaskVT, DAG);
2535 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2536 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2537 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2538}
2539
2540/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2541/// vector of zero or undef vector.
2542static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2543 unsigned NumElems, unsigned Idx,
2544 bool isZero, SelectionDAG &DAG) {
2545 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2546 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2547 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2548 SDOperand Zero = DAG.getConstant(0, EVT);
2549 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2550 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2551 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2552 &MaskVec[0], MaskVec.size());
2553 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2554}
2555
2556/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2557///
2558static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2559 unsigned NumNonZero, unsigned NumZero,
2560 SelectionDAG &DAG, TargetLowering &TLI) {
2561 if (NumNonZero > 8)
2562 return SDOperand();
2563
2564 SDOperand V(0, 0);
2565 bool First = true;
2566 for (unsigned i = 0; i < 16; ++i) {
2567 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2568 if (ThisIsNonZero && First) {
2569 if (NumZero)
2570 V = getZeroVector(MVT::v8i16, DAG);
2571 else
2572 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2573 First = false;
2574 }
2575
2576 if ((i & 1) != 0) {
2577 SDOperand ThisElt(0, 0), LastElt(0, 0);
2578 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2579 if (LastIsNonZero) {
2580 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2581 }
2582 if (ThisIsNonZero) {
2583 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2584 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2585 ThisElt, DAG.getConstant(8, MVT::i8));
2586 if (LastIsNonZero)
2587 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2588 } else
2589 ThisElt = LastElt;
2590
2591 if (ThisElt.Val)
2592 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2593 DAG.getConstant(i/2, TLI.getPointerTy()));
2594 }
2595 }
2596
2597 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2598}
2599
2600/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2601///
2602static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2603 unsigned NumNonZero, unsigned NumZero,
2604 SelectionDAG &DAG, TargetLowering &TLI) {
2605 if (NumNonZero > 4)
2606 return SDOperand();
2607
2608 SDOperand V(0, 0);
2609 bool First = true;
2610 for (unsigned i = 0; i < 8; ++i) {
2611 bool isNonZero = (NonZeros & (1 << i)) != 0;
2612 if (isNonZero) {
2613 if (First) {
2614 if (NumZero)
2615 V = getZeroVector(MVT::v8i16, DAG);
2616 else
2617 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2618 First = false;
2619 }
2620 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2621 DAG.getConstant(i, TLI.getPointerTy()));
2622 }
2623 }
2624
2625 return V;
2626}
2627
2628SDOperand
2629X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2630 // All zero's are handled with pxor.
2631 if (ISD::isBuildVectorAllZeros(Op.Val))
2632 return Op;
2633
2634 // All one's are handled with pcmpeqd.
2635 if (ISD::isBuildVectorAllOnes(Op.Val))
2636 return Op;
2637
2638 MVT::ValueType VT = Op.getValueType();
2639 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2640 unsigned EVTBits = MVT::getSizeInBits(EVT);
2641
2642 unsigned NumElems = Op.getNumOperands();
2643 unsigned NumZero = 0;
2644 unsigned NumNonZero = 0;
2645 unsigned NonZeros = 0;
Dan Gohman21463242007-07-24 22:55:08 +00002646 unsigned NumNonZeroImms = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002647 std::set<SDOperand> Values;
2648 for (unsigned i = 0; i < NumElems; ++i) {
2649 SDOperand Elt = Op.getOperand(i);
2650 if (Elt.getOpcode() != ISD::UNDEF) {
2651 Values.insert(Elt);
2652 if (isZeroNode(Elt))
2653 NumZero++;
2654 else {
2655 NonZeros |= (1 << i);
2656 NumNonZero++;
Dan Gohman21463242007-07-24 22:55:08 +00002657 if (Elt.getOpcode() == ISD::Constant ||
2658 Elt.getOpcode() == ISD::ConstantFP)
2659 NumNonZeroImms++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660 }
2661 }
2662 }
2663
2664 if (NumNonZero == 0) {
2665 if (NumZero == 0)
2666 // All undef vector. Return an UNDEF.
2667 return DAG.getNode(ISD::UNDEF, VT);
2668 else
2669 // A mix of zero and undef. Return a zero vector.
2670 return getZeroVector(VT, DAG);
2671 }
2672
2673 // Splat is obviously ok. Let legalizer expand it to a shuffle.
2674 if (Values.size() == 1)
2675 return SDOperand();
2676
2677 // Special case for single non-zero element.
2678 if (NumNonZero == 1) {
2679 unsigned Idx = CountTrailingZeros_32(NonZeros);
2680 SDOperand Item = Op.getOperand(Idx);
2681 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2682 if (Idx == 0)
2683 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2684 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2685 NumZero > 0, DAG);
2686
2687 if (EVTBits == 32) {
2688 // Turn it into a shuffle of zero and zero-extended scalar to vector.
2689 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2690 DAG);
2691 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2692 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2693 SmallVector<SDOperand, 8> MaskVec;
2694 for (unsigned i = 0; i < NumElems; i++)
2695 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2696 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2697 &MaskVec[0], MaskVec.size());
2698 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2699 DAG.getNode(ISD::UNDEF, VT), Mask);
2700 }
2701 }
2702
Dan Gohman21463242007-07-24 22:55:08 +00002703 // A vector full of immediates; various special cases are already
2704 // handled, so this is best done with a single constant-pool load.
2705 if (NumNonZero == NumNonZeroImms)
2706 return SDOperand();
2707
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002708 // Let legalizer expand 2-wide build_vectors.
2709 if (EVTBits == 64)
2710 return SDOperand();
2711
2712 // If element VT is < 32 bits, convert it to inserts into a zero vector.
2713 if (EVTBits == 8 && NumElems == 16) {
2714 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2715 *this);
2716 if (V.Val) return V;
2717 }
2718
2719 if (EVTBits == 16 && NumElems == 8) {
2720 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2721 *this);
2722 if (V.Val) return V;
2723 }
2724
2725 // If element VT is == 32 bits, turn it into a number of shuffles.
2726 SmallVector<SDOperand, 8> V;
2727 V.resize(NumElems);
2728 if (NumElems == 4 && NumZero > 0) {
2729 for (unsigned i = 0; i < 4; ++i) {
2730 bool isZero = !(NonZeros & (1 << i));
2731 if (isZero)
2732 V[i] = getZeroVector(VT, DAG);
2733 else
2734 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2735 }
2736
2737 for (unsigned i = 0; i < 2; ++i) {
2738 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2739 default: break;
2740 case 0:
2741 V[i] = V[i*2]; // Must be a zero vector.
2742 break;
2743 case 1:
2744 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2745 getMOVLMask(NumElems, DAG));
2746 break;
2747 case 2:
2748 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2749 getMOVLMask(NumElems, DAG));
2750 break;
2751 case 3:
2752 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2753 getUnpacklMask(NumElems, DAG));
2754 break;
2755 }
2756 }
2757
2758 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2759 // clears the upper bits.
2760 // FIXME: we can do the same for v4f32 case when we know both parts of
2761 // the lower half come from scalar_to_vector (loadf32). We should do
2762 // that in post legalizer dag combiner with target specific hooks.
2763 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2764 return V[0];
2765 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2766 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2767 SmallVector<SDOperand, 8> MaskVec;
2768 bool Reverse = (NonZeros & 0x3) == 2;
2769 for (unsigned i = 0; i < 2; ++i)
2770 if (Reverse)
2771 MaskVec.push_back(DAG.getConstant(1-i, EVT));
2772 else
2773 MaskVec.push_back(DAG.getConstant(i, EVT));
2774 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2775 for (unsigned i = 0; i < 2; ++i)
2776 if (Reverse)
2777 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2778 else
2779 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2780 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2781 &MaskVec[0], MaskVec.size());
2782 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2783 }
2784
2785 if (Values.size() > 2) {
2786 // Expand into a number of unpckl*.
2787 // e.g. for v4f32
2788 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2789 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2790 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
2791 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2792 for (unsigned i = 0; i < NumElems; ++i)
2793 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2794 NumElems >>= 1;
2795 while (NumElems != 0) {
2796 for (unsigned i = 0; i < NumElems; ++i)
2797 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2798 UnpckMask);
2799 NumElems >>= 1;
2800 }
2801 return V[0];
2802 }
2803
2804 return SDOperand();
2805}
2806
2807SDOperand
2808X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2809 SDOperand V1 = Op.getOperand(0);
2810 SDOperand V2 = Op.getOperand(1);
2811 SDOperand PermMask = Op.getOperand(2);
2812 MVT::ValueType VT = Op.getValueType();
2813 unsigned NumElems = PermMask.getNumOperands();
2814 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2815 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2816 bool V1IsSplat = false;
2817 bool V2IsSplat = false;
2818
2819 if (isUndefShuffle(Op.Val))
2820 return DAG.getNode(ISD::UNDEF, VT);
2821
2822 if (isZeroShuffle(Op.Val))
2823 return getZeroVector(VT, DAG);
2824
2825 if (isIdentityMask(PermMask.Val))
2826 return V1;
2827 else if (isIdentityMask(PermMask.Val, true))
2828 return V2;
2829
2830 if (isSplatMask(PermMask.Val)) {
2831 if (NumElems <= 4) return Op;
2832 // Promote it to a v4i32 splat.
2833 return PromoteSplat(Op, DAG);
2834 }
2835
2836 if (X86::isMOVLMask(PermMask.Val))
2837 return (V1IsUndef) ? V2 : Op;
2838
2839 if (X86::isMOVSHDUPMask(PermMask.Val) ||
2840 X86::isMOVSLDUPMask(PermMask.Val) ||
2841 X86::isMOVHLPSMask(PermMask.Val) ||
2842 X86::isMOVHPMask(PermMask.Val) ||
2843 X86::isMOVLPMask(PermMask.Val))
2844 return Op;
2845
2846 if (ShouldXformToMOVHLPS(PermMask.Val) ||
2847 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2848 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2849
2850 bool Commuted = false;
2851 V1IsSplat = isSplatVector(V1.Val);
2852 V2IsSplat = isSplatVector(V2.Val);
2853 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2854 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2855 std::swap(V1IsSplat, V2IsSplat);
2856 std::swap(V1IsUndef, V2IsUndef);
2857 Commuted = true;
2858 }
2859
2860 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2861 if (V2IsUndef) return V1;
2862 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2863 if (V2IsSplat) {
2864 // V2 is a splat, so the mask may be malformed. That is, it may point
2865 // to any V2 element. The instruction selectior won't like this. Get
2866 // a corrected mask and commute to form a proper MOVS{S|D}.
2867 SDOperand NewMask = getMOVLMask(NumElems, DAG);
2868 if (NewMask.Val != PermMask.Val)
2869 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2870 }
2871 return Op;
2872 }
2873
2874 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2875 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2876 X86::isUNPCKLMask(PermMask.Val) ||
2877 X86::isUNPCKHMask(PermMask.Val))
2878 return Op;
2879
2880 if (V2IsSplat) {
2881 // Normalize mask so all entries that point to V2 points to its first
2882 // element then try to match unpck{h|l} again. If match, return a
2883 // new vector_shuffle with the corrected mask.
2884 SDOperand NewMask = NormalizeMask(PermMask, DAG);
2885 if (NewMask.Val != PermMask.Val) {
2886 if (X86::isUNPCKLMask(PermMask.Val, true)) {
2887 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2888 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2889 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2890 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2891 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2892 }
2893 }
2894 }
2895
2896 // Normalize the node to match x86 shuffle ops if needed
2897 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2898 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2899
2900 if (Commuted) {
2901 // Commute is back and try unpck* again.
2902 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2903 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2904 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2905 X86::isUNPCKLMask(PermMask.Val) ||
2906 X86::isUNPCKHMask(PermMask.Val))
2907 return Op;
2908 }
2909
2910 // If VT is integer, try PSHUF* first, then SHUFP*.
2911 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00002912 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2913 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2914 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2915 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002916 X86::isPSHUFHWMask(PermMask.Val) ||
2917 X86::isPSHUFLWMask(PermMask.Val)) {
2918 if (V2.getOpcode() != ISD::UNDEF)
2919 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2920 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2921 return Op;
2922 }
2923
2924 if (X86::isSHUFPMask(PermMask.Val) &&
2925 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
2926 return Op;
2927
2928 // Handle v8i16 shuffle high / low shuffle node pair.
2929 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2930 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2931 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2932 SmallVector<SDOperand, 8> MaskVec;
2933 for (unsigned i = 0; i != 4; ++i)
2934 MaskVec.push_back(PermMask.getOperand(i));
2935 for (unsigned i = 4; i != 8; ++i)
2936 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2937 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2938 &MaskVec[0], MaskVec.size());
2939 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2940 MaskVec.clear();
2941 for (unsigned i = 0; i != 4; ++i)
2942 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2943 for (unsigned i = 4; i != 8; ++i)
2944 MaskVec.push_back(PermMask.getOperand(i));
2945 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2946 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2947 }
2948 } else {
2949 // Floating point cases in the other order.
2950 if (X86::isSHUFPMask(PermMask.Val))
2951 return Op;
2952 if (X86::isPSHUFDMask(PermMask.Val) ||
2953 X86::isPSHUFHWMask(PermMask.Val) ||
2954 X86::isPSHUFLWMask(PermMask.Val)) {
2955 if (V2.getOpcode() != ISD::UNDEF)
2956 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2957 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2958 return Op;
2959 }
2960 }
2961
2962 if (NumElems == 4 &&
2963 // Don't do this for MMX.
2964 MVT::getSizeInBits(VT) != 64) {
2965 MVT::ValueType MaskVT = PermMask.getValueType();
2966 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2967 SmallVector<std::pair<int, int>, 8> Locs;
2968 Locs.reserve(NumElems);
2969 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2970 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2971 unsigned NumHi = 0;
2972 unsigned NumLo = 0;
2973 // If no more than two elements come from either vector. This can be
2974 // implemented with two shuffles. First shuffle gather the elements.
2975 // The second shuffle, which takes the first shuffle as both of its
2976 // vector operands, put the elements into the right order.
2977 for (unsigned i = 0; i != NumElems; ++i) {
2978 SDOperand Elt = PermMask.getOperand(i);
2979 if (Elt.getOpcode() == ISD::UNDEF) {
2980 Locs[i] = std::make_pair(-1, -1);
2981 } else {
2982 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2983 if (Val < NumElems) {
2984 Locs[i] = std::make_pair(0, NumLo);
2985 Mask1[NumLo] = Elt;
2986 NumLo++;
2987 } else {
2988 Locs[i] = std::make_pair(1, NumHi);
2989 if (2+NumHi < NumElems)
2990 Mask1[2+NumHi] = Elt;
2991 NumHi++;
2992 }
2993 }
2994 }
2995 if (NumLo <= 2 && NumHi <= 2) {
2996 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2997 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2998 &Mask1[0], Mask1.size()));
2999 for (unsigned i = 0; i != NumElems; ++i) {
3000 if (Locs[i].first == -1)
3001 continue;
3002 else {
3003 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3004 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3005 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3006 }
3007 }
3008
3009 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3010 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3011 &Mask2[0], Mask2.size()));
3012 }
3013
3014 // Break it into (shuffle shuffle_hi, shuffle_lo).
3015 Locs.clear();
3016 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3017 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3018 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3019 unsigned MaskIdx = 0;
3020 unsigned LoIdx = 0;
3021 unsigned HiIdx = NumElems/2;
3022 for (unsigned i = 0; i != NumElems; ++i) {
3023 if (i == NumElems/2) {
3024 MaskPtr = &HiMask;
3025 MaskIdx = 1;
3026 LoIdx = 0;
3027 HiIdx = NumElems/2;
3028 }
3029 SDOperand Elt = PermMask.getOperand(i);
3030 if (Elt.getOpcode() == ISD::UNDEF) {
3031 Locs[i] = std::make_pair(-1, -1);
3032 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3033 Locs[i] = std::make_pair(MaskIdx, LoIdx);
3034 (*MaskPtr)[LoIdx] = Elt;
3035 LoIdx++;
3036 } else {
3037 Locs[i] = std::make_pair(MaskIdx, HiIdx);
3038 (*MaskPtr)[HiIdx] = Elt;
3039 HiIdx++;
3040 }
3041 }
3042
3043 SDOperand LoShuffle =
3044 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3045 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3046 &LoMask[0], LoMask.size()));
3047 SDOperand HiShuffle =
3048 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3049 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3050 &HiMask[0], HiMask.size()));
3051 SmallVector<SDOperand, 8> MaskOps;
3052 for (unsigned i = 0; i != NumElems; ++i) {
3053 if (Locs[i].first == -1) {
3054 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3055 } else {
3056 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3057 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3058 }
3059 }
3060 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3061 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3062 &MaskOps[0], MaskOps.size()));
3063 }
3064
3065 return SDOperand();
3066}
3067
3068SDOperand
3069X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3070 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3071 return SDOperand();
3072
3073 MVT::ValueType VT = Op.getValueType();
3074 // TODO: handle v16i8.
3075 if (MVT::getSizeInBits(VT) == 16) {
3076 // Transform it so it match pextrw which produces a 32-bit result.
3077 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3078 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3079 Op.getOperand(0), Op.getOperand(1));
3080 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
3081 DAG.getValueType(VT));
3082 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3083 } else if (MVT::getSizeInBits(VT) == 32) {
3084 SDOperand Vec = Op.getOperand(0);
3085 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3086 if (Idx == 0)
3087 return Op;
3088 // SHUFPS the element to the lowest double word, then movss.
3089 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3090 SmallVector<SDOperand, 8> IdxVec;
3091 IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3092 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3093 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3094 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3095 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3096 &IdxVec[0], IdxVec.size());
3097 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3098 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3099 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3100 DAG.getConstant(0, getPointerTy()));
3101 } else if (MVT::getSizeInBits(VT) == 64) {
3102 SDOperand Vec = Op.getOperand(0);
3103 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3104 if (Idx == 0)
3105 return Op;
3106
3107 // UNPCKHPD the element to the lowest double word, then movsd.
3108 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3109 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3110 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3111 SmallVector<SDOperand, 8> IdxVec;
3112 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3113 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3114 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3115 &IdxVec[0], IdxVec.size());
3116 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3117 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3118 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3119 DAG.getConstant(0, getPointerTy()));
3120 }
3121
3122 return SDOperand();
3123}
3124
3125SDOperand
3126X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3127 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3128 // as its second argument.
3129 MVT::ValueType VT = Op.getValueType();
3130 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3131 SDOperand N0 = Op.getOperand(0);
3132 SDOperand N1 = Op.getOperand(1);
3133 SDOperand N2 = Op.getOperand(2);
3134 if (MVT::getSizeInBits(BaseVT) == 16) {
3135 if (N1.getValueType() != MVT::i32)
3136 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3137 if (N2.getValueType() != MVT::i32)
3138 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3139 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3140 } else if (MVT::getSizeInBits(BaseVT) == 32) {
3141 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3142 if (Idx == 0) {
3143 // Use a movss.
3144 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3145 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3146 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3147 SmallVector<SDOperand, 8> MaskVec;
3148 MaskVec.push_back(DAG.getConstant(4, BaseVT));
3149 for (unsigned i = 1; i <= 3; ++i)
3150 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3151 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3152 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3153 &MaskVec[0], MaskVec.size()));
3154 } else {
3155 // Use two pinsrw instructions to insert a 32 bit value.
3156 Idx <<= 1;
3157 if (MVT::isFloatingPoint(N1.getValueType())) {
Evan Cheng1eea6752007-07-31 06:21:44 +00003158 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3159 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3160 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3161 DAG.getConstant(0, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003162 }
3163 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3164 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3165 DAG.getConstant(Idx, getPointerTy()));
3166 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3167 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3168 DAG.getConstant(Idx+1, getPointerTy()));
3169 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3170 }
3171 }
3172
3173 return SDOperand();
3174}
3175
3176SDOperand
3177X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3178 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3179 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3180}
3181
3182// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3183// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3184// one of the above mentioned nodes. It has to be wrapped because otherwise
3185// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3186// be used to form addressing mode. These wrapped nodes will be selected
3187// into MOV32ri.
3188SDOperand
3189X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3190 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3191 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3192 getPointerTy(),
3193 CP->getAlignment());
3194 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3195 // With PIC, the address is actually $g + Offset.
3196 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3197 !Subtarget->isPICStyleRIPRel()) {
3198 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3199 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3200 Result);
3201 }
3202
3203 return Result;
3204}
3205
3206SDOperand
3207X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3208 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3209 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3210 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3211 // With PIC, the address is actually $g + Offset.
3212 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3213 !Subtarget->isPICStyleRIPRel()) {
3214 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3215 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3216 Result);
3217 }
3218
3219 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3220 // load the value at address GV, not the value of GV itself. This means that
3221 // the GlobalAddress must be in the base or index register of the address, not
3222 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3223 // The same applies for external symbols during PIC codegen
3224 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3225 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3226
3227 return Result;
3228}
3229
3230// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3231static SDOperand
3232LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3233 const MVT::ValueType PtrVT) {
3234 SDOperand InFlag;
3235 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3236 DAG.getNode(X86ISD::GlobalBaseReg,
3237 PtrVT), InFlag);
3238 InFlag = Chain.getValue(1);
3239
3240 // emit leal symbol@TLSGD(,%ebx,1), %eax
3241 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3242 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3243 GA->getValueType(0),
3244 GA->getOffset());
3245 SDOperand Ops[] = { Chain, TGA, InFlag };
3246 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3247 InFlag = Result.getValue(2);
3248 Chain = Result.getValue(1);
3249
3250 // call ___tls_get_addr. This function receives its argument in
3251 // the register EAX.
3252 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3253 InFlag = Chain.getValue(1);
3254
3255 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3256 SDOperand Ops1[] = { Chain,
3257 DAG.getTargetExternalSymbol("___tls_get_addr",
3258 PtrVT),
3259 DAG.getRegister(X86::EAX, PtrVT),
3260 DAG.getRegister(X86::EBX, PtrVT),
3261 InFlag };
3262 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3263 InFlag = Chain.getValue(1);
3264
3265 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3266}
3267
3268// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3269// "local exec" model.
3270static SDOperand
3271LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3272 const MVT::ValueType PtrVT) {
3273 // Get the Thread Pointer
3274 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3275 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3276 // exec)
3277 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3278 GA->getValueType(0),
3279 GA->getOffset());
3280 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3281
3282 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3283 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3284
3285 // The address of the thread local variable is the add of the thread
3286 // pointer with the offset of the variable.
3287 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3288}
3289
3290SDOperand
3291X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3292 // TODO: implement the "local dynamic" model
3293 // TODO: implement the "initial exec"model for pic executables
3294 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3295 "TLS not implemented for non-ELF and 64-bit targets");
3296 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3297 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3298 // otherwise use the "Local Exec"TLS Model
3299 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3300 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3301 else
3302 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3303}
3304
3305SDOperand
3306X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3307 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3308 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3309 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3310 // With PIC, the address is actually $g + Offset.
3311 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3312 !Subtarget->isPICStyleRIPRel()) {
3313 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3314 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3315 Result);
3316 }
3317
3318 return Result;
3319}
3320
3321SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3322 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3323 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3324 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3325 // With PIC, the address is actually $g + Offset.
3326 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3327 !Subtarget->isPICStyleRIPRel()) {
3328 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3329 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3330 Result);
3331 }
3332
3333 return Result;
3334}
3335
3336SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3337 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3338 "Not an i64 shift!");
3339 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3340 SDOperand ShOpLo = Op.getOperand(0);
3341 SDOperand ShOpHi = Op.getOperand(1);
3342 SDOperand ShAmt = Op.getOperand(2);
3343 SDOperand Tmp1 = isSRA ?
3344 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3345 DAG.getConstant(0, MVT::i32);
3346
3347 SDOperand Tmp2, Tmp3;
3348 if (Op.getOpcode() == ISD::SHL_PARTS) {
3349 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3350 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3351 } else {
3352 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3353 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3354 }
3355
3356 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3357 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3358 DAG.getConstant(32, MVT::i8));
Evan Cheng621216e2007-09-29 00:00:36 +00003359 SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
3360 AndNode, DAG.getConstant(0, MVT::i8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003361
3362 SDOperand Hi, Lo;
3363 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00003364 unsigned Opc = X86ISD::CMOV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003365 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3366 SmallVector<SDOperand, 4> Ops;
3367 if (Op.getOpcode() == ISD::SHL_PARTS) {
3368 Ops.push_back(Tmp2);
3369 Ops.push_back(Tmp3);
3370 Ops.push_back(CC);
Evan Cheng950aac02007-09-25 01:57:46 +00003371 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003372 Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003373
3374 Ops.clear();
3375 Ops.push_back(Tmp3);
3376 Ops.push_back(Tmp1);
3377 Ops.push_back(CC);
Evan Cheng950aac02007-09-25 01:57:46 +00003378 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003379 Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003380 } else {
3381 Ops.push_back(Tmp2);
3382 Ops.push_back(Tmp3);
3383 Ops.push_back(CC);
Evan Cheng950aac02007-09-25 01:57:46 +00003384 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003385 Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003386
3387 Ops.clear();
3388 Ops.push_back(Tmp3);
3389 Ops.push_back(Tmp1);
3390 Ops.push_back(CC);
Evan Cheng950aac02007-09-25 01:57:46 +00003391 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003392 Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003393 }
3394
3395 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3396 Ops.clear();
3397 Ops.push_back(Lo);
3398 Ops.push_back(Hi);
3399 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3400}
3401
Dan Gohman242a5ba2007-09-25 18:23:27 +00003402SDOperand X86TargetLowering::LowerIntegerDivOrRem(SDOperand Op, SelectionDAG &DAG) {
3403 unsigned Opcode = Op.getOpcode();
3404 MVT::ValueType NVT = Op.getValueType();
3405 bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM;
3406 bool isDiv = Opcode == ISD::SDIV || Opcode == ISD::UDIV;
3407 unsigned Opc = isSigned ? X86ISD::IDIV : X86ISD::DIV;
3408
3409 SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3410 SDOperand DR = DAG.getNode(Opc, DAG.getVTList(NVT, NVT), Ops, 2);
3411
3412 if (isDiv)
3413 return DR;
3414
3415 return SDOperand(DR.Val, 1);
3416}
3417
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003418SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3419 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3420 Op.getOperand(0).getValueType() >= MVT::i16 &&
3421 "Unknown SINT_TO_FP to lower!");
3422
3423 SDOperand Result;
3424 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3425 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3426 MachineFunction &MF = DAG.getMachineFunction();
3427 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3428 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3429 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3430 StackSlot, NULL, 0);
3431
Dale Johannesen2fc20782007-09-14 22:26:36 +00003432 // These are really Legal; caller falls through into that case.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003433 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3434 return Result;
3435 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003436 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003437 if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3438 Subtarget->is64Bit())
3439 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003440
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003441 // Build the FILD
3442 SDVTList Tys;
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003443 bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3444 (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
Dale Johannesen2fc20782007-09-14 22:26:36 +00003445 if (useSSE)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003446 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3447 else
3448 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3449 SmallVector<SDOperand, 8> Ops;
3450 Ops.push_back(Chain);
3451 Ops.push_back(StackSlot);
3452 Ops.push_back(DAG.getValueType(SrcVT));
Dale Johannesen2fc20782007-09-14 22:26:36 +00003453 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003454 Tys, &Ops[0], Ops.size());
3455
Dale Johannesen2fc20782007-09-14 22:26:36 +00003456 if (useSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003457 Chain = Result.getValue(1);
3458 SDOperand InFlag = Result.getValue(2);
3459
3460 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3461 // shouldn't be necessary except that RFP cannot be live across
3462 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3463 MachineFunction &MF = DAG.getMachineFunction();
3464 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3465 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3466 Tys = DAG.getVTList(MVT::Other);
3467 SmallVector<SDOperand, 8> Ops;
3468 Ops.push_back(Chain);
3469 Ops.push_back(Result);
3470 Ops.push_back(StackSlot);
3471 Ops.push_back(DAG.getValueType(Op.getValueType()));
3472 Ops.push_back(InFlag);
3473 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3474 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3475 }
3476
3477 return Result;
3478}
3479
3480SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3481 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3482 "Unknown FP_TO_SINT to lower!");
3483 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3484 // stack slot.
Dale Johannesen2fc20782007-09-14 22:26:36 +00003485 SDOperand Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003486 MachineFunction &MF = DAG.getMachineFunction();
3487 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3488 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3489 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3490
Dale Johannesen2fc20782007-09-14 22:26:36 +00003491 // These are really Legal.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003492 if (Op.getValueType() == MVT::i32 &&
3493 X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
3494 return Result;
3495 if (Op.getValueType() == MVT::i32 &&
3496 X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003497 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003498 if (Subtarget->is64Bit() &&
3499 Op.getValueType() == MVT::i64 &&
3500 Op.getOperand(0).getValueType() != MVT::f80)
3501 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003502
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003503 unsigned Opc;
3504 switch (Op.getValueType()) {
3505 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3506 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3507 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3508 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3509 }
3510
3511 SDOperand Chain = DAG.getEntryNode();
3512 SDOperand Value = Op.getOperand(0);
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003513 if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3514 (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003515 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3516 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3517 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3518 SDOperand Ops[] = {
3519 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3520 };
3521 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3522 Chain = Value.getValue(1);
3523 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3524 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3525 }
3526
3527 // Build the FP_TO_INT*_IN_MEM
3528 SDOperand Ops[] = { Chain, Value, StackSlot };
3529 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3530
3531 // Load the result.
3532 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3533}
3534
3535SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3536 MVT::ValueType VT = Op.getValueType();
3537 MVT::ValueType EltVT = VT;
3538 if (MVT::isVector(VT))
3539 EltVT = MVT::getVectorElementType(VT);
3540 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3541 std::vector<Constant*> CV;
3542 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003543 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003544 CV.push_back(C);
3545 CV.push_back(C);
3546 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003547 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003548 CV.push_back(C);
3549 CV.push_back(C);
3550 CV.push_back(C);
3551 CV.push_back(C);
3552 }
Dan Gohman11821702007-07-27 17:16:43 +00003553 Constant *C = ConstantVector::get(CV);
3554 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3555 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3556 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003557 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3558}
3559
3560SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3561 MVT::ValueType VT = Op.getValueType();
3562 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00003563 unsigned EltNum = 1;
3564 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003565 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00003566 EltNum = MVT::getVectorNumElements(VT);
3567 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003568 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3569 std::vector<Constant*> CV;
3570 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003571 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003572 CV.push_back(C);
3573 CV.push_back(C);
3574 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003575 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003576 CV.push_back(C);
3577 CV.push_back(C);
3578 CV.push_back(C);
3579 CV.push_back(C);
3580 }
Dan Gohman11821702007-07-27 17:16:43 +00003581 Constant *C = ConstantVector::get(CV);
3582 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3583 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3584 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00003585 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00003586 return DAG.getNode(ISD::BIT_CONVERT, VT,
3587 DAG.getNode(ISD::XOR, MVT::v2i64,
3588 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3589 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3590 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00003591 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3592 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003593}
3594
3595SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3596 SDOperand Op0 = Op.getOperand(0);
3597 SDOperand Op1 = Op.getOperand(1);
3598 MVT::ValueType VT = Op.getValueType();
3599 MVT::ValueType SrcVT = Op1.getValueType();
3600 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
3601
3602 // If second operand is smaller, extend it first.
3603 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3604 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3605 SrcVT = VT;
Dale Johannesenb9de9f02007-09-06 18:13:44 +00003606 SrcTy = MVT::getTypeForValueType(SrcVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003607 }
3608
3609 // First get the sign bit of second operand.
3610 std::vector<Constant*> CV;
3611 if (SrcVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003612 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
3613 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003614 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003615 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
3616 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3617 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3618 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003619 }
Dan Gohman11821702007-07-27 17:16:43 +00003620 Constant *C = ConstantVector::get(CV);
3621 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3622 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3623 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003624 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3625
3626 // Shift sign bit right or left if the two operands have different types.
3627 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3628 // Op0 is MVT::f32, Op1 is MVT::f64.
3629 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3630 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3631 DAG.getConstant(32, MVT::i32));
3632 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3633 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3634 DAG.getConstant(0, getPointerTy()));
3635 }
3636
3637 // Clear first operand sign bit.
3638 CV.clear();
3639 if (VT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003640 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
3641 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003642 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003643 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
3644 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3645 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3646 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003647 }
Dan Gohman11821702007-07-27 17:16:43 +00003648 C = ConstantVector::get(CV);
3649 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3650 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3651 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003652 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3653
3654 // Or the value with the sign bit.
3655 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3656}
3657
Evan Cheng621216e2007-09-29 00:00:36 +00003658SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Evan Cheng950aac02007-09-25 01:57:46 +00003659 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
Evan Cheng6afec3d2007-09-26 00:45:55 +00003660 SDOperand Cond;
Evan Cheng950aac02007-09-25 01:57:46 +00003661 SDOperand Op0 = Op.getOperand(0);
3662 SDOperand Op1 = Op.getOperand(1);
3663 SDOperand CC = Op.getOperand(2);
3664 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3665 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3666 unsigned X86CC;
3667
Evan Cheng950aac02007-09-25 01:57:46 +00003668 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
Evan Cheng6afec3d2007-09-26 00:45:55 +00003669 Op0, Op1, DAG)) {
Evan Cheng621216e2007-09-29 00:00:36 +00003670 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
3671 return DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00003672 DAG.getConstant(X86CC, MVT::i8), Cond);
Evan Cheng6afec3d2007-09-26 00:45:55 +00003673 }
Evan Cheng950aac02007-09-25 01:57:46 +00003674
3675 assert(isFP && "Illegal integer SetCC!");
3676
Evan Cheng621216e2007-09-29 00:00:36 +00003677 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
Evan Cheng950aac02007-09-25 01:57:46 +00003678 switch (SetCCOpcode) {
3679 default: assert(false && "Illegal floating point SetCC!");
3680 case ISD::SETOEQ: { // !PF & ZF
Evan Cheng621216e2007-09-29 00:00:36 +00003681 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00003682 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003683 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00003684 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
3685 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3686 }
3687 case ISD::SETUNE: { // PF | !ZF
Evan Cheng621216e2007-09-29 00:00:36 +00003688 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00003689 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003690 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00003691 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
3692 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3693 }
3694 }
3695}
3696
3697
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003698SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3699 bool addTest = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003700 SDOperand Cond = Op.getOperand(0);
3701 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003702
3703 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00003704 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003705
3706 if (Cond.getOpcode() == X86ISD::SETCC) {
3707 CC = Cond.getOperand(0);
3708
3709 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3710 // (since flag operand cannot be shared). Use it as the condition setting
3711 // operand in place of the X86ISD::SETCC.
3712 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3713 // to use a test instead of duplicating the X86ISD::CMP (for register
3714 // pressure reason)?
3715 SDOperand Cmp = Cond.getOperand(1);
3716 unsigned Opc = Cmp.getOpcode();
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003717 bool IllegalFPCMov =
3718 ! ((X86ScalarSSEf32 && Op.getValueType()==MVT::f32) ||
3719 (X86ScalarSSEf64 && Op.getValueType()==MVT::f64)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003720 !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Evan Cheng621216e2007-09-29 00:00:36 +00003721 if ((Opc == X86ISD::CMP ||
3722 Opc == X86ISD::COMI ||
3723 Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
Evan Cheng950aac02007-09-25 01:57:46 +00003724 Cond = DAG.getNode(Opc, MVT::i32, Cmp.getOperand(0), Cmp.getOperand(1));
3725 addTest = false;
3726 }
3727 }
3728
3729 if (addTest) {
3730 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00003731 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Cond,
Evan Cheng950aac02007-09-25 01:57:46 +00003732 DAG.getConstant(0, MVT::i8));
3733 }
3734
3735 const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
3736 MVT::Flag);
3737 SmallVector<SDOperand, 4> Ops;
3738 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3739 // condition is true.
3740 Ops.push_back(Op.getOperand(2));
3741 Ops.push_back(Op.getOperand(1));
3742 Ops.push_back(CC);
3743 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003744 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
Evan Cheng950aac02007-09-25 01:57:46 +00003745}
3746
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003747SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3748 bool addTest = true;
3749 SDOperand Chain = Op.getOperand(0);
3750 SDOperand Cond = Op.getOperand(1);
3751 SDOperand Dest = Op.getOperand(2);
3752 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003753
3754 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00003755 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003756
3757 if (Cond.getOpcode() == X86ISD::SETCC) {
3758 CC = Cond.getOperand(0);
3759
3760 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3761 // (since flag operand cannot be shared). Use it as the condition setting
3762 // operand in place of the X86ISD::SETCC.
3763 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3764 // to use a test instead of duplicating the X86ISD::CMP (for register
3765 // pressure reason)?
3766 SDOperand Cmp = Cond.getOperand(1);
3767 unsigned Opc = Cmp.getOpcode();
Evan Cheng621216e2007-09-29 00:00:36 +00003768 if (Opc == X86ISD::CMP ||
3769 Opc == X86ISD::COMI ||
3770 Opc == X86ISD::UCOMI) {
Evan Cheng950aac02007-09-25 01:57:46 +00003771 Cond = DAG.getNode(Opc, MVT::i32, Cmp.getOperand(0), Cmp.getOperand(1));
3772 addTest = false;
3773 }
3774 }
3775
3776 if (addTest) {
3777 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00003778 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00003779 }
Evan Cheng621216e2007-09-29 00:00:36 +00003780 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
Evan Cheng950aac02007-09-25 01:57:46 +00003781 Chain, Op.getOperand(2), CC, Cond);
3782}
3783
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003784SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3785 unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3786
3787 if (Subtarget->is64Bit())
3788 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3789 else
3790 switch (CallingConv) {
3791 default:
3792 assert(0 && "Unsupported calling convention");
3793 case CallingConv::Fast:
3794 // TODO: Implement fastcc
3795 // Falls through
3796 case CallingConv::C:
3797 case CallingConv::X86_StdCall:
3798 return LowerCCCCallTo(Op, DAG, CallingConv);
3799 case CallingConv::X86_FastCall:
3800 return LowerFastCCCallTo(Op, DAG, CallingConv);
3801 }
3802}
3803
3804
3805// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3806// Calls to _alloca is needed to probe the stack when allocating more than 4k
3807// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3808// that the guard pages used by the OS virtual memory manager are allocated in
3809// correct sequence.
3810SDOperand
3811X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3812 SelectionDAG &DAG) {
3813 assert(Subtarget->isTargetCygMing() &&
3814 "This should be used only on Cygwin/Mingw targets");
3815
3816 // Get the inputs.
3817 SDOperand Chain = Op.getOperand(0);
3818 SDOperand Size = Op.getOperand(1);
3819 // FIXME: Ensure alignment here
3820
3821 SDOperand Flag;
3822
3823 MVT::ValueType IntPtr = getPointerTy();
3824 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3825
3826 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3827 Flag = Chain.getValue(1);
3828
3829 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3830 SDOperand Ops[] = { Chain,
3831 DAG.getTargetExternalSymbol("_alloca", IntPtr),
3832 DAG.getRegister(X86::EAX, IntPtr),
3833 Flag };
3834 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3835 Flag = Chain.getValue(1);
3836
3837 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3838
3839 std::vector<MVT::ValueType> Tys;
3840 Tys.push_back(SPTy);
3841 Tys.push_back(MVT::Other);
3842 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3843 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3844}
3845
3846SDOperand
3847X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3848 MachineFunction &MF = DAG.getMachineFunction();
3849 const Function* Fn = MF.getFunction();
3850 if (Fn->hasExternalLinkage() &&
3851 Subtarget->isTargetCygMing() &&
3852 Fn->getName() == "main")
3853 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3854
3855 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3856 if (Subtarget->is64Bit())
3857 return LowerX86_64CCCArguments(Op, DAG);
3858 else
3859 switch(CC) {
3860 default:
3861 assert(0 && "Unsupported calling convention");
3862 case CallingConv::Fast:
3863 // TODO: implement fastcc.
3864
3865 // Falls through
3866 case CallingConv::C:
3867 return LowerCCCArguments(Op, DAG);
3868 case CallingConv::X86_StdCall:
3869 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3870 return LowerCCCArguments(Op, DAG, true);
3871 case CallingConv::X86_FastCall:
3872 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3873 return LowerFastCCArguments(Op, DAG);
3874 }
3875}
3876
3877SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3878 SDOperand InFlag(0, 0);
3879 SDOperand Chain = Op.getOperand(0);
3880 unsigned Align =
3881 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3882 if (Align == 0) Align = 1;
3883
3884 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003885 // If not DWORD aligned or size is more than the threshold, call memset.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00003886 // The libc version is likely to be faster for these cases. It can use the
3887 // address value and run time information about the CPU.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003888 if ((Align & 3) != 0 ||
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003889 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003890 MVT::ValueType IntPtr = getPointerTy();
3891 const Type *IntPtrTy = getTargetData()->getIntPtrType();
3892 TargetLowering::ArgListTy Args;
3893 TargetLowering::ArgListEntry Entry;
3894 Entry.Node = Op.getOperand(1);
3895 Entry.Ty = IntPtrTy;
3896 Args.push_back(Entry);
3897 // Extend the unsigned i8 argument to be an int value for the call.
3898 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3899 Entry.Ty = IntPtrTy;
3900 Args.push_back(Entry);
3901 Entry.Node = Op.getOperand(3);
3902 Args.push_back(Entry);
3903 std::pair<SDOperand,SDOperand> CallResult =
3904 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3905 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3906 return CallResult.second;
3907 }
3908
3909 MVT::ValueType AVT;
3910 SDOperand Count;
3911 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3912 unsigned BytesLeft = 0;
3913 bool TwoRepStos = false;
3914 if (ValC) {
3915 unsigned ValReg;
3916 uint64_t Val = ValC->getValue() & 255;
3917
3918 // If the value is a constant, then we can potentially use larger sets.
3919 switch (Align & 3) {
3920 case 2: // WORD aligned
3921 AVT = MVT::i16;
3922 ValReg = X86::AX;
3923 Val = (Val << 8) | Val;
3924 break;
3925 case 0: // DWORD aligned
3926 AVT = MVT::i32;
3927 ValReg = X86::EAX;
3928 Val = (Val << 8) | Val;
3929 Val = (Val << 16) | Val;
3930 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
3931 AVT = MVT::i64;
3932 ValReg = X86::RAX;
3933 Val = (Val << 32) | Val;
3934 }
3935 break;
3936 default: // Byte aligned
3937 AVT = MVT::i8;
3938 ValReg = X86::AL;
3939 Count = Op.getOperand(3);
3940 break;
3941 }
3942
3943 if (AVT > MVT::i8) {
3944 if (I) {
3945 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3946 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3947 BytesLeft = I->getValue() % UBytes;
3948 } else {
3949 assert(AVT >= MVT::i32 &&
3950 "Do not use rep;stos if not at least DWORD aligned");
3951 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3952 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3953 TwoRepStos = true;
3954 }
3955 }
3956
3957 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3958 InFlag);
3959 InFlag = Chain.getValue(1);
3960 } else {
3961 AVT = MVT::i8;
3962 Count = Op.getOperand(3);
3963 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3964 InFlag = Chain.getValue(1);
3965 }
3966
3967 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3968 Count, InFlag);
3969 InFlag = Chain.getValue(1);
3970 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3971 Op.getOperand(1), InFlag);
3972 InFlag = Chain.getValue(1);
3973
3974 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3975 SmallVector<SDOperand, 8> Ops;
3976 Ops.push_back(Chain);
3977 Ops.push_back(DAG.getValueType(AVT));
3978 Ops.push_back(InFlag);
3979 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3980
3981 if (TwoRepStos) {
3982 InFlag = Chain.getValue(1);
3983 Count = Op.getOperand(3);
3984 MVT::ValueType CVT = Count.getValueType();
3985 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3986 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3987 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3988 Left, InFlag);
3989 InFlag = Chain.getValue(1);
3990 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3991 Ops.clear();
3992 Ops.push_back(Chain);
3993 Ops.push_back(DAG.getValueType(MVT::i8));
3994 Ops.push_back(InFlag);
3995 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3996 } else if (BytesLeft) {
3997 // Issue stores for the last 1 - 7 bytes.
3998 SDOperand Value;
3999 unsigned Val = ValC->getValue() & 255;
4000 unsigned Offset = I->getValue() - BytesLeft;
4001 SDOperand DstAddr = Op.getOperand(1);
4002 MVT::ValueType AddrVT = DstAddr.getValueType();
4003 if (BytesLeft >= 4) {
4004 Val = (Val << 8) | Val;
4005 Val = (Val << 16) | Val;
4006 Value = DAG.getConstant(Val, MVT::i32);
4007 Chain = DAG.getStore(Chain, Value,
4008 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4009 DAG.getConstant(Offset, AddrVT)),
4010 NULL, 0);
4011 BytesLeft -= 4;
4012 Offset += 4;
4013 }
4014 if (BytesLeft >= 2) {
4015 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4016 Chain = DAG.getStore(Chain, Value,
4017 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4018 DAG.getConstant(Offset, AddrVT)),
4019 NULL, 0);
4020 BytesLeft -= 2;
4021 Offset += 2;
4022 }
4023 if (BytesLeft == 1) {
4024 Value = DAG.getConstant(Val, MVT::i8);
4025 Chain = DAG.getStore(Chain, Value,
4026 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4027 DAG.getConstant(Offset, AddrVT)),
4028 NULL, 0);
4029 }
4030 }
4031
4032 return Chain;
4033}
4034
4035SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004036 SDOperand ChainOp = Op.getOperand(0);
4037 SDOperand DestOp = Op.getOperand(1);
4038 SDOperand SourceOp = Op.getOperand(2);
4039 SDOperand CountOp = Op.getOperand(3);
4040 SDOperand AlignOp = Op.getOperand(4);
4041 unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004042 if (Align == 0) Align = 1;
4043
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004044 // The libc version is likely to be faster for the following cases. It can
4045 // use the address value and run time information about the CPU.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00004046 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004047
4048 // If not DWORD aligned, call memcpy.
4049 if ((Align & 3) != 0)
4050 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4051
4052 // If size is unknown, call memcpy.
4053 ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
4054 if (!I)
4055 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4056
4057 // If size is more than the threshold, call memcpy.
4058 unsigned Size = I->getValue();
4059 if (Size > Subtarget->getMinRepStrSizeThreshold())
4060 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4061
4062 return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
4063}
4064
4065SDOperand X86TargetLowering::LowerMEMCPYCall(SDOperand Chain,
4066 SDOperand Dest,
4067 SDOperand Source,
4068 SDOperand Count,
4069 SelectionDAG &DAG) {
4070 MVT::ValueType IntPtr = getPointerTy();
4071 TargetLowering::ArgListTy Args;
4072 TargetLowering::ArgListEntry Entry;
4073 Entry.Ty = getTargetData()->getIntPtrType();
4074 Entry.Node = Dest; Args.push_back(Entry);
4075 Entry.Node = Source; Args.push_back(Entry);
4076 Entry.Node = Count; Args.push_back(Entry);
4077 std::pair<SDOperand,SDOperand> CallResult =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004078 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4079 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004080 return CallResult.second;
4081}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004082
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004083SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4084 SDOperand Dest,
4085 SDOperand Source,
4086 unsigned Size,
4087 unsigned Align,
4088 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004089 MVT::ValueType AVT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004090 unsigned BytesLeft = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004091 switch (Align & 3) {
4092 case 2: // WORD aligned
4093 AVT = MVT::i16;
4094 break;
4095 case 0: // DWORD aligned
4096 AVT = MVT::i32;
4097 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
4098 AVT = MVT::i64;
4099 break;
4100 default: // Byte aligned
4101 AVT = MVT::i8;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004102 break;
4103 }
4104
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004105 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4106 SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4107 BytesLeft = Size % UBytes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004108
4109 SDOperand InFlag(0, 0);
4110 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4111 Count, InFlag);
4112 InFlag = Chain.getValue(1);
4113 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004114 Dest, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004115 InFlag = Chain.getValue(1);
4116 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004117 Source, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004118 InFlag = Chain.getValue(1);
4119
4120 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4121 SmallVector<SDOperand, 8> Ops;
4122 Ops.push_back(Chain);
4123 Ops.push_back(DAG.getValueType(AVT));
4124 Ops.push_back(InFlag);
4125 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4126
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004127 if (BytesLeft) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004128 // Issue loads and stores for the last 1 - 7 bytes.
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004129 unsigned Offset = Size - BytesLeft;
4130 SDOperand DstAddr = Dest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004131 MVT::ValueType DstVT = DstAddr.getValueType();
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004132 SDOperand SrcAddr = Source;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004133 MVT::ValueType SrcVT = SrcAddr.getValueType();
4134 SDOperand Value;
4135 if (BytesLeft >= 4) {
4136 Value = DAG.getLoad(MVT::i32, Chain,
4137 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4138 DAG.getConstant(Offset, SrcVT)),
4139 NULL, 0);
4140 Chain = Value.getValue(1);
4141 Chain = DAG.getStore(Chain, Value,
4142 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4143 DAG.getConstant(Offset, DstVT)),
4144 NULL, 0);
4145 BytesLeft -= 4;
4146 Offset += 4;
4147 }
4148 if (BytesLeft >= 2) {
4149 Value = DAG.getLoad(MVT::i16, Chain,
4150 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4151 DAG.getConstant(Offset, SrcVT)),
4152 NULL, 0);
4153 Chain = Value.getValue(1);
4154 Chain = DAG.getStore(Chain, Value,
4155 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4156 DAG.getConstant(Offset, DstVT)),
4157 NULL, 0);
4158 BytesLeft -= 2;
4159 Offset += 2;
4160 }
4161
4162 if (BytesLeft == 1) {
4163 Value = DAG.getLoad(MVT::i8, Chain,
4164 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4165 DAG.getConstant(Offset, SrcVT)),
4166 NULL, 0);
4167 Chain = Value.getValue(1);
4168 Chain = DAG.getStore(Chain, Value,
4169 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4170 DAG.getConstant(Offset, DstVT)),
4171 NULL, 0);
4172 }
4173 }
4174
4175 return Chain;
4176}
4177
4178SDOperand
4179X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4180 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4181 SDOperand TheOp = Op.getOperand(0);
4182 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4183 if (Subtarget->is64Bit()) {
4184 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4185 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4186 MVT::i64, Copy1.getValue(2));
4187 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4188 DAG.getConstant(32, MVT::i8));
4189 SDOperand Ops[] = {
4190 DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4191 };
4192
4193 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4194 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4195 }
4196
4197 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4198 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4199 MVT::i32, Copy1.getValue(2));
4200 SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4201 Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4202 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4203}
4204
4205SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4206 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4207
4208 if (!Subtarget->is64Bit()) {
4209 // vastart just stores the address of the VarArgsFrameIndex slot into the
4210 // memory location argument.
4211 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4212 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4213 SV->getOffset());
4214 }
4215
4216 // __va_list_tag:
4217 // gp_offset (0 - 6 * 8)
4218 // fp_offset (48 - 48 + 8 * 16)
4219 // overflow_arg_area (point to parameters coming in memory).
4220 // reg_save_area
4221 SmallVector<SDOperand, 8> MemOps;
4222 SDOperand FIN = Op.getOperand(1);
4223 // Store gp_offset
4224 SDOperand Store = DAG.getStore(Op.getOperand(0),
4225 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4226 FIN, SV->getValue(), SV->getOffset());
4227 MemOps.push_back(Store);
4228
4229 // Store fp_offset
4230 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4231 DAG.getConstant(4, getPointerTy()));
4232 Store = DAG.getStore(Op.getOperand(0),
4233 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4234 FIN, SV->getValue(), SV->getOffset());
4235 MemOps.push_back(Store);
4236
4237 // Store ptr to overflow_arg_area
4238 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4239 DAG.getConstant(4, getPointerTy()));
4240 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4241 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4242 SV->getOffset());
4243 MemOps.push_back(Store);
4244
4245 // Store ptr to reg_save_area.
4246 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4247 DAG.getConstant(8, getPointerTy()));
4248 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4249 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4250 SV->getOffset());
4251 MemOps.push_back(Store);
4252 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4253}
4254
4255SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4256 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4257 SDOperand Chain = Op.getOperand(0);
4258 SDOperand DstPtr = Op.getOperand(1);
4259 SDOperand SrcPtr = Op.getOperand(2);
4260 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4261 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4262
4263 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4264 SrcSV->getValue(), SrcSV->getOffset());
4265 Chain = SrcPtr.getValue(1);
4266 for (unsigned i = 0; i < 3; ++i) {
4267 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4268 SrcSV->getValue(), SrcSV->getOffset());
4269 Chain = Val.getValue(1);
4270 Chain = DAG.getStore(Chain, Val, DstPtr,
4271 DstSV->getValue(), DstSV->getOffset());
4272 if (i == 2)
4273 break;
4274 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4275 DAG.getConstant(8, getPointerTy()));
4276 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4277 DAG.getConstant(8, getPointerTy()));
4278 }
4279 return Chain;
4280}
4281
4282SDOperand
4283X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4284 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4285 switch (IntNo) {
4286 default: return SDOperand(); // Don't custom lower most intrinsics.
4287 // Comparison intrinsics.
4288 case Intrinsic::x86_sse_comieq_ss:
4289 case Intrinsic::x86_sse_comilt_ss:
4290 case Intrinsic::x86_sse_comile_ss:
4291 case Intrinsic::x86_sse_comigt_ss:
4292 case Intrinsic::x86_sse_comige_ss:
4293 case Intrinsic::x86_sse_comineq_ss:
4294 case Intrinsic::x86_sse_ucomieq_ss:
4295 case Intrinsic::x86_sse_ucomilt_ss:
4296 case Intrinsic::x86_sse_ucomile_ss:
4297 case Intrinsic::x86_sse_ucomigt_ss:
4298 case Intrinsic::x86_sse_ucomige_ss:
4299 case Intrinsic::x86_sse_ucomineq_ss:
4300 case Intrinsic::x86_sse2_comieq_sd:
4301 case Intrinsic::x86_sse2_comilt_sd:
4302 case Intrinsic::x86_sse2_comile_sd:
4303 case Intrinsic::x86_sse2_comigt_sd:
4304 case Intrinsic::x86_sse2_comige_sd:
4305 case Intrinsic::x86_sse2_comineq_sd:
4306 case Intrinsic::x86_sse2_ucomieq_sd:
4307 case Intrinsic::x86_sse2_ucomilt_sd:
4308 case Intrinsic::x86_sse2_ucomile_sd:
4309 case Intrinsic::x86_sse2_ucomigt_sd:
4310 case Intrinsic::x86_sse2_ucomige_sd:
4311 case Intrinsic::x86_sse2_ucomineq_sd: {
4312 unsigned Opc = 0;
4313 ISD::CondCode CC = ISD::SETCC_INVALID;
4314 switch (IntNo) {
4315 default: break;
4316 case Intrinsic::x86_sse_comieq_ss:
4317 case Intrinsic::x86_sse2_comieq_sd:
4318 Opc = X86ISD::COMI;
4319 CC = ISD::SETEQ;
4320 break;
4321 case Intrinsic::x86_sse_comilt_ss:
4322 case Intrinsic::x86_sse2_comilt_sd:
4323 Opc = X86ISD::COMI;
4324 CC = ISD::SETLT;
4325 break;
4326 case Intrinsic::x86_sse_comile_ss:
4327 case Intrinsic::x86_sse2_comile_sd:
4328 Opc = X86ISD::COMI;
4329 CC = ISD::SETLE;
4330 break;
4331 case Intrinsic::x86_sse_comigt_ss:
4332 case Intrinsic::x86_sse2_comigt_sd:
4333 Opc = X86ISD::COMI;
4334 CC = ISD::SETGT;
4335 break;
4336 case Intrinsic::x86_sse_comige_ss:
4337 case Intrinsic::x86_sse2_comige_sd:
4338 Opc = X86ISD::COMI;
4339 CC = ISD::SETGE;
4340 break;
4341 case Intrinsic::x86_sse_comineq_ss:
4342 case Intrinsic::x86_sse2_comineq_sd:
4343 Opc = X86ISD::COMI;
4344 CC = ISD::SETNE;
4345 break;
4346 case Intrinsic::x86_sse_ucomieq_ss:
4347 case Intrinsic::x86_sse2_ucomieq_sd:
4348 Opc = X86ISD::UCOMI;
4349 CC = ISD::SETEQ;
4350 break;
4351 case Intrinsic::x86_sse_ucomilt_ss:
4352 case Intrinsic::x86_sse2_ucomilt_sd:
4353 Opc = X86ISD::UCOMI;
4354 CC = ISD::SETLT;
4355 break;
4356 case Intrinsic::x86_sse_ucomile_ss:
4357 case Intrinsic::x86_sse2_ucomile_sd:
4358 Opc = X86ISD::UCOMI;
4359 CC = ISD::SETLE;
4360 break;
4361 case Intrinsic::x86_sse_ucomigt_ss:
4362 case Intrinsic::x86_sse2_ucomigt_sd:
4363 Opc = X86ISD::UCOMI;
4364 CC = ISD::SETGT;
4365 break;
4366 case Intrinsic::x86_sse_ucomige_ss:
4367 case Intrinsic::x86_sse2_ucomige_sd:
4368 Opc = X86ISD::UCOMI;
4369 CC = ISD::SETGE;
4370 break;
4371 case Intrinsic::x86_sse_ucomineq_ss:
4372 case Intrinsic::x86_sse2_ucomineq_sd:
4373 Opc = X86ISD::UCOMI;
4374 CC = ISD::SETNE;
4375 break;
4376 }
4377
4378 unsigned X86CC;
4379 SDOperand LHS = Op.getOperand(1);
4380 SDOperand RHS = Op.getOperand(2);
4381 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4382
Evan Cheng621216e2007-09-29 00:00:36 +00004383 SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4384 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4385 DAG.getConstant(X86CC, MVT::i8), Cond);
4386 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004387 }
4388 }
4389}
4390
4391SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4392 // Depths > 0 not supported yet!
4393 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4394 return SDOperand();
4395
4396 // Just load the return address
4397 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4398 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4399}
4400
4401SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4402 // Depths > 0 not supported yet!
4403 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4404 return SDOperand();
4405
4406 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4407 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4408 DAG.getConstant(4, getPointerTy()));
4409}
4410
4411SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4412 SelectionDAG &DAG) {
4413 // Is not yet supported on x86-64
4414 if (Subtarget->is64Bit())
4415 return SDOperand();
4416
4417 return DAG.getConstant(8, getPointerTy());
4418}
4419
4420SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4421{
4422 assert(!Subtarget->is64Bit() &&
4423 "Lowering of eh_return builtin is not supported yet on x86-64");
4424
4425 MachineFunction &MF = DAG.getMachineFunction();
4426 SDOperand Chain = Op.getOperand(0);
4427 SDOperand Offset = Op.getOperand(1);
4428 SDOperand Handler = Op.getOperand(2);
4429
4430 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4431 getPointerTy());
4432
4433 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4434 DAG.getConstant(-4UL, getPointerTy()));
4435 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4436 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4437 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4438 MF.addLiveOut(X86::ECX);
4439
4440 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4441 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4442}
4443
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004444SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4445 SelectionDAG &DAG) {
4446 SDOperand Root = Op.getOperand(0);
4447 SDOperand Trmp = Op.getOperand(1); // trampoline
4448 SDOperand FPtr = Op.getOperand(2); // nested function
4449 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4450
4451 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4452
4453 if (Subtarget->is64Bit()) {
4454 return SDOperand(); // not yet supported
4455 } else {
4456 Function *Func = (Function *)
4457 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4458 unsigned CC = Func->getCallingConv();
Duncan Sands466eadd2007-08-29 19:01:20 +00004459 unsigned NestReg;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004460
4461 switch (CC) {
4462 default:
4463 assert(0 && "Unsupported calling convention");
4464 case CallingConv::C:
4465 case CallingConv::Fast:
4466 case CallingConv::X86_StdCall: {
4467 // Pass 'nest' parameter in ECX.
4468 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004469 NestReg = X86::ECX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004470
4471 // Check that ECX wasn't needed by an 'inreg' parameter.
4472 const FunctionType *FTy = Func->getFunctionType();
4473 const ParamAttrsList *Attrs = FTy->getParamAttrs();
4474
4475 if (Attrs && !Func->isVarArg()) {
4476 unsigned InRegCount = 0;
4477 unsigned Idx = 1;
4478
4479 for (FunctionType::param_iterator I = FTy->param_begin(),
4480 E = FTy->param_end(); I != E; ++I, ++Idx)
4481 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4482 // FIXME: should only count parameters that are lowered to integers.
4483 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4484
4485 if (InRegCount > 2) {
4486 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4487 abort();
4488 }
4489 }
4490 break;
4491 }
4492 case CallingConv::X86_FastCall:
4493 // Pass 'nest' parameter in EAX.
4494 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004495 NestReg = X86::EAX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004496 break;
4497 }
4498
Duncan Sands466eadd2007-08-29 19:01:20 +00004499 const X86InstrInfo *TII =
4500 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4501
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004502 SDOperand OutChains[4];
4503 SDOperand Addr, Disp;
4504
4505 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4506 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4507
Duncan Sands466eadd2007-08-29 19:01:20 +00004508 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4509 unsigned char N86Reg = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4510 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004511 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4512
4513 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4514 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4515 TrmpSV->getOffset() + 1, false, 1);
4516
Duncan Sands466eadd2007-08-29 19:01:20 +00004517 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004518 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4519 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4520 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4521
4522 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4523 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4524 TrmpSV->getOffset() + 6, false, 1);
4525
Duncan Sands7407a9f2007-09-11 14:10:23 +00004526 SDOperand Ops[] =
4527 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4528 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004529 }
4530}
4531
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004532/// LowerOperation - Provide custom lowering hooks for some operations.
4533///
4534SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4535 switch (Op.getOpcode()) {
4536 default: assert(0 && "Should not custom lower this!");
4537 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4538 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4539 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4540 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4541 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4542 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4543 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4544 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4545 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
4546 case ISD::SHL_PARTS:
4547 case ISD::SRA_PARTS:
4548 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
Dan Gohman242a5ba2007-09-25 18:23:27 +00004549 case ISD::SDIV:
4550 case ISD::UDIV:
4551 case ISD::SREM:
4552 case ISD::UREM: return LowerIntegerDivOrRem(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004553 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
4554 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
4555 case ISD::FABS: return LowerFABS(Op, DAG);
4556 case ISD::FNEG: return LowerFNEG(Op, DAG);
4557 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
Evan Cheng621216e2007-09-29 00:00:36 +00004558 case ISD::SETCC: return LowerSETCC(Op, DAG);
4559 case ISD::SELECT: return LowerSELECT(Op, DAG);
4560 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004561 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
4562 case ISD::CALL: return LowerCALL(Op, DAG);
4563 case ISD::RET: return LowerRET(Op, DAG);
4564 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
4565 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
4566 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
4567 case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
4568 case ISD::VASTART: return LowerVASTART(Op, DAG);
4569 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
4570 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4571 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4572 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
4573 case ISD::FRAME_TO_ARGS_OFFSET:
4574 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4575 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4576 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004577 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004578 }
4579 return SDOperand();
4580}
4581
4582const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4583 switch (Opcode) {
4584 default: return NULL;
4585 case X86ISD::SHLD: return "X86ISD::SHLD";
4586 case X86ISD::SHRD: return "X86ISD::SHRD";
4587 case X86ISD::FAND: return "X86ISD::FAND";
4588 case X86ISD::FOR: return "X86ISD::FOR";
4589 case X86ISD::FXOR: return "X86ISD::FXOR";
4590 case X86ISD::FSRL: return "X86ISD::FSRL";
4591 case X86ISD::FILD: return "X86ISD::FILD";
4592 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
4593 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4594 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4595 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4596 case X86ISD::FLD: return "X86ISD::FLD";
4597 case X86ISD::FST: return "X86ISD::FST";
4598 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
4599 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
4600 case X86ISD::CALL: return "X86ISD::CALL";
4601 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
4602 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
4603 case X86ISD::CMP: return "X86ISD::CMP";
4604 case X86ISD::COMI: return "X86ISD::COMI";
4605 case X86ISD::UCOMI: return "X86ISD::UCOMI";
4606 case X86ISD::SETCC: return "X86ISD::SETCC";
4607 case X86ISD::CMOV: return "X86ISD::CMOV";
4608 case X86ISD::BRCOND: return "X86ISD::BRCOND";
4609 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
4610 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
4611 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004612 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
4613 case X86ISD::Wrapper: return "X86ISD::Wrapper";
4614 case X86ISD::S2VEC: return "X86ISD::S2VEC";
4615 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
4616 case X86ISD::PINSRW: return "X86ISD::PINSRW";
4617 case X86ISD::FMAX: return "X86ISD::FMAX";
4618 case X86ISD::FMIN: return "X86ISD::FMIN";
4619 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
4620 case X86ISD::FRCP: return "X86ISD::FRCP";
4621 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
4622 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
4623 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
Dan Gohman242a5ba2007-09-25 18:23:27 +00004624 case X86ISD::DIV: return "X86ISD::DIV";
4625 case X86ISD::IDIV: return "X86ISD::IDIV";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004626 }
4627}
4628
4629// isLegalAddressingMode - Return true if the addressing mode represented
4630// by AM is legal for this target, for a load/store of the specified type.
4631bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4632 const Type *Ty) const {
4633 // X86 supports extremely general addressing modes.
4634
4635 // X86 allows a sign-extended 32-bit immediate field as a displacement.
4636 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4637 return false;
4638
4639 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004640 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004641 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4642 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004643
4644 // X86-64 only supports addr of globals in small code model.
4645 if (Subtarget->is64Bit()) {
4646 if (getTargetMachine().getCodeModel() != CodeModel::Small)
4647 return false;
4648 // If lower 4G is not available, then we must use rip-relative addressing.
4649 if (AM.BaseOffs || AM.Scale > 1)
4650 return false;
4651 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004652 }
4653
4654 switch (AM.Scale) {
4655 case 0:
4656 case 1:
4657 case 2:
4658 case 4:
4659 case 8:
4660 // These scales always work.
4661 break;
4662 case 3:
4663 case 5:
4664 case 9:
4665 // These scales are formed with basereg+scalereg. Only accept if there is
4666 // no basereg yet.
4667 if (AM.HasBaseReg)
4668 return false;
4669 break;
4670 default: // Other stuff never works.
4671 return false;
4672 }
4673
4674 return true;
4675}
4676
4677
4678/// isShuffleMaskLegal - Targets can use this to indicate that they only
4679/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4680/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4681/// are assumed to be legal.
4682bool
4683X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4684 // Only do shuffles on 128-bit vector types for now.
4685 if (MVT::getSizeInBits(VT) == 64) return false;
4686 return (Mask.Val->getNumOperands() <= 4 ||
4687 isIdentityMask(Mask.Val) ||
4688 isIdentityMask(Mask.Val, true) ||
4689 isSplatMask(Mask.Val) ||
4690 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4691 X86::isUNPCKLMask(Mask.Val) ||
4692 X86::isUNPCKHMask(Mask.Val) ||
4693 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4694 X86::isUNPCKH_v_undef_Mask(Mask.Val));
4695}
4696
4697bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4698 MVT::ValueType EVT,
4699 SelectionDAG &DAG) const {
4700 unsigned NumElts = BVOps.size();
4701 // Only do shuffles on 128-bit vector types for now.
4702 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4703 if (NumElts == 2) return true;
4704 if (NumElts == 4) {
4705 return (isMOVLMask(&BVOps[0], 4) ||
4706 isCommutedMOVL(&BVOps[0], 4, true) ||
4707 isSHUFPMask(&BVOps[0], 4) ||
4708 isCommutedSHUFP(&BVOps[0], 4));
4709 }
4710 return false;
4711}
4712
4713//===----------------------------------------------------------------------===//
4714// X86 Scheduler Hooks
4715//===----------------------------------------------------------------------===//
4716
4717MachineBasicBlock *
4718X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4719 MachineBasicBlock *BB) {
4720 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4721 switch (MI->getOpcode()) {
4722 default: assert(false && "Unexpected instr type to insert");
4723 case X86::CMOV_FR32:
4724 case X86::CMOV_FR64:
4725 case X86::CMOV_V4F32:
4726 case X86::CMOV_V2F64:
Evan Cheng621216e2007-09-29 00:00:36 +00004727 case X86::CMOV_V2I64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004728 // To "insert" a SELECT_CC instruction, we actually have to insert the
4729 // diamond control-flow pattern. The incoming instruction knows the
4730 // destination vreg to set, the condition code register to branch on, the
4731 // true/false values to select between, and a branch opcode to use.
4732 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4733 ilist<MachineBasicBlock>::iterator It = BB;
4734 ++It;
4735
4736 // thisMBB:
4737 // ...
4738 // TrueVal = ...
4739 // cmpTY ccX, r1, r2
4740 // bCC copy1MBB
4741 // fallthrough --> copy0MBB
4742 MachineBasicBlock *thisMBB = BB;
4743 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4744 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4745 unsigned Opc =
4746 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4747 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4748 MachineFunction *F = BB->getParent();
4749 F->getBasicBlockList().insert(It, copy0MBB);
4750 F->getBasicBlockList().insert(It, sinkMBB);
4751 // Update machine-CFG edges by first adding all successors of the current
4752 // block to the new block which will contain the Phi node for the select.
4753 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4754 e = BB->succ_end(); i != e; ++i)
4755 sinkMBB->addSuccessor(*i);
4756 // Next, remove all successors of the current block, and add the true
4757 // and fallthrough blocks as its successors.
4758 while(!BB->succ_empty())
4759 BB->removeSuccessor(BB->succ_begin());
4760 BB->addSuccessor(copy0MBB);
4761 BB->addSuccessor(sinkMBB);
4762
4763 // copy0MBB:
4764 // %FalseValue = ...
4765 // # fallthrough to sinkMBB
4766 BB = copy0MBB;
4767
4768 // Update machine-CFG edges
4769 BB->addSuccessor(sinkMBB);
4770
4771 // sinkMBB:
4772 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4773 // ...
4774 BB = sinkMBB;
4775 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4776 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4777 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4778
4779 delete MI; // The pseudo instruction is gone now.
4780 return BB;
4781 }
4782
4783 case X86::FP32_TO_INT16_IN_MEM:
4784 case X86::FP32_TO_INT32_IN_MEM:
4785 case X86::FP32_TO_INT64_IN_MEM:
4786 case X86::FP64_TO_INT16_IN_MEM:
4787 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004788 case X86::FP64_TO_INT64_IN_MEM:
4789 case X86::FP80_TO_INT16_IN_MEM:
4790 case X86::FP80_TO_INT32_IN_MEM:
4791 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004792 // Change the floating point control register to use "round towards zero"
4793 // mode when truncating to an integer value.
4794 MachineFunction *F = BB->getParent();
4795 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4796 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4797
4798 // Load the old value of the high byte of the control word...
4799 unsigned OldCW =
4800 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4801 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4802
4803 // Set the high part to be round to zero...
4804 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4805 .addImm(0xC7F);
4806
4807 // Reload the modified control word now...
4808 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4809
4810 // Restore the memory image of control word to original value
4811 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4812 .addReg(OldCW);
4813
4814 // Get the X86 opcode to use.
4815 unsigned Opc;
4816 switch (MI->getOpcode()) {
4817 default: assert(0 && "illegal opcode!");
4818 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4819 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4820 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4821 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4822 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4823 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004824 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
4825 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
4826 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004827 }
4828
4829 X86AddressMode AM;
4830 MachineOperand &Op = MI->getOperand(0);
4831 if (Op.isRegister()) {
4832 AM.BaseType = X86AddressMode::RegBase;
4833 AM.Base.Reg = Op.getReg();
4834 } else {
4835 AM.BaseType = X86AddressMode::FrameIndexBase;
4836 AM.Base.FrameIndex = Op.getFrameIndex();
4837 }
4838 Op = MI->getOperand(1);
4839 if (Op.isImmediate())
4840 AM.Scale = Op.getImm();
4841 Op = MI->getOperand(2);
4842 if (Op.isImmediate())
4843 AM.IndexReg = Op.getImm();
4844 Op = MI->getOperand(3);
4845 if (Op.isGlobalAddress()) {
4846 AM.GV = Op.getGlobal();
4847 } else {
4848 AM.Disp = Op.getImm();
4849 }
4850 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4851 .addReg(MI->getOperand(4).getReg());
4852
4853 // Reload the original control word now.
4854 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4855
4856 delete MI; // The pseudo instruction is gone now.
4857 return BB;
4858 }
4859 }
4860}
4861
4862//===----------------------------------------------------------------------===//
4863// X86 Optimization Hooks
4864//===----------------------------------------------------------------------===//
4865
4866void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4867 uint64_t Mask,
4868 uint64_t &KnownZero,
4869 uint64_t &KnownOne,
4870 const SelectionDAG &DAG,
4871 unsigned Depth) const {
4872 unsigned Opc = Op.getOpcode();
4873 assert((Opc >= ISD::BUILTIN_OP_END ||
4874 Opc == ISD::INTRINSIC_WO_CHAIN ||
4875 Opc == ISD::INTRINSIC_W_CHAIN ||
4876 Opc == ISD::INTRINSIC_VOID) &&
4877 "Should use MaskedValueIsZero if you don't know whether Op"
4878 " is a target node!");
4879
4880 KnownZero = KnownOne = 0; // Don't know anything.
4881 switch (Opc) {
4882 default: break;
4883 case X86ISD::SETCC:
4884 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4885 break;
4886 }
4887}
4888
4889/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4890/// element of the result of the vector shuffle.
4891static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4892 MVT::ValueType VT = N->getValueType(0);
4893 SDOperand PermMask = N->getOperand(2);
4894 unsigned NumElems = PermMask.getNumOperands();
4895 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4896 i %= NumElems;
4897 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4898 return (i == 0)
4899 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4900 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4901 SDOperand Idx = PermMask.getOperand(i);
4902 if (Idx.getOpcode() == ISD::UNDEF)
4903 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4904 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4905 }
4906 return SDOperand();
4907}
4908
4909/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4910/// node is a GlobalAddress + an offset.
4911static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4912 unsigned Opc = N->getOpcode();
4913 if (Opc == X86ISD::Wrapper) {
4914 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4915 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4916 return true;
4917 }
4918 } else if (Opc == ISD::ADD) {
4919 SDOperand N1 = N->getOperand(0);
4920 SDOperand N2 = N->getOperand(1);
4921 if (isGAPlusOffset(N1.Val, GA, Offset)) {
4922 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4923 if (V) {
4924 Offset += V->getSignExtended();
4925 return true;
4926 }
4927 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4928 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4929 if (V) {
4930 Offset += V->getSignExtended();
4931 return true;
4932 }
4933 }
4934 }
4935 return false;
4936}
4937
4938/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4939/// + Dist * Size.
4940static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4941 MachineFrameInfo *MFI) {
4942 if (N->getOperand(0).Val != Base->getOperand(0).Val)
4943 return false;
4944
4945 SDOperand Loc = N->getOperand(1);
4946 SDOperand BaseLoc = Base->getOperand(1);
4947 if (Loc.getOpcode() == ISD::FrameIndex) {
4948 if (BaseLoc.getOpcode() != ISD::FrameIndex)
4949 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00004950 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
4951 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004952 int FS = MFI->getObjectSize(FI);
4953 int BFS = MFI->getObjectSize(BFI);
4954 if (FS != BFS || FS != Size) return false;
4955 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4956 } else {
4957 GlobalValue *GV1 = NULL;
4958 GlobalValue *GV2 = NULL;
4959 int64_t Offset1 = 0;
4960 int64_t Offset2 = 0;
4961 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4962 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4963 if (isGA1 && isGA2 && GV1 == GV2)
4964 return Offset1 == (Offset2 + Dist*Size);
4965 }
4966
4967 return false;
4968}
4969
4970static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4971 const X86Subtarget *Subtarget) {
4972 GlobalValue *GV;
4973 int64_t Offset;
4974 if (isGAPlusOffset(Base, GV, Offset))
4975 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4976 else {
4977 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00004978 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004979 if (BFI < 0)
4980 // Fixed objects do not specify alignment, however the offsets are known.
4981 return ((Subtarget->getStackAlignment() % 16) == 0 &&
4982 (MFI->getObjectOffset(BFI) % 16) == 0);
4983 else
4984 return MFI->getObjectAlignment(BFI) >= 16;
4985 }
4986 return false;
4987}
4988
4989
4990/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4991/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4992/// if the load addresses are consecutive, non-overlapping, and in the right
4993/// order.
4994static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4995 const X86Subtarget *Subtarget) {
4996 MachineFunction &MF = DAG.getMachineFunction();
4997 MachineFrameInfo *MFI = MF.getFrameInfo();
4998 MVT::ValueType VT = N->getValueType(0);
4999 MVT::ValueType EVT = MVT::getVectorElementType(VT);
5000 SDOperand PermMask = N->getOperand(2);
5001 int NumElems = (int)PermMask.getNumOperands();
5002 SDNode *Base = NULL;
5003 for (int i = 0; i < NumElems; ++i) {
5004 SDOperand Idx = PermMask.getOperand(i);
5005 if (Idx.getOpcode() == ISD::UNDEF) {
5006 if (!Base) return SDOperand();
5007 } else {
5008 SDOperand Arg =
5009 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5010 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5011 return SDOperand();
5012 if (!Base)
5013 Base = Arg.Val;
5014 else if (!isConsecutiveLoad(Arg.Val, Base,
5015 i, MVT::getSizeInBits(EVT)/8,MFI))
5016 return SDOperand();
5017 }
5018 }
5019
5020 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00005021 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005022 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005023 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00005024 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005025 } else {
Dan Gohman11821702007-07-27 17:16:43 +00005026 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5027 LD->getSrcValueOffset(), LD->isVolatile(),
5028 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005029 }
5030}
5031
5032/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5033static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5034 const X86Subtarget *Subtarget) {
5035 SDOperand Cond = N->getOperand(0);
5036
5037 // If we have SSE[12] support, try to form min/max nodes.
5038 if (Subtarget->hasSSE2() &&
5039 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5040 if (Cond.getOpcode() == ISD::SETCC) {
5041 // Get the LHS/RHS of the select.
5042 SDOperand LHS = N->getOperand(1);
5043 SDOperand RHS = N->getOperand(2);
5044 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5045
5046 unsigned Opcode = 0;
5047 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5048 switch (CC) {
5049 default: break;
5050 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5051 case ISD::SETULE:
5052 case ISD::SETLE:
5053 if (!UnsafeFPMath) break;
5054 // FALL THROUGH.
5055 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
5056 case ISD::SETLT:
5057 Opcode = X86ISD::FMIN;
5058 break;
5059
5060 case ISD::SETOGT: // (X > Y) ? X : Y -> max
5061 case ISD::SETUGT:
5062 case ISD::SETGT:
5063 if (!UnsafeFPMath) break;
5064 // FALL THROUGH.
5065 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
5066 case ISD::SETGE:
5067 Opcode = X86ISD::FMAX;
5068 break;
5069 }
5070 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5071 switch (CC) {
5072 default: break;
5073 case ISD::SETOGT: // (X > Y) ? Y : X -> min
5074 case ISD::SETUGT:
5075 case ISD::SETGT:
5076 if (!UnsafeFPMath) break;
5077 // FALL THROUGH.
5078 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
5079 case ISD::SETGE:
5080 Opcode = X86ISD::FMIN;
5081 break;
5082
5083 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
5084 case ISD::SETULE:
5085 case ISD::SETLE:
5086 if (!UnsafeFPMath) break;
5087 // FALL THROUGH.
5088 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
5089 case ISD::SETLT:
5090 Opcode = X86ISD::FMAX;
5091 break;
5092 }
5093 }
5094
5095 if (Opcode)
5096 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5097 }
5098
5099 }
5100
5101 return SDOperand();
5102}
5103
5104
5105SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5106 DAGCombinerInfo &DCI) const {
5107 SelectionDAG &DAG = DCI.DAG;
5108 switch (N->getOpcode()) {
5109 default: break;
5110 case ISD::VECTOR_SHUFFLE:
5111 return PerformShuffleCombine(N, DAG, Subtarget);
5112 case ISD::SELECT:
5113 return PerformSELECTCombine(N, DAG, Subtarget);
5114 }
5115
5116 return SDOperand();
5117}
5118
5119//===----------------------------------------------------------------------===//
5120// X86 Inline Assembly Support
5121//===----------------------------------------------------------------------===//
5122
5123/// getConstraintType - Given a constraint letter, return the type of
5124/// constraint it is for this target.
5125X86TargetLowering::ConstraintType
5126X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5127 if (Constraint.size() == 1) {
5128 switch (Constraint[0]) {
5129 case 'A':
5130 case 'r':
5131 case 'R':
5132 case 'l':
5133 case 'q':
5134 case 'Q':
5135 case 'x':
5136 case 'Y':
5137 return C_RegisterClass;
5138 default:
5139 break;
5140 }
5141 }
5142 return TargetLowering::getConstraintType(Constraint);
5143}
5144
Chris Lattnera531abc2007-08-25 00:47:38 +00005145/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5146/// vector. If it is invalid, don't add anything to Ops.
5147void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5148 char Constraint,
5149 std::vector<SDOperand>&Ops,
5150 SelectionDAG &DAG) {
5151 SDOperand Result(0, 0);
5152
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005153 switch (Constraint) {
5154 default: break;
5155 case 'I':
5156 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005157 if (C->getValue() <= 31) {
5158 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5159 break;
5160 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005161 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005162 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005163 case 'N':
5164 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005165 if (C->getValue() <= 255) {
5166 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5167 break;
5168 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005169 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005170 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005171 case 'i': {
5172 // Literal immediates are always ok.
Chris Lattnera531abc2007-08-25 00:47:38 +00005173 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5174 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5175 break;
5176 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005177
5178 // If we are in non-pic codegen mode, we allow the address of a global (with
5179 // an optional displacement) to be used with 'i'.
5180 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5181 int64_t Offset = 0;
5182
5183 // Match either (GA) or (GA+C)
5184 if (GA) {
5185 Offset = GA->getOffset();
5186 } else if (Op.getOpcode() == ISD::ADD) {
5187 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5188 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5189 if (C && GA) {
5190 Offset = GA->getOffset()+C->getValue();
5191 } else {
5192 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5193 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5194 if (C && GA)
5195 Offset = GA->getOffset()+C->getValue();
5196 else
5197 C = 0, GA = 0;
5198 }
5199 }
5200
5201 if (GA) {
5202 // If addressing this global requires a load (e.g. in PIC mode), we can't
5203 // match.
5204 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5205 false))
Chris Lattnera531abc2007-08-25 00:47:38 +00005206 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005207
5208 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5209 Offset);
Chris Lattnera531abc2007-08-25 00:47:38 +00005210 Result = Op;
5211 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005212 }
5213
5214 // Otherwise, not valid for this mode.
Chris Lattnera531abc2007-08-25 00:47:38 +00005215 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005216 }
5217 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005218
5219 if (Result.Val) {
5220 Ops.push_back(Result);
5221 return;
5222 }
5223 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005224}
5225
5226std::vector<unsigned> X86TargetLowering::
5227getRegClassForInlineAsmConstraint(const std::string &Constraint,
5228 MVT::ValueType VT) const {
5229 if (Constraint.size() == 1) {
5230 // FIXME: not handling fp-stack yet!
5231 switch (Constraint[0]) { // GCC X86 Constraint Letters
5232 default: break; // Unknown constraint letter
5233 case 'A': // EAX/EDX
5234 if (VT == MVT::i32 || VT == MVT::i64)
5235 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5236 break;
5237 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5238 case 'Q': // Q_REGS
5239 if (VT == MVT::i32)
5240 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5241 else if (VT == MVT::i16)
5242 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5243 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00005244 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005245 break;
5246 }
5247 }
5248
5249 return std::vector<unsigned>();
5250}
5251
5252std::pair<unsigned, const TargetRegisterClass*>
5253X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5254 MVT::ValueType VT) const {
5255 // First, see if this is a constraint that directly corresponds to an LLVM
5256 // register class.
5257 if (Constraint.size() == 1) {
5258 // GCC Constraint Letters
5259 switch (Constraint[0]) {
5260 default: break;
5261 case 'r': // GENERAL_REGS
5262 case 'R': // LEGACY_REGS
5263 case 'l': // INDEX_REGS
5264 if (VT == MVT::i64 && Subtarget->is64Bit())
5265 return std::make_pair(0U, X86::GR64RegisterClass);
5266 if (VT == MVT::i32)
5267 return std::make_pair(0U, X86::GR32RegisterClass);
5268 else if (VT == MVT::i16)
5269 return std::make_pair(0U, X86::GR16RegisterClass);
5270 else if (VT == MVT::i8)
5271 return std::make_pair(0U, X86::GR8RegisterClass);
5272 break;
5273 case 'y': // MMX_REGS if MMX allowed.
5274 if (!Subtarget->hasMMX()) break;
5275 return std::make_pair(0U, X86::VR64RegisterClass);
5276 break;
5277 case 'Y': // SSE_REGS if SSE2 allowed
5278 if (!Subtarget->hasSSE2()) break;
5279 // FALL THROUGH.
5280 case 'x': // SSE_REGS if SSE1 allowed
5281 if (!Subtarget->hasSSE1()) break;
5282
5283 switch (VT) {
5284 default: break;
5285 // Scalar SSE types.
5286 case MVT::f32:
5287 case MVT::i32:
5288 return std::make_pair(0U, X86::FR32RegisterClass);
5289 case MVT::f64:
5290 case MVT::i64:
5291 return std::make_pair(0U, X86::FR64RegisterClass);
5292 // Vector types.
5293 case MVT::v16i8:
5294 case MVT::v8i16:
5295 case MVT::v4i32:
5296 case MVT::v2i64:
5297 case MVT::v4f32:
5298 case MVT::v2f64:
5299 return std::make_pair(0U, X86::VR128RegisterClass);
5300 }
5301 break;
5302 }
5303 }
5304
5305 // Use the default implementation in TargetLowering to convert the register
5306 // constraint into a member of a register class.
5307 std::pair<unsigned, const TargetRegisterClass*> Res;
5308 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5309
5310 // Not found as a standard register?
5311 if (Res.second == 0) {
5312 // GCC calls "st(0)" just plain "st".
5313 if (StringsEqualNoCase("{st}", Constraint)) {
5314 Res.first = X86::ST0;
Chris Lattner3cfe51b2007-09-24 05:27:37 +00005315 Res.second = X86::RFP80RegisterClass;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005316 }
5317
5318 return Res;
5319 }
5320
5321 // Otherwise, check to see if this is a register class of the wrong value
5322 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5323 // turn into {ax},{dx}.
5324 if (Res.second->hasType(VT))
5325 return Res; // Correct type already, nothing to do.
5326
5327 // All of the single-register GCC register classes map their values onto
5328 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5329 // really want an 8-bit or 32-bit register, map to the appropriate register
5330 // class and return the appropriate register.
5331 if (Res.second != X86::GR16RegisterClass)
5332 return Res;
5333
5334 if (VT == MVT::i8) {
5335 unsigned DestReg = 0;
5336 switch (Res.first) {
5337 default: break;
5338 case X86::AX: DestReg = X86::AL; break;
5339 case X86::DX: DestReg = X86::DL; break;
5340 case X86::CX: DestReg = X86::CL; break;
5341 case X86::BX: DestReg = X86::BL; break;
5342 }
5343 if (DestReg) {
5344 Res.first = DestReg;
5345 Res.second = Res.second = X86::GR8RegisterClass;
5346 }
5347 } else if (VT == MVT::i32) {
5348 unsigned DestReg = 0;
5349 switch (Res.first) {
5350 default: break;
5351 case X86::AX: DestReg = X86::EAX; break;
5352 case X86::DX: DestReg = X86::EDX; break;
5353 case X86::CX: DestReg = X86::ECX; break;
5354 case X86::BX: DestReg = X86::EBX; break;
5355 case X86::SI: DestReg = X86::ESI; break;
5356 case X86::DI: DestReg = X86::EDI; break;
5357 case X86::BP: DestReg = X86::EBP; break;
5358 case X86::SP: DestReg = X86::ESP; break;
5359 }
5360 if (DestReg) {
5361 Res.first = DestReg;
5362 Res.second = Res.second = X86::GR32RegisterClass;
5363 }
5364 } else if (VT == MVT::i64) {
5365 unsigned DestReg = 0;
5366 switch (Res.first) {
5367 default: break;
5368 case X86::AX: DestReg = X86::RAX; break;
5369 case X86::DX: DestReg = X86::RDX; break;
5370 case X86::CX: DestReg = X86::RCX; break;
5371 case X86::BX: DestReg = X86::RBX; break;
5372 case X86::SI: DestReg = X86::RSI; break;
5373 case X86::DI: DestReg = X86::RDI; break;
5374 case X86::BP: DestReg = X86::RBP; break;
5375 case X86::SP: DestReg = X86::RSP; break;
5376 }
5377 if (DestReg) {
5378 Res.first = DestReg;
5379 Res.second = Res.second = X86::GR64RegisterClass;
5380 }
5381 }
5382
5383 return Res;
5384}